Sample records for direct reactions

  1. Substrate-Directed Catalytic Selective Chemical Reactions.

    PubMed

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  2. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  3. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  4. Systematic assignment of thermodynamic constraints in metabolic network models

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to disable thermodynamically infeasible energy production. Conclusion Although not being fully comprehensive, our algorithm for systematic reaction direction assignment could define a significant number of irreversible reactions automatically with low computational effort. We envision that the presented algorithm is a valuable part of a computational framework that assists the automated reconstruction of genome-scale metabolic models. PMID:17123434

  5. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: a density functional study.

    PubMed

    Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup

    2014-12-21

    Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.

  6. Identification of atomic-level mechanisms for gas-phase X- + CH3Y SN2 reactions by combined experiments and simulations.

    PubMed

    Xie, Jing; Otto, Rico; Mikosch, Jochen; Zhang, Jiaxu; Wester, Roland; Hase, William L

    2014-10-21

    For the traditional model of gas-phase X(-) + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X(-)---CH3Y and XCH3---Y(-), separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl(-), F(-), and OH(-) react with CH3I. Also considered are reactions of the microsolvated anions OH(-)(H2O) and OH(-)(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions. Overall, the atomistic dynamics for the Cl(-) + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I(-) product or a stripping mechanism in which Cl(-) strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl(-) + CH3Cl and Cl(-) + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered. For the F(-) + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased. The indirect mechanism, with prereaction complex formation, is important at all the Erel investigated, contributing up ∼60% of the reaction. The remaining direct reaction occurs by the rebound and stripping mechanisms. Though the potential energy curve for the OH(-) + CH3I reaction is similar to that for F(-) + CH3I, the two reactions have different dynamics. They are akin, in that for both there is not a transition from an indirect to direct reaction. However, for F(-) + CH3I indirect reaction dominates at all Erel, but it is less important for OH(-) + CH3I and becomes negligible as Erel is increased. Stripping is a minor channel for F(-) + CH3I, but accounts for more than 60% of the OH(-) + CH3I reaction at high Erel. Adding one or two H2O molecules to OH(-) alters the reaction dynamics from that for unsolvated OH(-). Adding one H2O molecule enhances indirect reaction at low Erel, and changes the reaction mechanism from primarily stripping to rebound at high Erel. With two H2O molecules the dynamics is indirect and isotropic at all collision energies.

  7. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  8. Conservation of direct dynamics in sterically hindered SN2/E2 reactions.

    PubMed

    Carrascosa, Eduardo; Meyer, Jennifer; Michaelsen, Tim; Stei, Martin; Wester, Roland

    2018-01-21

    Nucleophilic substitution (S N 2) and base-induced elimination (E2), two indispensable reactions in organic synthesis, are commonly assumed to proceed under stereospecific conditions. Understanding the way in which the reactants pre-orient in these reactions, that is its stereodynamics, is essential in order to achieve a detailed atomistic picture and control over such processes. Using crossed beam velocity map imaging, we study the effect of steric hindrance in reactions of Cl - and CN - with increasingly methylated alkyl iodides by monitoring the product ion energy and scattering angle. For both attacking anions the rebound mechanism, indicative of a direct S N 2 pathway, is found to contribute to the reaction at high relative collision energies despite being increasingly hindered. An additional forward scattering mechanism, ascribed to a direct E2 reaction, also contributes at these energies. Inspection of the product energy distributions confirms the direct and fast character of both mechanisms as opposed to an indirect reaction mechanism which leads to statistical energy redistribution in the reaction complex. This work demonstrates that nonstatistical dynamics and energetics govern S N 2 and E2 pathways even in sterically hindered exchange reaction systems.

  9. Conservation of direct dynamics in sterically hindered SN2/E2 reactions

    PubMed Central

    Carrascosa, Eduardo; Meyer, Jennifer; Michaelsen, Tim; Stei, Martin

    2017-01-01

    Nucleophilic substitution (SN2) and base-induced elimination (E2), two indispensable reactions in organic synthesis, are commonly assumed to proceed under stereospecific conditions. Understanding the way in which the reactants pre-orient in these reactions, that is its stereodynamics, is essential in order to achieve a detailed atomistic picture and control over such processes. Using crossed beam velocity map imaging, we study the effect of steric hindrance in reactions of Cl– and CN– with increasingly methylated alkyl iodides by monitoring the product ion energy and scattering angle. For both attacking anions the rebound mechanism, indicative of a direct SN2 pathway, is found to contribute to the reaction at high relative collision energies despite being increasingly hindered. An additional forward scattering mechanism, ascribed to a direct E2 reaction, also contributes at these energies. Inspection of the product energy distributions confirms the direct and fast character of both mechanisms as opposed to an indirect reaction mechanism which leads to statistical energy redistribution in the reaction complex. This work demonstrates that nonstatistical dynamics and energetics govern SN2 and E2 pathways even in sterically hindered exchange reaction systems. PMID:29629138

  10. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; ...

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  11. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  12. Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.

    PubMed

    Sanchez, Yerly; Pinzon, David; Zheng, Bin

    2017-10-01

    To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.

  13. On understanding nuclear reaction network flows with branchings on directed graphs

    NASA Astrophysics Data System (ADS)

    Meyer, Bradley S.

    2018-04-01

    Nuclear reaction network flow diagrams are useful for understanding which reactions are governing the abundance changes at a particular time during nucleosynthesis. This is especially true when the flows are largely unidirectional, such as during the s-process of nucleosynthesis. In explosive nucleosynthesis, when reaction flows are large, and when forward reactions are nearly balanced by their reverses, reaction flows no longer give a clear picture of the abundance evolution in the network. This paper presents a way of understanding network evolution in terms of sums of branchings on a directed graph, which extends the concept of reaction flows to allow for multiple reaction pathways.

  14. Self-Relevance Appraisal Influences Facial Reactions to Emotional Body Expressions

    PubMed Central

    Grèzes, Julie; Philip, Léonor; Chadwick, Michèle; Dezecache, Guillaume; Soussignan, Robert; Conty, Laurence

    2013-01-01

    People display facial reactions when exposed to others' emotional expressions, but exactly what mechanism mediates these facial reactions remains a debated issue. In this study, we manipulated two critical perceptual features that contribute to determining the significance of others' emotional expressions: the direction of attention (toward or away from the observer) and the intensity of the emotional display. Electromyographic activity over the corrugator muscle was recorded while participants observed videos of neutral to angry body expressions. Self-directed bodies induced greater corrugator activity than other-directed bodies; additionally corrugator activity was only influenced by the intensity of anger expresssed by self-directed bodies. These data support the hypothesis that rapid facial reactions are the outcome of self-relevant emotional processing. PMID:23405230

  15. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    ERIC Educational Resources Information Center

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  16. Application of direct thermometric analysis in iodometry.

    PubMed

    Marik-Korda, P; Erdey, L

    1970-12-01

    Elementary chlorine was determined by a thermometric method using potassium iodide as reagent. The temperature rise corresponding to the heat of reaction was proportional to the chlorine content. Iodine formed in the reaction was also determined with sodium thiosulphate. The heat of the chlorine-iodide reaction is about five times that of the iodine-thiosulphate reaction. Direct determination with potassium iodide is simpler and more rapid than the indirect one.

  17. Revisiting and Computing Reaction Coordinates with Directional Milestoning

    PubMed Central

    Kirmizialtin, Serdal; Elber, Ron

    2011-01-01

    The method of Directional Milestoning is revisited. We start from an exact and more general expression and state the conditions and validity of the memory-loss approximation. An algorithm to compute a reaction coordinate from Directional Milestoning data is presented. The reaction coordinate is calculated as a set of discrete jumps between Milestones that maximizes the flux between two stable states. As an application we consider a conformational transition in solvated Adenosine. We compare a long molecular dynamic trajectory with Directional Milestoning and discuss the differences between the maximum flux path and minimum energy coordinates. PMID:21500798

  18. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  19. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumino, A.; Gulino, M.; Spitaleri, C.

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent resultsmore » will be presented to demonstrate how THM works experimentally.« less

  20. Prevalence of direct-reaction mechanism in a deeply inelastic reaction, /sup 197/Au(/sup 19/F,/sup 12/B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, M.; Shimoda, T.; Froehlich, H.

    1979-07-09

    Continuum cross sections and spin polarizations of /sup 12/B produced in the reaction /sup 197/Au(/sup 19/F,/sup 12/B) induced by 186-MeV/sup 19/F were measured. The observed data were reproduced very well in terms of a distorted-wave Born-approximation theory, indicating that this reaction transferring as many as seven nucleons proceeds as a direct process.

  1. Direct picosecond time resolution of unimolecular reactions initiated by local mode excitation

    NASA Technical Reports Server (NTRS)

    Scherer, N. F.; Doany, F. E.; Zewail, A. H.; Perry, J. W.

    1986-01-01

    Attention is given to the first results of direct, picosec measurements of the Delta-nu(OH) 5 local mode transition of H2O2. These time-resolved studies yield a direct measure of the unimolecular dissociation rate, and furnish a lower limit for the rate of energy redistribution from the OH stretch to the O-O reaction coordinate. The data thus determined may be used to ascertain the domain of validity for statistical unimolecular reaction rate theories.

  2. Alpha-capture reaction rates for 22Ne(alpha,n) via sub-Coulomb alpha-transfer

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgen; Goldberg, Vladilen; Bedoor, Shadi; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja

    2016-09-01

    Direct measurements of α-capture reactions at energies relevant to astrophysics is extremely difficult to carry out due to the very small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using (6Li,d) α-transfer reactions at sub-Coulomb energies to reduce the model dependence. The study of the 22Ne(6Li,d) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg will provide constraints for the reaction rate of the 22Ne(α,n) reaction.

  3. Direct catalytic asymmetric aldol-Tishchenko reaction.

    PubMed

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  4. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in ordermore » to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.« less

  5. Simulation studies of the Cl- + CH3I SN2 nucleophilic substitution reaction: Comparison with ion imaging experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Lourderaj, Upakarasamy; Sun, Rui; Mikosch, Jochen; Wester, Roland; Hase, William L.

    2013-03-01

    In the previous work of Mikosch et al. [Science 319, 183 (2008)], 10.1126/science.1150238, ion imaging experiments were used to study the Cl- + CH3I → ClCH3 + I- reaction at collision energies Erel of 0.39, 0.76, 1.07, and 1.9 eV. For the work reported here MP2(fc)/ECP/d direct dynamics simulations were performed to obtain an atomistic understanding of the experiments. There is good agreement with the experimental product energy and scattering angle distributions for the highest three Erel, and at these energies 80% or more of the reaction is direct, primarily occurring by a rebound mechanism with backward scattering. At 0.76 eV there is a small indirect component, with isotropic scattering, involving formation of the pre- and post-reaction complexes. All of the reaction is direct at 1.07 eV. Increasing Erel to 1.9 eV opens up a new indirect pathway, the roundabout mechanism. The product energy is primarily partitioned into relative translation for the direct reactions, but to CH3Cl internal energy for the indirect reactions. The roundabout mechanism transfers substantial energy to CH3Cl rotation. At Erel = 0.39 eV both the experimental product energy partitioning and scattering are statistical, suggesting the reaction is primarily indirect with formation of the pre- and post-reaction complexes. However, neither MP2 nor BhandH/ECP/d simulations agree with experiment and, instead, give reaction dominated by direct processes as found for the higher collision energies. Decreasing the simulation Erel to 0.20 eV results in product energy partitioning and scattering which agree with the 0.39 eV experiment. The sharp transition from a dominant direct to indirect reaction as Erel is lowered from 0.39 to 0.20 eV is striking. The lack of agreement between the simulations and experiment for Erel = 0.39 eV may result from a distribution of collision energies in the experiment and/or a shortcoming in both the MP2 and BhandH simulations. Increasing the reactant rotational temperature from 75 to 300 K for the 1.9 eV collisions, results in more rotational energy in the CH3Cl product and a larger fraction of roundabout trajectories. Even though a ClCH3-I- post-reaction complex is not formed and the mechanistic dynamics are not statistical, the roundabout mechanism gives product energy partitioning in approximate agreement with phase space theory.

  6. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  7. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  8. Direct observation of OH production from the ozonolysis of olefins

    NASA Astrophysics Data System (ADS)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  9. Observed side feeding in incomplete fusion dynamics in 16O + 160Gd reaction at energy ∼5.6 MeV/A: Spin distribution measurements

    NASA Astrophysics Data System (ADS)

    Ali, Rahbar; Afzal Ansari, M.; Singh, D.; Kumar, Rakesh; Singh, D. P.; Sharma, M. K.; Gupta, Unnati; Singh, B. P.; Shidling, P. D.; Negi, Dinesh; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2017-12-01

    Spin distributions of various residues populated via complete fusion (CF) and incomplete fusion (ICF) reactions in the interaction of 16O with 160Gd at the projectile energy Eproj ∼ 5.6 MeV/A have been studied. The experimentally measured spin distributions of the residues associated with the ICF reactions are found to be distinctly different from those populated via the CF reactions. An attempt has been made to extract the side-feeding pattern from the spin distributions of CF and ICF reaction products. It has been observed that the CF products are strongly fed over a broad spin range. But, no side-feeding takes place in the low observed spins as low partial waves are strongly hindered in the fast α-emission channels (associated with ICF) in the forward direction. It has also been observed that the mean input angular momentum for direct α-emitting (ICF) channels is relatively higher than evaporation α-emitting (CF) channels, and it increases with direct α-multiplicity in forward direction.

  10. Measurement of 17F(d ,n )18Ne and the impact on the 17F(p ,γ )18Ne reaction rate for astrophysics

    NASA Astrophysics Data System (ADS)

    Kuvin, S. A.; Belarge, J.; Baby, L. T.; Baker, J.; Wiedenhöver, I.; Höflich, P.; Volya, A.; Blackmon, J. C.; Deibel, C. M.; Gardiner, H. E.; Lai, J.; Linhardt, L. E.; Macon, K. T.; Rasco, B. C.; Quails, N.; Colbert, K.; Gay, D. L.; Keeley, N.

    2017-10-01

    Background: The 17F(p ,γ )18Ne reaction is part of the astrophysical "hot CNO" cycles that are important in astrophysical environments like novas. Its thermal reaction rate is low owing to the relatively high energy of the resonances and therefore is dominated by direct, nonresonant capture in stellar environments at temperatures below 0.4 GK. Purpose: An experimental method is established to extract the proton strength to bound and unbound states in experiments with radioactive ion beams and to determine the parameters of direct and resonant capture in the 17F(p ,γ )18Ne reaction. Method: The 17F(d ,n )18Ne reaction is measured in inverse kinematics using a beam of the short-lived isotope 17F and a compact setup of neutron, proton, γ -ray, and heavy-ion detectors called resoneut. Results: The spectroscopic factors for the lowest l =0 proton resonances at Ec .m .=0.60 and 1.17 MeV are determined, yielding results consistent within 1.4 σ of previous proton elastic-scattering measurements. The asymptotic normalization coefficients of the bound 21+ and 22+ states in 18Ne are determined and the resulting direct-capture reaction rates are extracted. Conclusions: The direct-capture component of the 17F(p ,γ )18Ne reaction is determined for the first time from experimental data on 18Ne.

  11. Role of breakup and direct processes in deuteron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Avrigeanu, V.

    2015-08-01

    Background: Recent studies of deuteron-induced reactions around the Coulomb barrier B pointed out that numerical calculations for deuteron-induced reactions are beyond current capabilities. The statistical model of nuclear reactions was used in this respect since the compound-nucleus (CN) mechanism was considered to be responsible for most of the total-reaction cross section σR in this energy range. However, specific noncompound processes such as the breakup (BU) and direct reactions (DR) should be also considered for the deuteron-induced reactions, making them different from reactions with other incident particles. Purpose: The unitary and consistent BU and DR consideration in deuteron-induced reactions is proved to yield results at variance with the assumption of negligible noncompound components. Method: The CN fractions of σR obtained by analysis of measured neutron angular distributions in deuteron-induced reactions on 27Al, 56Fe, 63,63Cu, and 89Y target nuclei, around B , are compared with the results of an unitary analysis of every reaction mechanism. The latter values have been supported by the previously established agreement with all available deuteron data for 27Al 54,56,-58,natCu, 63,65,natCu and 93Nb. Results: There is a significant difference between the larger CN contributions obtained from measured neutron angular distributions and calculated results of an unitary analysis of every deuteron-interaction mechanism. The decrease of the latter values is mainly due to the BU component. Conclusions: The above-mentioned differences underline the key role of the breakup and direct reactions that should be considered explicitly in the case of deuteron-induced reactions.

  12. Enantioselective addition of nitromethane to 2-acylpyridine N-oxides. Expanding the generation of quaternary stereocenters with the Henry reaction.

    PubMed

    Holmquist, Melireth; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R

    2014-02-21

    The direct asymmetric Henry reaction with prochiral ketones, leading to tertiary nitroaldols, is an elusive reaction so far limited to a reduced number of reactive substrates such as trifluoromethyl ketones or α-keto carbonyl compounds. Expanding the scope of this important reaction, the direct asymmetric addition of nitromethane to 2-acylpyridine N-oxides catalyzed by a BOX-Cu(II) complex to give the corresponding pyridine-derived tertiary nitroaldols having a quaternary stereogenic center with variable yields and good enantioselectivity, is described.

  13. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  14. DIRECT SYNTHESIS OF TERTIARY AMINES IN WATER USING MICROWAVES

    EPA Science Inventory

    A direct synthesis of tertiary amines is presented that proceeds expeditiously via N-alkylation of amines using alkyl halides in alkaline aqueous medium. This environmentally benign reaction is accelerated upon exposure to microwave irradiation resulting in shortened reaction tim...

  15. Recent developments in Cope-type hydroamination reactions of hydroxylamine and hydrazine derivatives.

    PubMed

    Beauchemin, André M

    2013-11-07

    Cope-type hydroaminations are versatile for the direct amination of alkenes, alkynes and allenes using hydroxylamines and hydrazine derivatives. These reactions occur via a concerted, 5-membered cyclic transition state that is the microscopic reverse of the Cope elimination. This article focuses on recent developments, including intermolecular variants, directed reactions, and asymmetric variants using aldehydes as tethering catalysts, and their applications in target-oriented synthesis.

  16. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi

    2012-10-01

    We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.

  17. Direct asymmetric aldol reactions between aldehydes and ketones catalyzed by L-tryptophan in the presence of water.

    PubMed

    Jiang, Zhaoqin; Yang, Hui; Han, Xiao; Luo, Jie; Wong, Ming Wah; Lu, Yixin

    2010-03-21

    Primary amino acids and their derivatives were investigated as catalysts for the direct asymmetric aldol reactions between ketones and aldehydes in the presence of water, and L-tryptophan was shown to be the best catalyst. Solvent effects, substrate scope and the influence of water on the reactions were investigated. Quantum chemical calculations were performed to understand the origin of the observed stereoselectivity.

  18. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways.

    PubMed

    Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying

    2018-02-01

    The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biodiesel production by direct transesterification of microalgal biomass with co-solvent.

    PubMed

    Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei

    2015-11-01

    In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction

    NASA Astrophysics Data System (ADS)

    Du, XianChao; Guo, Bing; Li, ZhiHong; Pang, DanYang; Li, ErTao; Liu, WeiPing

    2015-06-01

    The 7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay 8B g.s. → 7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of 8Li g.s. →7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the 7Li(d, p)8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, γ)8B reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1+ and 3+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the 7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the 7Be(p, γ)8B reaction.

  1. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction.

    PubMed

    Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong

    2017-06-01

    By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

  2. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-09-26

    A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

  3. Reprint of: Reaction measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.

    2018-01-01

    Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.

  4. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.

  5. A DIRECT ROUTE TO ACYLHYDROQUINONES FROM ALPHA-KETO ACIDS AND ALPHA-CARBOXAMIDO ACIDS. (R825330)

    EPA Science Inventory

    Abstract

    The reaction of quinones with in situ generated acyl- or carboxamido radicals provides a direct route to the synthesis of acylhydroquinones not accessible by the photochemical reaction of quinones with aldehydes.

  6. Improved Limit on Direct α Decay of the Hoyle State

    NASA Astrophysics Data System (ADS)

    Kirsebom, O. S.; Alcorta, M.; Borge, M. J. G.; Cubero, M.; Diget, C. Aa.; Fraile, L. M.; Fulton, B. R.; Fynbo, H. O. U.; Galaviz, D.; Jonson, B.; Madurga, M.; Nilsson, T.; Nyman, G.; Riisager, K.; Tengblad, O.; Turrión, M.

    2012-05-01

    The current evaluation of the triple-α reaction rate assumes that the α decay of the 7.65 MeV, 0+ state in C12, commonly known as the Hoyle state, proceeds sequentially via the ground state of Be8. This assumption is challenged by the recent identification of two direct α-decay branches with a combined branching ratio of 17(5)%. If correct, this would imply a corresponding reduction in the triple-α reaction rate with important astrophysical consequences. We have used the B11(He3,d) reaction to populate the Hoyle state and measured the decay to three α particles in complete kinematics. We find no evidence for direct α-decay branches, and hence our data do not support a revision of the triple-α reaction rate. We obtain an upper limit of 5×10-3 on the direct α decay of the Hoyle state at 95% C.L., which is 1 order of magnitude better than a previous upper limit.

  7. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  8. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  9. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer.

    PubMed

    Yang, Xinzheng

    2013-09-07

    Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.

  10. Iron-catalyzed stereospecific activation of olefinic C-H bonds with Grignard reagent for synthesis of substituted olefins.

    PubMed

    Ilies, Laurean; Asako, Sobi; Nakamura, Eiichi

    2011-05-25

    The reaction of an aryl Grignard reagent with a cyclic or acyclic olefin possessing a directing group such as pyridine or imine results in the stereospecific substitution of the olefinic C-H bond syn to the directing group. The reaction takes place smoothly and without isomerization of the product olefin in the presence of a mild oxidant (1,2-dichloro-2-methylpropane) and an aromatic cosolvent. Several lines of evidence suggest that the reaction proceeds via iron-catalyzed olefinic C-H bond activation rather than an oxidative Mizoroki-Heck-type reaction.

  11. Characterization of clinical photosensitivity in cutaneous lupus erythematosus.

    PubMed

    Foering, Kristen; Chang, Aileen Y; Piette, Evan W; Cucchiara, Andrew; Okawa, Joyce; Werth, Victoria P

    2013-08-01

    Photosensitivity (PS) in lupus erythematosus (LE) is frequently determined by patient report. We sought to characterize self-reported PS in cutaneous LE (CLE). The PS survey was used to classify subject responses into 5 phenotypes: direct sun-induced CLE flare (directCLE); general exacerbation of CLE (genCLE); polymorphic light eruption-like reactions (genSkin); general pruritus/paresthesias (genRxn); and sun-induced systemic symptoms (genSys). In all, 91 subjects with CLE alone or with CLE and systemic LE were interviewed. In all, 81% ascribed to 1 or more PS phenotypes. CLE-specific reactions (direct sun-induced CLE flare or general exacerbation of CLE) were reported by 86% of photosensitive subjects. Higher CLE disease activity (measured by CLE Disease Area and Severity Index activity scores) was suggestive of direct sun-induced CLE flare reactions (P = .09). In all, 60% of photosensitive subjects described CLE-nonspecific reactions: polymorphic light eruption-like rash and general pruritus/paresthesias. These phenotypes often co-occurred with CLE-specific reactions and were predicted by more systemic disease activity as measured by Physicians Global Assessment (PGA) scores in regression analyses (genSkin, P = .02) and (genRxn, P = .05). In all, 36% of subjects reported systemic reactions and higher PGA scores were predictive of the sun-induced systemic symptoms phenotype (P = .02); a diagnosis of systemic LE was not (P = .14). PS was inferred from patient report and not directly observed. Characterization of self-reported PS in LE reveals that patients experience combinations of CLE-specific, CLE-nonspecific, and systemic reactions to sunlight. Sun-induced CLE flares are associated with more active CLE disease. Polymorphic light eruption-like, generalized pruritus/paresthesias, and systemic reactions are associated with more active systemic disease. Recognition of PS phenotypes will permit improved definitions of clinical PS and allow for more precise investigation into its pathophysiology. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  12. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous sulfate...

  13. An Experiment to Illustrate the Hazards of Exothermic Reaction Scale-Up

    ERIC Educational Resources Information Center

    Clark, William; Lei, Melinda; Kirichenko, Erika; Dickerson, Kellie; Prytko, Robert

    2017-01-01

    Exothermic reactions can present safety hazards and there is a recognized need for reaction safety education at the undergraduate level. We present an experiment that illustrates the pitfall of direct scale-up of an exothermic reaction that can lead to thermal runaway. The iodide-catalyzed hydrogen peroxide decomposition reaction yields…

  14. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  15. Formation of a1 Ions Directly from Oxazolone b2 Ions: an Energy-Resolved and Computational Study

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Harrison, Alex G.

    2015-05-01

    It is well-known that oxazolone b2 ions fragment extensively by elimination of CO to form a2 ions, which often fragment further to form a1 ions. Less well-known is that some oxazolone b2 ions may fragment directly to form a1 ions. The present study uses energy-resolved collision-induced dissociation experiments to explore the occurrence of the direct b2→a1 fragmentation reaction. The experimental results show that the direct b2→a1 reaction is generally observed when Gly is the C-terminal residue of the oxazolone. When the C-terminal residue is more complex, it is able to provide increased stability of the a2 product in the b2→a2 fragmentation pathway. Our computational studies of the relative critical reaction energies for the b2→a2 reaction compared with those for the b2→a1 reaction provide support that the critical reaction energies are similar for the two pathways when the C-terminal residue of the oxazolone is Gly. By contrast, when the nitrogen of the oxazolone ring in the b2 ion does not bear a hydrogen, as in the Ala-Sar and Tyr-Sar (Sar = N-methylglycine) oxazolone b2 ions, a1 ions are not formed but rather neutral imine elimination from the N-terminus of the b2 ion becomes a dominant fragmentation reaction. The M06-2X/6-31+G(d,p) density functional theory calculations are in general agreement with the experimental data for both types of reaction. In contrast, the B3LYP/6-31+G(d,p) model systematically underestimates the barriers of these SN2-like b2→a1 reaction. The difference between the two methods of barrier calculation are highly significant ( P < 0.001) for the b2→a1 reaction, but only marginally significant ( P = 0.05) for the b2→a2 reaction. The computations provide further evidence of the limitations of the B3LYP functional when describing SN2-like reactions.

  16. Direct Visualization of Catalytically Active Sites at the FeO–Pt(111) Interface

    DOE PAGES

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; ...

    2015-05-31

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O 2 andmore » CO environments revealed catalytic activity occurring at the FeO–Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO–Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. As a result, the presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.« less

  17. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    NASA Astrophysics Data System (ADS)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  18. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navin, A.; Tripathi, V.; Chatterjee, A.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He atmore » 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.« less

  19. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    PubMed

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  20. Analyzing fragment production in mass-asymmetric reactions as a function of density dependent part of symmetry energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amandeep; Deepshikha; Vinayak, Karan Singh

    2016-07-15

    We performed a theoretical investigation of different mass-asymmetric reactions to access the direct impact of the density-dependent part of symmetry energy on multifragmentation. The simulations are performed for a specific set of reactions having same system mass and N/Z content, using isospin-dependent quantum molecular dynamics model to estimate the quantitative dependence of fragment production on themass-asymmetry factor (τ) for various symmetry energy forms. The dynamics associated with different mass-asymmetric reactions is explored and the direct role of symmetry energy is checked. Also a comparison with the experimental data (asymmetric reaction) is presented for a different equation of states (symmetry energymore » forms).« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratkiewicz, A.; Cizewski, J.A.; Pain, S.D.

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate formore » (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.« less

  2. Direct instrumental identification of catalytically active surface sites

    NASA Astrophysics Data System (ADS)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, Jerry; Krejci, Ondrej; Yu, Liang

    Here, the direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast timescales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO 2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time x-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.

  4. Chemical dynamics simulations of the monohydrated OH-(H2O) + CH3I reaction. Atomic-level mechanisms and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Otto, Rico; Wester, Roland; Hase, William L.

