DOE Office of Scientific and Technical Information (OSTI.GOV)
Walko, R.J.; Lincoln, R.C.; Baca, W.E.
1991-01-01
Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be to hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. Many using low power flux beta emitters, wide bandgap semiconductorsmore » are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method. 7 refs., 11 figs.« less
NASA Astrophysics Data System (ADS)
Walko, R. J.; Lincoln, R. C.; Baca, W. E.; Goods, S. H.; Negley, G. H.
Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be too hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. When using low power flux beta emitters, wide bandgap semiconductors are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method.
Hydrogen turbine power conversion system assessment
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.
1978-01-01
A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.
The Common Law Power of the Legislature: Insurer Conversions and Charitable Funds
Horwitz, Jill R; Fremont-Smith, Marion R
2005-01-01
New York's Empire Blue Cross and Blue Shield conversion from nonprofit to for-profit form has considerable legal significance. Three aspects of the conversion make the case unique: the role of the state legislature in directing the disposition of the conversion assets, the fact that it made itself the primary beneficiary of those assets, and the actions of the state attorney general defending the state rather than the public interest in the charitable assets. Drawing on several centuries of common law rejecting the legislative power to direct the disposition of charitable funds, this article argues that the legislature lacked power to control the conversion and direct the disposition of its proceeds and that its actions not only undermined the nonprofit form but also raised constitutional concerns. PMID:15960770
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
Enhanced distributed energy resource system
Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM
2007-07-03
A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.
OAST space power technology program
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.
A solar simulator-pumped gas laser for the direct conversion of solar energy
NASA Technical Reports Server (NTRS)
Weaver, W. R.; Lee, J. H.
1981-01-01
Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.
Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Jones, B. I.
1987-01-01
The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.
Physical Limits of Solar Energy Conversion in the Earth System.
Kleidon, Axel; Miller, Lee; Gans, Fabian
2016-01-01
Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
The NASA Space Power Technology Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Hudson, W. R.; Randolph, L. P.
1979-01-01
This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.
Engineering of beam direct conversion for a 120-kV, 1-MW ion beam
NASA Technical Reports Server (NTRS)
Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.
1977-01-01
Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.
Bi-directional four quadrant (BDQ4) power converter development
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1979-01-01
The feasibility for implementation of a concept for direct ac/dc multikilowatt power conversion with bidirectional transfer of energy was investigated. A 10 kHz current carrier was derived directly from a common 60 Hz three phase power system. This carrier was modulated to remove the 360 Hz ripple, inherent in the three phase power supply and then demodulated and processed by a high frequency filter. The resulting dc power was then supplied to a load. The process was implemented without the use of low frequency transformers and filters. This power conversion processes was reversible and can operate in the four quadrants as viewed from any of the two of the converter's ports. Areas of application include: power systems on air and spacecraft; terrestrial traction; integration of solar and wind powered systems with utility networks; HVDC; asynchronous coupling of polyphase networks; heat treatment; industrial machine drives; and power supplies for any use including instrumentation.
Investigation of direct solar-to-microwave energy conversion techniques
NASA Technical Reports Server (NTRS)
Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.
1978-01-01
Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, N.R.
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit
NASA Technical Reports Server (NTRS)
Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.
2010-01-01
Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Limits to solar power conversion efficiency with applications to quantum and thermal systems
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1983-01-01
An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.
1982-01-01
A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
Types of Informal Learning in Cross-Organizational Collegial Conversations
ERIC Educational Resources Information Center
Wilson, Daniel Gray; Hartung, Kyle
2015-01-01
Purpose: This paper aims to gather empirical evidence for what colleagues from different organizations reported they learned from informal professional learning conversations. Informal learning conversations with colleagues is a powerful yet understudied source of self-directed, professional development. Design/methodology/approach: This study of…
Rectenna session: Micro aspects. [energy conversion
NASA Technical Reports Server (NTRS)
Gutmann, R. J.
1980-01-01
Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.
High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm.
Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao
2014-12-01
An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, F.
1998-07-01
The need to produce electricity either more fuel efficiently or without need for consuming fuel is well recognized. Fuel cells are typically suggested for higher efficiency and photovoltaics can produce electricity directly from the sun. However, both of these devices produce direct current which is not compatible with the existing ac power system. The typical options of installing AC to DC inverters and the dedication of this DC generation to DC loads and storage are costly and inefficient. Thus, the author suggests it would be better in terms of energy conservation and public policy to convert end use service tomore » DC for direct compatibility with this DC generation, as a first step toward conversion to a new and better type of electric power system that can be described as a solid state power electronics based multiple voltage DC power system.« less
Alkali metal thermal to electric conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.
1995-10-01
With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less
Infrared power cells for satellite power conversion
NASA Technical Reports Server (NTRS)
Summers, Christopher J.
1991-01-01
An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.
Advanced Concepts: Aneutronic Fusion Power and Propulsion
NASA Technical Reports Server (NTRS)
Chapman, John J.
2012-01-01
Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.
Technical options for high average power free electron milimeter-wave and laser devices
NASA Technical Reports Server (NTRS)
Swingle, James C.
1989-01-01
Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.
Norris, G; McConnell, G
2010-03-01
A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.
MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit
NASA Astrophysics Data System (ADS)
Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai
2018-03-01
Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].
Microbial fuel cells: Running on gas
NASA Astrophysics Data System (ADS)
Ren, Zhiyong Jason
2017-06-01
Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.
Efficient pre-ionization by direct X-B mode conversion in VEST
NASA Astrophysics Data System (ADS)
Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.
2017-01-01
Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth
Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
Aternating current photovoltaic building block
Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.
2004-06-15
A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.
Direct conversion of nuclear radiation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.
1970-01-01
This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.
NASA Technical Reports Server (NTRS)
Gutmann, R. J.; Borrego, J. M.
1978-01-01
Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.
Thermoelectric Energy Conversion: Future Directions and Technology Development Needs
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
2007-01-01
This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.
Direct hydrogen fuel cell systems for hybrid vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.
Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.
Power Delivery from an Actual Thermoelectric Generation System
NASA Astrophysics Data System (ADS)
Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke
2014-06-01
Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.
Rectenna session: Micro aspects
NASA Technical Reports Server (NTRS)
Gutmann, R. J.
1980-01-01
Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.
A Small Fission Power System with Stirling Power Conversion for NASA Science Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Carmichael, Chad
2011-01-01
In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.
Solar Energy - An Option for Future Energy Production
ERIC Educational Resources Information Center
Glaser, Peter E.
1972-01-01
Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)
NASA Astrophysics Data System (ADS)
Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato
2018-02-01
We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.
Novel Nuclear Powered Photocatalytic Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
White,John R.; Kinsmen,Douglas; Regan,Thomas M.
2005-08-29
The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC)more » design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less
NASA Technical Reports Server (NTRS)
Davis, D. D.; Philen, D.; Mcgee, T.; Heaps, W.
1979-01-01
Direct measurements of the OH radical in the vicinity of an isolated power plant plume are reported. These measurements were used to estimate the conversion time of SO2 to H2SO4-sulfate aerosol via the initiating step OH + SO2 + M yields HSO3. Using the near-high-noon measured value of OH (9.5 million per cu cm), resulted in a 1/e conversion time of 1.4 days. The latter lifetime would correspond to a conversion rate of about 2%/hr. When the lifetime calculation was modified to take into consideration the OH diurnal cycle, the 1/e conversion time for SO2 was found to be 4.4 days, giving an apparent overall rate of conversion of about 0.7%/hr. Similar calculations carried out for the conversion of NO2 to NHO3 resulted in 1/e lifetimes for NO2 of 2-3 h for midday time periods.
Direct conversion of infrared radiant energy for space power applications
NASA Technical Reports Server (NTRS)
Finke, R. C.
1982-01-01
A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... joint NRC-DEK ITS conversion Web page, hosted by EXCEL Services Corporation (EXCEL) can be found in... http://www.excelservices.com . Persons who visit the EXCEL Web site and are unable to locate Kewaunee ITS Conversion information should contact EXCEL directly to acquire archived content. As an...
Radiation energy conversion in space
NASA Technical Reports Server (NTRS)
Billman, K. W.
1979-01-01
Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite. A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.
Radiation energy conversion in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billman, K.W.
1979-03-01
Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite.more » A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.« less
Reverse electrowetting as a new approach to high-power energy harvesting
Krupenkin, Tom; Taylor, J. Ashley
2011-01-01
Over the last decade electrical batteries have emerged as a critical bottleneck for portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but, until now, a suitable mechanical-to-electrical energy conversion technology did not exist. Here we describe a novel mechanical-to-electrical energy conversion method based on the reverse electrowetting phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 103 W m−2; the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. These advantages make this method uniquely suited for high-power energy harvesting from a wide variety of environmental mechanical energy sources. PMID:21863015
Potentialities of TEC topping: A simplified view of parametric effects
NASA Technical Reports Server (NTRS)
Morris, J. F.
1980-01-01
An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
Direct Energy Conversion Literature Abstracts
1962-12-01
1961. are reviewed. Various types of solar power systems are discussed and compar- " Methods are discussed for providing ed with respect to weight...electron gas to and relate to thermoelectric methods ; convert heat to electrical energy with no thermionic, photovoltaic and electro- moving mechanical...Europ.Mach.Rev. 11:20-25,1961. appears most practical source. Direct methods of generating electrical 2853 energy without the use of fossil fuels are Power
Highly efficient solid state magnetoelectric gyrators
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.
2017-09-01
An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.
NASA Technical Reports Server (NTRS)
Holman, R. R.; Lippert, T. E.
1976-01-01
Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.
Strip cell test and evaluation program
NASA Technical Reports Server (NTRS)
Gitlow, B.; Bell, W. F.; Martin, R. E.
1978-01-01
The performance characteristics of alkaline fuel cells to be used for space power systems were tested. Endurance tests were conducted on the cells during energy conversion operations. A feature of the cells fabricated and tested was the capability to evaporate the product water formed during the energy conversion reaction directly to space vacuum. A fuel cell powerplant incorporating these cells does not require a condenser and a hydrogen recirculating pump water separator to remove the product water. This simplified the fuel cell powerplant system, reduced the systems weight, and reduced the systems parasite power.
[Comparison of noise characteristics of direct and indirect conversion flat panel detectors].
Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori
2010-11-20
Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.
High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping
NASA Astrophysics Data System (ADS)
Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo
2014-11-01
A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.
SP-100 multimegawatt scaleup to meet electric propulsion mission requirements
NASA Astrophysics Data System (ADS)
Newkirk, D. W.; Salamah, S. A.; Stewart, S. L.; Pluta, P. R.
The SP-100 nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied to missions with NEP (nuclear electric propulsion) requirements as low as tens of kWe to tens of MWe. It is pointed out that the SP-100 heat source has a great advantage of very long lifetime capability, since it utilizes very rugged refractory metal fuel pins and is independent of the power conversion scheme chosen for a given mission. The only moving parts in the nuclear subsystems are the control rods moved to compensate for fuel enrichment degradation due to fission and for power shutdown. Lowest alpha values in the range of interest for potential NASA missions are predicted for the dynamic Rankine and static HYTEC conversion systems.
The proposed conversion from gasoline powered automobiles to diesel powered vehicles has prompted the Environmental Protection Agency to evaluate the potential health effects associated with exposure to diesel emissions. At present, there is no direct epidemiological link between...
NASA Astrophysics Data System (ADS)
Vielstich, W.; Iwasita, T.
1982-08-01
Direct conversion of chemical energy into electrical energy is a problem which has received increasing attention during the last years. Fuel-cell power plants on the basis of natural gas are in the course of demonstration, hydrogen/air cells are discussed in the electric vehicle application. Future developments will depend on the progress in electrocatalysis (e.g. the direct anodic oxidation of methanol) and in material technology as in the case of molten-carbonate fuel cells for power generation.
NASA presentation. [wind energy conversion systems planning
NASA Technical Reports Server (NTRS)
Thomas, R. L.
1973-01-01
The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1990-01-01
A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.
System for thermal energy storage, space heating and cooling and power conversion
Gruen, Dieter M.; Fields, Paul R.
1981-04-21
An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.
Thermoelectric energy conversion with solid electrolytes
NASA Astrophysics Data System (ADS)
Cole, T.