    2015-06-01

    Direct dynamics simulations, with B97-1/ECP/d theory, were performed to study the role of microsolvation for the OH-(H2O) + CH3I reaction. The SN2 reaction dominates at all reactant collision energies, but at higher collision energies proton transfer to form CH2I-, and to a lesser extent CH2I- (H2O), becomes important. The SN2 reaction occurs by direct rebound and stripping mechanisms, and 28 different indirect atomistic mechanisms, with the latter dominating. Important components of the indirect mechanisms are the roundabout and formation of SN2 and proton transfer pre-reaction complexes and intermediates, including [CH3--I--OH]-. In contrast, for the unsolvated OH- + CH3I SN2 reaction, there are only seven indirect atomistic mechanisms and the direct mechanisms dominate. Overall, the simulation results for the OH-(H2O) + CH3IߙSN2 reaction are in good agreement with experiment with respect to reaction rate constant, product branching ratio, etc. Differences between simulation and experiment are present for the SN2 velocity scattering angle at high collision energies and the proton transfer probability at low collision energies. Equilibrium solvation by the H2O molecule is unimportant. The SN2 reaction is dominated by events in which H2O leaves the reactive system as CH3OH is formed or before CH3OH formation. Formation of solvated products is unimportant and participation of the (H2O)CH3OH---I- post-reaction complex for the SN2 reaction is negligible.

  5. Direct reaction theories for exotic nuclei: An introduction via semi-classical methods

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Angela

    2018-07-01

    The structure of exotic nuclei has only been studied from around 1985, because they are very short lived and because before that, it was not possible to produce and deliver them as beams on a target. They have large N / Z or Z / N ratios, are weakly bound and quite extended most of the time. Thus breakup, transfer and/or inelastic excitations of the surface are some of their most common reaction mechanisms. Direct reactions, for their simplicity, have played a fundamental role in the last thirty years in the process of understanding such "new" type of structures. On the other hand, direct reactions have been studied and understood for a much longer time, starting with the pioneering experiments in the early '50 on deuteron-induced reactions and the reaction models developed by S.T. Butler and collaborators. Both subjects are extremely vast and there is a large literature available of books, review articles and original papers. I will discuss here only a few selected examples of the many interesting problems that have been encountered and solved in all those years. I consider them breakthroughs in the field and as such I hope they can inspire young generations of researchers.

  6. Complete characterization of the constrained geometry bimolecular reaction O(1D)+N2O-->NO+NO by three-dimensional velocity map imaging

    NASA Astrophysics Data System (ADS)

    Gödecke, Niels; Maul, Christof; Chichinin, Alexey I.; Kauczok, Sebastian; Gericke, Karl-Heinz

    2009-08-01

    The bimolecular reaction O(D1)+N2O→NO+NO was photoinitiated in the (N2O)2 dimer at a wavelength of 193 nm and was investigated by three-dimensional (3D) velocity map imaging. State selective 3D momentum vector distributions were monitored and analyzed. For the first time, kinetic energy resolution and stereodynamic information about the reaction under constrained geometry conditions is available. Directly observable NO products exhibit moderate vibrational excitation and are rotationally and translationally cold. Speed and spatial distributions suggest a pronounced backward scattering of the observed products with respect to the direction of motion of the O(D1) atom. Forward scattered partner products, which are not directly detectable are also translationally cold, but carry very large internal energy as vibration or rotation. The results confirm and extend previous studies on the complex initiated reaction system. The restricted geometry of the van der Waals complex seems to favor an abstraction reaction of the terminal nitrogen atom by the O(D1) atom, which is in striking contrast to the behavior observed for the unrestricted gas phase reaction under bulk conditions.

  7. Direct measurements of astrophysically important α-induced reactions

    NASA Astrophysics Data System (ADS)

    Avila, Melina

    2016-03-01

    Understanding stellar evolution is one of the primary objectives of nuclear astrophysics. Reaction rates involving α-particles are often key nuclear physics inputs in stellar models. For instance, there are numerous (α , p) reactions fundamental for the understanding of X-ray bursts and the production of 44Ti in core-collapse supernovae. Furthermore, some (α , n) reactions are considered as one of the main neutron sources in the s-process. However, direct measurements of these reactions at relevant astrophysical energies are experimentally challenging because of their small cross section and intensity limitation of radioactive beams. The active target system MUSIC offers a unique opportunity to study (α , p) and (α , n) reactions because its segmented anode allows the investigation of a large energy range in the excitation function with a single measurement. Recent results on the direct measurement of (α , n) and (α , p) measurements in the MUSIC detector will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User.

  8. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    PubMed

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Choice reaction time to visual motion during prolonged rotary motion in airline pilots

    NASA Technical Reports Server (NTRS)

    Stewart, J. D.; Clark, B.

    1975-01-01

    Thirteen airline pilots were studied to determine the effect of preceding rotary accelerations on the choice reaction time to the horizontal acceleration of a vertical line on a cathode-ray tube. On each trial, one of three levels of rotary and visual acceleration was presented with the rotary stimulus preceding the visual by one of seven periods. The two accelerations were always equal and were presented in the same or opposite directions. The reaction time was found to increase with increases in the time the rotary acceleration preceded the visual acceleration, and to decrease with increased levels of visual and rotary acceleration. The reaction time was found to be shorter when the accelerations were in the same direction than when they were in opposite directions. These results suggest that these findings are a special case of a general effect that the authors have termed 'gyrovisual modulation'.

  10. Precise through-space control of an abiotic electrophilic aromatic substitution reaction

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.

    2017-04-01

    Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.

  11. Fluid dynamic modeling of nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki

    2014-03-01

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.

  12. Fluid dynamic modeling of nano-thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.

    2014-03-14

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less

  13. Investigation into the role of NaCl deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    Morphological aspects of the conversion to Na2SO4 of NaCl deposits over the temperature range 500-700 C, in air with added SO2 and H2O. Progress of the reaction was observed by withdrawing samples at various times and examining them under the scanning electron microscope using EDAX to assess the extent of chloride to sulfate conversion. These initial results show that the conversion to Na2SO4 proceeds directly on the sodium chloride surface as well as on the surrounding substrate due to evaporation of NaCl from the solid particle. The mechanism of this reaction could involve reaction in the vapor to produce Na2SO4 which then deposits, alternatively Na2SO4 could form directly on the substrate surface due to direct reaction there between the vapors NaCl, SO2 and O2.

  14. 77 FR 65613 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... related reaction link assembly, and replacing the rudder PCU and its related reaction link assembly if... substrate because of the use of liquid nitrogen during installation of the bushing into the reaction link... identify the condition of its related reaction link assembly, and replacing the rudder PCU and its related...

  15. Anaphylactic Reactions to Oligosaccharides in Red Meat: a Syndrome in Evolution

    PubMed Central

    2012-01-01

    Objective While most allergic responses to food are directed against protein epitopes and occur within 30 minutes of ingesting the allergen, recent studies suggest that delayed reactions may occur, sometimes mediated by IgE antibodies directed against carbohydrate moieties. The objective of this review is to summarize the clinical features and management of delayed hypersensitivity reactions to mammalian meat mediated by IgE antibodies to galactose-alpha 1,3-galactose (alpha-gal), an oligosaccharide. Methods A PubMed search was conducted with MeSH terms: galactosyl-(1,3) galactose, oligosaccharides, cetuximab, allergy/hypersensitivity, and anaphylaxis. Reported cases with alpha-gal-mediated reactions were reviewed. This research study was approved by the Institutional Review Board of East Tennessee State University. Results Thirty-two cases of adults presenting with red-meat induced allergy thought to be related to oligosaccharides have been reported in the literature so far, making this a rare and evolving syndrome. Most of these patients demonstrated delayed reactions to beef, as was seen in the case reported by us in this manuscript. IgE specific to alpha-gal was identified in most patients with variable response to skin testing with beef and pork. Inhibition studies in some cases showed that the IgE antibodies to beef were directed towards alpha-gal in the meat rather than the protein. The patients often reported history of tick bites, the significance of which is unclear at present. Reactions to cetuximab, a monoclonal antibody, are mediated by a similar mechanism, with IgE antibodies directed against an alpha-gal moiety incorporated in the drug structure. Conclusion Alpha-gal is an oligosaccharide recently incriminated in delayed anaphylactic reactions to mammalian meats such as to beef, pork, and lamb. It appears that anaphylactic reactions to the anti-cancer biological agent, cetuximab, may be linked mechanistically to the same process. More studies are required to understand the underlying molecular basis for these delayed reactions in specific, and their broader implications for host defense in general. PMID:22397506

  16. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes.

    PubMed

    Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi

    2014-05-02

    Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.

  17. A unified understanding of (γ, n) and (n, γ) reactions and direct neutron-multiplicity sorting

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Hiroaki; Goriely, Stephane; m, Therese Renstrø; Katayama, Seitaro; Gheorghe, Ioana; Filipescu, Dan; Belyshev, Sergey; Varlamov, Vladimir

    2017-09-01

    We discuss the γ-ray strength function toward a unified understanding of (γ,n) and (n,γ) reactions and propose a novel technique of direct neutron-multiplicity sorting to resolve the long-standing discrepancy between the Livermore and Scalya data of partial photoneutron cross sections.

  18. Direct fluorination of phenolsulfonphthalein: a method for synthesis of positron-emitting indicators for in vivo pH measurement

    PubMed Central

    Kachur, Alexander V.; Popov, Anatoliy V.; Karp, Joel S.; Delikatny, E. James

    2014-01-01

    We report a reaction of direct electrophilic fluorination of phenolsulfonphthalein at mild conditions. This reaction affords the synthesis of novel positron-emitting 18F-labeled pH indicators. These compounds are useful for non-invasive in vivo pH measurement in biological objects. PMID:22790882

  19. Interfacing supercritical fluid reaction apparatus with on-line liquid chromatography: monitoring the progress of a synthetic organic reaction performed in supercritical fluid solution.

    PubMed

    Ramsey, Edward D; Li, Ben; Guo, Wei; Liu, Jing Y

    2015-04-03

    An interface has been developed that connects a supercritical fluid reaction (SFR) vessel directly on-line to a liquid chromatograph. The combined SFR-LC system has enabled the progress of the esterification reaction between phenol and benzoyl chloride to synthesize phenyl benzoate in supercritical fluid carbon dioxide solution to be dynamically monitored. This was achieved by the periodic SFR-LC analysis of samples directly withdrawn from the esterification reaction mixture. Using the series of SFR-LC analysis results obtained for individual esterification reactions, the reaction progress profile for each esterification reaction was obtained by expressing the measured yield of phenyl benzoate as a function of reaction time. With reaction temperature fixed at 75°C, four sets (n=3) of SFR-LC reaction progress profiles were obtained at four different SFR pressures ranging from 13.79 to 27.58 MPa. The maximum SFR yield obtained for phenyl benzoate using a standard set of reactant concentrations was 85.2% (R.S.D. 4.2%) when the reaction was performed at 13.79 MPa for 90 min. In comparison, a phenyl benzoate yield of less than 0.3% was obtained using the same standard reactant concentrations after 90 min reaction time at 75°C using either: heptane, ethyl acetate or acetonitrile as conventional organic reaction solvents. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.

    PubMed

    Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo

    2018-05-04

    Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Validating (d,p gamma) as a Surrogate for Neutron Capture

    DOE PAGES

    Ratkiewicz, A.; Cizewski, J.A.; Pain, S.D.; ...

    2015-05-28

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate formore » (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.« less

  2. Stakeholders' Responses to CSR Tradeoffs: When Other-Orientation and Trust Trump Material Self-Interest

    PubMed Central

    Bridoux, Flore; Stofberg, Nicole; Den Hartog, Deanne

    2016-01-01

    When investing in corporate social responsibility (CSR), managers may strive for a win-win scenario where all stakeholders end up better off, but they may not always be able to avoid trading off stakeholders' interests. To provide guidance to managers who have to make tradeoffs, this study used a vignette-based experiment to explore stakeholders' intention to associate with a firm (i.e., buy from or become an employee) that trades off CSR directed at the stakeholders' own group (self-directed CSR) and CSR directed at another stakeholder group (other-directed CSR). Results show that stakeholders were not systematically more attracted to a firm that favors their own group over another stakeholder group. Specifically, stakeholders' other-orientation moderated their reaction to tradeoffs: stakeholders higher on other-orientation were willing to forego some material benefits to associate with a firm that treated suppliers in developing countries significantly better than its competitors, whereas stakeholders lower on other-orientation were more attracted to a firm favoring their own stakeholder group. Other-orientation also moderated reactions to tradeoffs involving the environment, although high CSR directed at the environment did not compensate for low self-directed CSR even for stakeholders higher on other-orientation. Second, the vignette study showed that trust mediated the relationship between tradeoffs and stakeholders' reactions. The study contributes first and foremost to the burgeoning literature on CSR tradeoffs and to the multimotive approach to CSR, which claims that other motives can drive stakeholders' reactions to CSR in addition to self-interest. First, it provides further evidence that studying CSR tradeoffs is important to understand both (prospective) employees' and customers' reactions to CSR-related activities. Second, it identifies other-orientation as a motive-related individual difference that explains heterogeneity in stakeholders' reactions to CSR. These findings suggest several avenues for future research for organizational psychologists interested in organizational justice. Third, it investigates trust as a mediating mechanism. Fourth, it reveals differences in stakeholders' reactions depending on which other stakeholder group is involved in the tradeoff. For practice, the findings suggest that tradeoffs are important because they influence which stakeholders are attracted to the firm. PMID:26834657

  3. Stakeholders' Responses to CSR Tradeoffs: When Other-Orientation and Trust Trump Material Self-Interest.

    PubMed

    Bridoux, Flore; Stofberg, Nicole; Den Hartog, Deanne

    2015-01-01

    When investing in corporate social responsibility (CSR), managers may strive for a win-win scenario where all stakeholders end up better off, but they may not always be able to avoid trading off stakeholders' interests. To provide guidance to managers who have to make tradeoffs, this study used a vignette-based experiment to explore stakeholders' intention to associate with a firm (i.e., buy from or become an employee) that trades off CSR directed at the stakeholders' own group (self-directed CSR) and CSR directed at another stakeholder group (other-directed CSR). Results show that stakeholders were not systematically more attracted to a firm that favors their own group over another stakeholder group. Specifically, stakeholders' other-orientation moderated their reaction to tradeoffs: stakeholders higher on other-orientation were willing to forego some material benefits to associate with a firm that treated suppliers in developing countries significantly better than its competitors, whereas stakeholders lower on other-orientation were more attracted to a firm favoring their own stakeholder group. Other-orientation also moderated reactions to tradeoffs involving the environment, although high CSR directed at the environment did not compensate for low self-directed CSR even for stakeholders higher on other-orientation. Second, the vignette study showed that trust mediated the relationship between tradeoffs and stakeholders' reactions. The study contributes first and foremost to the burgeoning literature on CSR tradeoffs and to the multimotive approach to CSR, which claims that other motives can drive stakeholders' reactions to CSR in addition to self-interest. First, it provides further evidence that studying CSR tradeoffs is important to understand both (prospective) employees' and customers' reactions to CSR-related activities. Second, it identifies other-orientation as a motive-related individual difference that explains heterogeneity in stakeholders' reactions to CSR. These findings suggest several avenues for future research for organizational psychologists interested in organizational justice. Third, it investigates trust as a mediating mechanism. Fourth, it reveals differences in stakeholders' reactions depending on which other stakeholder group is involved in the tradeoff. For practice, the findings suggest that tradeoffs are important because they influence which stakeholders are attracted to the firm.

  4. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  5. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    NASA Technical Reports Server (NTRS)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  6. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  7. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction.

    PubMed

    Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio

    2018-05-03

    Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

  8. Useful field of view in simulated driving: Reaction times and eye movements of drivers

    PubMed Central

    Seya, Yasuhiro; Nakayasu, Hidetoshi; Yagi, Tadasu

    2013-01-01

    To examine the spatial distribution of a useful field of view (UFOV) in driving, reaction times (RTs) and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field. PMID:24349688

  9. Nearside-farside, local angular momentum and resummation theories: Useful tools for understanding the dynamics of complex-mode reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankel, Marlies, E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk; Connor, J. N. L., E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk

    2015-07-15

    A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact thatmore » accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S({sup 1}D) + HD → SH + D, S({sup 1}D) + DH → SD + H, N({sup 2}D) +H{sub 2} → NH + H, and H{sup +} + D{sub 2} → HD + D{sup +}. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H{sub 2} → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.« less

  10. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  11. Apparatus for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  12. Apparatus for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  13. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1994-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  14. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  15. Dynamic exit-channel pathways of the microsolvated HOO-(H2O) + CH3Cl SN2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    2018-01-01

    Microsolvated bimolecular nucleophilic substitution (SN2) reaction of monohydrated hydrogen peroxide anion [HOO-(H2O)] with methyl chloride (CH3Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl-:Cl-(H2O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO- + CH3Cl SN2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO-(H2O) + CH3Cl SN2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the SN2 reactions of HOO- + CH3Cl and HOO-(H2O) + CH3Cl.

  16. Dynamic exit-channel pathways of the microsolvated HOO-(H2O) + CH3Cl SN2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations.

    PubMed

    Yu, Feng

    2018-01-07

    Microsolvated bimolecular nucleophilic substitution (S N 2) reaction of monohydrated hydrogen peroxide anion [HOO - (H 2 O)] with methyl chloride (CH 3 Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl - :Cl - (H 2 O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO - + CH 3 Cl S N 2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO - (H 2 O) + CH 3 Cl S N 2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the S N 2 reactions of HOO - + CH 3 Cl and HOO - (H 2 O) + CH 3 Cl.

  17. Alpha-capture reaction rates for 22 Ne (α , n) via sub-Coulomb alpha-transfer and its effect on final abundances of s-process isotopes

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgeny; Goldberg, Vladilen; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja; Trippella, Oscar

    2017-09-01

    The 22 Ne (α , n) reaction is a very important neutron source reaction for the slow neutron capture process (s-process) in asymptotic giant branch stars. These direct measurements are very difficult to carry out at the energy regimes of interest for astrophysics (Gamow energies) due to the extremely small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using α-transfer reactions at sub-Coulomb energies to reduce the optical model dependence. The study of the 22Ne(6Li,d) and 22Ne(7Li,t) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg provide constraints for the 22Ne(α,n) reaction rate. The effect of this reaction rate on the final abundances of the s-process isotopes will be discussed.

  18. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  19. Solvated molecular dynamics of LiCN isomerization: All-atom argon solvent versus a generalized Langevin bath.

    PubMed

    Junginger, Andrej; Garcia-Muller, Pablo L; Borondo, F; Benito, R M; Hernandez, Rigoberto

    2016-01-14

    The reaction rate rises and falls with increasing density or friction when a molecule is activated by collisions with the solvent particles. This so-called Kramers turnover has recently been observed in the isomerization reaction of LiCN in an argon bath. In this paper, we demonstrate by direct comparison with those results that a reduced-dimensional (generalized) Langevin description gives rise to similar reaction dynamics as the corresponding (computationally expensive) full molecular dynamics calculations. We show that the density distributions within the Langevin description are in direct agreement with the full molecular dynamics results and that the turnover in the reaction rates is reproduced qualitatively and quantitatively at different temperatures.

  20. Mode-Specific SN2 Reaction Dynamics.

    PubMed

    Wang, Yan; Song, Hongwei; Szabó, István; Czakó, Gábor; Guo, Hua; Yang, Minghui

    2016-09-01

    Despite its importance in chemistry, the microscopic dynamics of bimolecular nucleophilic substitution (SN2) reactions is still not completely elucidated. In this publication, the dynamics of a prototypical SN2 reaction (F(-) + CH3Cl → CH3F + Cl(-)) is investigated using a high-dimensional quantum mechanical model on an accurate potential energy surface (PES) and further analyzed by quasi-classical trajectories on the same PES. While the indirect mechanism dominates at low collision energies, the direct mechanism makes a significant contribution. The reactivity is found to depend on the specific reactant vibrational mode excitation. The mode specificity, which is more prevalent in the direct reaction, is rationalized by a transition-state-based model.

  1. Neutron capture by hook or by crook

    NASA Astrophysics Data System (ADS)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  2. Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.

    PubMed

    Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W

    2015-03-06

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.

  3. Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor

    PubMed Central

    Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  4. Direct Enantioselective Reaction between Hemiacetals and Phosphorus Ylides: Important Role of a By-Product in the Asymmetric Transformation.

    PubMed

    Wang, Rui; Wang, Linqing; Yang, Dongxu; Li, Dan; Liu, Xihong; Wang, Pengxin; Wang, Kezhou; Zhu, Haiyong; Bai, Lutao

    2018-05-16

    By employing a simple in-situ generated magnesium catalyst, the direct asymmetric reaction between hemiacetals and P-ylides is achieved via a tandem Wittig-oxa-Michael reaction sequence. Enantioenriched chromans, isochromans and tetrahydropyrans can be obtained in good chemical yields. (-)-Erythrococcamide B can be asymmetrically synthesized through this synthetic technique. In this work, the by-product, TPO, was identified as a necessary additive in this asymmetric synthetic method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly enantioselective asymmetric direct aldol reaction promoted by aziridine amides constructed on chiral terpene scaffold.

    PubMed

    Wujkowska, Zuzanna; Strojewska, Aleksandra; Pieczonka, Adam M; Leśniak, Stanisław; Rachwalski, Michał

    2017-05-01

    Optically pure, diastereomeric aziridine amides built on the chiral skeletons of camphor, fenchone, and menthone have proven to be highly efficient ligands for enantioselective asymmetric direct aldol reaction in the presence of water and zinc triflate. Desired products were formed in moderate to high chemical yields (up to 95%) and with enantiomeric excess up to 99%. The influence of the stereogenic centers located at the aziridine subunit on the stereochemical course of the reaction is discussed. © 2017 Wiley Periodicals, Inc.

  6. Charge Transfer Directed Radical Substitution Enables para-Selective C–H Functionalization

    PubMed Central

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-01-01

    Efficient C–H functionalization requires selectivity for specific C–H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho- and meta- selectivity, but a general strategy for para-selective C–H functionalization has remained elusive. Herein, we introduce a previously unappreciated concept which enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit areneto-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate that the selectivity is predictable by a simple theoretical tool and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of charge transfer directed radical substitution could serve as the basis for the development of new, highly selective C–H functionalization reactions. PMID:27442288

  7. Charge-transfer-directed radical substitution enables para-selective C-H functionalization

    NASA Astrophysics Data System (ADS)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.

  8. Parental reactions to parent- and sibling-directed aggression within a domestic violence context.

    PubMed

    Desir, Michelle P; Karatekin, Canan

    2018-02-01

    Parent- and sibling-directed aggression by minor children are two forms of family violence that often co-occur and have strong relations to prior exposure to domestic violence, yet are often overlooked in intervention efforts. In addition, current research does not examine these forms of family violence in tandem, and there is very limited research with samples exposed to domestic violence. To better understand how these forms of aggression operate within a domestic violence context, we interviewed 44 women residing in a domestic violence shelter with at least one child over 3.5 years of age who was aggressive toward them and/or siblings. Caregivers reported on their emotional reactions to children's parent-directed aggression and the types of and effectiveness of help they sought for parent- and/or sibling-directed aggression. In line with previous literature, caregivers endorsed a complex mix of emotional reactions to their children's parent-directed aggression, including anger, sadness, guilt, forgiveness, and worthlessness. In contrast to other studies, most caregivers (89%) had sought help for children's parent- and/or sibling-directed aggression and found it effective. Findings contribute to the literature on parent- and sibling-directed aggression and provide implications for how to effectively intervene.

  9. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.

    PubMed

    Kivelä, Sami M; Svensson, Beatrice; Tiwe, Alma; Gotthard, Karl

    2015-09-01

    Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Spacecraft momentum unloading using controlled magnetic torques

    NASA Technical Reports Server (NTRS)

    Linder, David M. (Inventor); Goodzeit, Neil E. (Inventor); Schwarzschild, Marc (Inventor)

    1992-01-01

    A method for maintaining the attitude of a three-axis controlled satellite by use of magnetic torquers includes using magnetometers for measuring the direction of the ambient geomagnetic field. The direction of the net reaction wheel momentum is also determined. The angle between the direction of the geomagnetic field and the net reaction wheel momentum is determined. The angle is compared with a threshold value. Magnetic torquer power consumption is reduced by operating the magnetic torquers only when the angle exceeds the threshold value.

  11. Compensatory balance reactions during forward and backward walking on a treadmill.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-04-01

    Previous work suggests that balance perturbations to the body opposing the direction of progression during walking lead to larger amplitude corrective reactions than perturbations concurrent with walking direction. To test this hypothesis, subjects received forward and backward perturbations applied to the pelvis through a padded harness, while walking forwards or backwards on a treadmill. Contrary to our hypothesis, the greatest responses were associated with backward perturbations regardless of the direction of walking. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Occupational asthma due to formaldehyde.

    PubMed Central

    Burge, P S; Harries, M G; Lam, W K; O'Brien, I M; Patchett, P A

    1985-01-01

    Bronchial provocation studies on 15 workers occupationally exposed to formaldehyde are described. The results show that formaldehyde exposure can cause asthmatic reactions, and suggest that these are sometimes due to hypersensitivity and sometimes to a direct irritant effect. Three workers had classical occupational asthma caused by formaldehyde fumes, which was likely to be due to hypersensitivity, with late asthmatic reactions following formaldehyde exposure. Six workers developed immediate asthmatic reactions, which were likely to be due to a direct irritant effect as the reactions were shorter in duration than those seen after soluble allergen exposure and were closely related to histamine reactivity. The breathing zone concentrations of formaldehyde required to elicit these irritant reactions (mean 4.8 mg/m3) were higher than those encountered in buildings recently insulated with urea formaldehyde foam, but within levels sometimes found in industry. Images PMID:4023975

  13. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  14. Murai Reaction on Furfural Derivatives Enabled by Removable N,N'-Bidentate Directing Groups.

    PubMed

    Pezzetta, Cristofer; Veiros, Luis F; Oble, Julie; Poli, Giovanni

    2017-06-22

    Furfural and related compounds are industrially relevant building blocks obtained from lignocellulosic biomass. To enhance the added value of these renewable resources, a Ru-catalyzed hydrofurylation of alkenes, involving a directed C-H activation at C3 of the furan ring, was developed. A thorough experimental study revealed that a bidentate amino-imine directing group enabled the desired coupling. Removal of the directing group occurred during the purification step, directly releasing the C3-functionalized furfurals. Development of the reaction as well as optimization and scope of the method were described. A mechanism was proposed on the basis of DFT calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  16. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    PubMed

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  17. Efficient synthesis of anacardic acid analogues and their antibacterial activities.

    PubMed

    Mamidyala, Sreeman K; Ramu, Soumya; Huang, Johnny X; Robertson, Avril A B; Cooper, Matthew A

    2013-03-15

    Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Regiocontrol by remote substituents. An enantioselective total synthesis of frenolicin B via a highly regioselective Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, G.A.; Li, J.; Gordon, M.S.

    1993-06-30

    The quinone subunit is contained in a broad range of biologically important natural products such as frenolicin B, which is a member of the pyranonaphthoquinone family. The diverse biological activity of quinones has led to the development of several new synthetic methods for quinones. Among the pathways featuring a cycloaddition reaction, one of the most general methods for the regiospecific synthesis of substituted quinones was pioneered by H.J. Rapoport and others. This method involves the Diels-Alder reaction of a substituted quinone. As part of a program to evaluate the directing effects of functional groups not directly attached to the atomsmore » undergoing Diels-Alder cycloaddition, we now report that remote substituents on a dienophile can confer excellent regioselectivity in Diels-Alder reactions. This work has led to an extremely direct synthesis of the pyranonaphthoquinone framework and to the first synthesis of frenolicin B (1). 19 refs., 1 fig.« less

  19. Inverting Steric Effects: Using "Attractive" Noncovalent Interactions To Direct Silver-Catalyzed Nitrene Transfer.

    PubMed

    Huang, Minxue; Yang, Tzuhsiung; Paretsky, Jonathan D; Berry, John F; Schomaker, Jennifer M

    2017-12-06

    Nitrene transfer (NT) reactions represent powerful and direct methods to convert C-H bonds into amine groups that are prevalent in many commodity chemicals and pharmaceuticals. The importance of the C-N bond has stimulated the development of numerous transition-metal complexes to effect chemo-, regio-, and diastereoselective NT. An ongoing challenge is to understand how subtle interactions between catalyst and substrate influence the site-selectivity of the C-H amination event. In this work, we explore the underlying reasons why Ag(tpa)OTf (tpa = tris(pyridylmethyl)amine) prefers to activate α-conjugated C-H bonds over 3° alkyl C(sp 3 )-H bonds and apply these insights to reaction optimization and catalyst design. Experimental results suggest possible roles of noncovalent interactions (NCIs) in directing the NT; computational studies support the involvement of π···π and Ag···π interactions between catalyst and substrate, primarily by lowering the energy of the directed transition state and reaction conformers. A simple Hess's law relationship can be employed to predict selectivities for new substrates containing competing NCIs. The insights presented herein are poised to inspire the design of other catalyst-controlled C-H functionalization reactions.

  20. Chemical dynamics simulations of the monohydrated OH{sup −}(H{sub 2}O) + CH{sub 3}I reaction. Atomic-level mechanisms and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Hase, William L., E-mail: bill.hase@ttu.edu; Otto, Rico

    2015-06-28

    Direct dynamics simulations, with B97-1/ECP/d theory, were performed to study the role of microsolvation for the OH{sup −}(H{sub 2}O) + CH{sub 3}I reaction. The S{sub N}2 reaction dominates at all reactant collision energies, but at higher collision energies proton transfer to form CH{sub 2}I{sup −}, and to a lesser extent CH{sub 2}I{sup −} (H{sub 2}O), becomes important. The S{sub N}2 reaction occurs by direct rebound and stripping mechanisms, and 28 different indirect atomistic mechanisms, with the latter dominating. Important components of the indirect mechanisms are the roundabout and formation of S{sub N}2 and proton transfer pre-reaction complexes and intermediates, includingmore » [CH{sub 3}--I--OH]{sup −}. In contrast, for the unsolvated OH{sup −} + CH{sub 3}I S{sub N}2 reaction, there are only seven indirect atomistic mechanisms and the direct mechanisms dominate. Overall, the simulation results for the OH{sup −}(H{sub 2}O) + CH{sub 3}I S{sub N}2 reaction are in good agreement with experiment with respect to reaction rate constant, product branching ratio, etc. Differences between simulation and experiment are present for the S{sub N}2 velocity scattering angle at high collision energies and the proton transfer probability at low collision energies. Equilibrium solvation by the H{sub 2}O molecule is unimportant. The S{sub N}2 reaction is dominated by events in which H{sub 2}O leaves the reactive system as CH{sub 3}OH is formed or before CH{sub 3}OH formation. Formation of solvated products is unimportant and participation of the (H{sub 2}O)CH{sub 3}OH---I{sup −} post-reaction complex for the S{sub N}2 reaction is negligible.« less

  1. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    PubMed Central

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  2. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions

    PubMed Central

    2016-01-01

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp2 carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels. PMID:27588432

  3. A recyclable fluorous organocatalyst for Diels-Alder reactions

    PubMed Central

    Chu, Qianli; Zhang, Wei; Curran, Dennis P.

    2007-01-01

    Chiral fluorous imidazolidinone catalyst 2 provides consistently high enantioselectivities in Diels-Alder reactions of dienes and α, β-unsaturated aldehydes. The catalyst can be readily separated from the reaction products by fluorous solid-phase extraction, and recovered in excellent purity for direct reuse. PMID:17710220

  4. Direct dynamics trajectory study of the reaction of formaldehyde cation with D2: vibrational and zero-point energy effects on quasiclassical trajectories.

    PubMed

    Liu, Jianbo; Song, Kihyung; Hase, William L; Anderson, Scott L

    2005-12-22

    Quasiclassical, direct dynamics trajectories have been used to study the reaction of formaldehyde cation with molecular hydrogen, simulating the conditions in an experimental study of H2CO+ vibrational effects on this reaction. Effects of five different H2CO+ modes were probed, and we also examined different approaches to treating zero-point energy in quasiclassical trajectories. The calculated absolute cross-sections are in excellent agreement with experiments, and the results provide insight into the reaction mechanism, product scattering behavior, and energy disposal, and how they vary with impact parameter and reactant state. The reaction is sharply orientation-dependent, even at high collision energies, and both trajectories and experiment find that H2CO+ vibration inhibits reaction. On the other hand, the trajectories do not reproduce the anomalously strong effect of nu2(+) (the CO stretch). The origin of the discrepancy and approaches for minimizing such problems in quasiclassical trajectories are discussed.

  5. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    PubMed Central

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A.; Murray, Christopher B.; Su, Dong

    2016-01-01

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance. PMID:27157119

  6. Transfer reactions induced by lithium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A.A.

    The review deals with nuclear reactions induced by /sup 6/Li and /sup 7/ Li io ns having energies between 10 and 30 MeV. Due to the cluster structure of / sup 6/Li (/sup 6/Li= alpha +d) and /sup 7/Li (/sup 7/Li= alpha +t) and the low bindi ng energy of these nuclei, one of the clustcr is directly transferred in (/ sup 6/Li, d), (/sup 7/Li, t) (/sup 6/Li alpha ) and (/sup 7/Li, alpha ) reactions, i.e., the alpha p article, the deuteron, or the triton is directly transferred. Particular attention is paid to the (/sup 6/Li, d) andmore » (/sup 7/Li, t) reactions, in which the cluster-transfe r mechanism (alpha-particle transfer) appear in ita purest fomn. These reactions can be used to study the alpha- particle or quartet states of light nuclei, which are difficult or impossible to excite in any other way. The present state of the theory of multinucleon transfcr reactions is considered and the application of the theory to thc analysis of reactions induced by lithium atoms is discussed. (auth)« less

  7. Constraining the 19Ne(p,γ)20Na Reaction Rate Using a Direct Measurement at DRAGON

    NASA Astrophysics Data System (ADS)

    Wilkinson, R.; Lotay, G.; Lennarz, A.; Ruiz, C.; Christian, G.; Akers, C.; Catford, W. N.; Chen, A. A.; Connolly, D.; Davids, B.; Hutcheon, D. A.; Jedrejcic, D.; Laird, A. M.; Martin, L.; McNeice, E.; Riley, J.; Williams, M.

    2018-01-01

    A direct measurement of the 19Ne(p, γ)20 Na reaction has been performed in inverse kinematics at the DRAGON recoil separator, at an energy ˜ 10 keV higher than previous measurements. The key resonance in the 19 Ne + p system relevant for ONe novae and Type-I X-ray burst temperatures have been successfully measured for the first time. Preliminary estimates of the resonance energy and strength are reported as Ec.m. ≈ 458 keV and ωγ ≈ 18 meV. These results are consistent with previous direct measurements, but disagree with the most recent study of the 19Ne(p, γ)20 Na reaction rate. These preliminary results will be finalised after a forthcoming negative log-likelihood analysis.

  8. Theoretical studies on the unimolecular decomposition of ethylene glycol.

    PubMed

    Ye, Lili; Zhao, Long; Zhang, Lidong; Qi, Fei

    2012-01-12

    The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).

  9. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1994-12-20

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  10. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  11. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  12. Real-time elucidation of catalytic pathways in CO hydrogenation on Ru

    DOE PAGES

    LaRue, Jerry; Krejci, Ondrej; Yu, Liang; ...

    2017-07-31

    Here, the direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast timescales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO 2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time x-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.

  13. Gold(I)-Catalysed Direct Thioetherifications Using Allylic Alcohols: an Experimental and Computational Study

    PubMed Central

    Herkert, Lorena; Green, Samantha L J; Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2014-01-01

    A gold(I)-catalysed direct thioetherification reaction between allylic alcohols and thiols is presented. The reaction is generally highly regioselective (SN2′). This dehydrative allylation procedure is very mild and atom economical, producing only water as the by-product and avoiding any unnecessary waste/steps associated with installing a leaving or activating group on the substrate. Computational studies are presented to gain insight into the mechanism of the reaction. Calculations indicate that the regioselectivity is under equilibrium control and is ultimately dictated by the thermodynamic stability of the products. PMID:25080400

  14. 14 CFR 25.479 - Level landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vertical ground reactions calculated from paragraph (a), the following apply: (1) The landing gear and directly affected attaching structure must be designed for the maximum vertical ground reaction combined with an aft acting drag component of not less than 25% of this maximum vertical ground reaction. (2...

  15. Synthesis of the C20-C26 building block of halichondrins via a regiospecific and stereoselective S(N)2' reaction.

    PubMed

    Xie, Chaoyu; Nowak, Pawel; Kishi, Yoshito

    2002-12-12

    [reaction: see text] A regiospecific and stereoselective S(N)2' reaction to convert the trisylate into the vinyl iodide is presented. The homoallylic alcohol is used to direct the delivery of LiCu(Me)(2).

  16. Highly Enantioselective Three-Component Direct Mannich Reactions of Unfunctionalized Ketones Catalyzed by Bifunctional Organocatalysts

    PubMed Central

    Guo, Qunsheng; Zhao, John Cong-Gui

    2013-01-01

    A highly stereoselective three-component direct Mannich reaction between aromatic aldehydes, p-toluenesulfonamide, and unfunctionalized ketones was achieved through an enolate mechanism for the first time with a bifunctional quinidine thiourea catalyst. The corresponding N-tosylated β-aminoketones were obtained in high yields and excellent diastereo- and enantioselectivities (up to >99:1 dr and >99% ee). PMID:23343472

  17. Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral BINOL-derived zincate catalyst.

    PubMed

    Li, Hong; Da, Chao-Shan; Xiao, Yu-Hua; Li, Xiao; Su, Ya-Ning

    2008-09-19

    Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.

  18. Anisotropic transverse mixing and its effect on reaction rates in multi-scale, 3D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Engdahl, N. B.

    2016-12-01

    Mixing rates in porous media have been a heavily research topic in recent years covering analytic, random, and structured fields. However, there are some persistent assumptions and common features to these models that raise some questions about the generality of the results. One of these commonalities is the orientation of the flow field with respect to the heterogeneity structure, which are almost always defined to be parallel each other if there is an elongated axis of permeability correlation. Given the vastly different tortuosities for flow parallel to bedding and flow transverse to bedding, this assumption of parallel orientation may have significant effects on reaction rates when natural flows deviate from this assumed setting. This study investigates the role of orientation on mixing and reaction rates in multi-scale, 3D heterogeneous porous media with varying degrees of anisotropy in the correlation structure. Ten realizations of a small flow field, with three anisotropy levels, were simulated for flow parallel and transverse to bedding. Transport was simulated in each model with an advective-diffusive random walk and reactions were simulated using the chemical Langevin equation. The reaction system is a vertically segregated, transverse mixing problem between two mobile reactants. The results show that different transport behaviors and reaction rates are obtained by simply rotating the direction of flow relative to bedding, even when the net flux in both directions is the same. This kind of behavior was observed for three different weightings of the initial condition: 1) uniform, 2) flux-based, and 3) travel time based. The different schemes resulted in 20-50% more mass formation in the transverse direction than the longitudinal. The greatest variability in mass was observed for the flux weights and these were proportionate to the level of anisotropy. The implications of this study are that flux or travel time weights do not provide any guarantee of a fair comparison in this kind of a mixing scenario and that the role of directional tendencies on reaction rates can be significant. Further, it may be necessary to include anisotropy in future upscaled models to create robust methods that give representative reaction rates for any flow direction relative to geologic bedding.

  19. Communication: Direct comparison between theory and experiment for correlated angular and product-state distributions of the ground-state and stretching-excited O(3P) + CH4 reactions

    NASA Astrophysics Data System (ADS)

    Czakó, Gábor

    2014-06-01

    Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O(3P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.

  20. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

    DOE PAGES

    Decker, Z. C. J.; Au, K.; Vereecken, L.; ...

    2017-01-01

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C 5H 8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH 2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to bemore » pressure-independent between 15–100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10 –15 cm 3 molecule –1 s –1 at room temperature to (23 ± 2) × 10 –15 cm 3 molecule –1 s –1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH 2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.« less

  1. Communication: direct comparison between theory and experiment for correlated angular and product-state distributions of the ground-state and stretching-excited O((3)P) + CH4 reactions.

    PubMed

    Czakó, Gábor

    2014-06-21

    Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O((3)P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.

  2. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  3. The Iodine Clock Reaction and Hypothermia.

    ERIC Educational Resources Information Center

    Gennaro, Gene; Munson, Bruce

    1988-01-01

    Explains an activity which can be used to compare the effect of temperature on the rate of chemical reactions to the metabolic reactions that take place within the body. Outlines directions and materials needed to perform the experiment. Lists a number of the body's defenses against extremely low temperatures. (RT)

  4. Cross-reactions between alpha-streptococci and Omniserum, a polyvalent pneumococcal serum, demonstrated by direct immunofluorescence, immunoelectroosmophoresis, and latex agglutination.

    PubMed Central

    Holmberg, H; Danielsson, D; Hardie, J; Krook, A; Whiley, R

    1985-01-01

    In recent years several groups have used serological methods to demonstrate pneumococcal capsular antigens in sputum. In the present study 123 strains of alpha-hemolytic streptococci (including 97 strains from sputum or pharyngeal specimens) were tested for cross-reactions with a polyvalent antipneumococcal serum (Omniserum). Representatives of the following species were included: Streptococcus bovis, S. equinus, S. intermedius, S. lactis, S. milleri, S. mitis, S. mutans, S. sobrinus, S. salivarius, S. sanguis, S. suis, and Aerococcus viridans. Serological reactions were detected by direct immunofluorescence, immunoelectroosmophoresis, and latex agglutination. Fifteen (12%) of the strains gave positive reactions by all three methods. Positive reactions were also observed with another 32 strains (26%) with two of the methods, whereas 37 strains (30%) gave positive reactions by just one technique. Altogether 84 (68%) strains gave positive reactions with one or more of the methods. Latex agglutination gave positive reactions with 26 (21%) strains compared with 57 (46%) in immunofluorescence and 63 (51%) in immunoelectroosmophoresis. Absorption of the antiserum with one alpha-hemolytic strain reduced but did not entirely eliminate the cross-reactions with five tested strains. These findings indicate a potential risk of cross-reactions with polyvalent antipneumococcal serum in tests carried out on sputa or other specimens which may be contaminated with alpha-hemolytic streptococci. PMID:3889046

  5. Degradation of artificial sweeteners via direct and indirect photochemical reactions.

    PubMed

    Perkola, Noora; Vaalgamaa, Sanna; Jernberg, Joonas; Vähätalo, Anssi V

    2016-07-01

    We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.

  6. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    NASA Astrophysics Data System (ADS)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  7. Directed evolution of artificial metalloenzymes for in vivo metathesis

    NASA Astrophysics Data System (ADS)

    Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.

    2016-09-01

    The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in different directions by adjusting the workflow. Our results represent the systematic implementation and evolution of an artificial metalloenzyme that catalyses an abiotic reaction in vivo, with potential applications in, for example, non-natural metabolism.

  8. Measurement of 1323 and 1487 keV resonances in 15N(α ,γ )19F with the recoil separator ERNA

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D'Onofrio, A.; Duarte, J. G.; Gasques, L. R.; Morales-Gallegos, L.; Pezzella, A.; Porzio, G.; Rapagnani, D.; Roca, V.; Romoli, M.; Schürmann, D.; Straniero, O.; Terrasi, F.; ERNA Collaboration

    2017-04-01

    Background: The origin of fluorine is a widely debated issue. Nevertheless, the 15N(α ,γ )19F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the direct capture and the tails of the two broad resonances at Ec .m .=1323 and 1487 keV. Purpose: The broad resonances widths, Γγ and Γα, have to be measured with adequate precision in order to better determine their contribution to the 15N(α ,γ )19F stellar reaction rate. Methods: Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec .m .=1323 and 1487 keV is used to determine their widths in the α and γ channels. Results: We show that a direct measurement of the cross section of the 15N(α ,γ )19F reaction can be successfully obtained with the recoil separator ERNA, and the widths Γγ and Γα of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance Γα. Conclusions: The revision of the widths of the two more relevant broad resonances in the 15N(α ,γ )19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the 19F stellar nucleosynthesis is dominated by the uncertainties affecting the direct capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.

  9. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  10. Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge.

    PubMed

    Liu, Shubin

    2015-03-26

    An electrophilic aromatic substitution is a process where one atom or group on an aromatic ring is replaced by an incoming electrophile. The reactivity and regioselectivity of this category of reactions is significantly impacted by the group that is already attached to the aromatic ring. Groups promoting substitution at the ortho/para and meta position are called ortho/para and meta directing groups, respectively. Earlier, we have shown that regioselectivity of the electrophilic aromatic substitution is dictated by the nucleophilicity of the substituted aromatic ring, which is proportional to the Hirshfeld charge on the regioselective site. Ortho/para directing groups have the largest negative charge values at the ortho/para positions, whereas meta directing groups often have the largest negative charge value at the meta position. The electron donation or acceptance feature of a substitution group is irrelevant to the regioselectivity. In this contribution, we extend our previous study by quantifying the reactivity for this kind of reactions. To that end, we examine the transition-state structure and activation energy of an identity reaction for a series of monosubstituted-benzene molecules reacting with hydrogen fluoride using BF3 as the catalyst in the gas phase. A total of 18 substitution groups will be considered, nine of which are ortho/para directing and the other nine groups meta directing. From this study, we found that the barrier height of these reactions strongly correlates with the Hirshfeld charge on the regioselective site for both ortho/para and meta directing groups, with the correlation coefficient R(2) both better than 0.96. We also discovered a less accurate correlation between the barrier height and HOMO energy. These results reconfirm the validity and effectiveness of employing the Hirshfeld charge as a reliable descriptor of both reactivity and regioselectivity for this vastly important category of chemical transformations.

  11. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    PubMed

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  12. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongwei; Zheng, Dong; Liu, Dan

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  13. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE PAGES

    Wang, Gongwei; Zheng, Dong; Liu, Dan; ...

    2017-04-28

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  14. Dynamic structural change of the self-assembled lanthanum complex induced by lithium triflate for direct catalytic asymmetric aldol-Tishchenko reaction.

    PubMed

    Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu

    2005-09-05

    The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.

  15. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: A TMS study

    PubMed Central

    van Elswijk, Gijs; Schot, Willemijn D; Stegeman, Dick F; Overeem, Sebastiaan

    2008-01-01

    Background Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. Results When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. Conclusion Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation. PMID:18559096

  16. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with... by washing batches of the product three times with an aqueous solution of 0.5 percent sodium...

  17. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging

    PubMed Central

    2015-01-01

    Bioorthogonal reactions, including the strain-promoted azide–alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines. PMID:26270632

  18. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-09

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  19. Regulation of reaction forces during the golf swing.

    PubMed

    McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H

    2013-06-01

    During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.

  20. The evaluation of a new method to extract spectroscopic factors using asymptotic normalization coefficients and the astrophysical ^14C(n,γ)^15C reaction rate

    NASA Astrophysics Data System (ADS)

    McCleskey, M.; Mukhamedzhanov, A. M.; Trache, L.; Banu, A.; Goldberg, V.; Roeder, B. T.; Simmons, E. N.; Spiridon, A.; Tribble, R. E.

    2011-10-01

    A new method to determine spectroscopic factors (SFs) that utilizes asymptotic normalization coefficients (ANCs) has been tested at Texas A&M, using ^15C as a test case. The method would use the ANC to fix the external contribution to a non-peripheral reaction which would otherwise be free to vary to unphysical values in a traditional approach. The investigation consisted of two parts. First, the ANC for the ^14C+n configuration in ^15C was determined from the heavy ion neutron transfer reaction ^13C(^14C,^15C)^12C and the inverse kinematics reaction d(^14C,p)^15C. Both of these reactions were measured at sufficiently low energy to be peripheral. Next, a non-peripheral reaction ^14C(d,p)^15C was measured with an incident deuteron energy of 60 MeV, and this reaction was used along with the previously determined ANC to attempt to find the SF. The ANC was also used to calculate the astrophysical neutron direct capture rate for ^14C(n,γ)^15C, which was compared with recent direct experimental results.

  1. Quantum chemical and kinetic study of formation of 2-chlorophenoxy radical from 2-chlorophenol: unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2.

    PubMed

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; Kennedy, Eric M; Mackie, John C

    2008-04-24

    This study investigates the kinetic parameters of the formation of the chlorophenoxy radical from the 2-chlorophenol molecule, a key precursor to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/F), in unimolecular and bimolecular reactions in the gas phase. The study develops the reaction potential energy surface for the unimolecular decomposition of 2-chlorophenol. The migration of the phenolic hydrogen to the ortho-C bearing the hydrogen atom produces 2-chlorocyclohexa-2,4-dienone through an activation barrier of 73.6 kcal/mol (0 K). This route holds more importance than the direct fission of Cl or the phenolic H. Reaction rate constants for the bimolecular reactions, 2-chlorophenol + X --> X-H + 2-chlorophenoxy (X = H, OH, Cl, O2) are calculated and compared with the available experimental kinetics for the analogous reactions of X with phenol. OH reaction with 2-chlorophenol produces 2-chlorophenoxy by direct abstraction rather than through addition and subsequent water elimination. The results of the present study will find applications in the construction of detailed kinetic models describing the formation of PCDD/F in the gas phase.

  2. Analysis of Borderline Substitution/Electron Transfer Pathways from Direct ab initio MD Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamataka, H; Aida, M A.; Dupuis, Michel

    Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH2O?- with CH3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the SN2-like transition state (TS): (i) a direct formation of SN2 products, (ii) a direct formation of ET products, and (iii) a 2-step formation of ET products via the SN2 valley. The direct formation of the ET product through the SN2-like TS appears to be more favorable at higher temperatures. The 2-step process depends on the amount of energy that goes into the C-C stretching mode.

  3. Direct processes in 54-MeV Li-7 breakup reactions on C-12 and Au-197 targets, and the extraction of astrophysical cross sections

    NASA Astrophysics Data System (ADS)

    Gazes, S. B.; Mason, J. E.; Roberts, R. B.; Teichmann, S. G.

    1992-01-01

    Strong direct processes were observed for elastic breakup in 54-MeV Li-7 + C-12, Au-197 reactions. In the case of C-12, the observed Li-7 to alpha + t direct-breakup yield was significantly larger than predicted by a Coulomb-breakup calculation, indicating the importance of the nuclear field. For Au-197, final-state interactions produced a strong distortion in the fragment energy spectra, as well as a modulation of the coincidence efficiency for different detector geometries. Such Coulomb effects are found to severely complicate the extraction of radiative-capture cross sections from direct-breakup data.

  4. The Expulsion from Disneyland: The Social Psychological Impact of 9/11

    ERIC Educational Resources Information Center

    Morgan, G. Scott; Wisneski, Daniel C.; Skitka, Linda J.

    2011-01-01

    People expressed many different reactions to the events of September 11th, 2001. Some of these reactions were clearly negative, such as political intolerance, discrimination, and hate crimes directed toward targets that some, if not many, people associated with the attackers. Other reactions were more positive. For example, people responded by…

  5. Spontaneity and Equilibrium III: A History of Misinformation

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    Necessary and sufficient criteria for reaction spontaneity in a given direction and for spontaneity of finite transformations in single-reaction, closed systems are developed. The criteria are general in that they hold for reactions conducted under either conditions of constant T and p or constant T and V. These results are illustrated using a…

  6. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... according to label directions. The specific cause of the reaction was determined to be the methylene blue contained in the preparations. The reaction can be severe enough to cause death of treated animals. (ii) The Heinz body hemolytic anemia reaction to methylene blue has also been demonstrated in dogs under...

  7. Direct single-molecule dynamic detection of chemical reactions.

    PubMed

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runhong; Fung, Victor; Zhang, Yafen

    Perovskites are interesting materials for catalysis due to their great tunability. However, the correlation of many reaction processes to the termination of a perovskite surface is still unclear. In this paper, we use the methanol coupling reaction on the SrTiO 3(100) surface as a probe reaction to investigate direct C–C coupling from a computational perspective. We use density functional theory to assess methanol adsorption, C–H activation, and direct C–C coupling reactions on the SrTiO 3(100) surface of different terminations. We find that, although methanol molecules dissociatively adsorb on both A and B terminations with similar strength, the dehydrogenation and C–Cmore » coupling reactions have significantly lower activation energies on the B termination than on the A termination. The predicted formation of methoxy and acetate on the SrTiO 3(100) B termination can well explain the ambient-pressure XPS data of methanol on the single-crystal SrTiO 3(100) surface at 250 °C. Finally, this work suggests that a choice of B termination of perovskites would be beneficial for the C–C coupling reaction of methanol.« less

  9. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  10. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  11. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism

    DOE PAGES

    Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi; ...

    2016-09-09

    In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less

  12. Direct mapping of the angle-dependent barrier to reaction for Cl + CHD3 using polarized scattering data

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Wang, Fengyan; Czakó, Gábor; Liu, Kopin

    2017-12-01

    The transition state, which gates and modulates reactive flux, serves as the central concept in our understanding of activated reactions. The barrier height of the transition state can be estimated from the activation energy taken from thermal kinetics data or from the energetic threshold in the measured excitation function (the dependence of reaction cross-sections on initial collision energies). However, another critical and equally important property, the angle-dependent barrier to reaction, has not yet been amenable to experimental determination until now. Here, using the benchmark reaction of Cl + CHD3(v1 = 1) as an example, we show how to map this anisotropic property of the transition state as a function of collision energy from the preferred reactant bond alignment of the backward-scattered products—the imprints of small impact-parameter collisions. The deduced bend potential at the transition state agrees with ab initio calculations. We expect that the method should be applicable to many other direct reactions with a collinear barrier.

  13. Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn

    2007-07-01

    Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature tomore » achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi

    In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less

  15. Direct single-molecule dynamic detection of chemical reactions

    PubMed Central

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N.; Zhang, Deqing; Guo, Xuefeng

    2018-01-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry. PMID:29487914

  16. Direct simulations of chemically reacting turbulent mixing layers

    NASA Technical Reports Server (NTRS)

    Riley, J. J.; Metcalfe, R. W.

    1984-01-01

    The report presents the results of direct numerical simulations of chemically reacting turbulent mixing layers. The work consists of two parts: (1) the development and testing of a spectral numerical computer code that treats the diffusion reaction equations; and (2) the simulation of a series of cases of chemical reactions occurring on mixing layers. The reaction considered is a binary, irreversible reaction with no heat release. The reacting species are nonpremixed. The results of the numerical tests indicate that the high accuracy of the spectral methods observed for rigid body rotation are also obtained when diffusion, reaction, and more complex flows are considered. In the simulations, the effects of vortex rollup and smaller scale turbulence on the overall reaction rates are investigated. The simulation results are found to be in approximate agreement with similarity theory. Comparisons of simulation results with certain modeling hypotheses indicate limitations in these hypotheses. The nondimensional product thickness computed from the simulations is compared with laboratory values and is found to be in reasonable agreement, especially since there are no adjustable constants in the method.

  17. [Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation].

    PubMed

    Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng

    2007-05-01

    Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.

  18. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    PubMed

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  19. Direct deposit of catalyst on the membrane of direct feed fuel cells

    NASA Technical Reports Server (NTRS)

    Chun, William (Inventor); Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor); Linke, Juergen (Inventor)

    2001-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Catalyst utilization and catalyst/membrane interface improvements are disclosed. Specifically, the catalyst layer is applied directly onto the membrane electrolyte.

  20. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    PubMed

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions. © 2011 American Institute of Physics.

  1. First real-time detection of solar pp neutrinos by Borexino

    NASA Astrophysics Data System (ADS)

    Pallavicini, M.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Al.; Ianni, An.; Kayser, M.; Kobychev, V.; Korablëv, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meindl, Q.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.

  2. Electrosynthesis Technology.

    ERIC Educational Resources Information Center

    Weinberg, Norman L.

    1983-01-01

    Provides a prospective on electrosynthesis technology for chemical educators and students by discussing electrosynthesis reactions and experiments. Includes tables illustrating some electrochemical products, variables to consider in electrochemical reactions, indirect electrolysis of organic compounds, examples of direct/indirect electrochemical…

  3. α-Unsubstituted Pyrroles by NHC-Catalyzed Three-Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative.

    PubMed

    Fleige, Mirco; Glorius, Frank

    2017-08-10

    A practical one-pot cascade reaction protocol provides direct access to valuable 1,2,4-trisubstituted pyrroles. The process involves an N-heterocyclic carbene (NHC)-catalyzed Stetter-type hydroformylation using glycolaldehyde dimer as a novel C1 building-block, followed by a Paal-Knorr condensation with primary amines. The reaction makes use of simple and commercially available starting-materials and catalyst, an important feature regarding applicability and utility. Low catalyst loading under mild reaction conditions afforded a variety of 1,2,4-substituted pyrroles in a transition-metal-free reaction with high step economy and good yields. This methodology is applied in the synthesis of a versatile Atorvastatin precursor, in which a variety of modifications at the pyrrole core structure are possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution.

    PubMed

    Renata, Hans; Wang, Z Jane; Arnold, Frances H

    2015-03-09

    High selectivity and exquisite control over the outcome of reactions entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature's known repertoire. In this Review, we outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progression has been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been exploited for chemical synthesis, with an emphasis on reactions that do not have natural counterparts. Non-natural activities can be improved by directed evolution, thus mimicking the process used by nature to create new catalysts. Finally, we describe the discovery of non-native catalytic functions that may provide future opportunities for the expansion of the enzyme universe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct transformation of silyl enol ethers into functionalized allenes.

    PubMed

    Langer, P; Döring, M; Seyferth, D; Görls, H

    2001-02-02

    The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.

  6. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  7. Analysis of solid propellant combustion in a closed vessel including secondary reaction

    NASA Technical Reports Server (NTRS)

    Benreuven, M.; Summerfield, M.