1983-09-01
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta-double prime-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
Thermoelectric energy conversion with solid electrolytes.
Cole, T
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta"- alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
Pyroelectric conversion in space: A conceptual design study
NASA Technical Reports Server (NTRS)
Olsen, R. B.
1983-01-01
Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.
Xuebing Zhao; Junyong Zhu
2016-01-01
A novel polyoxometalates (POMs) mediated direct biomass fuelcelI (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and...
NASA Astrophysics Data System (ADS)
Sinkevich, OA; Gerasimov, DN; Glazkov, VV
2017-11-01
Three important physical and technical problems for solar power stations (SPS) are considered: collection of solar energy and effective conversion of this energy to electricity in space power stations, energy transportation by the microwave beam to the Earth surface and direct utilization of the microwave beam energy for global environmental problems. Effectiveness of solar energy conversion into electricity in space power stations using gas and steam turbines plants, and magneto-hydrodynamic generator (MHDG) are analyzed. The closed cycle MHDG working on non-equilibrium magnetized plasmas of inert gases seeded with the alkaline metal vapors are considered. The special emphases are placed on MHDG and gas-turbine installations that are operating without compressor. Also opportunities for using the produced by space power stations energy for ecological needs on Earth and in Space are discussed.
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor
NASA Astrophysics Data System (ADS)
Salimullah, M.; Ferdous, T.
1984-05-01
This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.
Properties and Frequency Conversion of High-Brightness Diode-Laser Systems
NASA Astrophysics Data System (ADS)
Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard
An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.
Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin
2014-03-01
Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.
Thermoelectric energy conversion with solid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, T.
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta''-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40%, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. Amore » wide range of applications from aerospace power to utility power plants appears possible.« less
Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells
Vestergaard, Mun’delanji C.; Tamiya, Eiichi
2017-01-01
Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field. PMID:29125564
Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells.
Hoa, Le Quynh; Vestergaard, Mun'delanji C; Tamiya, Eiichi
2017-11-10
Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya
A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.
Experimental Research of a New Wave Energy Conversion Device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-01-01
With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.
480 Mbit/s UWB bi-directional radio over fiber CWDM PON using ultra-low cost and power VCSELs.
Quinlan, Terence; Morant, Maria; Dudley, Sandra; Llorente, Roberto; Walker, Stuart
2011-12-12
Radio-over-fiber (RoF) schemes offer the possibility of permitting direct access to native format services for the domestic user. A low power requirement and cost effectiveness are crucial to both the service provider and the end user. Here, we present an ultra-low cost and power RoF scheme using direct modulation of commercially-available 1344 nm and 1547 nm VCSELs by band-group 1 UWB wireless signals (ECMA-368) at near broadcast power levels. As a result, greatly simplified electrical-optical-electrical conversion is accomplished. A successful demonstration over a transmission distance of 20.1 km is described using a SSMF, CWDM optical network. EVMs of better than -18.3 dB were achieved. © 2011 Optical Society of America
Thermophotovoltaic Energy Conversion for Space Applications
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.
2006-01-01
Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.
Modulation and control of matrix converter for aerospace application
NASA Astrophysics Data System (ADS)
Kobravi, Keyhan
In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.
Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.
Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T
2007-08-01
We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.
Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei
2018-04-15
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
Gallium phosphide energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, P.E.; Dinetta, L.C.; Goetz, M.A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less
Gallium phosphide energy converters
NASA Astrophysics Data System (ADS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Gallium phosphide energy converters
NASA Technical Reports Server (NTRS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-01-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405
NASA Technical Reports Server (NTRS)
Wingenback, W.; Carter, J., Jr.
1979-01-01
A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.
Power control for direct-driven permanent magnet wind generator system with battery storage.
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.
THERMOELECTRIC POWER HARVESTING SYSTEMS
Energy production based on fossil fuels negatively impacts the environment and is not sustainable. Recent advances in the area of nanotechnology have lead to improved performance of direct energy conversion devices such as thermoelectric generators. However, these efforts have...
Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitry V. Paramonov, Lead Collaborator
2001-07-31
The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on themore » feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.« less
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU performance over its full operating range. The primary test variables used in operating the Brayton PCU were heater input power and rotor speed. Testing demonstrated a maximum steady-state alternating-current power output of 1835 W at a gas heater power of 9000 W and a rotor speed of 52000 rpm. The corresponding measured turbine inlet gas temperature was 1076 K, and the compressor inlet gas temperature was 282 K. When insulation losses from the gas heater were neglected, the Brayton cycle efficiency for the maximum power point was calculated to be 24 percent. The net direct-current power output was 1750 W, indicating a PMAD efficiency of about 95 percent.
Overview of free-piston Stirling engine technology for space power application
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1987-01-01
An overview is presented of free-piston Stirling engine activities, directed toward space power applications. One of the major elements of the program is the development of advanced power conversion. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators are discussed. Technology work was conducted on heat-exchanger concepts to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space power converter. Projections are made for future space power requirements over the next few decades along with a recommendation to consider the use of dynamic power conversion systems, either solar or nuclear. A cursory comparison is presented showing the mass benefits of a Stirling system over a Brayton system for the same peak temperature and output power. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space power module to the 150 kWe power range is presented.
NASA Astrophysics Data System (ADS)
Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze
2017-09-01
Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.
NASA Astrophysics Data System (ADS)
Waddle, D. B.; Perlack, R. D.; Wimberly, J.
Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. The technological status is reviewed of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed.
NASA Radioisotope Power Conversion Technology NRA Overview
NASA Technical Reports Server (NTRS)
Anderson, David J.
2005-01-01
The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.
NASA Radioisotope Power Conversion Technology NRA Overview
NASA Technical Reports Server (NTRS)
Anderson, David J.
2005-01-01
The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.
Direct Energy Conversion for Low Specific Mass In-Space Power and Propulsion
NASA Technical Reports Server (NTRS)
Scott, John H.; George, Jeffrey A.; Tarditi, Alfonso G.
2013-01-01
"Changing the game" in space exploration involves changing the paradigm for the human exploration of the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition. For the purposes of this assessment an "annual expedition" capability is defined as an in-space power & propulsion system which, with launch mass limits as defined in NASA s Mars Architecture 5.0, enables sending a crew to Mars and returning them after a 30-day surface stay within one year, irrespective of planetary alignment. In this work the authors intend to show that obtaining this capability requires the development of an in-space power & propulsion system with an end-to-end specific mass considerably less than 3 kg/kWe. A first order energy balance analysis reveals that the technologies required to create a system with this specific mass include direct energy conversion and nuclear sources that release energy in the form of charged particle beams. This paper lays out this first order approximation and details these conclusions.
Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis
NASA Astrophysics Data System (ADS)
Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.
2016-06-01
Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
Carbon aerogel electrodes for direct energy conversion
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1997-01-01
A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
Summary of Apollo; A D- sup 3 He tokamak reactor design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcinski, G.L.; Blanchard, T.P.; El-Guebaly, L.A.
1992-07-01
In this paper, the key features of Apollo, a conceptual D-{sup 3}He tokamak reactor for commercial electricity production, are summarized. The 1000-MW (electric) design utilizes direct conversion of transport, neutron, and bremsstrahlung radiation power. The direct conversion method uses reactants, and the thermal conversion cycle uses an organic coolant. Apollo operates in the first-stability regime, with a major radius of 7.89 m, a peak magnetic field on the toroidal field coils of 19.3 T, a 53-MA plasma current, and a 6.7% beta value. The low neutron production of the D-{sup 3}He fuel cycle greatly reduces the radiation damage rate andmore » allows a full-lifetime first wall and structure made of standard steels with only slight modifications to reduce activation levels.« less
CellNet: Network Biology Applied to Stem Cell Engineering
Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793
Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting
Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom
2015-01-01
We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10−6 W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible. PMID:26567850
Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting.
Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J Ashley; Krupenkin, Tom
2015-11-16
We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10(-6) W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.
AMTEC: High efficiency static conversion for space power
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.
1986-01-01
Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.
Direct measurement of optoacoustic induced ultrasonic waves
NASA Astrophysics Data System (ADS)
Kuo, C.-Y.; Patel, C. K. N.
1984-04-01
A two-beam optically induced photoacoustic grating and its low frequency ultrasonic waves are measured with a thin film transducer in low concentration dye solution. The acoustic power generated is measured for a weakly absorbing medium to be equal to about 5 W sq cm, indicating high conversion efficiency. Application of this direct detection as a laser beam profiler is also discussed.
Wind power. [electricity generation
NASA Technical Reports Server (NTRS)
Savino, J. M.
1975-01-01
A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.
Investigation of a metallic photonic crystal high power microwave mode converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha
2015-02-15
It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.
Direct energy conversion bottoming cycles for solid oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramonov, D.V.; Carelli, M.D.
1998-07-01
Besides high conversion efficiency, advantages of Solid Oxide Fuel Cell (SOFC) include ability of low pressure operation, absence of moving parts and resulting inherently low maintenance requirements, modularity, long lifetime and unattended operation. A further increase in the conversion efficiency, without compromising the advantages inherent with static devices, can be achieved by employing a direct energy conversion bottoming cycle. The biggest challenges in the integration of direct energy conversion devices with SOFC are: (a) the need to preheat the SOFC feed air while maximizing the bottoming cycle power, and (b) limited temperature of the SOFC exhaust. These restrictions limit themore » choice to the Alkali Metal Thermal to Electric Conversion (AMTEC) and Thermoelectric (TE) technologies while eliminating thermionics and thermophotovoltaics. In addition to the aforementioned advantages, the SOFC-AMTEC and SOFC-TE cycles are attractive for certain applications such as cogeneration and power supplies for remote locations where the use of higher efficiency dynamic bottoming cycles might be undesirable due to maintenance and noise restrictions. A preliminary feasibility assessment of AMTEC and TE bottoming of SOFC power systems has been performed. Five SOFC bottoming cycle concepts were considered. They include: TE bottoming with cogeneration capability, TE bottoming with additional heat recovery, TE bottoming with uncoupled TE converter and air preheater, AMTEC bottoming, and Cascaded AMTEC-TE bottoming. The cascaded AMTEC-TE bottoming cycle increases the overall cycle efficiency by 4.7 percentage points. TE bottoming cycle with additional heat recovery adds 3.8 percentage points, and the other concepts are between 3 and 3.5 percentage points. The results are also compared with results of similar studies reported in literature. The AMTEC-TE cascade has the largest potential, however, development of both AMTEC and TE components would be required. The second best option from the efficiency point of view is the TE bottoming with additional heat recovery which would require development of only the TE component. Despite that fact that AMTEC is generally perceived as more efficient than thermoelectrics, efficiencies of the considered AMTEC and TE bottoming cycles are almost equal. The reason is that the somewhat more efficient AMTEC requires relatively high hot side temperature ({gt}850--900 K) and, at the same time, air has to be preheated to 973 K. (This is equally true for a high efficiency TE converter operating at the highest hot side to cold side temperature difference possible). As a result, only a small fraction ({lt}30 %) of the total heat available is directed to the bottoming cycle where it is converted with relatively high efficiency. When a TE converter operating in a wider hot side temperature range, but at a smaller hot side--cold side temperature difference is employed, its lower efficiency is offset by its larger thermal power and the overall bottoming cycle efficiency changes insignificantly.« less
Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Almgren, D. W.
1978-01-01
In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.
2014-09-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...MM-YYYY) September 2014 2. REPORT TYPE Final 3. DATES COVERED (From - To) January–July 2014 4. TITLE AND SUBTITLE Monte Carlo Evaluation of...generated is typical of energy harvesting levels of power.11 Radioisotope power sources differ from typical renewable energy/power levels in that they
Inverter communications using output signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Patrick L.
Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.
Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M
2010-07-15
The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.
NASA Astrophysics Data System (ADS)
Waddle, D. B.; Perlack, R. D.
1990-03-01
Biomass plays a significant role in energy use in developing countries; however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in Central America, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries, and in Latin America in particular. Market opportunities, constraints, and technology developments are also discussed.
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
NASA Technical Reports Server (NTRS)
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
NASA Astrophysics Data System (ADS)
Pint, Cary L.; Westover, Andrew S.; Cohn, Adam P.; Erwin, William R.; Share, Keith; Metke, Thomas; Bardhan, Rizia
2015-10-01
This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.
Space electric power design study. [laser energy conversion
NASA Technical Reports Server (NTRS)
Martini, W. R.
1976-01-01
The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia
2016-10-01
With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.
Optically-gated Non-latched High Gain Power Device
2008-11-21
parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL
Systems Analysis of GPS Electrical Power System Redesign
1995-12-01
Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Status and summary of laser energy conversion. [for space power transmission systems
NASA Technical Reports Server (NTRS)
Lee, G.
1978-01-01
This paper presents a survey of the status of laser energy converters. Since the inception of these devices in the early 1970's, significant advances have been made in understanding the basic conversion processes. Numerous theoretical and experimental studies have indicated that laser energy can be converted at wavelengths from the ultraviolet to the far-infrared. These converters can be classified into five general categories: photovoltaics, heat engines, thermoelectronic, optical diode, and photochemical. The conversion can be directly into electricity (such as the photovoltaic, thermoelectronic, and optical diode) or it can go through an intermediate stage of conversion to mechanical energy, as in the heat engines. The photochemical converters result in storable energy such as hydrogen. Projected conversion efficiencies range from about 30% for the photochemical to nearly 75% for the heat engines.
Carbon aerogel electrodes for direct energy conversion
Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.
1997-02-11
A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.
A solar simulator-pumped atomic iodine laser
NASA Technical Reports Server (NTRS)
Lee, J. H.; Weaver, W. R.
1981-01-01
An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.
Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook
2010-12-07
We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.
GaAs nanopillar-array solar cells employing in situ surface passivation
Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.
2013-01-01
Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
Power conversion apparatus and method
Su, Gui-Jia [Knoxville, TN
2012-02-07
A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.
Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site
NASA Astrophysics Data System (ADS)
Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.
1990-12-01
Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
A comparison of Stirling engines for use with a 25 kW dish-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Chaudhuri, Swades K; Lovley, Derek R
2003-10-01
Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.
Sung, Ji Ho; Heo, Hoseok; Hwang, Inchan; Lim, Myungsoo; Lee, Donghun; Kang, Kibum; Choi, Hee Cheul; Park, Jae-Hoon; Jhi, Seung-Hoon; Jo, Moon-Ho
2014-07-09
Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.
Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2003-01-01
This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.
Food and processing residues in California: resource assessment and potential for power generation.
Matteson, Gary C; Jenkins, B M
2007-11-01
The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.
Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddle, D.B.; Perlack, R.D.; Wimberly, J.
1990-01-01
Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries.more » Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.« less
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic conversion systems. The power systems considered were based on the closed Brayton (CBC) and the free piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.
Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan
2012-09-01
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1991-01-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
NASA Astrophysics Data System (ADS)
Keyrouz, Shady; Visser, Huib
2013-12-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.
NASA Astrophysics Data System (ADS)
Buksa, John J.; Kirk, William L.; Cappiello, Michael W.
A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.
Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm
2013-07-01
This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
CellNet: network biology applied to stem cell engineering.
Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J
2014-08-14
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
Gasdynamic lasers and photon machines.
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Hertzberg, A.
1973-01-01
The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.
More on duel purpose solar-electric power plants
NASA Astrophysics Data System (ADS)
Hall, F. F.
Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev
2015-04-01
Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.
Surface acoustic wave unidirectional transducers for quantum applications
NASA Astrophysics Data System (ADS)
Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per
2017-02-01
The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.
NASA Astrophysics Data System (ADS)
Erturk, Alper; Delporte, Ghislain
2011-12-01
Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
AC power generation from microbial fuel cells
NASA Astrophysics Data System (ADS)
Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason
2015-11-01
Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
1990-06-01
on simple railgun accelerators andI homopolar generators. Complex rotating flux compressors would drastically improve the performance of EM launchers...velocities. If this is the direction of improvement, then energies stored in the electric trains built with linear electric motors in Japan and Western I...laboratories which had power supplies 3 already built for other programs ( homopolar generators in conjunction with an inductor and an opening switch
Direct piezoelectric responses of soft composite fiber mats
NASA Astrophysics Data System (ADS)
Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.
2013-04-01
Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1982-01-01
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, Anton; Sienicki, James J.
2016-01-01
Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less
Development of a Direct Contact Heat Exchanger, Phase 1 Study Report
NASA Technical Reports Server (NTRS)
Manvi, R.
1978-01-01
Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.
Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors
NASA Astrophysics Data System (ADS)
Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung
2015-06-01
We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Hoover, Mark D.
1991-07-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)
Tomeš, Petr; Trottmann, Matthias; Suter, Clemens; Aguirre, Myriam Heidi; Steinfeld, Aldo; Haueter, Philipp; Weidenkaff, Anke
2010-01-01
The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS) which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.
The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration
NASA Technical Reports Server (NTRS)
Ryan, M.
1999-01-01
AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).
Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna
NASA Astrophysics Data System (ADS)
Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.
2018-05-01
Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.
Snap-through twinkling energy generation through frequency up-conversion
NASA Astrophysics Data System (ADS)
Panigrahi, Smruti R.; Bernard, Brian P.; Feeny, Brian F.; Mann, Brian P.; Diaz, Alejandro R.
2017-07-01
A novel experimental energy harvester is investigated for its energy harvesting capability by frequency up-conversion using snap-through structures. In particular, a single-degree-of-freedom (SDOF) experimental energy harvester model is built using a snap-through nonlinear element. The snap-through dynamics is facilitated by the experimental setup of a twinkling energy generator (TEG) consisting of linear springs and attracting cylindrical bar magnets. A cylindrical coil of enamel-coated magnet wire is used as the energy generator. The governing equations are formulated mathematically and solved numerically for a direct comparison with the experimental results. The experimental TEG and the numerical simulation results show 25-fold frequency up-conversion and the power harvesting capacity of the SDOF TEG.
Compact and efficient blue laser sheet for measurement
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia
2017-10-01
Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.
Control system development for an organic Ranking cycle engine
NASA Technical Reports Server (NTRS)
Bergthold, F. M., Jr.; Fulton, D. G.; Haskins, H. J.
1981-01-01
An organic Rankine cycle engine is used as part of a solar thermal power conversion assembly (PCA). The PCA, including a direct-heated cavity receiver and a shaft-mounted alternator, is mounted at the focal point of a parabolic dish concentrator. The engine controls are required to maintain approximately constant values of turbine inlet temperature and shaft speed, despite variation in the concentrated solar power input to the receiver. The controls design approach, system models, and initial stability and performance analysis results are presented herein.
Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power
NASA Technical Reports Server (NTRS)
Mason, Lee
2010-01-01
Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.
Gregoire, K P; Becker, J G
2012-09-01
Agricultural crop residues contain high amounts of biochemical energy as cellulose and lignin. A portion of this biomass could be sustainably harvested for conversion to bioenergy to help offset fossil fuel consumption. In this study, the potential for converting lignocellulosic biomass directly to electricity in a microbial fuel cell (MFC) was explored. Design elements of tubular air cathode MFCs and leach-bed bioreactors were integrated to develop a new solid-substrate MFC in which cellulose hydrolysis, fermentation, and anode respiration occurred in a single chamber. Electricity was produced continuously from untreated corncob pellets for >60 d. Addition of rumen fluid increased power production, presumably by providing growth factors to anode-respiring bacteria. Periodic exposure to oxygen also increased power production, presumably by limiting the diversion of electrons to methanogenesis. In the absence of methanogenesis, bioaugmentation with Geobacter metallireducens further improved MFC performance. Under these conditions, the maximum power density was 230 mW/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.
2015-02-01
The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.
A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications
NASA Astrophysics Data System (ADS)
Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang
2017-03-01
The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.
Electric terminal performance and characterization of solid oxide fuel cells and systems
NASA Astrophysics Data System (ADS)
Lindahl, Peter Allan
Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.
Comparison of holographic lens and filter systems for lateral spectrum splitting
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
NASA Astrophysics Data System (ADS)
Steinfelds, Eric Victor
The topic of this thesis is the development of the Radioisotope Energy Conversion System (RECS) in a project which is utilizing analytical computational assisted design and some experimental Research in the investigation of fluorescers and effective transducers with the appropriate energy range choice for the conversion of energy. It is desirable to increase the efficiency in electrical power from the raw kinetic power available from the radioactive material within radioisotope power generators. A major step in this direction is the development and use of Radioisotope Energy Conversion Systems to supplement and ideally replace Radioactive Thermal Generators (RTG). It is possible to achieve electrical conversion efficiencies exceeding 25% for RECS power devices compared to only 9 percent efficiency for RTG's. The theoretical basis with existent materials for the potential achievability of efficiencies above 25% is documented within this thesis. The fundamental RECS consists of a radioisotope radiative source (C1), a mediating fluorescent gas (C2) which readily absorbs energy from the beta particles (or alpha's) and subsequently emits blue or UV photons, photovoltaic cells (C3) to convert the blue and UV photons into electrical energy [2], and electrical circuitry (C4). Solid State inspired component (C3), due to its theoretical (and attainable) high efficiency, is a large step ahead of the RTG design concept. The radioisotope flux source produces the beta(-) particles or alpha particles. Geometrically, presently, we prefer to have the ambient fluorescent gas surround the radioisotope flux source. Our fluorescer shall be a gas such as Krypton. Our specifically wide band-gap photovoltaic cells shall have gap energies which are slightly less than that of UV photons produced by the fluorescing gas. Diamond and Aluminum Nitride sample materials are good potential choices for photovoltaic cells, as is explained here in. Out of the material examples discussed, the highest electric power to mass ratio is found to be readily attainable with strontium-90 as the radiative source. Krypton-85 is indisputably the most efficient in RECS devices. In the conclusion in chapter VI, suggestions are given on acceptable ways of containing krypton-85 and providing sufficient shielding on deep space probes destined to use krypton-85 powered 'batteries'.
Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2004-01-01
NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.
NASA Astrophysics Data System (ADS)
Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min
2017-09-01
A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.
NASA Astrophysics Data System (ADS)
Fréchette, Luc G.
2007-09-01
Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration energy harvesting approaches. Technologies and approaches for micro heat engines are shared, ranging from a complete microsystem for thermal energy harvesting (Cho et al) to core bearing and microturbomachinery technologies for rotating micro heat engines (Waits et al, Nakajima et al). Electrochemical microsystems are also presented, based on methanol as fuel (Morse et al), as well as novel micro and nanofabrication approaches (Chu et al). Fuel cell microsystems with integrated hydrogen generation approaches are also investigated by Peterson et al and Varady et al, illustrating the benefits and challenges of miniaturizing complete power sources. Finally, biological micro fuel cells that leverage the principles found in nature are presented, in contrast to chemical fuel cells (Chen et al, Morishima et al). We hope that this work will inspire others to pursue innovative research and development activities in the area of power MEMS, and consequently contribute to addressing our energy challenges for the 21st century.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2007-01-01
The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
Zhao, Xuebing; Zhu, J Y
2016-01-01
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.
2018-01-01
It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.
Design Considerations for Clean QED Fusion Propulsion Systems
NASA Astrophysics Data System (ADS)
Bussard, Robert W.; Jameson, Lorin W.
1994-07-01
The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.
X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
NASA Astrophysics Data System (ADS)
Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.
2008-07-01
The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Astrophysics Data System (ADS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's
Analysis of S-band solid-state transmitters for the solar power satellite
NASA Technical Reports Server (NTRS)
Belohoubek, E. F.; Ettenberg, M.; Huang, H. C.; Nowogrodzki, M.; Sechi, F. N.
1979-01-01
The possibility of replacing the Reference System antenna in which thermionic devices are used for the dc-to-microwave conversion, with solid-state elements was explored. System, device, and antenna module tradeoff investigations strongly point toward the desirability of changing the transmitter concept to a distributed array of relatively low power elements, deriving their dc power directly from the solar cell array and whose microwave power outputs are combined in space. The approach eliminates the thermal, weight, and dc-voltage distribution problems of a system in which high power tubes are simply replaced with clusters of solid state amplifiers. The proposed approach retains the important advantages of a solid state system: greatly enhanced reliability and graceful degradation of the system.