    1980-01-01

    A theory for combustion of solid propellants in a closed vessel is presented allowing for residual exothermic chemical reaction in the bulk of the gas in the vessel. Particular attention is given to propellants exhibiting thick gaseous flame zones such as nitrocellulose, double-base and nitramine propellants. For these, the reaction at high pressures is assumed to involve mainly the oxidation of residual hydrocarbons by NO. It is shown that the direct dynamic coupling between the exothermicity, the molecular weight reduction and the changing pressure can influence the dp/dt-p traces obtained, in a manner not directly related to mass burning rate of the solid. Energy and species conservation equations are derived for the bulk of the vessel in differential form; the system is solved numerically. The results show the effect of extended chemical reaction upon measurable combustion characteristics such as dp/dt-p and burn rate pressure exponent, demonstrating its potential importance in interpretation of closed vessel firing data, depending on the pace of the residual gas phase reactions.

  8. [FeIII(SR)4]1− Complexes Can Be Synthesized By the Direct Reaction of Thiolates With FeCl3**

    PubMed Central

    Chang, Sechin; Koch, Stephen A.

    2007-01-01

    It is shown that the previously characterized [FeIII(SR)4]1− (R= Et, i-Pr, Ph) complexes can be synthesized by the direct reaction of 4 equiv of LiSR with FeCl3 in DMF solution. [FeIII(SR)4]1− complexes are synthetic analogs for the [FeIII(S-Cys)4] center in rubredoxin proteins. PMID:17723243

  9. Development of Asymmetric Deacylative Allylation

    PubMed Central

    Grenning, Alexander J.; Van Allen, Christie K.; Maji, Tapan; Lang, Simon B.

    2013-01-01

    Herein we present the development of asymmetric deacylative allylation of ketone enolates. The reaction directly couples readily available ketone pronucleophiles with allylic alcohols using facile retro-Claisen cleavage to form reactive intermediates in situ. The simplicity and robustness of the reaction conditions is demonstrated by the preparation of > 6 grams of an allylated tetralone from commercially available materials. Furthermore, use of non-racemic PHOX ligands allows intermolecular formation of quaternary stereocenters directly from allylic alcohols. PMID:23734611

  10. The direct reaction field hamiltonian: Analysis of the dispersion term and application to the water dimer

    NASA Astrophysics Data System (ADS)

    Thole, B. T.; Van Duijnen, P. Th.

    1982-10-01

    The induction and dispersion terms obtained from quantum-mechanical calculations with a direct reaction field hamiltonian are compared to second order perturbation theory expressions. The dispersion term is shown to give an upper bound which is a generalization of Alexander's upper bound. The model is illustrated by a calculation on the interactions in the water dimer. The long range Coulomb, induction and dispersion interactions are reasonably reproduced.

  11. A direct conversion of benzylic and allylic alcohols to phosphonates

    PubMed Central

    Barney, Rocky J.; Richardson, Rebekah M.; Wiemer, David F.

    2011-01-01

    Benzyl phosphonate esters often serve as reagents in Horner-Wadsworth-Emmons reactions. In most cases, they can be prepared from benzylic alcohols via formation of the corresponding halide followed by an Arbuzov reaction. To identify a more direct synthesis of phosphonate esters, we have developed a one-flask procedure for conversion of benzylic and allylic alcohols to the corresponding phosphonates through treatment with triethyl phosphite and ZnI2. PMID:21405073

  12. A direct method for unfolding the resolution function from measurements of neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Žugec, P.; Colonna, N.; Sabate-Gilarte, M.; Vlachoudis, V.; Massimi, C.; Lerendegui-Marco, J.; Stamatopoulos, A.; Bacak, M.; Warren, S. G.; n TOF Collaboration

    2017-12-01

    The paper explores the numerical stability and the computational efficiency of a direct method for unfolding the resolution function from the measurements of the neutron induced reactions. A detailed resolution function formalism is laid out, followed by an overview of challenges present in a practical implementation of the method. A special matrix storage scheme is developed in order to facilitate both the memory management of the resolution function matrix, and to increase the computational efficiency of the matrix multiplication and decomposition procedures. Due to its admirable computational properties, a Cholesky decomposition is at the heart of the unfolding procedure. With the smallest but necessary modification of the matrix to be decomposed, the method is successfully applied to system of 105 × 105. However, the amplification of the uncertainties during the direct inversion procedures limits the applicability of the method to high-precision measurements of neutron induced reactions.

  13. Photooxidation of carbofuran by a polychromatic UV irradiation without and with hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, F.J.; Beltran-Heredia, J.; Gonzalez, T.

    The photodegradation of carbofuran aqueous solutions has been conducted with direct photolysis provided by a polychromatic UV radiation source and by the combination of this UV radiation with hydrogen peroxide. In both processes, the decomposition level obtained as a function of the operating variables is reported, and the presence of tert-butyl alcohol, a scavenger of free radicals, is discussed. While the contribution of hydroxyl radicals is negligible in the direct photolysis, its reactions in the UV/H{sub 2}O{sub 2} system clearly increase the carbofuran decomposition and therefore must be taken into account in the reaction rate equation for the total degradation.more » From the mechanisms proposed, the quantum yields for the direct photolysis and the kinetic constants for the reaction between carbofuran and the hydroxyl radicals generated in the H{sub 2}O{sub 2} photolysis in the combined process are respectively evaluated.« less

  14. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    PubMed

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence.

  15. Modulation of type I immediate and type IV delayed immunoreactivity using direct suggestion and guided imagery during hypnosis.

    PubMed

    Zachariae, R; Bjerring, P; Arendt-Nielsen, L

    1989-11-01

    Cutaneous reactivity against histamine skin prick test (Type I) and purified tuberculin protein derivative (Mantoux reaction, Type IV) was studied in eight volunteers under hypnosis. Types I and IV immunoreactivity were modulated by direct suggestion (Type I) and guided imagery (Type IV). The volunteers were highly susceptible subjects, selected by means of the Harvard Group Scale of Hypnotic Susceptibility, Form A. When the volunteers underwent hypnotic suggestion to decrease the cutaneous reaction to histamine prick test, a significant (P less than 0.02) reduction of the flare reaction (area of erythema) was observed compared with control histamine skin prick tests. The wheal reaction did not respond to hypnotic suggestion. Neither wheal nor flare reaction could be increased in size by hypnotic suggestion compared with control histamine skin prick tests. A hypnotic suggestion of increasing the Type IV reaction on one arm and decreasing the reaction on the other revealed a significant difference in both erythema size (P less than 0.02) and palpable induration (P less than 0.01). In two cases the reactions were monitored by laser doppler blood flowmetry and skin thickness measurement by ultrasound. The difference between the suggested increased and decreased reaction was 19% for the laser doppler bloodflow (in favor of the augmented side), and 44% for the dermal infiltrate thickness. This study objectively supports the numerous uncontrolled case reports of modulation of immunoreactivity in allergic diseases involving both Type I and Type IV skin reactions following hypnotic suggestions.

  16. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    PubMed

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  17. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.

    PubMed

    Mousseau, James J; Charette, André B

    2013-02-19

    The possibility of finding novel disconnections for the efficient synthesis of organic molecules has driven the interest in developing technologies to directly functionalize C-H bonds. The ubiquity of these bonds makes such transformations attractive, while also posing several challenges. The first, and perhaps most important, is the selective functionalization of one C-H bond over another. Another key problem is inducing reactivity at sites that have been historically unreactive and difficult to access without prior inefficient prefunctionalization. Although remarkable advances have been made over the past decade toward solving these and other problems, several difficult tasks remain as researchers attempt to bring C-H functionalization reactions into common use. The functionalization of sp(3) centers continues to be challenging relative to their sp and sp(2) counterparts. Directing groups are often needed to increase the effective concentration of the catalyst at the targeted reaction site, forming thermodynamically stable coordination complexes. As such, the development of removable or convertible directing groups is desirable. Finally, the replacement of expensive rare earth reagents with less expensive and more sustainable catalysts or abandoning the use of catalysts entirely is essential for future practicality. This Account describes our efforts toward solving some of these quandaries. We began our work in this area with the direct arylation of N-iminopyridinium ylides as a universal means to derivatize the germane six-membered heterocycle. We found that the Lewis basic benzoyl group of the pyridinium ylide could direct a palladium catalyst toward insertion at the 2-position of the pyridinium ring, forming a thermodynamically stable six-membered metallocycle. Subsequently we discovered the arylation of the benzylic site of 2-picolonium ylides. The same N-benzoyl group could direct a number of inexpensive copper salts to the 2-position of the pyridinium ylide, which led to the first description of a direct copper-catalyzed alkenylation onto an electron-deficient arene. This particular directing group offers two advantages: (1) it can be easily appended and removed to reveal the desired pyridine target, and (2) it can be incorporated in a cascade process in the preparation of pharmacologically relevant 2-pyrazolo[1,5-a]pyridines. This work has solved some of the challenges in the direct arylation of nonheterocyclic arenes, including reversing the reactivity often observed with such transformations. Readily convertible directing groups were applied to facilitate the transformation. We also demonstrated that iron can promote intermolecular arylations effectively and that the omission of any metal still permits intramolecular arylation reactions. Lastly, we recently discovered a nickel-catalyzed intramolecular arylation of sp(3) C-H bonds. Our mechanistic investigations of these processes have elucidated radical pathways, opening new avenues in future direct C-H functionalization reactions.

  18. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    ERIC Educational Resources Information Center

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  19. Coping of School-Age Children in the Sealed Room during Scud Missile Bombardment and Postwar Stress Reactions.

    ERIC Educational Resources Information Center

    Weisenberg, Matisyohu; And Others

    1993-01-01

    Examined children's (n=492) coping behaviors in sealed room during scud missile attacks in Persian Gulf War in relation to postwar stress reactions. Emotion-focused coping (avoidance and distraction) was associated with less postwar stress reactions than persistence at direct problem-focused actions. Fifth graders used less emotion-focused and…

  20. Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals

    DOE R&D Accomplishments Database

    Lee, Y. T.

    1973-09-01

    The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.

  1. Radical-molecule reaction C3H+H2O: a mechanistic study.

    PubMed

    Dong, Hao; Ding, Yi-Hong; Sun, Chia-Chung

    2005-02-08

    Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.

  2. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less

  3. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  4. Direct measurement of nuclear cross sections of astrophysical relevance at LUNA: The 22Ne(p, γ) 23Na reaction

    NASA Astrophysics Data System (ADS)

    Ferraro, F.; LUNA Collaboration

    2017-01-01

    Most of the elements constituting the universe were produced in stars through a series of nuclear reactions. LUNA performs direct measurements of nuclear cross sections relevant to astrophysics, taking advantage of the low background at LNGS. The ^{22}Ne(p,γ)^{23}Na reaction rate, which belongs to the NeNa cycle of hydrogen burning, has been recently studied. Its rate is still very uncertain because of a lot of resonances lying inside the Gamow window. LUNA discovered three new resonances using two high-purity germanium detectors and considerably improved the existing upper limits on the lower energy resonances using a high-efficiency optically-segmented BGO crystal.

  5. Comparison of the rates of ozonation of biological antioxidants and oleate and linoleate esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giamalva, D.; Church, D.F.; Pryor, W.A.

    1985-12-17

    The rates of reaction with ozone of some biological antioxidants and simple polyunsaturated fatty acids (PUFA) have been measured in water or in aqueous micellar solutions. At pH 7.0 the rate constants are ca. 10(6) M-1 sec-1 for urate, alpha-tocopherol, and PUFA, and 6 X 10(7) M-1 sec-1 for ascorbate. When ozone-containing air is breathed, ascorbate in the lung may undergo direct ozonation. However, alpha-tocopherol is probably spared direct reaction with ozone because it doesn't effectively compete with PUFA in pulmonary membranes; rather, tocopherol is used to scavenge radicals produced from the ozone-PUFA reaction.

  6. Analysis of borderline substitution/electron transfer pathways from direct ab initio MD simulations

    NASA Astrophysics Data System (ADS)

    Yamataka, Hiroshi; Aida, Misako; Dupuis, Michel

    2002-02-01

    Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH 2O rad - with CH 3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the S N2-like transition state (TS): (i) a direct formation of S N2 products, (ii) a direct formation of ET products, and (iii) a two-step formation of ET products via the S N2 valley. The direct formation of the ET product through the S N2-like TS appears to be more favorable at higher temperatures. The two-step process depends on the amount of energy that goes into the C-C stretching mode.

  7. Metal-free annulation of arenes with 2-aminopyridine derivatives: the methyl group as a traceless non-chelating directing group.

    PubMed

    Manna, Srimanta; Matcha, Kiran; Antonchick, Andrey P

    2014-07-28

    A novel annulation reaction between 2-aminopyridine derivatives and arenes under metal-free conditions is described. The presented intermolecular transformation provided straightforward access to the important pyrido[1,2-a]benzimidazole scaffold under mild reaction conditions. The unprecedented application of the methyl group of methylbenzenes as a traceless, non-chelating, and highly regioselective directing group is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere.

    PubMed

    Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G

    2018-05-29

    Criegee intermediates (i.e., carbonyl oxides with two radical sites) are known to be important atmospheric reagents; however, our knowledge of their reaction kinetics is still limited. Although experimental methods have been developed to directly measure the reaction rate constants of stabilized Criegee intermediates, the experimental results cover limited temperature ranges and do not completely agree well with one another. Here we investigate the unimolecular reaction of acetone oxide [(CH 3 ) 2 COO] and its bimolecular reaction with H 2 O to obtain rate constants with quantitative accuracy comparable to experimental accuracy. We do this by using CCSDT(Q)/CBS//CCSD(T)-F12a/DZ-F12 benchmark results to select and validate exchange-correlation functionals, which are then used for direct dynamics calculations by variational transition state theory with small-curvature tunneling and torsional and high-frequency anharmonicity. We find that tunneling is very significant in the unimolecular reaction of (CH 3 ) 2 COO and its bimolecular reaction with H 2 O. We show that the atmospheric lifetimes of (CH 3 ) 2 COO depend on temperature and that the unimolecular reaction of (CH 3 ) 2 COO is the dominant decay mode above 240 K, while the (CH 3 ) 2 COO + SO 2 reaction can compete with the corresponding unimolecular reaction below 240 K when the SO 2 concentration is 9 × 10 10 molecules per cubic centimeter. We also find that experimental results may not be sufficiently accurate for the unimolecular reaction of (CH 3 ) 2 COO above 310 K. Not only does the present investigation provide insights into the decay of (CH 3 ) 2 COO in the atmosphere, but it also provides an illustration of how to use theoretical methods to predict quantitative rate constants of medium-sized Criegee intermediates.

  9. Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    NASA Astrophysics Data System (ADS)

    Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna

    2018-01-01

    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.

  10. Methods of conducting simultaneous exothermic and endothermic reactions

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Roberts, Gary L [West Richland, WA; Perry, Steven T [Galloway, OH; Fitzgerald, Sean P [Columbus, OH

    2005-11-29

    Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

  11. Alpha-transfer reactions with large energy transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froehlich, H.; Shimoda, T.; Ishihara, M.

    1979-06-04

    Alpha-transfer reactions (/sup 20/Ne,/sup 16/O), (/sup 14/N,/sup 10/B), and (/sup 13/C,/sup 9/Be) on a /sup 40/Ca target were studied at 262, 153, 149 MeV, respectively. Analysis in terms of the direction-reaction theory reproduced the observed continuum spectra and angular distributions well, except for the cross section of the reaction (/sup 20/Ne,/sup 16/O) at small angles, which is attributed to a projectile breakup process.

  12. Solar He-3: Information from nuclear reactions in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.

    1974-01-01

    Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production.

  13. Applying flow chemistry: methods, materials, and multistep synthesis.

    PubMed

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  14. Characterisation of the ester-substituted products of the reaction of p-t-butyl calix[4]arene and ethyl bromoacetate using LC-UV-MS and LC-DAD.

    PubMed

    McMahon, Gillian; Wall, Rachel; Nolan, Kieran; Diamond, Dermot

    2002-07-19

    A series of derivatisation reactions between p-t-butyl calix[4]arene and ethyl bromoacetate were carried out in order to prepare 1,3 diester substituted calix[4]arene. Mass spectral data, obtained from direct injection of samples, indicated that the reactions were rich in the desired product. Since the ultra violet (UV) spectra of the desired product and possible impurities are very similar, liquid chromatography (LC) chromatographic data seemed to corroborate these results. However, when on-line LC-UV-MS was carried out and each LC peak subjected to MS analysis as it eluted, a very different picture emerged. It was found that many of these reactions actually contained high levels of the monoester product which, having less affinity for sodium in the MS, is therefore seriously underestimated in any direct injection assay. LC-diode array detection (DAD) methods were also used to help successfully identify and characterise the compounds being formed in these complex reactions. The overall results obtained in this paper allowed the optimal reaction conditions to be determined for this reaction. LC-MS analysis of the chromatographic peaks also identified the presence of two isomers of the diester substituted calix[4]arene (1,3 and 1,2 diesters). The combination of LC and UV/MS detection is required for accurate analysis of the products of such reactions.

  15. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution

    PubMed Central

    Renata, Hans; Wang, Z. Jane

    2015-01-01

    High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694

  16. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  17. Fear of blood draws, vasovagal reactions, and retention among high school donors.

    PubMed

    France, Christopher R; France, Janis L; Carlson, Bruce W; Himawan, Lina K; Stephens, Kirsten Yunuba; Frame-Brown, Terri A; Venable, Geri A; Menitove, Jay E

    2014-03-01

    We previously demonstrated that fear of having blood drawn is one of the strongest known predictors of vasovagal reactions among high school blood donors. This report examines the combined effects of donor fear and experience of vasovagal reactions on repeat donation attempts among high school blood donors. Immediately after completing the blood donor health screening, 1715 high school students were asked about their fear of having blood drawn. The donor record was then used to collect information regarding their experience of vasovagal reactions at the time of donation as well as their subsequent donation attempts within the following year. Fear of having blood drawn and the experience of a vasovagal reaction each contributed to donor attrition, with only 33.2% of fearful donors who experienced a vasovagal reaction returning in the following year compared to 56.7% of nonfearful nonreactors. Path analyses demonstrated that fear has an indirect effect (through vasovagal reactions) on repeat donations among first-time donors and both direct and indirect effects on repeat donation attempts among experienced donors. Among high school blood donors, fear of having blood drawn has both a direct negative effect on donor retention and an indirect negative effect by increasing the risk of vasovagal reactions. Accordingly, targeted efforts to reduce donor fear may be particularly efficient in promoting long-term donor loyalty among our youngest donors. © 2013 American Association of Blood Banks.

  18. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  19. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.

    PubMed

    Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya

    2013-12-01

    In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.

  20. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives†

    PubMed Central

    Timoshenko, Mariya A.; Kharitonov, Yurii V.; Shakirov, Makhmut M.; Bagryanskaya, Irina Yu.

    2015-01-01

    Abstract A selective synthesis of 7‐ or 14‐nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α‐hydroxy‐15,16‐dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3‐nitroaniline, 3‐(trifluoromethyl)aniline, and 4‐(trifluoromethyl)aniline yield the subsequent 7α‐, 7β‐ and 14αnitrogen‐containing diterpenoids. The reaction with 2‐nitroaniline, 4‐nitro‐2‐chloroaniline, 4‐methoxy‐2‐nitroaniline, phenylsulfamide, or tert‐butyl carbamate proceeds with the formation of 7α‐nitrogen‐substituted diterpenoids as the main products. PMID:27308214

  1. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  2. Dual phase multiplex polymerase chain reaction

    DOEpatents

    Pemov, Alexander [Charlottesville, VA; Bavykin, Sergei [Darien, IL

    2008-10-07

    Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.

  3. Efficient discovery of bioactive scaffolds by activity-directed synthesis

    NASA Astrophysics Data System (ADS)

    Karageorgis, George; Warriner, Stuart; Nelson, Adam

    2014-10-01

    The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach—which we term activity-directed synthesis—in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of α-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.

  4. Peer reactions to early childhood aggression in a preschool setting: Defenders, encouragers, or neutral bystander.

    PubMed

    Rose, Chad A; Richman, David M; Fettig, Katharine; Hayner, Annamarie; Slavin, Carly; Preast, June L

    2016-08-01

    The purpose of the current study was to determine if peer reactions to aggression among preschool youth were consistent with those conceptualized in the adolescent bullying literature as defenders, encouragers, and neutral bystanders. Direct observations were used to document patterns for types of peer-directed aggression in early childhood settings to ascertain interaction differences between individuals involved within the bullying dynamic. Observations of 50 students in preschool were conducted over 5.5 months. Event recording procedures were used to document aggressive behaviors and reactions from peers and teachers. Results indicated that the majority of aggression was physical. Additionally, peer reactions, as described in the bullying literature for school-aged youth, occurred very infrequently. Peer aggression tended to be more physical, suggesting that early childhood educators should attend to these physical interactions, and cultivate a classroom community that emphasizes social supports and appropriate interactions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  6. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  7. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...

    2017-05-17

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  8. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.

    PubMed

    Igarashi, T; Yamamoto, A; Goto, N

    1996-10-01

    Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.

  9. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    PubMed

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping.

    PubMed

    Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing

    2015-07-07

    The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.

  11. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  12. Causal Perception of Action-and-Reaction Sequences in 8- to 10-Month-Olds

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Surian, Luca; Ray, Elizabeth D.

    2009-01-01

    Four experiments with 202 8- to 10-month-old infants studied their sensitivity to causation-at-a-distance in schematic events seen as goal-directed action and reaction by adults and whether this depends on attributes associated with animate agents. In Experiment 1, a red square moved toward a blue square without making contact; in "reaction"…

  13. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals

    EPA Science Inventory

    Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...

  14. Regioselective SN2' Mitsunobu reaction of Morita-Baylis-Hillman alcohols: A facile and stereoselective synthesis of α-alkylidene-β-hydrazino acid derivatives.

    PubMed

    Xu, Silong; Shang, Jian; Zhang, Junjie; Tang, Yuhai

    2014-01-01

    A highly regioselective SN2' Mitsunobu reaction between Morita-Baylis-Hillman (MBH) alcohols, azodicarboxylates, and triphenylphosphine is developed, which provides an easy access to α-alkylidene-β-hydrazino acid derivatives in high yields and good stereoselectivity. This reaction represents the first direct transformation of MBH alcohols into hydrazines.

  15. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  16. Understanding Methanol Coupling on SrTiO 3 from First Principles

    DOE PAGES

    Huang, Runhong; Fung, Victor; Zhang, Yafen; ...

    2018-03-19

    Perovskites are interesting materials for catalysis due to their great tunability. However, the correlation of many reaction processes to the termination of a perovskite surface is still unclear. In this paper, we use the methanol coupling reaction on the SrTiO 3(100) surface as a probe reaction to investigate direct C–C coupling from a computational perspective. We use density functional theory to assess methanol adsorption, C–H activation, and direct C–C coupling reactions on the SrTiO 3(100) surface of different terminations. We find that, although methanol molecules dissociatively adsorb on both A and B terminations with similar strength, the dehydrogenation and C–Cmore » coupling reactions have significantly lower activation energies on the B termination than on the A termination. The predicted formation of methoxy and acetate on the SrTiO 3(100) B termination can well explain the ambient-pressure XPS data of methanol on the single-crystal SrTiO 3(100) surface at 250 °C. Finally, this work suggests that a choice of B termination of perovskites would be beneficial for the C–C coupling reaction of methanol.« less

  17. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Interfacing Biocompatible Reactions with Engineered Escherichia coli.

    PubMed

    Wallace, Stephen; Balskus, Emily P

    2017-01-01

    Biocompatible chemistry represents a new way of merging chemical and biological synthesis by interfacing nonenzymatic reactions with metabolic pathways. This approach can enable the production of nonnatural molecules directly from renewable starting materials via microbial fermentation. When developing a new biocompatible reaction certain criteria must be satisfied, i.e., the reaction must be (1) functional in aqueous growth media at ambient temperature and pH, (2) nontoxic to the producing microorganism, and (3) have negligible effects on the targeted metabolic pathway. This chapter provides a detailed outline of two biocompatible reaction procedures (hydrogenation and cyclopropanation), and describes some of the chemical and microbiological experiments and considerations required during biocompatible reaction development.

  19. [Leprosy reactions in discharged patients following cure by multidrug therapy].

    PubMed

    Souza, Linton Wallis Figueiredo

    2010-01-01

    Reactional states are the main cause of nerve lesions and incapacities provoked by leprosy. Retrospective study aimed at verifying the frequency of leprosy reactions in discharged patients following cure by multidrug therapy (MDT). Among patients who presented reactions during treatment, 35.5% continued after MDT; of those that did not present during treatment, only 12.7% presented after discharge; 63.4% multibacillary patients presented during and 31.7% after; 27.7% paucibacillary patients presented during and 8.3% after. A direct proportional relation exists between the presence of reactions during and after treatment. Multibacillary clinical forms present a greater frequency of reactions during and after cure.

  20. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution.

    PubMed

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-19

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  1. The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis

    PubMed Central

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-01-01

    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630

  2. 75 FR 50941 - Airworthiness Directives; B/E Aerospace Protective Breathing Equipment Part Number 119003-11...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... used in PBE units, which could result in an exothermic reaction and ignition. We are proposing this AD..., which could result in an exothermic reaction and ignition. The Federal Aviation Administration is...

  3. Plasma and catalyst for the oxidation of NOx

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  4. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination ofmore » the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article. (author)« less

  5. Biodegradation of RDX and MNX with Rhodococcus sp. Strain DN22: New Insights into the Degradation Pathway

    DTIC Science & Technology

    2010-11-15

    denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and... secondary reactions and products distributions would pro- vide new insights into the degradation pathway of RDX and thus help in the development of...not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of

  6. Visible-light-promoted redox neutral C-H amidation of heteroarenes with hydroxylamine derivatives.

    PubMed

    Qin, Qixue; Yu, Shouyun

    2014-07-03

    A room temperature redox neutral direct C-H amidation of heteroarenes has been achieved. Hydroxylamine derivatives, which are easily accessed, have been employed as tunable nitrogen sources. These reactions were enabled by a visible-light-promoted single-electron transfer pathway without a directing group. A variety of heteroarenes, such as indoles, pyrroles, and furans, could go through this amidation with high yields (up to 98%). These reactions are highly regioselective, and all the products were isolated as a single regioisomer.

  7. Dynamic Kinetic Asymmetric Transformations of β-Stereogenic-α-Keto Esters via Direct Aldolization

    PubMed Central

    Corbett, Michael T.; Johnson, Jeffrey S.

    2014-01-01

    Dynamic kinetic asymmetric transformations (DyKAT) of racemic β-bromo-α-keto esters via direct aldolization of nitromethane and acetone provide access to fully substituted α-glycolic acid derivatives bearing a β-stereocenter. The aldol adducts are obtained in excellent yield with high relative and absolute stereocontrol under mild reaction conditions. Mechanistic studies determined that the reactions proceed through a facile catalyst-mediated racemization of the β-bromo-α-keto esters under a DyKAT Type I manifold. PMID:24222195

  8. Practical colorimeter for direct measurement of microplates in enzyme immunoassay systems.

    PubMed

    Clem, T R; Yolken, R H

    1978-01-01

    A colorimeter capable of measuring results of enzyme-linked immunosorbent assay (ELISA) reactions directly in the wells of a microtiter plate is described. This colorimeter proved to be as accurate as a conventional spectrophotometer in assessing ELISA reactions, but had the advantage of not requiring transfer of the specimen to a separate chamber. With this colorimeter, 96 specimens can be read in approximately 5 min. A practical colorimeter such as this can make the use of ELISA tests more feasible for many laboratories.

  9. Direct numerical simulation of an isothermal reacting turbulent wall-jet

    NASA Astrophysics Data System (ADS)

    Pouransari, Zeinab; Brethouwer, Geert; Johansson, Arne V.

    2011-08-01

    In the present investigation, Direct Numerical Simulation (DNS) is used to study a binary irreversible and isothermal reaction in a plane turbulent wall-jet. The flow is compressible and a single-step global reaction between an oxidizer and a fuel species is solved. The inlet based Reynolds, Schmidt, and Mach numbers of the wall-jet are Re = 2000, Sc = 0.72, and M = 0.5, respectively, and a constant coflow velocity is applied above the jet. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The turbulent structures of the velocity field show the common streaky patterns near the wall, while a somewhat patchy or spotty pattern is observed for the scalars and the reaction rate fluctuations in the near-wall region. The reaction mainly occurs in the upper shear layer in thin highly convoluted reaction zones, but it also takes place close to the wall. Analysis of turbulence and reaction statistics confirms the observations in the instantaneous snapshots, regarding the intermittent character of the reaction rate near the wall. A detailed study of the probability density functions of the reacting scalars and comparison to that of the passive scalar throughout the domain reveals the significance of the reaction influence as well as the wall effects on the scalar distributions. The higher order moments of both the velocities and the scalar concentrations are analyzed and show a satisfactory agreement with experiments. The simulations show that the reaction can both enhance and reduce the dissipation of fuel scalar, since there are two competing effects; on the one hand, the reaction causes sharper scalar gradients and thus a higher dissipation rate, on the other hand, the reaction consumes the fuel scalar thereby reducing the scalar dissipation.

  10. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, S.L.

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  11. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  12. A study of the photocatalytic effects of aqueous suspensions of platinized semiconductor materials on the reaction rates of candidate redox reactions

    NASA Technical Reports Server (NTRS)

    Miles, A. M.

    1982-01-01

    The effectiveness of powdered semiconductor materials in photocatalyzing candidate redox reactions was investigated. The rate of the photocatalyzed oxidation of cyanide at platinized TiO2 was studied. The extent of the cyanide reaction was followed directly using an electroanalytical method (i.e. differential pulse polarography). Experiments were performed in natural or artificial light. A comparison was made of kinetic data obtained for photocatalysis at platinized powders with rate data for nonplatinized powders.

  13. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  15. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  16. Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.

    PubMed

    Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W

    2017-11-27

    Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  18. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  19. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  20. Three New Low-Energy Resonances in the 22Ne(p, γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Depalo, Rosanna

    The neon-sodium (NeNa) cycle drives the synthesis of the elements between 20Ne and 27Al, through a series of proton capture reactions that start from 20Ne, to end with sodium synthesis. This cycle is active in red giant stars (RGB), asymptotic giant branch stars (AGB), in novae as well as in type Ia supernovae. In order to reproduce the observed elemental abundances, the cross sections of the reactions involved in the nucleosynthesis process should be accurately known. The 22Ne(p, γ )23Na reaction rate was very uncertain because of a large number of unobserved resonances lying in the Gamow window. For proton energies below 400 keV, in the literature there were only upper limits for the resonance strengths. A new direct study of the 22Ne(p, γ )23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.

  1. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  2. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    PubMed Central

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  3. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal

    DOE PAGES

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; ...

    2015-05-14

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less

  4. Possibilities of production of transfermium nuclei in complete fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Hong, Juhee; Adamian, G. G.; Antonenko, N. V.

    2017-07-01

    The possibilities of direct production of new isotopes of transfermium nuclei 261,263,264No, 264Lr263, 263,264,266,268Rf, 265Db264, and 267,268,270,272Sg are studied in various asymmetric hot fusion-evaporation reactions with radioactive beams. The optimal reaction partners and conditions for the synthesis of new isotopes are suggested. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of heaviest nuclei obtained in the x n evaporation channels of the cold and hot complete fusion reactions with the stable beams.

  5. Identification of lethal reactions in the Esherichia coli metabolic network: Graph theory approach

    NASA Astrophysics Data System (ADS)

    Ghim, C.-M.; Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    As a first step toward holistic modeling of cells, we analyze the biochemical reactions occurring in the genome-scale metabolism of Esherichia coli. To this end, we construct a directed bipartite graph by assigning metabolite or reaction to each node. We apply various measures of centrality, a well-known concept in the graph theory, and their modifications to the metabolic network, finding that there exist lethal reactions involved in the central metabolism. Such lethal reactions or associated enzymes under diverse environments in silico are identified and compared with earlier results obtained from flux balance analysis.

  6. a New Set-Up for Total Reaction Cross Section Measuring

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.

    2013-06-01

    The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.

  7. Variational Flooding Study of a SN2 Reaction.

    PubMed

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    2017-02-02

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  8. Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Meyer, Jennifer; Wester, Roland

    2017-05-01

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  9. 76 FR 435 - Airworthiness Directives; B/E Aerospace Protective Breathing Equipment (PBE) Part Number 119003...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... superoxide canisters used in PBE units, which could result in an exothermic reaction and ignition. We are... reaction and ignition. The Federal Aviation Administration is issuing this AD to prevent PBE units from...

  10. Community reactions to aircraft noise in the vicinity of airport: A comparative study of the social surveys using interview method

    NASA Technical Reports Server (NTRS)

    Osada, Y.

    1980-01-01

    A comparative study was performed on the reports of community reactions to aircraft noise. The direct and immediate reactions to aircraft noise such as perceived noisiness, interference with conversations, etc. and various emotional influences were most remarkable; indirect and long term influences such as disturbance of mental work and physical symptoms were less remarkable.

  11. Mechanistic Insights into RNA Transphosphorylation from Kinetic Isotope Effects and Linear Free Energy Relationships of Model Reactions

    PubMed Central

    Chen, Haoyuan; Giese, Timothy J.; Huang, Ming; Wong, Kin-Yiu; Harris, Michael E.; York, Darrin M.

    2015-01-01

    Phosphoryl transfer reactions are ubiquitous in biology, and the understanding of the mechanisms whereby these reactions are catalyzed by protein and RNA enzymes is central to reveal design principles for new therapeutics. Two of the most powerful experimental probes of chemical mechanism involve the analysis of linear free energy relations (LFERs) and the measurement of kinetic isotope effects (KIEs). These experimental data report directly on differences in bonding between the ground state and the rate-controlling transition state, which is the most critical point along the reaction free energy pathway. However, interpretation of LFER and KIE data in terms of transition state structure and bonding optimally requires the use of theoretical models. In this work, we apply density-functional calculations to determine KIEs for a series of phosphoryl transfer reactions of direct relevance to the 2’-O-transphosphorylation that leads to cleavage of the phosphodiester backbone of RNA. We first examine a well-studied series of phosphate and phosphorothioate mono-, di- and triesters that are useful as mechanistic probes and for which KIEs have been measured. Close agreement is demonstrated between the calculated and measured KIEs, establishing the reliability of our quantum model calculations. Next, we examine a series of RNA transesterification model reactions with a wide range of leaving groups in order to provide a direct connection between observed Brønsted coefficients and KIEs with the structure and bonding in the transition state. These relations can be used for prediction or to aid in the interpretation of experimental data for similar non-enzymatic and enzymatic reactions. Finally, we apply these relations to RNA phosphoryl transfer catalyzed by ribonuclease A, and demonstrate the reaction coordinate-KIE correlation is reasonably preserved. A prediction of the secondary deuterium KIE in this reaction is also provided. These results demonstrate the utility of building up knowledge of mechanism through the systematic study of model systems to provide insight into more complex biological systems such as phosphoryl transfer enzymes and ribozymes. PMID:25223953

  12. Mechanistic insights into RNA transphosphorylation from kinetic isotope effects and linear free energy relationships of model reactions.

    PubMed

    Chen, Haoyuan; Giese, Timothy J; Huang, Ming; Wong, Kin-Yiu; Harris, Michael E; York, Darrin M

    2014-10-27

    Phosphoryl transfer reactions are ubiquitous in biology and the understanding of the mechanisms whereby these reactions are catalyzed by protein and RNA enzymes is central to reveal design principles for new therapeutics. Two of the most powerful experimental probes of chemical mechanism involve the analysis of linear free energy relations (LFERs) and the measurement of kinetic isotope effects (KIEs). These experimental data report directly on differences in bonding between the ground state and the rate-controlling transition state, which is the most critical point along the reaction free energy pathway. However, interpretation of LFER and KIE data in terms of transition-state structure and bonding optimally requires the use of theoretical models. In this work, we apply density-functional calculations to determine KIEs for a series of phosphoryl transfer reactions of direct relevance to the 2'-O-transphosphorylation that leads to cleavage of the phosphodiester backbone of RNA. We first examine a well-studied series of phosphate and phosphorothioate mono-, di- and triesters that are useful as mechanistic probes and for which KIEs have been measured. Close agreement is demonstrated between the calculated and measured KIEs, establishing the reliability of our quantum model calculations. Next, we examine a series of RNA transesterification model reactions with a wide range of leaving groups in order to provide a direct connection between observed Brønsted coefficients and KIEs with the structure and bonding in the transition state. These relations can be used for prediction or to aid in the interpretation of experimental data for similar non-enzymatic and enzymatic reactions. Finally, we apply these relations to RNA phosphoryl transfer catalyzed by ribonuclease A, and demonstrate the reaction coordinate-KIE correlation is reasonably preserved. A prediction of the secondary deuterium KIE in this reaction is also provided. These results demonstrate the utility of building up knowledge of mechanism through the systematic study of model systems to provide insight into more complex biological systems such as phosphoryl transfer enzymes and ribozymes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  14. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Insight into association reactions on metal surfaces: Density-functional theory studies of hydrogenation reactions on Rh(111)

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Pan; Hu, P.; Lee, Ming-Hsien

    2003-09-01

    Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N2+3H2→2NH3). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H→NH, NH+H→NH2 and NH2+H→NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H→CH and O+H→OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors.

  16. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  17. New insights into the environmental photochemistry of 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan): reconsidering the importance of indirect photoreactions.

    PubMed

    Bianco, Angelica; Fabbri, Debora; Minella, Marco; Brigante, Marcello; Mailhot, Gilles; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-04-01

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a widely used antimicrobial agent that undergoes fairly slow biodegradation. It is often found in surface waters in both the acidic (HTric) and basic (Tric(-)) forms (pKa ∼8), and it can undergo direct photodegradation to produce several intermediates including a dioxin congener (2,8-dichlorodibenzodioxin, hereafter 28DCDD). The latter is formed from Tric(-) and causes non-negligible environmental concern. Differently from current literature reports, in this paper we show that the direct photolysis would not be the only important transformation pathway of triclosan in surface waters. This is particularly true for HTric, which could undergo very significant reactions with (•)OH and, if the laser-derived quenching rate constants of this work are comparable to the actual reaction rate constants, with the triplet states of chromophoric dissolved organic matter ((3)CDOM*). Model calculations suggest that reaction with (3)CDOM* could be the main HTric phototransformation pathway in deep waters with high dissolved organic carbon (DOC), while reaction with (•)OH could prevail in low-DOC waters. In the case of Tric(-) the direct photolysis is much more important than for HTric, but triplet-sensitised transformation could produce 28DCDD + 27DCDD with higher yield compared to the direct photolysis, and it could play some role as dioxin source in deep waters with elevated DOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. First Measurement of the 19F(α, p)22Ne Reaction at Energies of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; D'Agata, G.; La Cognata, M.; Indelicato, I.; Spitaleri, C.; Blagus, S.; Cherubini, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kshetri, R.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanić D., Đ.; Prepolec, L.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Skukan, N.; Soić, N.; Tokić, V.; Tumino, A.; Uroić, M.

    2017-02-01

    The observational 19F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the {}19{{F}}{(α ,p)}22{Ne} reaction in the astrophysical energy range, between 0.2 and 0.8 MeV (far below the Coulomb barrier, 3.8 MeV), as it represents the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct measurements is ˜0.66 MeV, covering only the upper tail of the Gamow window, causing the reaction-rate evaluation to be based on extrapolation. To investigate lower energies, the {}19{{F}}{(α ,p)}22{Ne} reaction has been studied by means of the Trojan horse method, applied to the quasi-free {}6{Li}{{(}19{{F}},{p}22{Ne})}2{{H}} reaction at E beam = 6 MeV. The indirect cross section of the {}19{{F}}{(α ,p)}22{Ne} reaction at energies ≲1 MeV was extracted, fully covering the astrophysical region of interest and overlapping existing direct data for normalization. Several resonances have been detected for the first time inside the Gamow window. The reaction rate has been calculated, showing an increase up to a factor of 4 with respect to the literature at astrophysical temperatures. This might lead to potential major astrophysical implications.

  19. High Throughput Engineering to Revitalize a Vestigial Electron Transfer Pathway in Bacterial Photosynthetic Reaction Centers*

    PubMed Central

    Faries, Kaitlyn M.; Kressel, Lucas L.; Wander, Marc J.; Holten, Dewey; Laible, Philip D.; Kirmaier, Christine; Hanson, Deborah K.

    2012-01-01

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization. PMID:22247556

  20. Soccer athletes are superior to non-athletes at perceiving soccer-specific and non-sport specific human biological motion

    PubMed Central

    Romeas, Thomas; Faubert, Jocelyn

    2015-01-01

    Recent studies have shown that athletes’ domain specific perceptual-cognitive expertise can transfer to everyday tasks. Here we assessed the perceptual-cognitive expertise of athletes and non-athletes using sport specific and non-sport specific biological motion perception (BMP) tasks. Using a virtual environment, university-level soccer players and university students’ non-athletes were asked to perceive the direction of a point-light walker and to predict the trajectory of a masked-ball during a point-light soccer kick. Angles of presentation were varied for orientation (upright, inverted) and distance (2 m, 4 m, 16 m). Accuracy and reaction time were measured to assess observers’ performance. The results highlighted athletes’ superior ability compared to non-athletes to accurately predict the trajectory of a masked soccer ball presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (accuracy) of distance. More interestingly, experts also displayed greater performance compared to non-athletes throughout the more fundamental and general point-light walker direction task presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (reaction time) of distance. In addition, athletes showed a better performance throughout inverted conditions in the walker (reaction time) and soccer kick (accuracy and reaction time) tasks. This implies that during human BMP, athletes demonstrate an advantage for recognizing body kinematics that goes beyond sport specific actions. PMID:26388828

  1. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    PubMed

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  2. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  3. Integral and differential cross section measurements at low collision energies for the N2++CH4/CD4 reactions

    NASA Astrophysics Data System (ADS)

    Nicolas, Christophe; Torrents, Raquel; Gerlich, Dieter

    2003-02-01

    Absolute integral cross sections are measured in the collision energy range between 0.1 to 3.5 eV for the N2++CH4 and N2++CD4 reactions using the universal guided ion beam apparatus. The reaction branching ratio, CX3+:CX2+:N2X+ (X=H or D), is found to be 0.86:0.09:0.05 and 0.88:0.07:0.05 for the N2++CH4 and N2++CD4 reactions, respectively. The CH3+/CH2+ ratio is constant over the whole collision energy range and very similar to the one obtained for the almost isoenergetic Ar++CH4 reaction. Axial velocity distributions of the product ions are measured by time of flight at collision energies between 0.1 and 3.5 eV. The results provide direct insight into the reaction dynamics. The dissociative charge transfer channels, leading to CH3+ and CH2+ product ions, occur via an electron jump combined with some exchange of momentum between the colliding partners. The H (D) transfer leading to N2H+ can be described as a direct process, similar to a spectator stripping mechanism. Various isotope effects are observed, the dominant being that the cross sections for reaction with CH4 are up to 20% bigger than the corresponding ones for CD4.

  4. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  5. Trojan Horse cross section measurements and their impact on primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.

    2018-01-01

    Big Bang Nucleosynthesis (BBN) nucleosynthesis requires several nuclear physics inputs and, among them, an important role is played by nuclear reaction rates. They are among the most important input for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The result of these recent measurements is reviewed and compared with the available direct data. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01

  6. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    PubMed

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    PubMed Central

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  8. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble

    PubMed Central

    2017-01-01

    A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933

  9. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.

    PubMed

    Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver

    2008-01-04

    The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.

  10. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  11. Direct-injection chemiluminescence detector. Properties and potential applications in flow analysis.

    PubMed

    Koronkiewicz, Stanislawa; Kalinowski, Slawomir

    2015-02-01

    We present a novel chemiluminescence detector, with a cone-shaped detection chamber where the analytical reaction takes place. The sample and appropriate reagents are injected directly into the chamber in countercurrent using solenoid-operated pulse micro-pumps. The proposed detector allows for fast measurement of the chemiluminescence signal in stop-flow conditions from the moment of reagents mixing. To evaluate potential applications of the detector the Fenton-like reaction with a luminol-H2O2 system and several transition metal ions (Co(2+), Cu(2+), Cr(3+), Fe(3+)) as a catalyst were investigated. The results demonstrate suitability of the proposed detector for quantitative analysis and for investigations of reaction kinetics, particularly rapid reactions. A multi-pumping flow system was designed and optimized. The developed methodology demonstrated that the shape of the analytical signals strongly depends on the type and concentration of the metal ions. The application of the detector in quantitative analysis was assessed for determination of Fe(III). The direct-injection chemiluminescence detector allows for a sensitive and repeatable (R.S.D. 2%) determination. The intensity of chemiluminescence increased linearly in the range from about 0.5 to 10 mg L(-1) Fe(III) with the detection limit of 0.025 mg L(-1). The time of analysis depended mainly on reaction kinetics. It is possible to achieve the high sampling rate of 144 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Astrophysical S factor for the radiative capture {sup 12}N(p,{gamma}){sup 13}O determined from the {sup 14}N({sup 12}N,{sup 13}O){sup 13}C proton transfer reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, A.; Al-Abdullah, T.; Fu, C.

    2009-02-15

    The cross section of the radiative proton capture reaction on the drip line nucleus {sup 12}N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the {sup 14}N({sup 12}N,{sup 13}O){sup 13}C proton transfer reaction at 12 MeV/nucleon to extract the ANC for {sup 13}O{yields}{sup 12}N+p and calculate from it the direct component of the astrophysical S factor of the {sup 12}N(p,{gamma}){sup 13}O reaction. The optical potentials used and the distorted-wave Born approximation analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out atmore » the same time as the transfer measurement. From the transfer, we determined the square of the ANC, C{sub p{sub 1/2}}{sup 2}({sup 13}O{sub g.s.})=2.53{+-}0.30 fm{sup -1}, and hence a value of 0.33(4) keV b was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of S{sub total}(0)=0.42(6) keV b. The {sup 12}N(p,{gamma}){sup 13}O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.« less

  13. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  14. REACTOR NOZZLE ASSEMBLY

    DOEpatents

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  15. Increasing Slew Performance of Reaction Wheel Attitude Control Systems

    DTIC Science & Technology

    2013-09-01

    vectors in any arbitrary direction creates the momentum envelope (Chapter IV). The shape of the reaction wheel momentum envelope is a polyhedron [15...performance. This procedural limitation further reduces the operable reaction wheel momentum space polyhedron to the largest inscribed sphere, which...respective plane. These minima are also the global minima, each marked in magenta. The four-wheel polyhedron is again shown in three orthogonal views in

  16. CONTINUOUS TREATMENT APPARATUS

    DOEpatents

    Erickson, E.E.

    1962-05-15

    An apparatus is described for dissolving a nuclear reactor fuel element in strong acid solutlon. The vapors and entrained liquid resulting from the violent reaction of dissolution are led into a reflux condenser which discharges, not directly back into the top of the reaction vessel in the conventional manner, but by a route leading to the bottom of the apparatus, thereby utilizing the energy of the reaction to bring about a circulation of the solution. (AEC)

  17. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, David H.; Ulrich, Klaus H.

    1998-01-01

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.

  18. Photochemical transformation of phenylurea herbicides in surface waters: a model assessment of persistence, and implications for the possible generation of hazardous intermediates.

    PubMed

    Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-01-01

    This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Chemoselective phototransformation of C-H bonds on a polymer surface through a photoinduced cerium recycling redox reaction.

    PubMed

    Huang, Zhenhua; Wu, Zhengfang; Yang, Peng; Yang, Wantai

    2014-09-01

    It is generally accepted that Ce(4+) is unable to directly oxidize unreactive alkyl C-H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl(3)/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce(3+) was first photooxidized to form Ce(4+) in the presence of H(+), and the in situ formed Ce(4+) then performs an oxidation reaction on the C-H bonds of the polymer surface to form surface-carbon radicals for radical graft polymerization reactions and functional-group transformations, while reducing to Ce(3+) and releasing H(+) in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C-H bonds on polymer surfaces into small-molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer-surface modification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The direct aromatization of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcelin, G.; Oukaci, R.; Migone, R.A.

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases asmore » the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.« less

  1. Photoreactor with self-contained photocatalyst recapture

    DOEpatents

    Gering, Kevin L.

    2004-12-07

    A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.

  2. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  3. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  4. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  5. The Hydroxyl Radical Reaction Rate Constant and Products of Dimethyl Succinate

    DTIC Science & Technology

    2008-03-01

    phase reaction of OH + DMS, 10 liters of chamber content were flowed over 2,4- dinitrophenylhydrazine (DNPH) impregnated cartridges. Hydrazones formed... dinitrophenylhydrazine (DNPH) derivatization (method described in experimental methods), and GC/MS/MS (where samples were directly introduced into the mass

  6. On-surface synthesis on a bulk insulator surface

    NASA Astrophysics Data System (ADS)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.

  7. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C-C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C-C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C-H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C-C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C-C bond-forming reactions through direct C-H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  9. Preparation of immobilized L-prolinamide via enzymatic polymerization of phenolic L-prolinamide and evaluation of its catalytic performance for direct asymmetric aldol reaction.

    PubMed

    Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen

    2014-04-01

    Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.

  10. KO(t)Bu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes.

    PubMed

    Li, Fei; Haj Elhussin, Imad Elddin; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-06

    Direct coupling of indoles with C60 has been achieved for the first time. Transition-metal-free KO(t)Bu-mediated reaction of indoles to [60]fullerene has been developed as a practical and efficient method for the synthesis of various 1,2-(3-indole)(hydro)[60]fullerenes that are otherwise difficult to direct synthesize in an efficient and selective manner. This methodology tolerates sensitive functionalities such as chloro, ester, and nitro on indole and builds molecular complexity rapidly, with most reactions reaching completion in <1 h. A plausible reaction mechanism is proposed to explain the high regioselectivity at the 3-position of the indoles and the formation of 1,2-(3-indole)(hydro)[60]fullerenes.

  11. Bipolar electrochemistry.

    PubMed

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microscopic modeling of direct pre-equilibrium emission from neutron induced reactions on even and odd actinides

    NASA Astrophysics Data System (ADS)

    Dupuis, M.; Hilaire, S.; Péru, S.; Bauge, E.; Kerveno, M.; Dessagne, P.; Henning, G.

    2017-09-01

    Direct inelastic scattering to discrete excitations and pre-equilibrium emission are described within a microscopic model. Nuclear structure information are obtained in the (Quasi) Random Phase Approximation ((Q)RPA) framework implemented with the Gogny force. The relevant optical and transition potentials are build considering the JLM folding model. Various successful applications are shown for (n,n), (n,n'), (n,xn) and (n,xnγ) reactions for spherical and axially deformed even-even or odd targets. The rearrangement corrections to transition potentials and the contribution of unnatural parity excitations to pre-equilibrium emission are discussed. Our model predictions for (n,n'γ) reactions, for intra- and inter-band transitions in 238U, and for the 239Pu(n,2n) cross section are analyzed.

  13. Photo- and radiation chemical induced degradation of lignin model compounds.

    PubMed

    Lanzalunga; Bietti, M

    2000-07-01

    The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.

  14. Force approach to radiation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less

  15. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  16. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    PubMed

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell.

    PubMed

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-22

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.

  18. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  19. Handedness inversion in preparing chiral 4, 4'-biphenylene-silica nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wang, Hairui; Wang, Liwen; Zhou, Feng; Chen, Yuanli; Li, Baozong; Yang, Yonggang

    2011-04-01

    An anionic gelator, D-C12ValC10COONa, derived from D-valine can cause physical gels in water and organic solvents. Helical 4, 4'-biphenylene-silica nanotubes and nanoribbons were prepared using it with 3-aminopropyltrimethoxysilane as a co-structure-directing agent and 4, 4'-bis(triethoxysilyl)-1, 1'-biphenyl (BTESB) as precursor. It was found that the handedness of the hybrid silica nanotubes/nanoribbons is sensitive to the pH value and the concentration of the reaction mixtures. However, handedness inversion was not found by changing the reaction temperature. Circular dichroism spectra of the 4, 4'-biphenylene-silica nanotubes indicated that the chirality of the organic self-assemblies were successfully transferred to the twist of the biphenylene rings through the co-structure-directing agent. The handedness of the 4, 4'-biphenylene rings was also tunable by changing the pH value and the concentration of the reaction mixtures. The FESEM images and CD spectra taken after different reaction times indicated that the handedness inversion occurred after adding BTESB.

  20. Direct Air Capture of CO2 with an Amine Resin: A Molecular Modeling Study of the CO2 Capturing Process

    PubMed Central

    2017-01-01

    Several reactions, known from other amine systems for CO2 capture, have been proposed for Lewatit R VP OC 1065. The aim of this molecular modeling study is to elucidate the CO2 capture process: the physisorption process prior to the CO2-capture and the reactions. Molecular modeling yields that the resin has a structure with benzyl amine groups on alternating positions in close vicinity of each other. Based on this structure, the preferred adsorption mode of CO2 and H2O was established. Next, using standard Density Functional Theory two catalytic reactions responsible for the actual CO2 capture were identified: direct amine and amine-H2O catalyzed formation of carbamic acid. The latter is a new type of catalysis. Other reactions are unlikely. Quantitative verification of the molecular modeling results with known experimental CO2 adsorption isotherms, applying a dual site Langmuir adsorption isotherm model, further supports all results of this molecular modeling study. PMID:29142339

  1. X-ray burst studies with the JENSA gas jet target

    NASA Astrophysics Data System (ADS)

    Schmidt, Konrad; Chipps, Kelly A.; Ahn, Sunghoon; Allen, Jacob M.; Ayoub, Sara; Bardayan, Daniel W.; Blackmon, Jeffrey C.; Blankstein, Drew; Browne, Justin; Cha, Soomi; Chae, Kyung YUK; Cizewski, Jolie; Deibel, Catherine M.; Deleeuw, Eric; Gomez, Orlando; Greife, Uwe; Hager, Ulrike; Hall, Matthew R.; Jones, Katherine L.; Kontos, Antonios; Kozub, Raymond L.; Lee, Eunji; Lepailleur, Alex; Linhardt, Laura E.; Matos, Milan; Meisel, Zach; Montes, Fernando; O'Malley, Patrick D.; Ong, Wei Jia; Pain, Steven D.; Sachs, Alison; Schatz, Hendrik; Schmitt, Kyle T.; Smith, Karl; Smith, Michael S.; Soares de Bem, Natã F.; Thompson, Paul J.; Toomey, Rebecca; Walter, David

    2018-01-01

    When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p) reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target enables the direct measurement of previously inaccessible (α,p) reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL), USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR) at the Facility for Rare Isotope Beams (FRIB). Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL) showed a highly localized, pure gas target with a density of ˜1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p)37 K reaction at NSCL.

  2. Improved Procedure for Direct Coupling of Carbohydrates to Proteins via Reductive Amination

    PubMed Central

    Gildersleeve, Jeffrey C.; Oyelaran, Oyindasola; Simpson, John T.; Allred, Benjamin

    2009-01-01

    Carbohydrate-protein conjugates are utilized extensively in basic research and as immunogens in a variety of bacterial vaccines and cancer vaccines. As a result, there have been significant efforts to develop simple and reliable methods for the construction of these conjugates. While direct coupling via reductive amination is an appealing approach, the reaction is typically very inefficient. In this paper, we report improved reaction conditions providing an approximately 500% increase in yield. In addition to optimizing a series of standard reaction parameters, we found that addition of 500 mM sodium sulfate improves the coupling efficiency. To illustrate the utility of these conditions, a series of high mannose BSA conjugates were produced and incorporated into a carbohydrate microarray. Ligand binding to ConA could be observed and apparent affinity constants (Kds) measured using the array were in good agreement with values reported by surface plasmon resonance. The results show that the conditions are suitable for microgram scale reactions, are compatible with complex carbohydrates, and produce biologically active conjugates. PMID:18597509

  3. Steric Effects of Solvent Molecules on SN2 Substitution Dynamics.

    PubMed

    Liu, Xu; Xie, Jing; Zhang, Jiaxu; Yang, Li; Hase, William L

    2017-04-20

    Influences of solvent molecules on S N 2 reaction dynamics of microsolvated F - (H 2 O) n with CH 3 I, for n = 0-3, are uncovered by direct chemical dynamics simulations. The direct substitution mechanism, which is important without microsolvation, is quenched dramatically upon increasing hydration. The water molecules tend to force reactive encounters to proceed through the prereaction collision complex leading to indirect reaction. In contrast to F - (H 2 O), reaction with higher hydrated ions shows a strong propensity for ion desolvation in the entrance channel, diminishing steric hindrance for nucleophilic attack. Thus, nucleophilic substitution avoids the potential energy barrier with all of the solvent molecules intact and instead occurs through the less solvated barrier, which is energetically unexpected because the former barrier has a lower energy. The work presented here reveals a trade-off between reaction energetics and steric effects, with the latter found to be crucial in understanding how hydration influences microsolvated S N 2 dynamics.

  4. Reactions of C1 Building Blocks

    NASA Astrophysics Data System (ADS)

    Stöcker, Michael

    The chapter “Reactions of C1 Building Blocks” covers the direct conversion of methane to aromatics, the methanol-to-hydrocarbons (MTHC) conversion with respect to gasoline (methanol to gasoline) and olefins (methanol to olefins, methanol-to-propene) as well as some combinations like the TIGAS and Mobil's olefin-to-gasoline and distillate processes. The main focus within this chapter will be on the industrial processes, especially concerning the MTHC reactions - including catalytic systems, reaction conditions, process - and to a minor extent related to the mechanistic aspects and kinetic considerations.