Impute DC link (IDCL) cell based power converters and control thereof
Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad
2016-04-26
Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.
Supplying the power requirements to a sensor network using radio frequency power transfer.
Percy, Steven; Knight, Chris; Cooray, Francis; Smart, Ken
2012-01-01
Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system's base station monitors the node's energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of -31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.
Microchemical Systems for Fuel Processing and Conversion to Electrical Power
2007-03-15
Processing and Conversion to Electrical Power - Final Report 2 Table of Contents Table of Contents... Processing and Conversion to Electrical Power - Final Report 3 8.7 Development of Large Free-Standing Electrolyte-supported Micro Fuel Cell Membranes...84 MURI Microchemical Systems for Fuel Processing and
Laser power conversion system analysis, volume 1
NASA Technical Reports Server (NTRS)
Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.
Small Stirling dynamic isotope power system for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.
1992-01-01
The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.
Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.
Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W
2015-12-01
Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.
2006-01-01
NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.
NASA Astrophysics Data System (ADS)
Maglich, Bogdan; Hester, Tim; Calsec Collaboration
2015-10-01
Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.
Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
NASA Astrophysics Data System (ADS)
Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg
2018-03-01
A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.
Non-Solar Photovoltaics for Small Space Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Clark, Eric B.; Myers, Matthew G.; Piszazor, Michael F.; Murbach, Marcus S.
2012-01-01
NASA has missions planned to targets in the solar system ranging from the permanently shadowed craters of Mercury to the icy reaches of the Kuiper belt and beyond. In 2011, the NASA Office of the Chief Technologist (OCT) requested the NASA Ames and Glenn Research Centers to assess the potential of small power supplies based on direct conversion of energy from radioisotope sources for future NASA missions; and in particular to assess whether alphavoltaic and betavoltaic power sources could be of potential benefit in small missions, as well as examining the use of miniaturized thermophotovoltaic power supplies. This paper summarizes the results of that assessment.
Technology for satellite power conversion
NASA Technical Reports Server (NTRS)
Gouker, M. A.; Campbell, D. P.; Gallagher, J. J.
1987-01-01
Components were examined that will be needed for high frequency rectenna devices. The majority of the effort was spent on measuring the directivity and efficiency of the half-wave dipole antenna. It is felt that the antenna and diode should be roughly optimized before they are combined into a rectenna structure. An integrated low pass filter had to be added to the antenna structure in order to facilitate the field pattern measurements. A calculation was also made of the power density of the Earth's radiant energy as seen by satellites in Earth orbit. Finally, the feasibility of using a Metal-Oxide-Metal (MOM) diode for rectification of the received power was assessed.
NASA Astrophysics Data System (ADS)
Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio
2015-02-01
Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.
Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo
2018-01-01
Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.
Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas
2017-01-01
Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Schreiber, Jeffrey G.
2007-01-01
Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.
980 nm tapered lasers with photonic crystal structure for low vertical divergence
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua
2016-10-01
High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.
2000W high beam quality diode laser for direct materials processing
NASA Astrophysics Data System (ADS)
Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong
2011-11-01
This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.
Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua
2015-09-01
In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power Cards to Improve Conversational Skills in Adolescents with Asperger Syndrome
ERIC Educational Resources Information Center
Davis, Kathy M.; Boon, Richard T.; Cihak, David F.; Fore, Cecil, III
2010-01-01
The purpose of this study was to examine the effects of Power Cards on the initiation and maintenance of conversational skills in students with Asperger syndrome. Three high school students with Asperger Syndrome participated in this study. Power Cards were used to prompt students' previously learned conversational skills in a multiple-baseline…
Scholarly Personal Narratives as a New Direction for the Scholarship of Teaching and Learning
ERIC Educational Resources Information Center
Brookfield, Stephen
2013-01-01
A powerful scholarship of teaching and learning may well be one of the best counters to the instrumentalist and reductionist impulses in the educational reform movement today. The author believes an opening exists in the conversation on the scholarship of teaching and learning that is mentioned only in passing by Killen and Gallagher. About a…
Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W
2014-11-11
Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.
The Time Is Now: Empowering Educators to Examine and Address Race in Their Classrooms
ERIC Educational Resources Information Center
Flanagan, Candra
2017-01-01
Race is a social construct with a powerful impact on individuals and our society. Understanding the impact of race and racism in our educational settings is crucial to the betterment of our students and our future. This article discusses the role of museums to empower educators to engage in direct conversations about race within the school…
Mustafa, Farahiyah; Hashim, Abdul Manaf
2014-01-01
We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400
Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao
2016-03-01
This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Small reactor power system for space application
NASA Technical Reports Server (NTRS)
Shirbacheh, M.
1987-01-01
A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J
2015-09-01
The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular breast imaging is less likely to show all foci of ILC compared with IDC.
Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)
NASA Astrophysics Data System (ADS)
Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.
2004-12-01
Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.
Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping
2012-06-04
A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.
NASA Astrophysics Data System (ADS)
Fleming, Jerry W.
2010-04-01
Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.
NASA Technical Reports Server (NTRS)
Mason, Lee; Birchenough, Arthur; Pinero, Luis
2004-01-01
A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis
2004-01-01
A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
Design of RF energy harvesting platforms for power management unit with start-up circuits
NASA Astrophysics Data System (ADS)
Costanzo, Alessandra; Masotti, Diego
2013-12-01
In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.
Solid state radioisotopic energy converter for space nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.M.
1993-01-10
Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less
Solid-state Isotopic Power Source for Computer Memory Chips
NASA Technical Reports Server (NTRS)
Brown, Paul M.
1993-01-01
Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25 percent which is two to three times greater than the 6 to 8 percent capabilities of current thermoelectric systems. Radio isotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.
Chin, Thomas K; Lee, Felix Y; McKinley, Ian M; Goljahi, Sam; Lynch, Christopher S; Pilon, Laurent
2012-11-01
This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on 9.5/65/35 lead lanthanum zirconate titanate (PLZT). The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. It was performed by alternatively dipping the material in hot and cold dielectric fluid baths under specified electric fields. The effects of applied electric field, sample thickness, electrode material, operating temperature, and cycle frequency on the energy and power densities were investigated. A maximum energy density of 637 ± 20 J/L/cycle was achieved at 0.054 Hz with a 250-μm-thick sample featuring Pt electrodes and coated with a silicone conformal coating. The operating temperatures varied between 3°C and 140°C and the electric field was cycled between 0.2 and 6.0 MV/m. A maximum power density of 55 ± 8 W/L was obtained at 0.125 Hz under the same operating temperatures and electric fields. The dielectric strength of the material, and therefore the energy and power densities generated, increased when the sample thickness decreased from 500 to 250 μm. Furthermore, the electrode material was found to have no significant effect on the energy and power densities for samples subject to the same operating temperatures and electric fields. However, samples with electrode material possessing thermal expansion coefficients similar to that of PLZT were capable of withstanding larger temperature swings. Finally, a fatigue test showed that the power generation gradually degraded when the sample was subject to repeated thermoelectrical loading.
Design and experiment of a cross-shaped mode converter for high-power microwave applications.
Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei
2013-12-01
A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.
Hybrid thermionic-photovoltaic converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datas, A.
2016-04-04
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2009-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2010-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs
NASA Astrophysics Data System (ADS)
Fisher, Kate; Yu, Zhengshan Jason; Striling, Rob; Holman, Zachary
2017-06-01
The primary challenge with concentrating solar power (CSP) is that the conversion efficiency is low—and the cost high—compared to that of photovoltaics (PV), and the primary challenge with PV is that the energy generated cannot be stored cost effectively. We introduce a technology that hybridizes CSP and PV, resulting in power plants with high energy conversion efficiency and affordable storage. This is accomplished by replacing silvered troughs (or heliostat facets) with "PVMirrors" that and direct photons of each wavelength to the converter (PV or thermal) that may best use them. A PVMirror looks like a curved PV module that includes a spectrum-splitting dichroic mirror film; this film, which is the heart of the technology, transmits near-infrared light to the underlying silicon PV cells while reflecting both longer and shorter wavelengths to a thermal absorber tube. This paper investigates the optical performance of dichroic mirror film, the specularity of PVMirrors, and the anticipated levelized cost of energy (LCOE) from a PVMirror power plant. PVMirrors are found to decrease LCOE by more than 15% relative to CSP while retaining full dispatchability.
SPS Energy Conversion Power Management Workshop
NASA Technical Reports Server (NTRS)
1980-01-01
Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.
NASA Astrophysics Data System (ADS)
Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv
2015-09-01
An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.
High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions
NASA Technical Reports Server (NTRS)
Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew
2011-01-01
High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.
NASA Technical Reports Server (NTRS)
Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.
1989-01-01
The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.
Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.
Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong
2018-06-21
Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.
Novel Thermal Powered Technology for UUV Persistent Surveillance
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Chao, Yi
2006-01-01
Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.
A nanophotonic solar thermophotovoltaic device.
Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N
2014-02-01
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
Super Turbocharging the Direct Injection Diesel engine
NASA Astrophysics Data System (ADS)
Boretti, Albert
2018-03-01
The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result motivates further studies of the mechanism that may considerably benefit traditional powertrains based on diesel engines.
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1993-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.
Heat Rejection Concepts for Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James
2005-01-01
This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.
Geysers advanced direct contact condenser research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.; Bahning, T.; Bharathan, D.
1997-12-31
The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less
Design of a photovoltaic system for a southwest all-electric residence
NASA Astrophysics Data System (ADS)
Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.
1980-04-01
The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.
Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chow, S.
1976-01-01
A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. Neutronic feasibility of dual mode operation and smaller reactor sizes than those previously investigated are shown to be possible. A heat transfer analysis of one such reactor shows that the dual-mode concept is applicable when power generation mode thermal power levels are within the same order of magnitude as direct thrust mode thermal power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.; Haase, S.
2009-07-01
This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.
Polycrystalline silicon sheets for solar cells by the spinning method
NASA Astrophysics Data System (ADS)
Maeda, Y.; Yokoyama, T.; Hide, I.
1984-03-01
A new method has been developed in which polycrystalline silicon sheets are formed directly from molten silicon on a spinning wheel. The sheet is 5 cm x 5 cm, 0.1-0.5 mm thick, and made at a rate of four sheets per 15 s; power conversion rate of a solar cell assembled with these silicon sheets is more than 10 percent.
Efficient Design in a DC to DC Converter Unit
NASA Technical Reports Server (NTRS)
Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.
2002-01-01
Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.
Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter
2018-03-01
Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket
NASA Technical Reports Server (NTRS)
Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael
2012-01-01
The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack
NASA Astrophysics Data System (ADS)
Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming
2005-06-01
A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.
Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin
2016-01-01
The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
NASA Astrophysics Data System (ADS)
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-07-01
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g
Conversion of blackbody radiation into laser energy
NASA Technical Reports Server (NTRS)
Mcinville, R. M.; Hassan, H. A.
1982-01-01
By employing detailed kinetic models, three concepts which utilize a blackbody cavity for the conversion of solar energy into laser energy using a CO2 lasant are analyzed and compared. In the first, the blackbody radiation is used to excite flowing CO2 directly. The second and third employ a mixing laser concept with CO and N2 being the donor gases. The CO is optically pumped while thermal heating excites the N2. Blackbody temperatures ranging from 1500 deg K - 2500 deg K are considered. Based on calculated laser power output per unit flow rate of CO2, it appears that the N2-CO2 mixing laser is the most attractive system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
...). d. Name of Project: Microturbine Hydrokinetic River-In-Stream Energy Conversion Power Project (also.... Selvaggio, Whitestone Power and Communications, P.O. Box 1630, Delta Junction, Alaska 99737; (907) 895- 4938...: The proposed Microturbine Hydrokinetic River-In-Stream Energy Conversion Power Project would consist...
Fission Surface Power Technology Development Update
NASA Technical Reports Server (NTRS)
Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott
2011-01-01
Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.
NASA Astrophysics Data System (ADS)
Grainger, Brandon Michael
The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is proposed and evaluated as the DC microgrid is disturbed through various mode transitions. Finally, two communication protocols are described for the microgrid---one to minimize communication overhead inside the microgrid and another to provide robust and scalable intra-grid communication. The work presented is supported by Asea Brown Boveri (ABB) Corporate Research Center within the Active Grid Infrastructure program, the Advanced Research Project Agency - Energy (ARPA-E) through the Solar ADEPT program, and Mitsubishi Electric Corporation (MELCO).
NASA Technical Reports Server (NTRS)
Boeer, K. W.
1975-01-01
Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.
Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1998-01-01
A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.
Heat Rejection Concepts for Lunar Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.
Free-piston Stirling technology for space power
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1989-01-01
An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.
Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system
NASA Technical Reports Server (NTRS)
1980-01-01
The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.
Induced neural stem cells as a means of treatment in Huntington's disease.
Choi, Kyung-Ah; Hong, Sunghoi
2017-11-01
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.
Status of thermoelectronic laser energy conversion, TELEC
NASA Technical Reports Server (NTRS)
Britt, E. J.
1982-01-01
A concept known as a thermo-electronic laser energy converter (TELEC), was studied as a method of converting a 10.6 micron CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma were produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt.
Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.
Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun
2015-07-10
Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.
Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass
NASA Technical Reports Server (NTRS)
Scott, John H.
2014-01-01
The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the mission analysis products originally conceived for FY13.
Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen
2013-11-04
A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.
NASA Technical Reports Server (NTRS)
Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.
2013-01-01
A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.
Laser power conversion system analysis, volume 2
NASA Technical Reports Server (NTRS)
Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
Direct Piezoelectricity of Soft Composite Electrospun Fibers
NASA Astrophysics Data System (ADS)
Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal
2013-03-01
Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.
Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal
2017-03-28
Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying solely on conventional thin film materials-to provide a path for the experimental demonstration of NFTPV energy conversion.
SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.
Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin
2015-06-16
CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Bloomfield, H. S.
1985-01-01
A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.
Improving the Comprehensibility of a Simulated Technical Manual.
1985-06-20
dilithium-controlled matter- antimatter conversion system. If you place the power switch Si in the A position, the phaser system gets power. If the indicator...ship’s on-board dilithium-controlled matter- antimatter -plasmation dielectric energy accumulator does not have a Normal Operation Indicator on the J-4...standard energon conversion cycle, whereby power generated by the ship’s matter- antimatter conversion system is converted to a 60-gigavolt phase
Space Solar Power: Satellite Concepts
NASA Technical Reports Server (NTRS)
Little, Frank E.
1999-01-01
Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... of Project: Microturbine Hydrokinetic River-In-Stream Energy Conversion Power Project (also known as... Contact: Steven M. Selvaggio, Whitestone Power and Communications, P.O. Box 1630, Delta Junction, Alaska... Hydrokinetic River-In-Stream Energy Conversion Power Project) and number (P-13305-002), and bear the heading...
High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter
NASA Astrophysics Data System (ADS)
Uno, Masatoshi; Kukita, Akio; Tanaka, Koji
Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.
ERIC Educational Resources Information Center
Corliss, William R.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
Organic Rankine cycle - review and research directions in engine applications
NASA Astrophysics Data System (ADS)
Panesar, Angad
2017-11-01
Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.
High efficiency GaP power conversion for Betavoltaic applications
NASA Astrophysics Data System (ADS)
Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.
1994-09-01
AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.
High efficiency GaP power conversion for Betavoltaic applications
NASA Technical Reports Server (NTRS)
Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.
1994-01-01
AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.
Power from space for use on earth: An emerging global option
NASA Technical Reports Server (NTRS)
Glaser, Peter E.
1989-01-01
The concept of the Earth as a closed ecological system is addressed from the point of view of the availability and use of energy from space and its potential influence on the economies of both developed and developing countries. The results of past studies of the solar power satellite (SPS) are reviewed, and the current international activities exploring various aspects of an SPS are mentioned. The functions of an SPS, including collection of solar energy in orbit, conversion to an intermediate form of energy, transmission of energy from orbit to Earth, and conversion to useful energy in the most appropriate form are discussed. Directions for future developments are addressed including a suggested planning framework. Salient aspects of SPS technologies are presented, and the potential benefits of the uses of lunar materials for the SPS construction are outlined. Scenarios within the context of international participation in a global SPS system are presented. The conclusion is drawn that an SPS system is one of the few promising, globally applicable power generation options that has the potential to meet energy demands in the 21st Century and to achieve the inevitable transition to inexhaustible and renewable energy sources.
UF6 breeder reactor power plants for electric power generation
NASA Technical Reports Server (NTRS)
Rust, J. H.; Clement, J. D.; Hohl, F.
1976-01-01
The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.
Description of a 20 kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Description of a 20 Kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Power conversion distribution system using a resonant high-frequency AC link
NASA Technical Reports Server (NTRS)
Sood, P. K.; Lipo, T. A.
1986-01-01
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.
Research on spacecraft electrical power conversion
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1983-01-01
The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.
Comparison of advanced engines for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Bowyer, J. M.; Gajanana, B. C.
1980-01-01
A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.
SPS energy conversion and power management workshop. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers.more » This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)« less
Magnetic power conversion with machines containing full or porous wheel heat exchangers
NASA Astrophysics Data System (ADS)
Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier
2009-04-01
A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
Technology for satellite power conversion
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.
1984-01-01
Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.
Cryogenic ultra-high power infrared diode laser bars
NASA Astrophysics Data System (ADS)
Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.
2014-02-01
GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.
Design and integration of a solar AMTEC power system with an advanced global positioning satellite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.; Hunt, M.E.; Determan, W.R.
1996-12-31
A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included (1) packaging within the Delta 2 launch vehicle envelope, (2) deployment and start-up operations for the SAMTEC, (3) SAMTEC operation during all mission phases, (4) satellite field of view restrictions with satellite operations, and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight,more » size, and operations. Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle. The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. The preliminary assessment indicates that the solar generator design is scalable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m{sup 2} are anticipated for a mission duration of 10 to 12 yr in orbits with high natural radiation backgrounds.« less
NASA Astrophysics Data System (ADS)
Wanke, R.; Hassink, G. W. J.; Stephanos, C.; Rastegar, I.; Braun, W.; Mannhart, J.
2016-06-01
Mobile energy converters require, in addition to high conversion efficiency and low cost, a low mass. We propose to utilize thermoelectronic converters that use 2D-materials such as graphene for their gate electrodes. Deriving the ultimate limit for their specific energy output, we show that the positive energy output is likely close to the fundamental limit for any conversion of heat into electric power. These converters may be valuable as electric power sources of spacecraft, and with the addition of vacuum enclosures, for power generation in electric planes and cars.
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Technical Reports Server (NTRS)
Harty, Richard B.; Durand, Richard E.
1993-01-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
Comparison of control structures for a bidirectional high-frequency dc-dc converter
NASA Astrophysics Data System (ADS)
Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.
1989-08-01
A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.
A new direction in energy conversion - The all-electric aircraft
NASA Technical Reports Server (NTRS)
Spitzer, C. R.
1985-01-01
This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.
Metamaterials-based enhanced energy harvesting: A review
NASA Astrophysics Data System (ADS)
Chen, Zhongsheng; Guo, Bin; Yang, Yongmin; Cheng, Congcong
2014-04-01
Advances in low power design open the possibility to harvest ambient energies to power directly the electronics or recharge a secondary battery. The key parameter of an energy harvesting (EH) device is its efficiency, which strongly depends on the conversion medium. To address this issue, metamaterials, artificial materials and structures with exotic properties, have been introduced for EH in recent years. They possess unique properties not easily achieved using naturally occurring materials, such as negative stiffness, mass, Poisson's ratio, and refractive index. The goal of this paper is to review the fundamentals, recent progresses and future directions in the field of metamaterials-based enhanced energy harvesting. An introduction on EH followed by the classification of potential metamaterials for EH is presented. A number of theoretical and experimental studies on metamaterials-based EH are outlined, including phononic crystals, acoustic metamaterials, and electromagnetic metamaterials. Finally, we give an outlook on future directions of metamaterials-based energy harvesting research including but not limited to active metamaterials-based EH, metamaterials-based thermal EH, and metamaterials-based multifunctional EH capabilities.
High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.
Liu, Wei; Mu, Wei; Deng, Yulin
2014-12-01
Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.
2017-11-01
More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.
High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules
NASA Technical Reports Server (NTRS)
Elmes, John
2015-01-01
Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.
Reception-Conversion Subsystem (RXCV) for microwave power transmission system
NASA Technical Reports Server (NTRS)
1975-01-01
As part of a program to demonstrate the feasibility of power transmission from space, an approximately 25 sq m Reception-Conversion Subsystem was designed and tested. The device collects high power microwave energy, converts it into dc, and dissipates it in an instrumented demonstration load.
Stirling engine power control and motion conversion mechanism
Marks, David T.
1983-01-01
A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.
Rethinking gender, heterosexual men, and women's vulnerability to HIV/AIDS.
Higgins, Jenny A; Hoffman, Susie; Dworkin, Shari L
2010-03-01
Most HIV prevention literature portrays women as especially vulnerable to HIV infection because of biological susceptibility and men's sexual power and privilege. Conversely, heterosexual men are perceived as active transmitters of HIV but not active agents in prevention. Although the women's vulnerability paradigm was a radical revision of earlier views of women in the epidemic, mounting challenges undermine its current usefulness. We review the etiology and successes of the paradigm as well as its accruing limitations. We also call for an expanded model that acknowledges biology, gender inequality, and gendered power relations but also directly examines social structure, gender, and HIV risk for heterosexual women and men.
Rethinking Gender, Heterosexual Men, and Women's Vulnerability to HIV/AIDS
Hoffman, Susie; Dworkin, Shari L.
2010-01-01
Most HIV prevention literature portrays women as especially vulnerable to HIV infection because of biological susceptibility and men's sexual power and privilege. Conversely, heterosexual men are perceived as active transmitters of HIV but not active agents in prevention. Although the women's vulnerability paradigm was a radical revision of earlier views of women in the epidemic, mounting challenges undermine its current usefulness. We review the etiology and successes of the paradigm as well as its accruing limitations. We also call for an expanded model that acknowledges biology, gender inequality, and gendered power relations but also directly examines social structure, gender, and HIV risk for heterosexual women and men. PMID:20075321
Development of deep-ultraviolet metal vapor lasers
NASA Astrophysics Data System (ADS)
Sabotinov, Nikola V.
2004-06-01
Deep ultraviolet laser generation is of great interest in connection with both the development of new industrial technologies and applications in medicine, biology, chemistry, etc. The development of metal vapor UV lasers oscillating in the pulsed mode with high pulse repetition frequencies and producing high average output powers is of particular interest for microprocessing of polymers, photolithography and fluorescence applications. At present, metal vapor lasers generate deep-UV radiation on the base of two methods. The first method is non-linear conversion of powerful laser generation from the visible region into the deep ultraviolet region. The second method is direct UV laser action on ion and atomic transitions of different metals.
Magnetic Materials Suitable for Fission Power Conversion in Space Missions
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2012-01-01
Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.
High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion
2015-06-19
Eyesafe’ output and fiber laser conversion 5a. CONTRACT NUMBER FA2386-12-1-4055 5b. GRANT NUMBER Grant 12RSZ077_124055 5c. PROGRAM ELEMENT...generating 380 W was demonstrated using a 630 W Ybdoped fiber laser system. In each case the performance was unsaturated and limited by the available pump...converter for conventional high power laser technologies including Nd doped lasers and Yb-doped fiber lasers. Diamond’s power handling capability now
Engaging Patients With Advance Directives Using an Information Visualization Approach.
Woollen, Janet; Bakken, Suzanne
2016-01-01
Despite the benefits of advance directives (AD) to patients and care providers, they are often not completed due to lack of patient awareness. The purpose of the current article is to advocate for creation and use of an innovative information visualization (infovisual) as a health communication tool aimed at improving AD dissemination and engagement. The infovisual would promote AD awareness by encouraging patients to learn about their options and inspire contemplation and conversation regarding their end-of-life (EOL) journey. An infovisual may be able to communicate insights that are often communicated in words, but are much more powerfully communicated by example. Furthermore, an infovisual could facilitate vivid understanding of options and inspire the beginning of often difficult conversations among care providers, patients, and loved ones. It may also save clinicians time, as care providers may be able to spend less time explaining details of EOL care options. Use of an infovisual could assist in ensuring a well-planned EOL journey. Copyright 2016, SLACK Incorporated.
Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak
2018-02-01
Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
RA Wolf
2006-07-19
Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20%more » were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.« less
Realization of a compact polarization splitter-rotator on silicon.
Dai, Daoxin; Wu, Hao
2016-05-15
A novel compact polarization splitter-rotator (PSR) is proposed and realized with silicon-on-insulator nanowires. The present PSR consists of an adiabatic taper, an asymmetric directional coupler (ADC), and a multimode interference (MMI) mode filter. The adiabatic taper enables an efficient mode conversion from the launched TM0 mode to the TE1 mode in a wide waveguide, which is then coupled to the TE0 mode of a narrow waveguide through the ADC. Meanwhile, the launched TE0 mode does not have mode conversion and outputs from the through port directly. The MMI mode filter is cascaded at the through port to filter out the residual power of the TE1 mode so that the extinction ratio of the PSR is improved greatly. The total length of the PSR is ∼70 μm and the fabricated PSR has an extinction ratio of ∼20 dB over a broadband ranging from 1547 to 1597 nm.
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
A Novel Oscillating Rectenna for Wireless Microwave Power Transmission
NASA Technical Reports Server (NTRS)
McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.
1998-01-01
A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.
3.1 W narrowband blue external cavity diode laser
NASA Astrophysics Data System (ADS)
Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui
2018-03-01
We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.
NASA Technical Reports Server (NTRS)
Stone, James R.
1994-01-01
Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover, pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the NASA Lewis Research Center in the 1960's and early 1970's.
Fundamental formulae for wave-energy conversion.
Falnes, Johannes; Kurniawan, Adi
2015-03-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1977-01-01
Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.
Directional amorphization of boron carbide subjected to laser shock compression.
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A
2016-10-25
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.
Preliminary evaluation of a space AMTEC power conversion system
NASA Technical Reports Server (NTRS)
Crowley, Christopher J.; Sievers, Robert K.
1991-01-01
As original evaluation of a space solar energy source coupled with Alkali Metal Thermoelectric Conversion (AMTEC) is presented here. This study indicates that an AMTEC system would have 30 percent of the mass of a photovoltaic system and 70 percent of the mass of a Stirling cycle system at the 35-kWe level of power generation modules typical of the baseline for the U.S. Space Station. The operating temperatures and sodium heat pipe components for solar receiver/TES hardware (currently being developed by NASA) integrate well with AMTEC power conversion. AMTEC is therefore an attractive alternative specifically for space solar power generation.
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
Optimized MPPT algorithm for boost converters taking into account the environmental variables
NASA Astrophysics Data System (ADS)
Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel
2016-07-01
This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.
Alternative Architecture for Commercial Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth
2000-01-01
This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen
Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.
1986-01-28
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
NASA Technical Reports Server (NTRS)
Freeman, J. W.; Simons, S.
1981-01-01
A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.
Orilall, M Christopher; Wiesner, Ulrich
2011-02-01
The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.
10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.
You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang
2013-08-07
Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation Specifications for Fission Power Conversion Component Materials
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Shin, E. Eugene; Mireles, Omar R.; Radel, Ross F.; Qualls, A. Louis
2011-01-01
NASA has been supporting design studies and technology development that could provide power to an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system heritage that can be transferred to the design and fabrication of a fission power system for space missions, but there are certain design aspects that require qualification. The radiation tolerance of the power conversion system requires scrutiny because the compact nature of a space power plant restricts the dose reduction methodologies compared to those used in terrestrial systems. An integrated research program has been conducted to establish the radiation tolerance of power conversion system-component materials. The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad ionizing dose and 5 x 10(exp 14) neutron per square centimeter fluence for a convertor operating at 150 C. Specific component materials and their radiation tolerances are discussed. This assessment is for the power convertor hardware; electronic components are not covered here.
Bongianni, Wayne L.
1992-01-01
A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
Waveguide structures in anisotropic nonlinear crystals
NASA Astrophysics Data System (ADS)
Li, Da; Hong, Pengda; Meissner, Helmuth E.
2017-02-01
We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko
2015-07-08
We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2005-01-01
NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).
NASA Astrophysics Data System (ADS)
Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong
2017-06-01
InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.
NASA Astrophysics Data System (ADS)
Lodhi, M. A. K.
2012-10-01
Static conversion systems are gaining importance in recent times because of newer applications of electricity like in spacecraft, hybrid-electric vehicles, military uses and domestic purposes. Of the many new static energy conversion systems that are being considered, one is the Alkali Metal Thermal Electric Converter (AMTEC). It is a thermally regenerative, electrochemical device for the direct conversion of heat to electrical power. As the name suggests, this system uses an alkali metal in its process. The electrochemical process involved in the working of AMTEC is ionization of alkali metal atoms at the interface of electrode and electrolyte. The electrons produced as a result flow through the external load thus doing work, and finally recombine with the metal ions at the cathode. AMTECs convert the work done during the nearly isothermal expansion of metal vapor to produce a high current and low voltage electron flow. Due to its principle of working it has many inherent advantages over other conventional generators. These will be discussed briefly.
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
Boeing's High Voltage Solar Tile Test Results
NASA Astrophysics Data System (ADS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-10-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
NASA Technical Reports Server (NTRS)
Dynys, Fred; Sayir, Ali
2008-01-01
NASA's integrated vehicle health management (IVHM) program offers the potential to improve aeronautical safety, reduce cost and improve performance by utilizing networks of wireless sensors. Development of sensor systems for engine hot sections will provide real-time data for prognostics and health management of turbo-engines. Sustainable power to embedded wireless sensors is a key challenge for prolong operation. Harvesting energy from the environment has emerged as a viable technique for power generation. Thermoelectric generators provide a direct conversion of heat energy to electrical energy. Micro-power sources derived from thermoelectric films are desired for applications in harsh thermal environments. Silicon based alloys are being explored for applications in high temperature environments containing oxygen. Chromium based p-type Si/Ge alloys exhibit Seebeck coefficients on the order of 160 micro V/K and low thermal conductance of 2.5 to 5 W/mK. Thermoelectric properties of bulk and thin film silicides will be discussed
Boeing's High Voltage Solar Tile Test Results
NASA Technical Reports Server (NTRS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-01-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
Thermophotovoltaic Energy Conversion for Personal Power Sources
2012-02-01
FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) November 2010 to September...accepted power source to date . 3 2. Thermophotovoltaic Energy Conversion 2.1 Thermophotovoltaic Overview Figure 1 describes the primary...photovoltaic material systems for thermophotovoltaic conversion to date are gallium antimonide (GaSb)-related materials (homogeneous: 0.72 eV
2011-06-01
technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety
Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting
Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael
2017-01-01
We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770
A New Seamless Transfer Control Strategy of the Microgrid
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described. PMID:24967431
A new seamless transfer control strategy of the microgrid.
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described.
Fundamental formulae for wave-energy conversion
Falnes, Johannes; Kurniawan, Adi
2015-01-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
NASA Astrophysics Data System (ADS)
Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing
2016-07-01
We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
NASA Astrophysics Data System (ADS)
Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming
2017-08-01
Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.
NASA Technical Reports Server (NTRS)
Johnsen, R. L.; Namkoong, D.; Edkin, R. A.
1971-01-01
The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.
Thermodynamic limit for coherence-limited solar power conversion
NASA Astrophysics Data System (ADS)
Mashaal, Heylal; Gordon, Jeffrey M.
2014-09-01
The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.
Gallium arsenide (GaAs) power conversion concept
NASA Technical Reports Server (NTRS)
Nussberger, A. A.
1980-01-01
A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.
Controlled Microfluidic Assembly and Functionalization of Complex Biomolecules
2017-10-27
Name: The 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications Conference Location...Paper or Presentation Conference Name: The 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion
Rosetta Stones for Energy Problems.
ERIC Educational Resources Information Center
Hayden, Howard C.
1981-01-01
Demonstrates, using specific problems, how various energy units can be converted to joules and power units to watts. Conversion tables are provided for power, energy, generation values, thermal insulation, consumption values, sunlight, with tables also on metric prefixes and time conversions. (SK)
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides
NASA Astrophysics Data System (ADS)
Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun
2017-10-01
Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.
NASA Technical Reports Server (NTRS)
Clark, T. B.
1985-01-01
The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.
Power system requirements and definition for lunar and Mars outposts
NASA Technical Reports Server (NTRS)
Petri, D. A.; Cataldo, R. L.; Bozek, J. M.
1990-01-01
Candidate power systems being considered for outpost facilities (stationary power systems) and vehicles (mobile systems) are discussed, including solar, chemical, isotopic, and reactor. The current power strategy was an initial outpost power system composed of photovoltaic arrays for daytime energy needs and regenerative fuel cells for power during the long lunar night. As day and night power demands grow, the outpost transitions to nuclear-based power generation, using thermoelectric conversion initially and evolving to a dynamic conversion system. With this concept as a guideline, a set of requirements has been established, and a reference definition of candidate power systems meeting these requirements has been identified.
Thermal optimization of second harmonic generation at high pump powers.
Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther
2011-11-07
We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.
Wireless powering of e -swimmers
NASA Astrophysics Data System (ADS)
Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander
2014-10-01
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).
Initial MPTS study results: Design considerations and issues
NASA Astrophysics Data System (ADS)
Maynard, O. E.
1980-12-01
One of the key issues identified during investigations of microwave power transmission systems from 1965 to 1976 was the need to assure that the billions of diodes on ground-based rectennas are sufficiently reliable to support long life times of approximately 30 years. Major systems studies conducted focused on waveguides; radio frequency interference and biological considerations; the relationship between performance, weight, and cost; risk assessment; crossed field directional amplifier noise; a 48 kW klystron; effects of the environment on propagation and phase control; rectenna technology; a rationale for the ground power density region; alternate technologies for orbital assembly; ionospheric effects and phase control; and reception conversion (rf to dc collector/converter).
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.
2018-06-01
We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.
Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.
Rey, Alejandro D; Servio, P; Herrera-Valencia, E E
2013-02-01
Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.
2016-01-01
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513
Technical problems encountered with the LALA-1 flying laboratory
NASA Technical Reports Server (NTRS)
Swidzinski, J.
1978-01-01
A description is given of structural design changes necessitated by the conversion of the An-2R agricultural support aircraft into a flying test bed to be used in feasibility studies evaluating jet engines in agricultural support aircraft. The entire rear of the fuselage was radically modified to permit mounting of the Al-25 jet engine directly behind the trailing edge of the upper wing. The standard piston engine was retained to permit comparison between the two types of power plants in typical agricultural support operations.
Status report on nuclear electric propulsion systems
NASA Technical Reports Server (NTRS)
Stearns, J. W.
1975-01-01
Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk
Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-08-14
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
Laser prospects for SPS and restoration of the ozone layer
NASA Technical Reports Server (NTRS)
Kruzhilin, Yuri
1992-01-01
Large-scale applications of high-power lasers are considered (special experiments are described to confirm the feasibility of these applications) to achieve also large-scale environmental advantages. The possibility of producing electric energy by Laser-Solar Power Satellites in the near future is discussed. A full-scale experimental L-SPS satellite is suggested as a module of a global space energy network. Electric power of about 10 MW at the surface of the Earth is achievable as a result of energy conversion of laser radiation. L-SPS is based on the greatest advantages of present optics and laser techniques. Specialized-scale experiments are carried out and described. L-SPS project could provide real electricity for consumers not later than by highly developed fusion techniques, and the environmental aftereffects are quite favorable. A new method of power supply for satellites is suggested, based on the connection of an on-board electric circuit directly with the ground-based power grid by means of laser beams.