  5. Direct synthesis of anti-1,3-diols through nonclassical reaction of aryl Grignard reagents with isopropenyl acetate.

    PubMed

    Jiao, Yinchun; Cao, Chenzhong; Zhou, Zaichun

    2011-01-21

    A series of symmetrical aromatic 1,3-diols were efficiently synthesized from substituted aryl Grignard reagents and isopropenyl acetate in a one-step reaction that formed anti products as the major species. Both experimental and theoretical studies suggested that the reaction involves the formation of a relatively stable intermediate E containing a six-membered ring from intermediate A. The stereoselectivity of the reactions and the molecular structure of the products were confirmed by NMR spectroscopy, X-ray diffraction, and gas chromatography.

  6. Trend-Analysis of Solid-State Structures: Low-Energy Conformational 'Reactions' Involving Directed and Coupled Movements in Half-Sandwich Compounds [CpFe(CO){C(=O)R}PPh3].

    PubMed

    Brunner, Henri; Tsuno, Takashi

    2018-05-01

    Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.

  7. Practical colorimeter for direct measurement of microplates in enzyme immunoassay systems.

    PubMed Central

    Clem, T R; Yolken, R H

    1978-01-01

    A colorimeter capable of measuring results of enzyme-linked immunosorbent assay (ELISA) reactions directly in the wells of a microtiter plate is described. This colorimeter proved to be as accurate as a conventional spectrophotometer in assessing ELISA reactions, but had the advantage of not requiring transfer of the specimen to a separate chamber. With this colorimeter, 96 specimens can be read in approximately 5 min. A practical colorimeter such as this can make the use of ELISA tests more feasible for many laboratories. Images PMID:342540

  8. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  9. Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C-H Bonds

    PubMed Central

    Truong, Thanh; Klimovica, Kristine; Daugulis, Olafs

    2013-01-01

    We have developed a method for direct, copper-catalyzed, auxiliary-assisted fluorination of β-sp2 C-H bonds of benzoic acid derivatives and γ-sp2 C-H bonds of α,α-disubstituted benzylamine derivatives. The reaction employs CuI catalyst, AgF fluoride source, and DMF, pyridine, or DMPU solvent at moderately elevated temperatures. Selective mono- or difluorination can be achieved by simply changing reaction conditions. The method shows excellent functional group tolerance and provides a straightforward way for the preparation of ortho-fluorinated benzoic acids. PMID:23758609

  10. Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2H-pyrans via Tandem SN2'-Prins Cyclization.

    PubMed

    Scoccia, Jimena; Pérez, Sixto J; Sinka, Victoria; Cruz, Daniel A; López-Soria, Juan M; Fernández, Israel; Martín, Víctor S; Miranda, Pedro O; Padrón, Juan I

    2017-09-15

    A new, direct, and diastereoselective synthesis of activated 2,3,4,6-tetrasubstituted tetrahydro-2H-pyrans is described. In this reaction, iron(III) catalyzed an S N 2'-Prins cyclization tandem process leading to the creation of three new stereocenters in one single step. These activated tetrahydro-2H-pyran units are easily derivatizable through CuAAC conjugations in order to generate multifunctionalized complex molecules. DFT calculations support the in situ S N 2' reaction as a preliminary step in the Prins cyclization.

  11. Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions?

    NASA Astrophysics Data System (ADS)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-07-01

    Background and purpose : Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers require students to use approaches beyond direct application of LCP. Sample : The questionnaire was administered to 162 students studying their first year of advanced chemistry (age 16/17) in three high achieving London high schools. Design and methods : The students' explanations of reversible chemical systems were inductively coded to identify the explanatory approaches used and interviews with 13 students were used to check for consistency. AS level examination questions on reversible reactions were analysed to identify the types of explanations sought and the students' performance in these examinations was compared to questionnaire answers. Results : 19% of students used a holistic explanatory approach: when the rates of forward and reverse reactions are correctly described, recognising their simultaneous and mutually dependent nature. 36% used a mirrored reactions approach when the connected nature of the forward and reverse reactions is identified, but not their mutual dependency. 42% failed to recognize the interdependence of forward and reverse reactions (reactions not connected approach). Only 4% of marks for AS examination questions on reversible chemical systems asked for responses which went beyond either direct application of LCP or recall of equilibrium knowledge. 37% of students attained an A grade in their AS national examinations. Conclusions : Examinations favour the application of LCP making it possible to obtain the highest grade with little understanding of reversible chemical systems beyond a direct application of this algorithm. Therefore students' understanding may be attenuated so that they are unable to use kinetic sub-micro level ideas which will support the building of deeper energetic conceptions at university.

  12. Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry.

    PubMed

    Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo

    2016-09-09

    Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Direct Observation of the Growth of Au-Pd Core-Shell Nanoparticles Using in situ Low-Dose Liquid Cell STEM imaging

    DOE PAGES

    Bhattarai, Nabraj; Prozorov, Tanya

    2016-07-25

    Bimetallic core-shell nanoparticles are widely used as catalysts in several industrial reactions, with core-shell structures permitting facile surface modification and allowing increased stability and durability, and cost-effectiveness of the catalysts. We report, for the first time, on observing the early stages of the formation of Au-Pd core-shell bimetallic nanoparticles via the seed-mediated growth in the presence of reducing agent, while employing the low-dose scanning transmission electron microscopy imaging with the fluid cell in situ. Use of the continuous flow in situ fluid cell platform allows for delivery of reagent solutions and generation of near-native reaction environment in the reaction chamber,more » and permits direct visualization of the early stages of formation of Au-Pd core-shell structures at low dose rate (0.1 e -/(Å 2s)) in the presence of ascorbic acid. No core-shell structures were detected in the absence of reducing agent at the electron dose of 32.6 e -/Å 2. While the core-shell structures formed in situ under the low-dose imaging closely resemble those obtained in solution synthesis, the reaction kinetics in the fluid cell is affected by the radiolysis of liquid reagents induced by electron beam, altering the rate-determining reaction steps. The enhanced reduction of Pd ions leads to initial rapid growth of the nascent Pd shell along the <111> direction at the Au interface, followed by a slower rearrangement of the outer Pd layer. The latter becomes the rate-determining step in the in situ reaction and appears to follow the oriented attachment-like movement to yield a remodeled, compact and stable Au-Pd core-shell nanostructure. Our findings highlight the differences between the two reaction pathways and aid in understanding the mechanism of formation of the core-shell nanostructure in situ.« less

  14. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  15. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments Database

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  16. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    PubMed

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  17. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    PubMed

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-04-16

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  18. Direct asymmetric N-specific reaction of nitrosobenzene with aldehydes catalyzed by a chiral primary amine-based organocatalyst.

    PubMed

    Qin, Long; Li, Lei; Yi, Lei; Da, Chao-Shan; Zhou, Yi-Feng

    2011-08-01

    Nitroso compounds have two reactive nitrogen and oxygen atoms. It is interesting and important to perform a nitrogen or oxygen selective reaction with interesting substrates. These atom specific reactions are crucial to specifically synthesis of specific compounds. An enantioselective N-specific reaction of nitrosobenzene with unmodified aldehydes was successfully achieved catalyzed first by a variety of primary amine-based organocatalysts with higher yield and enantioselectivity. The bulkier substituted groups of the organocatalyst and two hydrogen bonds from the organocatalyst and the oxygen atom of nitrosobenzene make the reaction preferentially N-specific and predominantly afford R products. Copyright © 2011 Wiley-Liss, Inc.

  19. Age-related differences in the motor planning of a lower leg target matching task.

    PubMed

    Davies, Brenda L; Gehringer, James E; Kurz, Max J

    2015-12-01

    While the development and execution of upper extremity motor plans have been well explored, little is known about how individuals plan and execute rapid, goal-directed motor tasks with the lower extremities. Furthermore, the amount of time needed to integrate the proper amount of visual and proprioceptive feedback before being able to accurately execute a goal-directed movement is not well understood; especially in children. Therefore, the purpose of this study was to initially interrogate how the amount of motor planning time provided to a child before movement execution may influence the preparation and execution of a lower leg goal-directed movement. The results displayed that the amount of pre-movement motor planning time provided may influence the reaction time and accuracy of a goal directed leg movement. All subjects in the study had longer reaction times and less accurate movements when no pre-movement motor planning time was provided. In addition, the children had slower reaction times, slower movements, and less accurate movements than the adults for all the presented targets and motor planning times. These results highlight that children may require more time to successfully plan a goal directed movement with the lower extremity. This suggests that children may potentially have less robust internal models than adults for these types of motor skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Elastic/Inelastic Measurement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey

    2016-03-01

    The work scope involves the measurement of neutron scattering from natural sodium ( 23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-­energy (few MeV) fast-­neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficultmore » in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-­region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.« less

  1. A comparative study of visual reaction time in table tennis players and healthy controls.

    PubMed

    Bhabhor, Mahesh K; Vidja, Kalpesh; Bhanderi, Priti; Dodhia, Shital; Kathrotia, Rajesh; Joshi, Varsha

    2013-01-01

    Visual reaction time is time required to response to visual stimuli. The present study was conducted to measure visual reaction time in 209 subjects, 50 table tennis (TT) players and 159 healthy controls. The visual reaction time was measured by the direct RT computerized software in healthy controls and table tennis players. Simple visual reaction time was measured. During the reaction time testing, visual stimuli were given for eighteen times and average reaction time was taken as the final reaction time. The study shows that table tennis players had faster reaction time than healthy controls. On multivariate analysis, it was found that TT players had 74.121 sec (95% CI 98.8 and 49.4 sec) faster reaction time compared to non-TT players of same age and BMI. Also playing TT has a profound influence on visual reaction time than BMI. Our study concluded that persons involved in sports are having good reaction time as compared to controls. These results support the view that playing of table tennis is beneficial to eye-hand reaction time, improve the concentration and alertness.

  2. Direct Displacement of Alkoxy Groups of Vinylogous Esters by Grignard Reagents

    PubMed Central

    Brockway, Anthony J.; González-López, Marcos; Fettinger, James C.

    2011-01-01

    The direct displacement of alkoxy groups from the beta position of aromatic and unsaturated esters and ketones is described. The reaction is chemo- and regioselective, displaying wide substrate scope. PMID:21446670

  3. Direct catalytic asymmetric alpha-amination of aldehydes.

    PubMed

    List, Benjamin

    2002-05-22

    The first direct catalytic asymmetric alpha-amination of aldehydes is described herein. alpha-Unbranched aldehydes react in this novel proline-catalyzed reaction with dialkyl azodicarboxylates to give alpha-amino aldehydes in excellent yields and enantioselectivities.

  4. The Ammonia Synthesis Reaction: An Exception to the Le Chatelier Principle and Effects of Nonideality

    ERIC Educational Resources Information Center

    Uline, Mark J.; Corti, David S.

    2006-01-01

    Le Chatelier's principle states that the further addition of a particular component will cause the reaction to shift in the direction that reduces the total number of moles of the system. However, the addition of one reactant [N[subscript 2

  5. Catalytic Routes for the Conversion of Biomass Derivatives to Hydrocarbons and/or Platform Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silks, III, Louis A.

    Unprotected carbohydrates were reacted in amine-catalyzed cascade reactions with various methyl ketones to give a direct access to C-glycosides by an operationally simple protocol. As the reaction mechanism,an aldol condensation followed by an intramolecular conjugate addition is assumed.

  6. New directions: Atmospheric chemical mechanisms for the future

    EPA Science Inventory

    The chemical reaction scheme or mechanism used to represent atmospheric chemical reactions is at the heart of each air quality model used in research and policy applications to predict and analyse the complex air pollutants: ozone, air toxics and PM2.5. This is necessarily only a...

  7. Metal Al produced by H2 plasma reduction of AlCl3: a thermodynamic and kinetic study on the plasma chemistry.

    PubMed

    Zheng, Jie; Sun, Bo; Yang, Rong; Song, Xubo; Li, Xingguo; Pu, Yikang

    2008-10-09

    In this paper we reported that low temperature plasma may reverse the direction of a chemical reaction. The thermodynamically forbidden reaction between H 2 and AlCl 3 was able to take place with the assistance of low temperature plasma, yielding metal Al. The plasma chemistry of the reaction was investigated by optical emission spectroscopy, which suggested that the dissociation of H 2 and AlCl 3 molecules by plasma led the reaction to a thermodynamically favorable one by creating reaction channels with low Gibbs free energy change. The addition of Ar promoted the reaction kinetics dramatically, which was attributed to the enhanced dissociation of AlCl 3 molecules by excited Ar species.

  8. Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe2O3 nanotube

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Yang; Ma, Bo; Tang, Cui-Ming; Cheng, Xin-Lu

    2016-01-01

    The letter presents thermite reactions of Al/Fe2O3 nanothermites simulated by using molecular dynamic method in combination with ReaxFF. The variations in chemical bonds are measured to elaborate reaction process and characterize ignition performance. It is found that the longer interval is, the higher ignition temperature and the longer ignition delay system has. Additionally, the heating rate has much effect on ignition temperature. Under the temperature of 1450 K, oxygen is directly released from hematite nanotube, thermite reaction is deemed as a multiphase process. And, release energy of System2 is about 3.96 kJ/g. However, much energy rises from alloy reaction. Thermite reactions do not follow the theoretical equation, but are a complicated process.

  9. Synthesis of Formamide and Related Organic Species in the Interstellar Medium via Chemical Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Spezia, Riccardo; Jeanvoine, Yannick; Hase, William L.; Song, Kihyung; Largo, Antonio

    2016-08-01

    We show, by means of direct dynamics simulations, how it is possible to define possible reactants and mechanisms leading to the formation of formamide in the interstellar medium. In particular, different ion-molecule reactions in the gas phase were considered: NH3OH+, NH2OH{}2+, H2COH+, and NH4 + for the ions and NH2OH, H2CO, and NH3 for the partner neutrals. These calculations were combined with high level ab initio calculations to investigate possible further evolution of the products observed. In particular, for formamide, we propose that the NH2OH{}2+ + H2CO reaction can produce an isomer, NH2OCH{}2+, that, after dissociative recombination, can produce neutral formamide, which was observed in space. The direct dynamics do not pre-impose any reaction pathways and in other reactions, we did not observe the formation of formamide or any possible precursor. On the other hand, we obtained other interesting reactions, like the formation of NH2CH{}2+. Finally, some radiative association processes are proposed. All of the results obtained are discussed in light of the species observed in radioastronomy.

  10. A proposed simulation method for directed self-assembly of nanographene

    NASA Astrophysics Data System (ADS)

    Geraets, J. A.; Baldwin, J. P. C.; Twarock, R.; Hancock, Y.

    2017-09-01

    A methodology for predictive kinetic self-assembly modeling of bottom-up chemical synthesis of nanographene is proposed. The method maintains physical transparency in using a novel array format to efficiently store molecule information and by using array operations to determine reaction possibilities. Within a minimal model approach, the parameter space for the bond activation energies (i.e. molecule functionalization) at fixed reaction temperature and initial molecule concentrations is explored. Directed self-assembly of nanographene from functionalized tetrabenzanthracene and benzene is studied with regions in the activation energy phase-space showing length-to-width ratio tunability. The degree of defects and reaction reproducibility in the simulations is also determined, with the rate of functionalized benzene addition providing additional control of the dimension and quality of the nanographene. Comparison of the reaction energetics to available density functional theory data suggests the synthesis may be experimentally tenable using aryl-halide cross-coupling and noble metal surface-assisted catalysis. With full access to the intermediate reaction network and with dynamic coupling to density functional theory-informed tight-binding simulation, the method is proposed as a computationally efficient means towards detailed simulation-driven design of new nanographene systems.

  11. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha*

    PubMed Central

    Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ

    2016-01-01

    We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877

  12. Coping strategies and immune neglect in affective forecasting: Direct evidence and key moderators

    PubMed Central

    Hoerger, Michael

    2012-01-01

    Affective forecasting skills have important implications for decision making. However, recent research suggests that immune neglect – the tendency to overlook coping strategies that reduce future distress – may lead to affective forecasting problems. Prior evidence for immune neglect has been indirect. More direct evidence and a deeper understanding of immune neglect are vital to informing the design of future decision-support interventions. In the current study, young adults (N = 325) supplied predicted, actual, and recollected reactions to an emotionally-evocative interpersonal event, Valentine’s Day. Based on participants’ qualitative descriptions of the holiday, a team of raters reliably coded the effectiveness of their coping strategies. Supporting the immune neglect hypothesis, participants overlooked the powerful role of coping strategies when predicting their emotional reactions. Immune neglect was present not only for those experiencing the holiday negatively (non-daters) but also for those experiencing it positively (daters), suggesting that the bias may be more robust than originally theorized. Immune neglect was greater for immediate emotional reactions than more enduring reactions. Further, immune neglect was conspicuously absent from recollected emotional reactions. Implications for decision-support interventions are discussed. PMID:22375161

  13. Imaging dynamic fingerprints of competing E2 and SN2 reactions.

    PubMed

    Carrascosa, Eduardo; Meyer, Jennifer; Zhang, Jiaxu; Stei, Martin; Michaelsen, Tim; Hase, William L; Yang, Li; Wester, Roland

    2017-06-21

    The competition between bimolecular nucleophilic substitution and base-induced elimination is of fundamental importance for the synthesis of pure samples in organic chemistry. Many factors that influence this competition have been identified over the years, but the underlying atomistic dynamics have remained difficult to observe. We present product velocity distributions for a series of reactive collisions of the type X -  + RY with X and Y denoting the halogen atoms fluorine, chlorine and iodine. By increasing the size of the residue R from methyl to tert-butyl in several steps, we find that the dynamics drastically change from backward to dominant forward scattering of the leaving ion relative to the reactant RY velocity. This characteristic fingerprint is also confirmed by direct dynamics simulations for ethyl as residue and attributed to the dynamics of elimination reactions. This work opens the door to a detailed atomistic understanding of transformation reactions in even larger systems.The competition between chemical reactions critically affects our natural environment and the synthesis of new materials. Here, the authors present an approach to directly image distinct fingerprints of essential organic reactions and monitor their competition as a function of steric substitution.

  14. Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Ishiyama, Keisuke; Kosaka, Fumihiko; Shimada, Iori; Oshima, Yoshito; Otomo, Junichiro

    2013-03-01

    The electro-oxidation of glycerol on a carbon-supported platinum catalyst (Pt/C) in combination with a reaction products analysis was investigated at intermediate temperatures (235-260 °C) using a single cell with a CsH2PO4 proton conducting solid electrolyte. A high current density was achieved. The main products were H2, CO2 and CO but the formation of C2 compounds, such as glycolic acid and ethane, was also observed. In addition, several C3 compounds were detected as minor products. A reaction products analysis revealed that the C-C bond dissociation ratio of glycerol was 70-80% at both low and high potentials (>200 mV vs. reversible hydrogen electrode) at 250 °C, suggesting that rapid dissociation occurs on Pt/C. The reaction products analysis also suggested that hydrogen production via thermal decomposition and/or steam reforming of glycerol (indirect path) and direct electro-oxidation of glycerol (direct path) proceed in parallel. More detailed reaction paths involving C1, C2 and C3 reaction products are discussed as well as the possible rate-determining step in glycerol electro-oxidation at intermediate temperatures.

  15. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  17. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  18. Ultrafast Chemical Dynamics of Reactions in Beams

    DTIC Science & Technology

    1994-04-14

    Wave Packet Motion in Dissociative Reactions: Up to 40 Picoseconds. P. Cong, A. Mokhtari , and A. H. Zewail Chem. Phys. Lett., 172.109 (1990) 3. Direct...Femtosecond Mapping of the Trajectories in a Chemical Reaction. A. Mokhtari , P. Cong, J. L. Herek, and A. H. Zewail Nature, 348 225 (1990) 4...to 40 Picoseconds. P. Cong. A. Mokhtari , and A. H. Zewail Chem. Phys. Left., 172. 109 (1990) 8 4. Femtosecond Selective Control of Wave Packet

  19. The Dynamics of the Photofragmentation of Ketene 3-Cyclopentenone, 3,5-Cycloheptadienone, and Tropone.

    DTIC Science & Technology

    1985-01-01

    suggested that the concerted reaction should be allowed photochemically and the conrotatory mode should be favored. The data were in accord with this...crossing), or (4) reaction to form products, e.g., isomers or fragments, directly from the excited state. Further radiative, non-radiative, and photochemical ...processes can occur from intermediate excited states. Typical photochemical reactions observed in simple ketones in the gas phase are: (1) Norrish

  20. Maggi's equations of motion and the determination of constraint reactions

    NASA Astrophysics Data System (ADS)

    Papastavridis, John G.

    1990-04-01

    This paper presents a geometrical derivation of the constraint reaction-free equations of Maggi for mechanical systems subject to linear (first-order) nonholonomic and/or holonomic constraints. These results follow directly from the proper application of the concepts of virtual displacement and quasi-coordinates to the variational equation of motion, i.e., Lagrange's principle. The method also makes clear how to compute the constraint reactions (kinetostatics) without introducing Lagrangian multipliers.

  1. Copper catalyzed oxidative coupling reactions for trifluoromethylselenolations--synthesis of R-SeCF3 compounds using air stable tetramethylammonium trifluoromethylselenate.

    PubMed

    Lefebvre, Quentin; Pluta, Roman; Rueping, Magnus

    2015-03-14

    The aerobic, room-temperature coupling of tetramethylammonium trifluoromethylselenate with readily available boronic acids, boronic esters, and terminal alkynes has been developed. The method permits direct access to valuable trifluoromethylselenoarenes and alkynes under mild conditions. A convenient one-pot reaction, a scale up procedure as well as an extension to perfluoroalkylselenates are also presented to further demonstrate the synthetic utility of this reaction.

  2. Emerging Perception of Causality in Action-and-Reaction Sequences from 4 to 6 Months of Age: Is It Domain-Specific?

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Ray, Elizabeth D.; Surian, Luca

    2012-01-01

    Two experiments (N=136) studied how 4- to 6-month-olds perceive a simple schematic event, seen as goal-directed action and reaction from 3 years of age. In our causal reaction event, a red square moved toward a blue square, stopping prior to contact. Blue began to move away before red stopped, so that both briefly moved simultaneously at a…

  3. The Trojan Horse Method in Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitaleri, C.

    2010-11-24

    The Trojan Horse Method allows for the measurements of cross section in nuclear reaction between charged particles at astrophysical energies. The basic features of the method are discussed in the non resonant reactions case. A review of applications aimed to extract the bare nucleus astrophysical S{sub b}(E) factor for two body processes are presented. The information on electron screening potential U{sub e} were obtained from comparison with direct experiments of fusion reactions.

  4. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Dittert, Natalie; Hüttner, Sandrina; Polak, Thomas; Herrmann, Martin J.

    2018-01-01

    Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS–. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies. PMID:29922133

  5. Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    PubMed Central

    Saha, Rajib; Suthers, Patrick F.; Maranas, Costas D.

    2011-01-01

    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species. PMID:21755001

  6. An integrated open framework for thermodynamics of reactions that combines accuracy and coverage.

    PubMed

    Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron

    2012-08-01

    The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG(○) of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K' and pK(a) data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM-3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. ron.milo@weizmann.ac.il Supplementary data are available at Bioinformatics online.

  7. An integrated open framework for thermodynamics of reactions that combines accuracy and coverage

    PubMed Central

    Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron

    2012-01-01

    Motivation: The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Results: Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG○ of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K′ and pKa data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM–3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Availability: Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. Contact: ron.milo@weizmann.ac.il Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22645166

  8. Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, Richard A.; Schlyer, David; Becker, Richard J.

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  9. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  10. Unraveling the role of photons and electrons upon their chemical interaction with photoresist during EUV exposure

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vesters, Yannick; Petersen, John S.; Vanelderen, Pieter; Rathore, Atish; de Simone, Danilo; Vandenberghe, Geert

    2018-03-01

    The interaction of 91.6 eV EUV photons with photoresist - in particular chemically amplified resist (CAR) - is different than exposure at 193 nm and 248 nm wavelengths. The latter is understood well and it is known that photons interact with electrons in the resist's molecular valence orbitals (for chemically amplified resist (CAR) the photon interacts with the photo acid generator (PAG), which leads to a deprotection reaction on a polymer after a thermal catalytic reaction during a post-exposure-bake.). At EUV however, more steps are involved in the radiolysis process between the absorption of the photon and the final chemical modification. These are related to the generation of primary electrons and their decay to lower energy secondary electrons, and most of this steps are not well understood. In this paper, the reaction products from EUV and low energy electron exposure are examined using Residual Gas Analysis (RGA), which measures and analyzes the outgassing products related to the ongoing reactions. This investigation is applied firstly on a model CAR where details of the resist chemical constituents were known prior to testing. The measurement not only resolved information on the expected acid related reactions from the PAG and protection groups, but also exhibited direct scission reactions of the polymer, where some of them lead to polymerization reactions. Moreover, the measurement quantifies the balance between the different ongoing reactions, which were confirmed by contrast curve measurements. Based on learnings on the model resist, applied the measurement technique to commercial resists, where actual resist chemistry composition is not known. Despite that, it was found that information could be deduced to distinguish between acid related ongoing reactions and direct scission of reaction on the base polymer and quantify their relation. Moreover, different generations of commercial resists based on similar chemistry platform were investigated, which revealed that improvements in printing performance could be explained by PAG reaction yield increase.

  11. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  12. Determination of thermodynamics and kinetics of RNA reactions by force

    PubMed Central

    Tinoco, Ignacio; Li, Pan T. X.; Bustamante, Carlos

    2008-01-01

    Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force. PMID:17040613

  13. New astrophysical S factor for the {sup 15}N(p,{gamma}){sup 16}O reaction via the asymptotic normalization coefficient (ANC) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedzhanov, A. M.; Gagliardi, C. A.; Goldberg, V. Z.

    2008-07-15

    The {sup 15}N(p,{gamma}){sup 16}O reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J{sup {pi}}=1{sup -} resonances at E{sub R}=312 and 962 keV and direct capture to the ground state. Asymptotic normalization coefficients (ANCs) for the ground and seven excited states in {sup 16}O were extracted from the comparison of experimental differential cross sections for the {sup 15}N({sup 3}He,d){sup 16}O reaction with distorted-wave Born approximation calculations. Using these ANCs and proton and {alpha} resonance widths determined from an R-matrixmore » fit to the data from the {sup 15}N(p,{alpha}){sup 12}C reaction, we carried out an R-matrix calculation to obtain the astrophysical factor for the {sup 15}N(p,{gamma}){sup 16}O reaction. The results indicate that the direct capture contribution was previously overestimated. We find the astrophysical factor to be S(0)=36.0{+-}6.0 keV b, which is about a factor of 2 lower than the presently accepted value. We conclude that for every 2200{+-}300 cycles of the main CN cycle one CN catalyst is lost due to this reaction.« less

  14. Oxidation of CO by N/sub 2/O between 1076 and 1228 K: determination of the rate constant of the exchange reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loirat, H.; Caralp, F.; Destriau, M.

    New measurements of the rate constant of the direct reaction of CO with N/sub 2/O are reported with the principal purpose of removing some of the remaining discrepancies on its value. Experiments were performed at lower temperatures (1076-1228 K) and lower pressure (approx. 15 Torr) than those prevailing in most of previous works, by using a static reactor. It is shown that, under these experimental conditions, the reaction proceeds essentially according to the direct reaction CO + N/sub 2/O ..-->.. CO/sub 2/ + N/sub 2/ (1). The previously proposed wet mechanism is not significant under our experimental conditions. It hasmore » to be taken into account, however, to describe the observed production and consumption of molecular oxygen. The Arrhenius expression derived from these experiments is k/sub 1/ = 10/sup 14.4 +/- 0.3 exp(-(46 +- 2) kcal mol/sup -1/RT) cm/sup 3/ mol/sup -1/ s/sup -1/. A detailed analysis of the results shows that the uncertainties in side reactions do not greatly influence the value of k/sub 1/. A critical discussion of the data reported in the literature is presented. In spite of remaining uncertainties in the reaction mechanism, the present results, obtained in a low-temperature range, show that the low activation energy values of reaction 1, reported in several works performed at higher temperatures, are highly unlikely« less

  15. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    NASA Astrophysics Data System (ADS)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  16. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  17. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  18. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  19. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  20. Impression Management Messages and Reactions to Organizational Reward Allocations: The Mediating Influence of Fairness and Responsibility.

    ERIC Educational Resources Information Center

    Tata, Jasmine; Rhodes, Susan R.

    1996-01-01

    Examines relationships among impression-management messages, evaluations of reward allocations (fairness and responsibility), and reaction to rewards (anger, approval of manager, and overall job satisfaction). Finds that impression-management messages directly influence fairness and responsibility, and indirectly influence anger and approval. (SR)

  1. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  2. Educating Moral Emotions: A Praxiological Analysis

    ERIC Educational Resources Information Center

    Maxwell, Bruce; Reichenbach, Roland

    2007-01-01

    This paper presents a praxiological analysis of three everyday educational practices or strategies that can be considered as being directed at the moral formation of the emotions. The first consists in requests to imagine other's emotional reactions. The second comprises requests to imitate normative emotional reactions and the third to…

  3. Direct displacement of alkoxy groups of vinylogous esters by Grignard reagents.

    PubMed

    Brockway, Anthony J; González-López, Marcos; Fettinger, James C; Shaw, Jared T

    2011-05-06

    The direct displacement of alkoxy groups from the β position of aromatic and unsaturated esters and ketones is described. The reaction is chemo- and regioselective, displaying wide substrate scope. © 2011 American Chemical Society

  4. Calculating Free Energy Changes in Continuum Solvation Models

    DOE PAGES

    Ho, Junming; Ertem, Mehmed Z.

    2016-02-27

    We recently showed for a large dataset of pK as and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKmore » a calculations, as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol -1 and 25 kJ mol -1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.« less

  5. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites

    PubMed Central

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-01-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass. PMID:27652345

  6. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    PubMed

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  7. Virus-based Photo-Responsive Nanowires Formed By Linking Site-Directed Mutagenesis and Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Murugesan, Murali; Abbineni, Gopal; Nimmo, Susan L.; Cao, Binrui; Mao, Chuanbin

    2013-05-01

    Owing to the genetic flexibility and error-free bulk production, bio-nanostructures such as filamentous phage showed great potential in materials synthesis, however, their photo-responsive behaviour is neither explored nor unveiled. Here we show M13 phage genetically engineered with tyrosine residues precisely fused to the major coat protein is converted into a photo-responsive organic nanowire by a site-specific chemical reaction with an aromatic amine to form an azo dye structure on the surface. The resulting azo-M13-phage nanowire exhibits reversible photo-responsive properties due to the photo-switchable cis-trans isomerisation of the azo unit formed on the phage. This result shows that site-specific display of a peptide on bio-nanostructures through site-directed genetic mutagenesis can be translated into site-directed chemical reaction for developing advanced materials. The photo-responsive properties of the azo-M13-phage nanowires may open the door for the development of light controllable smart devices for use in non-linear optics, holography data storage, molecular antenna, and actuators.

  8. Direct carbon-carbon coupling of furanics with acetic acid over Bronsted zeolites

    DOE PAGES

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-09-16

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO 2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. Here, we report the direct acylation of methylfuran with acetic acid in the presence ofwater, all ofwhich can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implyingmore » that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected.We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass.« less

  9. Virus-based Photo-Responsive Nanowires Formed By Linking Site-Directed Mutagenesis and Chemical Reaction

    PubMed Central

    Murugesan, Murali; Abbineni, Gopal; Nimmo, Susan L.; Cao, Binrui; Mao, Chuanbin

    2013-01-01

    Owing to the genetic flexibility and error-free bulk production, bio-nanostructures such as filamentous phage showed great potential in materials synthesis, however, their photo-responsive behaviour is neither explored nor unveiled. Here we show M13 phage genetically engineered with tyrosine residues precisely fused to the major coat protein is converted into a photo-responsive organic nanowire by a site-specific chemical reaction with an aromatic amine to form an azo dye structure on the surface. The resulting azo-M13-phage nanowire exhibits reversible photo-responsive properties due to the photo-switchable cis-trans isomerisation of the azo unit formed on the phage. This result shows that site-specific display of a peptide on bio-nanostructures through site-directed genetic mutagenesis can be translated into site-directed chemical reaction for developing advanced materials. The photo-responsive properties of the azo-M13-phage nanowires may open the door for the development of light controllable smart devices for use in non-linear optics, holography data storage, molecular antenna, and actuators. PMID:23673356

  10. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    PubMed

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  11. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  12. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  13. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  14. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  15. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  16. Design Considerations for Clean QED Fusion Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Bussard, Robert W.; Jameson, Lorin W.

    1994-07-01

    The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.

  17. Polymer-mediated growth of crystals and mesocrystals.

    PubMed

    Cölfen, Helmut

    2013-01-01

    Polymers are important additives for the control of mineralization reactions in both biological and bioinspired mineralization. The reason is that they allow for a number of interactions with the growing crystals and even amorphous minerals. These can substantially influence the way the mineral grows on several levels. Already in the prenucleation phase, polymers can control the formation of prenucleation clusters and subsequently the nucleation event. Also, polymers can control whether the further crystallization follows a classical or nonclassical particle-mediated growth path. In this chapter, the main ways in which polymers can be used to control a crystallization reaction will be highlighted. In addition, polymers that are useful for this purpose and the experimental conditions suitable for directing a crystallization reaction into the desired direction through the use of polymers will be described. © 2013 Elsevier Inc. All rights reserved.

  18. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    PubMed

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glassgold, A. E.; Najita, J. R.

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less

  20. Direct catalytic cross-coupling of organolithium compounds

    NASA Astrophysics Data System (ADS)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  1. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  2. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zhang, Rong; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0)/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  3. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Rong, Zhang; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  4. The expulsion from Disneyland: the social psychological impact of 9/11.

    PubMed

    Morgan, G Scott; Wisneski, Daniel C; Skitka, Linda J

    2011-09-01

    People expressed many different reactions to the events of September 11th, 2001. Some of these reactions were clearly negative, such as political intolerance, discrimination, and hate crimes directed toward targets that some, if not many, people associated with the attackers. Other reactions were more positive. For example, people responded by donating blood, increasing contributions of time and money to charity, and flying the American flag. The goal of this article is to review some of Americans' negative and positive reactions to 9/11. We also describe two frameworks, value protection and terror management theory, that provide insights into Americans' various reactions to the tragedy of 9/11. © 2011 American Psychological Association

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Osamu, E-mail: sakai.o@e.usp.ac.jp; Nobuto, Kyosuke; Miyagi, Shigeyuki

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH{sub 3} in the global chemical reaction, and difference of an index for each radical species between casesmore » with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.« less

  6. Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Langli; Liu, Bin; Song, Shidong

    The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein,more » we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.« less

  7. The Nitrosocarbonyl Hetero-Diels–Alder Reaction as a Useful Tool for Organic Syntheses

    PubMed Central

    Bodnar, Brian S.

    2014-01-01

    Organic transformations that result in the formation of multiple covalent bonds within the same reaction are some of the most powerful tools in synthetic organic chemistry. Nitrosocarbonyl hetero-Diels–Alder (HDA) reactions allow for the simultaneous stereospecific introduction of carbon–nitrogen and carbon–oxygen bonds in one synthetic step, and provide direct access to 3,6-dihydro-1,2-oxazines. This Review describes the development of the nitrosocarbonyl HDA reaction and the utility of the resulting oxazine ring in the synthesis of a variety of important, biologically active molecules. PMID:21520360

  8. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.

    PubMed

    Ye, Lidan; Yang, Chengcheng; Yu, Hongwei

    2018-01-01

    With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.

  9. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reaction of a chemotherapeutic agent, 6-mercaptopurine, with a direct-acting, electrophilic carcinogen, benzo[a]pyrene-7,8-diol 9,10-epoxide.

    PubMed

    MacLeod, M C; Stewart, E; Daylong, A; Lew, L K; Evans, F E

    1991-01-01

    The chemotherapeutic agent 6-mercaptopurine (6-MP) has been shown to react covalently with the ultimate carcinogenic metabolite of benzo[a]pyrene, 7-r,8-t-dihydroxy-9-t,10-t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), in aqueous solution, forming a single adduct. NMR studies of the HPLC-purified product were consistent with its identification as 10(S)-(6'-mercaptopurinyl)-7,8,9-trihydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene. Reaction kinetics were analyzed by using both HPLC separation of the products formed and a spectrophotometric assay for adduct formation. A simple model in which direct reaction between 6-MP and BPDE takes place without formation of a physical complex was found to adequately predict the dependence of product ratios on 6-MP concentration. Variations in the observed rate constant for this reaction with changes in temperature, pH, and buffer concentration were determined and compared to the effects of these variables on the observed rate constant for BPDE hydrolysis. In each case, the processes were affected quite differently, suggesting that different rate-determining steps are involved. The data suggest that the reaction mechanism involves SN2 attack of the anion of 6-MP, formed by ionization of the sulfhydryl group, on carbon 10 of BPDE, resulting in a trans-9,10 reaction product.

  11. Indirect dynamics in SN2@N: insight into the influence of central atoms.

    PubMed

    Liu, Xu; Zhao, Chenyang; Yang, Li; Zhang, Jiaxu; Sun, Rui

    2017-08-30

    Central atoms have a significant influence on the reaction kinetics and dynamics of nucleophilic substitution (S N 2). Herein, atomistic dynamics of a prototype S N 2@N reaction F - + NH 2 Cl is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for a S N 2@C congener F - + CH 3 Cl. Indirect scattering is found to prevail, which proceeds predominantly through a hydrogen-bonded F - -HNHCl complex in the reactant entrance channel. This unexpected finding of a pronounced contribution of indirect reaction dynamics, even at a high collision energy, is in strong contrast to a general evolution from indirect to direct dynamics with enhanced energy that characterizes S N 2@C. This result suggests that the relative importance of different atomic-level mechanisms may depend essentially on the interaction potential of reactive encounters and the coupling between inter- and intramolecular modes of the pre-reaction complex. For F - + NH 2 Cl the proton transfer pathway is less competitive than S N 2. A remarkable finding is that the more favorable energetics for NH 2 Cl proton transfer, as compared to that for CH 3 Cl, does not manifest itself in the reaction dynamics. The present work sheds light on the underlying reaction dynamics of S N 2@N, which remain largely unclear compared to well-studied S N 2@C.

  12. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  13. Transformations of Model Organic Compounds on Snow Grains at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Galbavy, E. S.; Ram, K.; Anastasio, C.

    2005-12-01

    Photochemical reactions in snowpacks produce a number of chemicals species that can significantly impact the overlying atmosphere and transform many organic pollutants. During this past summer's field season at Summit we examined the kinetics for the disappearance of a suite of model organic compounds in surface snowpack. Our compounds (2-nitrobenzaldehyde, sodium benzoate, syringol, 4-chlorophenol, 2-oxo-butanoic acid, and phenanthrene) were chosen because they represent markers from several different emission sources and because they have a range of expected fates, i.e., their lifetimes will be determined by different processes. These processes include direct photolysis and reactions with oxidants such as hydroxyl radical (OH) and singlet molecular oxygen (1O2*) In addition to measuring the rates of loss of the model organics, we also measured concentrations of OH and 1O2* in the snow samples, as well as rates of direct photolysis of the organics in frozen, purified water. Our goal was to compare the measured lifetimes of the organic compounds with calculated lifetimes based on reactions with OH and 1O2* and direct photolysis. While certain compounds behaved as expected, others decayed more slowly, or more rapidly, than expected, indicating that other, unidentified, snow grain reactions and/or mechanisms are significant. The rates of organic compound loss, the potential reasons for the observed differences, and the implications for lifetimes of trace organic pollutants in polar regions will be discussed.

  14. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, D.H.; Ulrich, K.H.

    1998-04-21

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.

  15. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, D.H.; Ulrich, K.H.

    1998-09-22

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.

  16. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    PubMed

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  17. Cholesterol embolisms as possible adverse drug reaction of direct oral anticoagulants.

    PubMed

    Muller-Hansma, A H G; Daemen-Gubbels, C R G M; Schut, N H

    2018-04-01

    The Netherlands Pharmacovigilance Centre Lareb has received two reports of cholesterol crystal embolisms associated with the use of a direct oral anticoagulant (DOAC). The European pharmacovigilance database contains several other cases concerning this association, and one report was published in the scientific literature. Cholesterol crystal embolisms were described in association with the use of several other antithrombotic drugs, although the role as an independent risk factor is not conclusive. The case series described in this article, indicates the possibility of an adverse drug reaction when a patient develops cholesterol crystal embolisms while using a DOAC.

  18. Direct Reaction Measurements Using GODDESS

    DOE PAGES

    Pain, S. D.; Ratkiewicz, A.; Baugher, T.; ...

    2017-10-26

    GODDESS is a coupling of the charged-particle detection system ORRUBA to the gamma-ray detector array Gammasphere. This coupling has been developed in order to facilitate the high-resolution measurement of direct reactions in normal and inverse kinematics with stable and radioactive beams. GODDESS has been commissioned using a beam of 134Xe at 10 MeV/A, in a campaign of stable beam measurements. The measurement demonstrates the capabilities of GODDESS under radioactive beam conditions, and provides the first data on the single-neutron states in 135Xe, including previously unobserved states based on the orbitals above the N=82 shell closure.

  19. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  20. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    PubMed Central

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  1. Catalytic Arylation and Vinylation Reactions Directed by Anionic Oxygen Functions via Cleavage of C - H and C - C Bonds

    NASA Astrophysics Data System (ADS)

    Satoh, Tetsuya; Miura, Masahiro

    Aromatic compounds having oxygen-containing substituents such as phenols, phenyl ketones, benzyl alcohols, and benzoic acids undergo regioselective arylation and vinylation via C-H bond cleavage in the presence of transition-metal catalysts. The latter two substrates are also arylated and vinylated via C-C bond cleavage accompanied by liberation of ketones and CO2, respectively. Coordination of their anionic oxygen to the metal center is the key to activate the inert bonds effectively and regioselectively. The recent progress of these oxygen-directed reactions is summarized herein.

  2. Breathing pulses in singularly perturbed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Veerman, Frits

    2015-07-01

    The weakly nonlinear stability of pulses in general singularly perturbed reaction-diffusion systems near a Hopf bifurcation is determined using a centre manifold expansion. A general framework to obtain leading order expressions for the (Hopf) centre manifold expansion for scale separated, localised structures is presented. Using the scale separated structure of the underlying pulse, directly calculable expressions for the Hopf normal form coefficients are obtained in terms of solutions to classical Sturm-Liouville problems. The developed theory is used to establish the existence of breathing pulses in a slowly nonlinear Gierer-Meinhardt system, and is confirmed by direct numerical simulation.

  3. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  5. Nuclear astrophysics at DRAGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, U.

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determinationmore » not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.« less

  6. Direct urine polymerase chain reaction for chlamydia and gonorrhoea: a simple means of bringing high-throughput rapid testing to remote settings?

    PubMed

    Rahimi, Frashta; Goire, Namraj; Guy, Rebecca; Kaldor, John M; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M

    2013-08-01

    Background Rapid point-of-care tests (POCTs) for chlamydia (Chlamydia trachomatis) and gonorrhoea (Neisseria gonorrhoeae) have the potential to confer health benefits in certain populations even at moderate sensitivities; however, suitable POCTs for these organisms are currently lacking. In this study, we investigated the use of direct urine polymerase chain reaction (PCR), with the view of implementing a simplified PCR strategy for high-throughput chlamydia and gonorrhoea screening in remote settings. Briefly, a simple dilution of the urine was performed before adding it directly to a real-time PCR reaction. The method was evaluated using 134 stored urine specimens that had been submitted for chlamydia and gonorrhoea testing and had been tested using a commercial C. trachomatis and N. gonorrhoeae PCR method. These included samples that were PCR-positive for chlamydia (n=87), gonorrhoea (n=16) or both (n=2). Direct urine testing was conducted using previously described in-house real-time PCR methods for C. trachomatis and N. gonorrhoeae as well as for recognised N.gonorrhoeae antimicrobial resistance mechanisms. The overall sensitivities and specificities of the direct urine PCR were 78% and 100% for chlamydia, and 83% and 100% for gonorrhoea. N.gonorrhoeae penicillin and quinolone resistance mechanisms were characterised in 14 of the 18 N. gonorrhoeae-positive samples. The results of this study show that the simplified PCR strategy may be a feasible approach for rapid screening and improving chlamydia and gonorrhoea treatment in remote settings.

  7. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    PubMed

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  8. Quantitative functional characterization of conserved molecular interactions in the active site of mannitol 2-dehydrogenase

    PubMed Central

    Lucas, James E; Siegel, Justin B

    2015-01-01

    Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240

  9. n-p Short-Range Correlations from (p,2p+n) Measurements

    NASA Astrophysics Data System (ADS)

    Tang, A.; Watson, J. W.; Aclander, J.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Gushue, S.; Heppelmann, S.; Leksanov, A.; Makdisi, Y.; Malki, A.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Zhalov, D.

    2003-01-01

    We studied the 12C(p,2p+n) reaction at beam momenta of 5.9, 8.0, and 9.0 GeV/c. For quasielastic (p,2p) events pf, the momentum of the knocked-out proton before the reaction, was compared (event by event) with pn, the coincident neutron momentum. For |pn|>kF=0.220 GeV/c (the Fermi momentum) a strong back-to-back directional correlation between pf and pn was observed, indicative of short-range n-p correlations. From pn and pf we constructed the distributions of c.m. and relative motion in the longitudinal direction for correlated pairs. We also determined that 49±13% of events with |pf|>kF had directionally correlated neutrons with |pn|>kF.

  10. Strong bases. Directed ortho-meta'- and meta-meta'-dimetalations: a template base approach to deprotonation.

    PubMed

    Martínez-Martínez, Antonio J; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2014-11-14

    The regioselectivity of deprotonation reactions between arene substrates and basic metalating agents is usually governed by the electronic and/or coordinative characteristics of a directing group attached to the benzene ring. Generally, the reaction takes place in the ortho position, adjacent to the substituent. Here, we introduce a protocol by which the metalating agent, a disodium-monomagnesium alkyl-amide, forms a template that extends regioselectivity to more distant arene sites. Depending on the nature of the directing group, ortho-meta' or meta-meta' dimetalation is observed, in the latter case breaking the dogma of ortho metalation. This concept is elaborated through the characterization of both organometallic intermediates and electrophilically quenched products. Copyright © 2014, American Association for the Advancement of Science.

  11. Loss Process for the C2H5 Radical in the Atmospheres of Jupiter and Saturn: First Direct, Absolute Measurement of the Rate Constant for the Reaction H + C2H5 at Low Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Stief, L. J.; Pimentel, A. S.; Payne, W. A.; Nesbitt, F. L.; Cody, R. J.

    2003-05-01

    Photochemical models of the atmospheres of Jupiter and Saturn predict the reaction H + C2H5 to be the most important loss process for C2H5 in these atmospheres. In addition, the reaction channel H + C2H5 -> 2 CH3 is a significant source of the methyl radical. There are only two relatively modern studies of the H + C2H5 reaction, both of which depend on extensive modeling involving eight elementary reactions. The motivation for the present study is the lack of direct, absolute measurements of the rate constant for the H + C2H5 reaction at low pressures and temperatures appropriate for outer planet models. In the present experiments the reactants H and C2H5 are rapidly and simultaneously generated by reaction of F with appropriate mixtures of H2 and C2H6. Using the technique of discharge-flow with collision-free sampling to a mass spectrometer, we monitor the decay of C2H5 in excess H. In contrast to previous studies of this reaction, the primary H + C2H5 reaction is isolated and the radical decays only by reaction with H and by loss at the wall. Secondary reactions such as the self-reaction of C2H5 are negligible. At P = 1 Torr He we measure k (298K) = 1.13 x 10-10 cm3 molecule-1 s-1 and k (202K) = 1.18 x 10-10 cm3 molecule-1 s-1. Experiments at T = 155 K are in progress. The reaction is temperature independent as expected based on studies of other atom-radical reactions. Our result at T = 298 K lies between those of the two relatively modern but complex studies of this reaction. The present total rate constant data and planned product yield studies at low pressures and temperatures will then be available for use in future photochemical models of the atmospheres of the outer planets. The Planetary Atmospheres Program of NASA Headquarters is supporting this research.

  12. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    PubMed

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  13. Exploring Hydrogen Evolution and the Overpotential

    ERIC Educational Resources Information Center

    Lyon, Yana A.; Roberts, Adrienne A.; McMillin, David R.

    2015-01-01

    The laboratory experiment described provides insight into the energetics of hydrogen evolution at an electrode as well as the intrinsic barrier that typically impedes reaction. In the course of the exercise, students find that Sn(s) is thermodynamically capable of combining with protons to form hydrogen, but that the direct reaction occurs at a…

  14. 78 FR 41698 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Redesignation of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... particulates directly emitted by sources and not formed in a secondary manner through chemical reactions or... chemical reactions and other related processes in the atmosphere. Finally, for transportation conformity... addressing the status of CSAPR and CAIR in response to motions filed by numerous parties seeking a stay of...

  15. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  16. How-to-Do-It: A Simulation of the Blood Type Test.

    ERIC Educational Resources Information Center

    Sharp, John D., Sr.; Smailes, Deborah L.

    1989-01-01

    Explains an activity that allows students to visualize antigen-antibody type reactions and learn about antibodies and antigens without performing blood typing tests. Provides directions for students and a comparison chart of a blood typing simulation with procedure which is based on the reactions of certain ionic solutions when mixed. (RT)

  17. Brain Mechanisms Involved in Early Visual Perception.

    ERIC Educational Resources Information Center

    Karmel, Bernard Z.

    This document presents an analysis of the early attending responses and orienting reactions of infants which can be observed at birth and shortly thereafter. Focus is on one specific orienting reaction, the early direction and maintenance of one's eyes and head toward certain stimuli instead of others. The physical properties of stimuli that…

  18. 76 FR 25697 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ...; Availability for Licensing AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION: Notice... commercially available one, which means it now matches the PCR product generated in the qPCR reaction in the... and directly matches the PCR product generated in the qPCR reaction. The standard plasmid is easy to...

  19. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  20. Lewis base-catalyzed three-component Strecker reaction on water. An efficient manifold for the direct alpha-cyanoamination of ketones and aldehydes.

    PubMed

    Cruz-Acosta, Fabio; Santos-Expósito, Alicia; de Armas, Pedro; García-Tellado, Fernando

    2009-11-28

    The first three-component organocatalyzed Strecker reaction operating on water has been developed. The manifold utilizes ketones (aldehydes) as the starting carbonyl component, aniline as the primary amine, acetyl cyanide as the cyanide source and N,N-dimethylcyclohexylamine as the catalyst.

  1. Microscreen radiation shield for thermoelectric generator

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  2. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  3. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Devine, Jessalyn A.; Babin, Mark C.; Li, Jun; Guo, Lifen; Ma, Jianyi; Guo, Hua; Neumark, Daniel M.

    2017-10-01

    The transition state governs how chemical bonds form and cleave during a chemical reaction and its direct characterization is a long-standing challenge in physical chemistry. Transition state spectroscopy experiments based on negative-ion photodetachment provide a direct probe of the vibrational structure and metastable resonances that are characteristic of the reactive surface. Dynamical resonances are extremely sensitive to the topography of the reactive surface and provide an exceptional point of comparison with theory. Here we study the seven-atom F + CH3OH → HF + CH3O reaction using slow photoelectron velocity-map imaging spectroscopy of cryocooled CH3OHF- anions. These measurements reveal spectral features associated with a manifold of vibrational Feshbach resonances and bound states supported by the post-transition state potential well. Quantum dynamical calculations yield excellent agreement with the experimental results, allow the assignment of spectral structure and demonstrate that the key dynamics of complex bimolecular reactions can be captured with a relatively simple theoretical framework.

  4. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy.

    PubMed

    Weichman, Marissa L; DeVine, Jessalyn A; Babin, Mark C; Li, Jun; Guo, Lifen; Ma, Jianyi; Guo, Hua; Neumark, Daniel M

    2017-10-01

    The transition state governs how chemical bonds form and cleave during a chemical reaction and its direct characterization is a long-standing challenge in physical chemistry. Transition state spectroscopy experiments based on negative-ion photodetachment provide a direct probe of the vibrational structure and metastable resonances that are characteristic of the reactive surface. Dynamical resonances are extremely sensitive to the topography of the reactive surface and provide an exceptional point of comparison with theory. Here we study the seven-atom F + CH 3 OH → HF + CH 3 O reaction using slow photoelectron velocity-map imaging spectroscopy of cryocooled CH 3 OHF - anions. These measurements reveal spectral features associated with a manifold of vibrational Feshbach resonances and bound states supported by the post-transition state potential well. Quantum dynamical calculations yield excellent agreement with the experimental results, allow the assignment of spectral structure and demonstrate that the key dynamics of complex bimolecular reactions can be captured with a relatively simple theoretical framework.

  5. T85C polymorphisms of the dihydropyrimidine dehydrogenase gene detected in gastric cancer tissues by high-resolution melting curve analysis.

    PubMed

    Fang, Weijia; Xu, Nong; Jin, Dazhi; Chen, Yu; Chen, Xiaogang; Zheng, Yi; Shen, Hong; Yuan, Ying; Zheng, Shusen

    2012-01-01

    Dihydropyrimidine dehydrogenase is a key enzyme acting on the metabolic pathway of medications for gastric cancer. High-resolution melting curve technology, which was developed recently, can distinguish the wild-type dihydropyrimidine dehydrogenase gene from multiple polymorphisms by fluorescent quantitative polymerase chain reaction products in a direct and effective manner. T85C polymorphisms of dihydropyrimidine dehydrogenase in the peripheral blood of 112 Chinese gastric cancer patients were detected by real-time polymerase chain reaction combined with high-resolution melting curve technology. Primer design, along with the reaction system and conditions, was optimized based on the GenBank sequence. Seventy nine cases of wild-type (TT, [70.5%]), 29 cases of heterozygous (TC, [25.9%]), and 4 cases of homozygous mutant (CC, [3.6%]) were observed. The result was completely consistent with the results of the sequencing. Real-time polymerase chain reaction combined with high-resolution melting curve technology is a rapid, simple, reliable, direct-viewing, and convenient method for the detection and screening of polymorphisms.

  6. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  7. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction.

    PubMed

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H 2  + D. Clear oscillatory structures are observed for the H 2 (v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  8. Fusion reactions induced by radioactive beams: the 18F(p,α)15O case

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Roeder, B. T.; Trache, L.; Tribble, R. E.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Rapisarda, G. G.; Spartá, R.

    2017-11-01

    Gamma ray astronomy has made big strides in the last decades paving the way to a better understanding of explosive nucleosynthesis. In particular, crucial information on novae nucleosynthesis is linked to the abundance of the 18F isotope, which might be detected in explosive environments. Therefore, the reaction network producing and destroying this radioactive isotope has been extensively studied in the last years. Among those reactions, the 18F(p,α)15O cross section has been measured by means of several dedicated experiments, both using direct and indirect methods. The presence of resonances in the energy region of astrophysical interest has been reported by many authors. In the present work a report on a recent experiment performed via the Trojan Horse Method (THM) at the Texas A&M Cyclotron Institute is presented and the results are given and compared with the ones known in the literature, both direct and indirect. Data arising from THM measurements are then averaged and the reaction rate calculated in the novae energy range. Hints on future astrophysical applications will also be given.

  9. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH 3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH 2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H eliminationmore » to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr 3+ cations.« less

  10. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  11. Anatomy of an Elementary Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew J.; Zare, Richard N.

    1998-09-01

    The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.

  12. The Gifted and Honors Program at Ridgeroad Jr. High.

    ERIC Educational Resources Information Center

    Moody, Bonnie

    1984-01-01

    Describes a science program for honors students that offers a blend of both teacher-directed and student-directed activities. Includes information on instructional strategies used, independent student study projects, financial considerations, grading, and student reaction to the program. (JN)

  13. Recommendations for the Prophylactic Management of Skin Reactions Induced by Epidermal Growth Factor Receptor Inhibitors in Patients With Solid Tumors

    PubMed Central

    Deplanque, Gaël; Komatsu, Yoshito; Kobayashi, Yoshimitsu; Ocvirk, Janja; Racca, Patrizia; Guenther, Silke; Zhang, Jun; Lacouture, Mario E.; Jatoi, Aminah

    2016-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) is an established treatment that extends patient survival across a variety of tumor types. EGFR inhibitors fall into two main categories: anti-EGFR monoclonal antibodies, such as cetuximab and panitumumab, and first-generation tyrosine kinase inhibitors, such as afatinib, gefitinib, and erlotinib. Skin reactions are the most common EGFR inhibitor-attributable adverse event, resulting in papulopustular (acneiform) eruptions that can be painful and debilitating, and which may potentially have a negative impact on patients’ quality of life and social functioning, as well as a negative impact on treatment duration. Shortened treatment duration can, in turn, compromise antineoplastic efficacy. Similarly, appropriate management of skin reactions is dependent on their accurate grading; however, conventional means for grading skin reactions are inadequate, particularly within the context of clinical trials. Treating a skin reaction only once it occurs (reactive treatment strategies) may not be the most effective management approach; instead, prophylactic approaches may be preferable. Indeed, we support the viewpoint that prophylactic management of skin reactions should be recommended for all patients treated with EGFR inhibitors. Appropriate prophylactic management could effectively reduce the severity of skin reactions in patients treated with EGFR inhibitors and therefore has the potential to directly benefit patients and improve drug adherence. Accordingly, here we review published and still-emerging data, and provide practical and evidence-based recommendations and algorithms regarding the optimal prophylactic management of EGFR inhibitor-attributable skin reactions. Implications for Practice: Epidermal growth factor receptor (EGFR) inhibitors extend patient survival across a variety of tumor types. The most common EGFR inhibitor-attributable adverse events are skin reactions. Prophylactic—rather than reactive—management of skin reactions for all patients receiving EGFR inhibitors should be recommended because appropriate prophylaxis could effectively reduce the severity of skin reactions; thus, the derivation of highly effective prophylactic strategies has the potential to directly benefit patients. Accordingly, a review of the available data leads to practical and evidence-based recommendations and algorithms regarding the optimal prophylactic management of EGFR inhibitor-attributable skin reactions. PMID:27449521

  14. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  15. Facile access to amides and hydroxamic acids directly from nitroarenes.