NASA Technical Reports Server (NTRS)
1977-01-01
The Microwave Fower Beam Ionosphere effects and critical interfaces between th Microwave Power Transmission System (MPTS) and the Satellite were studied as part of the NASA/MSFC continuing research on the feasibility of power transmission from geosynchronous orbit. Theoretical predications of ionospheric modifications produced by the direct interaction of the MPTS on the earth's upper atmosphere are used to determine their impact on the performance of the Microwave Power Beam and Pilot Beam System as well as on other RF systems effected by the ionosphere. A technology program to quantitatively define these interactions is developed. Critical interface areas between the MPTS and the satellite which could have a major impact on cost and performance of the power system are idenfified and analyzed. The areas selected include: use of either a 20 kV versus 40 kV Amplitron, thermal blockage effects of Amplitron heat radiation by the satellite structure, effect of dielectric carry-through structure on power beam, and effect of material sublimation on performance of the Amplitron in Geosynchronous Orbit.
Coherent conversion of the sunlight spectrum
NASA Technical Reports Server (NTRS)
Gustafson, T. K.
1982-01-01
Efforts related to the utilization of tunneling junctions for the conversion of radiative power to electrical power are reported. The theoretical foundations for these particular devices is presented along with a discussion of many of the practical problems associated with the implementation of such devices.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)
NASA Technical Reports Server (NTRS)
Billman, K. W.
1978-01-01
Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.
NASA Astrophysics Data System (ADS)
Rydberg, Anders
1990-10-01
InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.
Research on Efficiency of a Wave Energy Conversion System
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-02-01
The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.
Topping cycle for coal-fueled electric power plants using the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, B.; Landingham, R.; Mohr, P.
Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
The impact of visual gaze direction on auditory object tracking.
Pomper, Ulrich; Chait, Maria
2017-07-05
Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.
Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems
NASA Astrophysics Data System (ADS)
Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.
Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.
Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems
NASA Technical Reports Server (NTRS)
Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.
1982-01-01
Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.
Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).
Developmental Considerations on the Free-Piston Stirling Power Convertor for Use in Space
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2006-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.
Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2007-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.
Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.
2016-01-01
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286
Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P
2016-02-18
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.
Design and analysis of a direct-drive wind power generator with ultra-high torque density
NASA Astrophysics Data System (ADS)
Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong
2015-05-01
In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.
Thermionic Energy Conversion (TEC) topping thermoelectrics
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Performance expectations for thermionic and thermoelectric energy conversion systems are reviewed. It is noted that internal radiation effects diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K; the effective thermal conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. It is argued that a consideration of thermoelectric power generation with high temperature heat sources should include utilization of thermionic energy conversion (TEC) topping thermoelectrics. However TEC alone or TEC topping more efficient conversion systems like steam or gas turbines, combined cycles, or Stirling engines would be more desirable generally.
Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
Wang, Ke-Yao; Foster, Amy C
2012-04-15
We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Mashaal, Heylal; Gordon, Jeffrey M.
2014-10-01
Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
A Power Conversion Concept for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.
Alpha-Voltaic Sources Using Diamond as Conversion Medium
NASA Technical Reports Server (NTRS)
Patel, Jagadish U.; Fleurial, Jean-Pierre; Kolawa, Elizabeth
2006-01-01
A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of a particles into electricity in diamond semiconductor diodes. These power sources would function over a wide range of temperatures encountered in terrestrial and outer-space environments. These sources are expected to have operational lifetimes of 10 to 20 years and energy conversion efficiencies >35 percent. A power source according to the proposal would include a pair of devices like that shown in the figure. Each device would contain Schottky and p/n diode devices made from high-band-gap, radiation-hard diamond substrates. The n and p layers in the diode portion would be doped sparsely (<1014 cm-3) in order to maximize the volume of the depletion region and thereby maximize efficiency. The diode layers would be supported by an undoped diamond substrate. The source of a particles would be a thin film of 244Cm (half-life 18 years) sandwiched between the two paired devices. The sandwich arrangement would force almost every a particle to go through the active volume of at least one of the devices. Typical a particle track lengths in the devices would range from 20 to 30 microns. The a particles would be made to stop only in the undoped substrates to prevent damage to the crystalline structures of the diode portions. The overall dimensions of a typical source are expected to be about 2 by 2 by 1 mm. Assuming an initial 244Cm mass of 20 mg, the estimated initial output of the source is 20 mW (a current of 20 mA at a potential of 1 V).
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.
Magnetic Flux Compression Concept for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri
2000-01-01
The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.
NASA Astrophysics Data System (ADS)
Yeo, M. J.; Kim, Y. P.
2015-12-01
The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Status of the NASA Stirling Radioisotope Project
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2007-01-01
Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Astrophysics Data System (ADS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Chen, Quan; Li, Yaoyu; Seem, John E
2015-09-01
This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Performance analysis of hybrid vibrational energy harvesters with experimental verification
NASA Astrophysics Data System (ADS)
Sriramdas, Rammohan; Pratap, Rudra
2018-07-01
In the present work, performance indices for a hybrid energy harvester (HEH) that is composed of piezoelectric and electrodynamic or electromagnetic mechanisms of energy conversion are analyzed. Performance of a HEH is defined in terms of Q-normalized power factor and efficiency of conversion. They are observed to acutely depend on coupling strength or figures of merit in both piezoelectric and electrodynamic domains. The influence of figures of merit on the Q-normalized power factor, and the limits of conversion efficiency are explored. Based on the studies, a suitable range for figures of merit that would maximize both Q-normalized power factor and conversion efficiency in hybrid harvesters is proposed. The proposed idea is verified experimentally for the appropriate values of figures of merit and efficiencies by fabricating and testing four experimental models of the HEHs.
Piezoelectric transformer and modular connections for high power and high voltage power supplies
NASA Technical Reports Server (NTRS)
Vazquez Carazo, Alfredo (Inventor)
2006-01-01
A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.
Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena
2009-12-07
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.
Power conversion process in magnetoelectric gyrators
NASA Astrophysics Data System (ADS)
Zhuang, X.; Leung, C. M.; Li, J.; Viehland, D.
2017-09-01
We have investigated the power conversion and loss processes in magnetoelectric gyrators. Two types of loss mechanisms were identified by using a transformer-gyrator structure, which transfers power between magnetic and magnetomechanical forms. A missing portion of the power in a gyrator was then identified to be a returned power from the load resistor under low drive conditions. Under high drive conditions, decreases in both the magnetostriction and mechanical quality factor resulted in additional inefficiencies. Power transfer efficiencies of greater than 70% and 50% were achieved for magnetoelectric (ME) gyrators based on Metglas/Pb(Zr,Ti)O3 laminated composites under low power drive and high power density drive (60 W/in.3) conditions, respectively.
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.
1976-01-01
The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.
New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass
NASA Astrophysics Data System (ADS)
Roh, Hee-Suk; Han, Gill Sang; Lee, Seongha; Kim, Sanghyun; Choi, Sungwoo; Yoon, Chulsoo; Lee, Jung-Kun
2018-06-01
Degradation of hybrid lead halide perovskite by UV light is a crucial issue that limits the commercialization of lead halide perovskite solar cells (PSCs). To address this problem, phosphor-in-glass (PiG) is used to convert UV to visible light. Down-conversion of UV light by PiG dramatically increases UV-stability of PSCs and enables PSCs to harvest UV light that is currently wasted. Performance of PSCs with PiG layer does not change significantly during 100 h-long UV-irradiation, while conventional PSCs degrade quickly by 1 h-long UV-irradiation. After 100 h long UV-irradiation, power conversion efficiency of PSCs with PiG is 440% larger than that of conventional PSCs. This result points a direction toward PSCs which are very stable and highly efficient under UV light.
Photovoltaic conversion efficiency of InN/InxGa1-xN quantum dot intermediate band solar cells
NASA Astrophysics Data System (ADS)
Ben Afkir, N.; Feddi, E.; Dujardin, F.; Zazoui, M.; Meziane, J.
2018-04-01
The behavior of InN/InxGa1-xN spherical quantum dots solar cell is investigated, considering the internal electric field induced by the polarization of the junction. In order to determine the position of the intermediate band (IB), we present an efficient numerical technique based on difference finite method to solve the 3D time-independent Schrödinger's equation in spherical coordinates. The resultant n × n Hamiltonian matrix when considering n discrete points in spatial direction is diagonalized in order to calculate energy levels. Thus, the interband and intersubband transitions are determined, taking into consideration the effect of the internal electric field, size dots, interdot distances, and indium content on the energy levels, optical transition, photo-generated current density, open-circuit voltage and power conversion efficiency of the QD-IBSCs.
Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells
NASA Astrophysics Data System (ADS)
Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif
2015-09-01
Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.
A Deep Space Power System Option Based on Synergistic Power Conversion Technologies
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2000-01-01
Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.
Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.
2013-01-01
Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.
NASA Astrophysics Data System (ADS)
Tanaka, Shuji
2009-09-01
This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.
Honeycomb Betavoltaic Battery for Space Applications
NASA Astrophysics Data System (ADS)
Lee, Jin R.; Ulmen, Ben; Miley, George H.
2008-01-01
Radioisotopic batteries offer advantages relative to conventional chemical batteries for applications requiring a long lifetime with minimum maintenance. Thus, thermoelectric type cells fueled with Pu have been used extensively on NASA space missions. The design for a small beta battery using nickel-63 (Ni-63) and a vacuum direct collection method is described here. A honeycomb nickel wire structure is employed to achieve bi-directional direct collection by seeding Ni-63 onto honeycomb shaped wires that will provide structural support as well. The battery design is intended to power low power electronics and distribute power needs in space probes as well as space colonies. Ni-63 is chosen as the source emitter because it has a long half-life and ease of manufacturing. The use of vacuum is especially well mated to space use; hence, vacuum insulation is employed to gain a higher efficiency than prior beta batteries with a dielectric insulator. A unique voltage down-converter is incorporated to efficiently reduce the inherent output voltage from 17.4 kV to ~17.4 V. This converter operates like a ``reverse'' Marx circuit where capacitor charging occurs in series but the discharge is in parallel. The reference battery module described here is about 100 cm×100 cm×218 cm and has a power of ~10 W with a conversion efficiency of ~15.8%. These modules can be stacked for higher powers and are very attractive for various applications in space colonization due to their long life (half-life for Ni-63~100 yrs) and low maintenance.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
A 1987 overview of free-piston Stirling technology for space power application
NASA Technical Reports Server (NTRS)
Slaby, Jack G.; Alger, Donald L.
1987-01-01
An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space-power application. NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. One of the major elements of this five-year program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter.
Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew; Chinn, Steve
2018-02-01
We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.
Improved power and efficiency for tapered lasers with optimized photonic crystal structures
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Shaoyu; Zhou, Xuyan; Lin, Yuzhe; Zheng, Wanhua
2017-10-01
High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved. In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.
R&D100: 6.5kV Enhancement-Mode Silicon Carbide JFET Switch
Dries, Chris; Hostetler, John; Atcitty, Stan
2018-06-12
Researchers at Sandia National Laboratories have partnered with United Silicon Carbide, Inc. to combine advanced materials with novel manufacturing ideas to build a new product for significantly more efficient power conversion. Harnessing the unique features of silicon carbide, this first of its kind device allows higher voltage switching, and reductions in switching losses to significantly boost the efficiency and reliability of power generation and power conversion.
NASA Astrophysics Data System (ADS)
Sonthila, A.; Ruankham, P.; Choopun, S.; Wongratanaphisan, D.; Phadungdhitidhada, S.; Gardchareon, A.
2017-09-01
CuO nanoparticles (CuO NPs) were used as a barrier layer in ZnO dye-sensitized solar cells (DSSCs) to obtain high power conversion efficiency. The barrier layer was investigated in terms of the size of CuO NPs by varying power of pulsed Nd:YAG (1064 nm) laser ablation. Morphological and optical properties of CuO NPs were characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry (UV-vis) and dynamic light scattering (DLS). It was found that the CuO NPs are rather spherical in shape with diameter in between 20 - 132 nm. In addition, the energy gap of CuO decreases with the increase of CuO NPs size. The power conversion efficiency of ZnO DSSCs was measured under illumination of simulated sunlight obtained from a solar simulator with the radiant power of 100 mW/cm2. The results showed that the ZnO DSSC with the CuO NPs with size of 37 nm exhibits the optimum power conversion efficiency of 1.01% which is higher than that of one without CuO NPs. Moreover, the power conversion efficiency of the ZnO DSSCs decreases with the increase of CuO NPs size.