    PubMed

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  16. Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truhlar, Donald G.

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  17. Nurses' Responses and Reactions to an Emergent Pediatric Simulation Exercise.

    PubMed

    Hoffman, Kenneth; von Sadovszky, Victoria

    Pediatric nurses' responses and reactions in emergent simulations are understudied. Using authority gradient theory as a guide, the purpose of this study was to examine nurses' reactions during an emergency simulation exercise when directed to give an incorrect medication dose. Ten groups of noncritical care nurses were videotaped from the beginning of the simulation through debriefing. Although errors were made during the simulation event, all groups responded correctly during debriefing, indicating that authority gradient may play a role in clinical decision-making.

  18. Asymmetric intermolecular Pauson-Khand reaction of symmetrically substituted alkynes.

    PubMed

    Ji, Yining; Riera, Antoni; Verdaguer, Xavier

    2009-10-01

    The asymmetric intermolecular Pauson-Khand reaction of symmetric alkynes has been accomplished for the first time. N-Phosphino-p-tolylsulfinamide (PNSO) ligands have been identified as efficient ligands in this process. The chirality of the cobalt S-bonded sulfinyl moiety was found to direct olefin insertion into one of the two possible cobalt-carbon bonds in the alkyne complex. Reaction of symmetric alkynes allows for a simplified experimental protocol since there is no need for separation of diastereomeric complexes.

  19. The Stille Reaction (Vittorio Farina, Venkat Krishnamurthy, and William J. Scott)

    NASA Astrophysics Data System (ADS)

    Cochran, John C.

    1999-10-01

    In 1997, Volume 50 of Organic Reactions was published in a handsome and appropriate gold hard-cover edition. This was only the third volume in this prestigious series that consisted of a single chapter. The treatise, The Stille Reaction, describes a palladium-catalyzed cross-coupling between a carbon ligand on tin and a carbon with electrophilic character. This reaction has been around only since 1977, and the literature is covered here through 1994 with a few references in 1995. It is truly astounding that, in the space of about 17 years, a new reaction could generate enough literature for not only a chapter in Organic Reactions, but a complete volume of 652 pages, 864 literature citations, and more than 4300 specific reaction examples. The editorial board of Organic Reactions has graciously decided to make this extensive review available to a broader audience by authorizing a paperback edition of The Stille Reaction. While the mechanistic details of the Stille reaction are generally understood, there are many fine points that must be tuned to each case. For instance, about 15 different solvents have been used, ranging in polarity from benzene to water; at least ten different ligands for the palladium atom are available and they range from hard to soft; CuI, Ag2CO3, and LiCl are sometimes useful cocatalysts but sometimes have no effect, and in some cases LiCl is inhibitory; vinyl triflates couple with alkenyl-, alkynyl- and allylstannanes but not with arylstannanes; reaction temperatures vary from room temperature to refluxing DMF. An important consideration is that most stannanes are reasonably air and moisture stable and do not react with most common functional groups. Thus, it is not necessary to build protection-deprotection sequences into the synthetic scheme. The extensive reaction examples are arranged in 33 tables that show, for each reaction, the structures of the electrophile, the stannane, and the product and specify the catalyst, cocatalyst, solvent temperature, and yield. The tables are sequenced by the structure of the electrophiles, which are listed in order of increasing carbon count for the group that is transferred. For the same electrophile, different stannanes are listed by the increasing carbon count of the group transferred from tin. For example, the three tables with the most examples are titled "Direct Cross-Coupling of Alkenyl Electrophiles," "Direct Cross-Coupling of Aryl Electrophiles", and "Direct Cross-Coupling of Miscellaneous Heterocyclic Electrophiles". They include 661, 1043, and 339 examples, respectively. The narrative section of the book begins with an overview of the mechanism, regiochemistry, and stereochemistry of the Stille reaction. This is followed by discussions of the scope and limitations of both the electrophilic species and the stannane. The Stille reaction can also involve the incorporation of a carbonyl in the coupling sequence. The carbonyl results from inclusion of carbon monoxide in the reaction medium. This variation of the reaction is also discussed. The narrative continues with discussion of Hech-Stille tandem sequences, side reactions, and comparisons with other cross-coupling reactions. It concludes with a very useful section on experimental considerations and nine examples of procedures from the literature. The book also includes a useful index (covering the narrative section), which has been added to the original Organic Reactions edition. Finally, it should be noted that a careful inspection of the thousands of structures in the table did not turn up one typographical error. In a 1993 research paper (J. Org. Chem. 1993, 58, 5434) the lead author, Vittorio Farina, writes that "A survey of applications of transition metal-mediated cross-coupling reactions for the year 1992 shows that the Stille coupling accounts for over 50% of all cross-couplings reported." It seems that, given the magnitude of this review, the significance of this reaction has continued to grow. Every synthetic organic chemist should have easy access to the massive amount of information contained in this book.

  20. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies.

    PubMed

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-09-12

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment.

  1. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies

    PubMed Central

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-01-01

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment. PMID:28895909

  2. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    PubMed Central

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway chemistries that produce the same molecules. PMID:24586134

  3. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    NASA Astrophysics Data System (ADS)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  4. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  5. Kinetic study on bonding reaction of gelatin with CdS nanopaticles by UV-visible spectroscopy.

    PubMed

    Tang, Shihua; Wang, Baiyang; Li, Youqun

    2015-04-15

    The chemical kinetics on gelatin-CdS direct conjugates has been systematically investigated as a function of different temperature and reactant concentration (i.e. Cd(2+), S(2-) and gelatin) by UV-visible spectroscopy, for the first time. The nonlinear fitting and the differential method were used to calculate the initial rate based on the absorbance-time data. A double logarithmic linear equation for calculating the rate constant (k) and the reaction order (n) was introduced. The reaction kinetic parameters (n, k, Ea, and Z) and activation thermodynamic parameters (ΔG(≠), ΔH(≠), and ΔS(≠)) were obtained from variable temperature kinetic studies. The overall rate equation allowing evaluation of conditions that provide required reaction rate could be expressed as: r = 1.11 × 10(8) exp(-4971/T)[Cd(2+)][gelatin](0.6)[S(2-)](0.6) (M/S) The calculated values of the reaction rate are well coincide with the experimental results. A suitable kinetic model is also proposed. This work will provide guidance for the rational design of gelatin-directed syntheses of metal sulfide materials, and help to understand the biological effects of nanoparticles at the molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    PubMed

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  7. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  8. Effects of microsolvation on a SN2 reaction: indirect atomistic dynamics and weakened suppression of reactivity.

    PubMed

    Yang, Li; Liu, Xu; Zhang, Jiaxu; Xie, Jing

    2017-04-12

    Systematic studies of microsolvation in the gas phase have enriched our knowledge of solvent effects. Here, the dynamics of a prototype S N 2 reaction of a hydrated fluoride ion with methyl iodide is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for an unsolvated system. An indirect scattering is found to prevail, which occurs dominantly by forming hydrated F - (H 2 O)-HCH 2 I and F - (H 2 O)-CH 3 I pre-reaction complexes at low energies, but proceeds through their water-free counterparts at higher energies. This finding is in strong contrast to a general evolution from indirect to direct dynamics with enhancing energy for the unsolvated substitution reactions, and this discrepancy is understood by the substantial steric hindrance introduced by a water molecule. As established in experiments, solvation suppresses the reactivity, whereas we find that this depression is remarkably frustrated upon raising the energy given that collision-induced dehydration essentially diminishes the water block for reactive collisions. The present study sheds light on how solute-solvent interactions affect the underlying dynamics at a deeper atomic level, thereby promoting our understanding of the fundamental solvent effects on chemical reactions in solution.

  9. Dictating photoreactivity through restricted bond rotations: cross-photoaddition of atropisomeric acrylimide derivatives under UV/visible-light irradiation.

    PubMed

    Iyer, Akila; Jockusch, Steffen; Sivaguru, J

    2014-11-13

    Nonbiaryl atropisomeric acrylimides underwent facile [2 + 2] photocycloaddition leading to cross-cyclobutane adducts with very high stereospecificity (enantiomeric excess (ee): 99% and diastereomeric excess (de): 99%). The photoreactions proceeded smoothly in isotropic media for both direct and triplet sensitized irradiations. The reactions were also found to be very efficient in the solid state where the same cross-cyclobutane adduct was observed. Photophysical studies enabled us to understand the excited-state photochemistry of acrylimides. The triplet energy was found to be ∼63 kcal/mol. The reactions proceeded predominantly via a singlet excited state upon direct irradiation with very poor intersystem crossing that was ascertained by quantification of the generated singlet oxygen. The reactions progressed smoothly with triplet sensitization with UV or visible-light irradiations. Laser flash photolysis experiments established the triplet transient of atropisomeric acrylimides with a triplet lifetime at room temperature of ∼40 ns.

  10. Detection of human Pneumocystis carinii by the polymerase chain reaction.

    PubMed

    Becker-Hapak, M; Liberator, P; Graves, D

    1991-01-01

    Oligonucleotide primers were prepared from a clone (B12) which has been shown to be a repetitive sequence in the rat P. carinii genome. Polymerase chain reaction was employed to amplify both rat and human P. carinii DNA. The detection limit of the assay was approximately 600 ng of total nucleic acid. Amplification products from both the rat and human isolates (ca. 780 bp) were characterized by denaturing gradient gel electrophoresis after digestion with Sau3A. No amplification products were obtained when DNA from the following potential pulmonary pathogens were used in identical reactions: Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Mycobacterium avium-intracellulare and cytomegalovirus. In a blind study using the B12 primers, P. carinii DNA was successfully amplified in clinical samples which were positive by direct immunofluorescence assay (IFA) as well as in some specimens not identified by direct IFA.

  11. Mathematical model of the direct reduction of dust composite pellets containing zinc and iron

    NASA Astrophysics Data System (ADS)

    An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-07-01

    Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.

  12. Reaction mechanism of molybdoenzyme formate dehydrogenase.

    PubMed

    Leopoldini, Monica; Chiodo, Sandro G; Toscano, Marirosa; Russo, Nino

    2008-01-01

    Formate dehydrogenase is a molybdoenzyme of the anaerobic formate hydrogen lyase complex of the Escherichia coli microorganism that catalyzes the oxidation of formate to carbon dioxide. The two proposed mechanisms of reaction, which differ in the occurrence of a direct coordination or not of a SeCys residue to the molybdenum metal during catalysis were analyzed at the density functional level in both vacuum and protein environments. Some DF functionals, in addition to the very popular B3LYP one, were employed to compute barrier heights. Results revealed the role played by the SeCys residue in performing the abstraction of the proton from the formate substrate. The computation of the energetic profiles for both mechanisms indicated that the reaction barriers are higher when the selenium is directly coordinated to the metal, whereas less energy is required when SeCys is not a ligand at the molybdenum site.

  13. Room-Temperature Synthesis of GaN Driven by Kinetic Energy beyond the Limit of Thermodynamics.

    PubMed

    Imaoka, Takane; Okada, Takeru; Samukawa, Seiji; Yamamoto, Kimihisa

    2017-12-06

    The nitridation reaction is significantly important to utilize the unique properties of nitrides and nitrogen-doped materials. However, nitridation generally requires a high temperature or highly reactive reagents (often explosive) because the energies of N-N bond cleavage and nitrogen anion formation (N 3- ) are very high. We demonstrate the first room-temperature synthesis of GaN directly from GaCl 3 by nanoscale atom exchange reaction. Nonequilibrium nitrogen molecules with very high translational energy were used as a chemically stable and safe nitrogen source. The irradiation of molecular nitrogen to the desired reaction area successfully provided a gallium nitride (GaN) nanosheet that exhibited a typical photoluminescence spectrum. Because this process retains the target substrate room temperature and does not involve any photon nor charged ion, it allows damage-less synthesis of the semiconducting metal nitrides, even directly on plastic substrates such as polyethylene terephthalate (PET).

  14. Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7.

    PubMed

    Reddy, M Damoder; Blanton, Alexandra N; Watkins, E Blake

    2017-05-19

    Pd-catalyzed, selective, monoarylation of ortho-C-H bonds of various benzamides with aryl/heteroaryl iodides has been realized using N-(2-aminophenyl)acetamide (APA) as a new bidentate directing group for the first time. The reaction was tolerant of a wide range of functional groups, and a variety of biaryl amide derivatives were successfully prepared in good to moderate yield. The utilization of N-(2-aminophenyl)acetamide as a novel directing group, Mn(OAc) 2 as a co-oxidant (silver free reaction conditions), and absolute ortho-monoaryl selectivity are notable features of this reaction. In addition, the obtained monoarylated products could be further transformed into the bioactive natural products and human microflora metabolites of dietary ellagic acid derivatives, urolithin B, urolithin M6, and urolithin M7.

  15. Free-Energy Landscape of the Dissolution of Gibbsite at High pH.

    PubMed

    Shen, Zhizhang; Kerisit, Sebastien N; Stack, Andrew G; Rosso, Kevin M

    2018-04-05

    The individual elementary reactions involved in the dissolution of a solid into solution remain mostly speculative due to a lack of direct experimental probes. In this regard, we have applied atomistic simulations to map the free-energy landscape of the dissolution of gibbsite from a step edge as a model of metal hydroxide dissolution. The overall reaction combines kink formation and kink propagation. Two individual reactions were found to be rate-limiting for kink formation, that is, the displacement of Al from a step site to a ledge adatom site and its detachment from ledge/terrace adatom sites into the solution. As a result, a pool of mobile and labile adsorbed species, or adatoms, exists before the release of Al into solution. Because of the quasi-hexagonal symmetry of gibbsite, kink site propagation can occur in multiple directions. Overall, our results will enable the development of microscopic mechanistic models of metal oxide dissolution.

  16. Detection of putative oral pathogens in acute periradicular abscesses by 16S rDNA-directed polymerase chain reaction.

    PubMed

    Siqueira, J F; Rôças, I N; Oliveira, J C; Santos, K R

    2001-03-01

    A 16S rDNA-directed polymerase chain reaction method was used to assess the occurrence of four black-pigmented anaerobic rods, Treponema denticola, and Actinobacillus actinomycetemcomitans in acute periradicular abscesses. Pus was collected by aspiration from 10 cases diagnosed as acute abscesses of endodontic origin. DNA was extracted from the samples and analyzed using a polymerase chain reaction-based identification assay. The method allowed detecting black-pigmented anaerobes in 80% of the examined abscesses. Porphyromonas endodontalis was found in 70%, T. denticola in 50%, Porphyromonas gingivalis in 40%, and Prevotella intermedia in 10% of the cases. P. gingivalis was always found associated with P. endodontalis. Prevotella nigrescens and A. actinomycetemcomitans were not found in any pus sample. The high prevalence of P. endodontalis, T. denticola, and P. gingivalis suggests that they can play an important role in the etiology of acute periradicular abscesses.

  17. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, α){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations tomore » evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.« less

  18. Modeling the mechanism of glycosylation reactions between ethanol, 1,2-ethanediol and methoxymethanol.

    PubMed

    Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José

    2013-09-07

    The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.

  19. When anger dominates the mind: Increased motor corticospinal excitability in the face of threat

    PubMed Central

    Hortensius, Ruud

    2016-01-01

    Abstract Threat demands fast and adaptive reactions that are manifested at the physiological, behavioral, and phenomenological level and are responsive to the direction of threat and its severity for the individual. Here, we investigated the effects of threat directed toward or away from the observer on motor corticospinal excitability and explicit recognition. Sixteen healthy right‐handed volunteers completed a transcranial magnetic stimulation (TMS) task and a separate three‐alternative forced‐choice emotion recognition task. Single‐pulse TMS to the left primary motor cortex was applied to measure motor evoked potentials from the right abductor pollicis brevis in response to dynamic angry, fearful, and neutral bodily expressions with blurred faces directed toward or away from the observer. Results showed that motor corticospinal excitability increased independent of direction of anger compared with fear and neutral. In contrast, anger was better recognized when directed toward the observer compared with when directed away from the observer, while the opposite pattern was found for fear. The present results provide evidence for the differential effects of threat direction on explicit recognition and motor corticospinal excitability. In the face of threat, motor corticospinal excitability increases independently of the direction of anger, indicative of the importance of more automatic reactions to threat. PMID:27325519

  20. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    NASA Astrophysics Data System (ADS)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  1. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    PubMed

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: Revisiting theoretical and experimental data

    NASA Astrophysics Data System (ADS)

    Sade, Ziv; Halevy, Itay

    2017-10-01

    CO2 (de)hydration (i.e., CO2 hydration/HCO3- dehydration) and (de)hydroxylation (i.e., CO2 hydroxylation/HCO3- dehydroxylation) are key reactions in the dissolved inorganic carbon (DIC) system. Kinetic isotope effects (KIEs) during these reactions are likely to be expressed in the DIC and recorded in carbonate minerals formed during CO2 degassing or dissolution of gaseous CO2. Thus, a better understanding of KIEs during CO2 (de)hydration and (de)hydroxylation would improve interpretations of disequilibrium compositions in carbonate minerals. To date, the literature lacks direct experimental constraints on most of the oxygen KIEs associated with these reactions. In addition, theoretical estimates describe oxygen KIEs during separate individual reactions. The KIEs of the related reverse reactions were neither derived directly nor calculated from a link to the equilibrium fractionation. Consequently, KIE estimates of experimental and theoretical studies have been difficult to compare. Here we revisit experimental and theoretical data to provide new constraints on oxygen KIEs during CO2 (de)hydration and (de)hydroxylation. For this purpose, we provide a clearer definition of the KIEs and relate them both to isotopic rate constants and equilibrium fractionations. Such relations are well founded in studies of single isotope source/sink reactions, but they have not been established for reactions that involve dual isotopic sources/sinks, such as CO2 (de)hydration and (de)hydroxylation. We apply the new quantitative constraints on the KIEs to investigate fractionations during simultaneous CaCO3 precipitation and HCO3- dehydration far from equilibrium.

  3. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    PubMed Central

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  4. Complex Cure Kinetics of the Tertiary Amine activated Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes

    The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.

  5. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  6. Note: CO₂-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell.

    PubMed

    Purser, Gemma; Rochelle, Christopher A; Wallis, Humphrey C; Rosenqvist, Jörgen; Kilpatrick, Andrew D; Yardley, Bruce W D

    2014-08-01

    A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.

  7. Water Assisted Reaction Mechanism of OH- with CCl4 in Aqueous Solution - Hybrid Quantum Mechanical and Molecular Mechanics Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Yin, Hongyun; Wang, Dunyou

    2013-02-20

    The OH- (H2O) + CCl4 reaction in aqueous solution was investigated using the combined quantum mechanical and molecular mechanics approach. The reaction mechanism of OH- (H2O) + CCl4 consists of two concerted steps - formation of OH- in the favorable attack conformation via the proton transfer process, and the nucleophilic substitution process in which the newly formed OH- attacks the CCl4. The free energy activation barrier is 38.2 kcal/mol at CCSD(T)/MM level of theory for this reaction, which is about 10.3 kcal/mol higher than that of the direct nucleophilic substitution mechanism of the OH- + CCl4 reaction in aqueous solution.

  8. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  9. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R; Bersntein, L; Burke, J

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less

  10. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

    PubMed

    Roger, Magali; Brown, Fraser; Gabrielli, William; Sargent, Frank

    2018-01-08

    Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO 2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO 2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO 2 [3-5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO 2 and H 2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO 2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Effect of Co-Solutes on Template-Directed Nonenzymatic Copying of RNA

    NASA Astrophysics Data System (ADS)

    Bapat, N. V.; Rajamani, S.

    2017-07-01

    Given the heterogeneous nature of the prebiotic milieu, we report here, the effect of presence of lipid vesicles and Polyethylene Glycol (PEG) as co-solutes on the rate and accuracy of enzyme-free template-directed RNA primer extension reactions.

  12. The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organic syntheses.

    PubMed

    Bodnar, Brian S; Miller, Marvin J

    2011-06-14

    Organic transformations that result in the formation of multiple covalent bonds within the same reaction are some of the most powerful tools in synthetic organic chemistry. Nitrosocarbonyl hetero-Diels-Alder (HDA) reactions allow for the simultaneous stereospecific introduction of carbon-nitrogen and carbon-oxygen bonds in one synthetic step, and provide direct access to 3,6-dihydro-1,2-oxazines. This Review describes the development of the nitrosocarbonyl HDA reaction and the utility of the resulting oxazine ring in the synthesis of a variety of important, biologically active molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iodinated contrast media and their adverse reactions.

    PubMed

    Singh, Jagdish; Daftary, Aditya

    2008-06-01

    Cross-use of technology between nuclear medicine and radiology technologists is expanding. The growth of PET/CT and the increasing use of intravenous contrast agents during these procedures bring the nuclear medicine technologist into direct contact with these agents and their associated complications. A basic understanding of the occurrence, risk factors, clinical features, and management of these procedures is of increasing importance to the nuclear medicine technologist. After reading this article, the technologist will be able to list the factors that increase the risk of contrast reactions; understand ways to minimize the occurrence of contrast reactions; and develop a plan to identify, treat, and manage the reactions effectively.

  14. Transfusion reaction identification and management at the bedside.

    PubMed

    Crookston, Kendall P; Koenig, Sara C; Reyes, Michael D

    2015-01-01

    Blood product transfusion is one of the most common invasive procedures performed in the health care setting. In contrast to pharmaceuticals, blood is actually a liquid transplant. Transfusion complications consequently encompass complex biological processes and infectious possibilities. Changes in vital signs are regularly seen during transfusion. Knowledge of common transfusion reaction signs and symptoms enables the clinical team to differentiate a normal patient response from a life-threatening reaction. Direct care nurses responsible for this procedure play a vital role in its success. Understanding the possible complications of transfusion and how to quickly recognize reactions at the bedside helps ensure the best patient outcomes.

  15. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns

    PubMed Central

    Jiang, Bo; Li, Ying; Tu, Man-Su; Wang, Shu-Liang; Tu, Shu-Jiang; Li, Guigen

    2012-01-01

    New three-component domino reaction providing divergent approaches to multi-functionalized fused pyrroles with different substituted patterns have been established (40 examples). The direct C(sp3)–N bond formation was achieved through intermolecular allylic amination in a one-pot operation; and N-arylation of amines was realized by varying N-amino acid enaminones. The reaction is easy to perform simply by mixing three common reactants in acetic acid under microwave heating. The reaction proceeds at fast rates and can be finished within 30 min, which makes workup convenient to give good chemical yields. PMID:22852549

  16. Nuclear Astrophysics at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.

    2005-05-24

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand themore » nucleosynthesis of the heavy elements.« less

  17. Measurement of radiative proton capture on 18F and implications for oxygen-neon novae reexamined

    NASA Astrophysics Data System (ADS)

    Akers, C.; Laird, A. M.; Fulton, B. R.; Ruiz, C.; Bardayan, D. W.; Buchmann, L.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Hager, U.; Hutcheon, D.; Martin, L.; Murphy, A. St. J.; Nelson, K.; Ottewell, D.; Rojas, A.; Spyrou, A.

    2016-12-01

    Background: The rate of the 18F(p ,γ )19Ne reaction affects the final abundance of the radioisotope 18F ejected from novae. This nucleus is important as its abundance is thought to significantly influence the first-stage 511-keV and continuum γ -ray emission in the aftermath of novae. No successful measurement of this reaction existed prior to this work, and the rate used in stellar models had been calculated based on incomplete information from contributing resonances. Purpose: Of the two resonances thought to provide a significant contribution to the astrophysical reaction rate, located at Ec .m .=330 and 665 keV, the former has a radiative width estimated from the assumed analog state in the mirror nucleus, 19F, while the latter resonance does not have an analog state assignment, resulting in an arbitrary radiative width being assumed. As such, a direct measurement was needed to establish what role this resonance plays in the destruction of 18F at nova temperatures. This paper extends and takes the place of a previous Letter which reported the strength of the Ec .m .=665 keV resonance. Method: The DRAGON recoil separator was used to directly measure the strength of the important 665-keV resonance in this reaction, in inverse kinematics, by observing 19Ne reaction products. A radioactive 18F beam was provided by the ISAC facility at TRIUMF. R -matrix calculations were subsequently used to evaluate the significance of the results at astrophysical energies. Results: We report the direct measurement of the 18F(p ,γ )19Ne reaction with the reevaluation of several detector efficiencies and the use of an updated 19Ne level scheme in the reaction rate analysis. The strength of the 665-keV resonance (Ex=7.076 MeV) is found to be an order of magnitude weaker than currently assumed in nova models. An improved analysis of the previously reported data is presented here, resulting in a slightly different value for the resonance strength. These small changes, however, do not alter the primary conclusions. Conclusions: Reaction rate calculations definitively show that the 665-keV resonance plays no significant role in the destruction of 18F at nova temperatures.

  18. Shared trauma reality in war: Mental health therapists' experience.

    PubMed

    Freedman, Sara A; Tuval Mashiach, Rivka

    2018-01-01

    Shared traumatic reality occurs when therapists are doubly exposed to a traumatic event, both through their clients' experience, along with their own direct exposure. Studies have shown that a shared traumatic reality can lead to both positive and negative outcomes for therapists. Most studies have examined these reactions sometime after the end of the traumatic event, and less is known about reactions that occur during a traumatic event. In addition, most studies have assumed, rather than examined, indirect exposure. In this study, we extend this literature by examining direct and indirect exposure of therapists during a war situation, and their psychological reactions. Over a period of two months in 2014, 70% of the Israeli population was exposed to rocket fire. Geographical areas differed in terms of amount of exposure, and its potential danger. 151 therapists living throughout Israel were assessed via an Internet based survey in the middle of the war, and were assessed for the effects on their professional and personal lives, degree of burnout, ways of coping and symptoms levels of PTSD and psychological distress. These indicate that significant differences in direct exposure occurred depending on place of residence. PTSD levels were related to higher direct exposure, as well as prior trauma exposure, but not to indirect exposure. Indirect exposure, as measured by increased workload, was related to increased distress and emotional exhaustion. These data shed light on the effects of direct and indirect exposure to a shared traumatic experience of war amongst therapists. The data support previous studies showing a greater effect of direct exposure on PTSD. Since indirect exposure appears to negatively impact burnout and psychological distress, rather than PTSD, this study shows that symptoms other than PTSD should be the result of in a shared traumatic reality.

  19. Shared trauma reality in war: Mental health therapists’ experience

    PubMed Central

    Tuval Mashiach, Rivka

    2018-01-01

    Introduction Shared traumatic reality occurs when therapists are doubly exposed to a traumatic event, both through their clients’ experience, along with their own direct exposure. Studies have shown that a shared traumatic reality can lead to both positive and negative outcomes for therapists. Most studies have examined these reactions sometime after the end of the traumatic event, and less is known about reactions that occur during a traumatic event. In addition, most studies have assumed, rather than examined, indirect exposure. In this study, we extend this literature by examining direct and indirect exposure of therapists during a war situation, and their psychological reactions. Method Over a period of two months in 2014, 70% of the Israeli population was exposed to rocket fire. Geographical areas differed in terms of amount of exposure, and its potential danger. 151 therapists living throughout Israel were assessed via an Internet based survey in the middle of the war, and were assessed for the effects on their professional and personal lives, degree of burnout, ways of coping and symptoms levels of PTSD and psychological distress. Results These indicate that significant differences in direct exposure occurred depending on place of residence. PTSD levels were related to higher direct exposure, as well as prior trauma exposure, but not to indirect exposure. Indirect exposure, as measured by increased workload, was related to increased distress and emotional exhaustion. Discussion These data shed light on the effects of direct and indirect exposure to a shared traumatic experience of war amongst therapists. The data support previous studies showing a greater effect of direct exposure on PTSD. Since indirect exposure appears to negatively impact burnout and psychological distress, rather than PTSD, this study shows that symptoms other than PTSD should be the result of in a shared traumatic reality. PMID:29408879

  20. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top