NASA Astrophysics Data System (ADS)
Pan, Minqiang; Zhong, Yujian
2018-01-01
Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... Communications. e. Name of Project: Whitestone Poncelet River-In-Stream-Energy- Conversion Project (also known as the Microturbine Hydrokinetic River- In-Stream-Energy-Conversion Project) f. Location: The proposed.... Selvaggio, Whitestone Power and Communications, P.O. Box 1630, Delta Junction, Alaska 99737; phone: (907...
NASA Astrophysics Data System (ADS)
Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2016-01-01
The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.
Vibration energy harvesting with polyphase AC transducers
NASA Astrophysics Data System (ADS)
McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko
2016-04-01
Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.
Grumman WS33 wind system: prototype construction and testing, Phase II technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F.M.; Henton, P.; King, P.W.
1980-11-01
The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less
NASA Technical Reports Server (NTRS)
Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.
1989-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.
Koberg, Miri; Cohen, Moshe; Ben-Amotz, Ami; Gedanken, Aharon
2011-03-01
This work offers an optimized method for the direct conversion of harvested Nannochloropsis algae into bio-diesel using two novel techniques. The first is a unique bio-technology-based environmental system utilizing flue gas from coal burning power stations for microalgae cultivation. This method reduces considerably the cost of algae production. The second technique is the direct transesterification (a one-stage method) of the Nannochloropsis biomass to bio-diesel production using microwave and ultrasound radiation with the aid of a SrO catalyst. These two techniques were tested and compared to identify the most effective bio-diesel production method. Based on our results, it is concluded that the microwave oven method appears to be the most simple and efficient method for the one-stage direct transesterification of the as-harvested Nannochloropsis algae. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-01
The National Power Corporation (NAPCOR) of Philippines has requested the Trade and Development Program (TDP) to fund a study to evaluate the technical and economic feasibility of converting its existing oil and coal fired power plants to natural gas. The decision to undertake the study resulted from preliminary information on a large gas find off the coast of Palawan island. However, a second exploration well has come up dry. Now, the conversion of the existing power plants to natural gas seems very questionable. Even if the proven gas reserves prove to be commercially viable, the gas will not be availablemore » until 1998 or later for utilization. At that time several of NAPCOR's plants would have aged further, the political and economic situation in Philippines could have altered significantly, possibly improved, private power companies might be able to use the gas more efficiently by building state-of-the-art combined cycle power plants which will make more economic sense than converting existing old boilers to natural gas. In addition, most of the existing power equipment was manufactured by Japanese and/or European firms. It makes sense for NAPCOR to solicit services from these firms if it decides to go ahead with the implementation of the power plant conversion project. The potential for any follow on work for U.S. businesses is minimal to zero in the thermal conversion project. Therefore, at this time, TDP funding for the feasibility would be premature and not recommended.« less
NASA Technical Reports Server (NTRS)
Allen, Bog; Delventhal, Rex; Frye, Patrick
2004-01-01
Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.
Expressions for tidal conversion at seafloor topography using physical space integrals
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert
2010-12-01
The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.
All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang
2006-01-01
A novel all-optical 40Gbit/s NRZ-to-RZ data format conversion scheme based on sum-frequency generation (SFG) interaction in a periodically poled LiNbO 3 (PPLN) waveguide is presented for the first time, using a Mach-Zehnder interferometer (MZI). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift Φ NL induced on the signal field. The performance of the conversion is numerically evaluated, with the result showing that it is more effective to yield Φ NL when appropriately phase mismatched for SFG process but Φ NL~0 when quasi-phase-matching (QPM). Compared with the cascaded second-order nonlinear interactions (SHG+DFG) with the influence of walk-off effect, a high conversion efficiency and good performance are achieved with peak power 500mw and width 2ps of the pump, which can be used in super high-speed situation (40Gbit/s and above). Finally, the inverse process of SFG and corresponding walk-off effect are analyzed and the optimum arrangement of power is proposed, showing that proper power, pump width, and waveguide length are necessary for achieving a satisfied conversion effect.
NASA Astrophysics Data System (ADS)
Ren, Hao
A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m 3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System (MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques.
Review of betavoltaic energy conversion
NASA Astrophysics Data System (ADS)
Olsen, Larry C.
1993-05-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Review of betavoltaic energy conversion
NASA Technical Reports Server (NTRS)
Olsen, Larry C.
1993-01-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Megawatt level UV output from [110] Cr⁴⁺:YAG passively Q-switched microchip laser.
Bhandari, Rakesh; Taira, Takunori
2011-11-07
Recent development of megawatt peak power, giant pulse microchip lasers has opened new opportunities for efficient wavelength conversion, provided the output of the microchip laser is linearly polarized. We obtain > 2 MW peak power, 260 ps, 100 Hz pulses at 266 nm by fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser that is passively Q-switched with [110] cut Cr⁴⁺:YAG. The SHG and FHG conversion efficiencies are 85% and 51%, respectively.
AMTEC radioisotope power system design and analysis for Pluto Express Fly-By
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.; Sievers, R.K.
1997-12-31
The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
Modeling of a solar-pumped iodine laser
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Lee, J. H.
1980-01-01
The direct conversion in space of solar radiation into laser radiation for power transmission to earth, satellites, or deep space probes shows promise as a reasonably simple technology and may have cost advantage in deployment and greater reliability compared to other methods of space power generation and transmission. The main candidates for solar pumping are the gas dynamic, photochemical, and direct photoexcited lasers. Here consideration is given to the photochemical reaction of alkyliodides which predominantly excite the I(2P1/2) state which then lases at 1.315 microns. The iodine ground state is eventually lost to reconstituting the gas or in the formation of molecular iodine. The rates at which the gas is required to be recycled through the laser system are modest. The side exposure at 100-fold solar concentration of a 100-m long tube with a 1 sq m cross section is estimated to provide 20 kW of continuous laser output. Scaling laws and optimum operating conditions of this system are discussed.
Xue, Xinyu; Wang, Sihong; Guo, Wenxi; Zhang, Yan; Wang, Zhong Lin
2012-09-12
Energy generation and energy storage are two distinct processes that are usually accomplished using two separated units designed on the basis of different physical principles, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism that directly hybridizes the two processes into one, in which the mechanical energy is directly converted and simultaneously stored as chemical energy without going through the intermediate step of first converting into electricity. By replacing the polyethylene (PE) separator as for conventional Li battery with a piezoelectric poly(vinylidene fluoride) (PVDF) film, the piezoelectric potential from the PVDF film as created by mechanical straining acts as a charge pump to drive Li ions to migrate from the cathode to the anode accompanying charging reactions at electrodes. This new approach can be applied to fabricating a self-charging power cell (SCPC) for sustainable driving micro/nanosystems and personal electronics.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.
Power enhanced frequency conversion system
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
2001-01-01
A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.
Evaluation of a microwave high-power reception-conversion array for wireless power transmission
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1975-01-01
Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.
NASA Technical Reports Server (NTRS)
Kiceniuk, T.
1985-01-01
An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.
Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.
2013-07-01
A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.
NASA Astrophysics Data System (ADS)
Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung
2018-01-01
Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.
Space Environmental Effects on the Optical Properties of Selected Transparent Polymers
NASA Technical Reports Server (NTRS)
Edwards, David L.; Willowby, Douglas J.; Hubbs, Whitney C.; Piszczor, Michael F., Jr.; Bowden, Mary L.
1997-01-01
Transparent polymer films are currently considered for use as solar concentrating lenses for spacecraft power and propulsion systems. These polymer films concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers. Multiple candidate polymer samples were exposed to near ultraviolet (NUV) radiation to screen the materials and select optimum materials for further study. All materials experienced transmission degradation of varying degree. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance of NUV. Teflon(Tm) FEP and Teflon(Tm) PFA were selected for further study. These materials were subjected to a combined charged particle dose equivalent to 5 years in a typical geosynchronous Earth orbit (GEO). Results from these NUV screening tests and the 5 year GEO equivalent dose are presented.
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.
2013-07-01
In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.
Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.
2010-01-01
Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.
NASA Astrophysics Data System (ADS)
Joyner, Claude Russell; Fowler, Bruce; Matthews, John
2003-01-01
In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
Opto-thermoelectric nanotweezers
NASA Astrophysics Data System (ADS)
Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N.; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A.; Liz-Marzán, Luis M.; Florin, Ernst-Ludwig; Zheng, Yuebing
2018-04-01
Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.
Opto-thermoelectric nanotweezers.
Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A; Liz-Marzán, Luis M; Florin, Ernst-Ludwig; Zheng, Yuebing
2018-04-01
Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers (OTENT). Through optically heating a thermoplasmonic substrate, alight-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in-situ . With its simple optics, versatile low-power operation, applicability to diverse nanoparticles, and tuneable working wavelength, OTENT will become a powerful tool in colloid science and nanotechnology.
Free-piston Stirling engine/linear alternator 1000-hour endurance test
NASA Technical Reports Server (NTRS)
Rauch, J.; Dochat, G.
1985-01-01
The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.
Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium
NASA Technical Reports Server (NTRS)
Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey
2006-01-01
A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long life, limited only by the half-life of Cm-244. A cell having a volume less than 25 cu mm, containing 1 curie of Cm-244 (the curie is a unit of radioactivity equal to 3.7 10(exp 10) disintegrations per second) is expected to deliver a current between 7 and 12 mA, which, at the expected open-circuit potential, would provide a power in the approximate range of 11 to 20 mW.
Optical Energy Transfer and Conversion System
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2015-01-01
An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.
Intermediate Fidelity Closed Brayton Cycle Power Conversion Model
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.
2006-01-01
This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.
Lin, Chensheng; Cheng, Wendan; Guo, Zhengxiao; Chai, Guoliang; Zhang, Hao
2017-08-30
Efficient thermoelectric energy conversion is both crucial and challenging, and requires new material candidates by design. From first principles simulations, we identify that a "star-like" SnSe nanotube - with alternating dense and loose rings along the tube direction - gives rise to an ultra-low lattice thermal conductivity, 0.18 W m -1 K -1 at 750 K, and a large Seebeck coefficient, compared with single crystal SnSe. The power factor of the p-type SnSe nanotube reaches its maximum value of 235 μW cm -1 K -2 at a moderate doping level of around 10 20 -10 21 cm -3 . The p-type nanotube shows better thermoelectric properties than the n-type one. The phonon anharmonic scattering rate of the SnSe nanotube is larger than that of the SnSe crystal. All of these factors lead to an exceptional figure-of-merit (ZT) value of 3.5-4.6 under the optimal conditions, compared to 0.6-2.6 for crystalline SnSe. Such a large ZT value should lead to a six-fold increase in the energy conversion efficiency to about 30%.
Improving the photovoltaic performance of perovskite solar cells with acetate
Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.
2016-01-01
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924
Improving the photovoltaic performance of perovskite solar cells with acetate.
Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P
2016-12-09
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.
Zhang, Yiwei; Parnell, Andrew J.; Pontecchiani, Fabio; Cooper, Joshaniel F. K.; Thompson, Richard L.; Jones, Richard A. L.; King, Stephen M.; Lidzey, David G.; Bernardo, Gabriel
2017-01-01
We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency. PMID:28287164
NASA Technical Reports Server (NTRS)
Mckenney, D. B.; Beauchamp, W. T.
1975-01-01
It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.
1.5-GW S-band relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Ferguson, Patrick E.
1992-04-01
There is a strong symbiotic relationship between a developing technology and its applications. New technologies can generate applications previously either unrealizable or impractical. Conversely, applications can demand the development of new technological capability. Examples of both types of development can be found in the evolution of HPM. The high power and energy output made possible by HPM have created a technology driven interest in directed energy weapons and short pulse radar. On the other hand, the requirements for heating of fusion plasmas have resulted in an application driven program to develop high average power microwave devices. In this paper we address these and other applications such as RF electron linacs, laser pumping, and beaming of power. Emerging applications, such as ionispheric modification and environmental cleanup, are also touched upon. The approach of this paper will be to review each application separately and then compare the requirements of the applications in terms of the power, frequency and other key requirements necessary for HPM to usefully address the application.