NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
Warmenhoven, John; Cobley, Stephen; Draper, Conny; Harrison, Andrew; Bargary, Norma; Smith, Richard
2018-05-01
To examine whether gender or side of the boat influenced shape characteristics of the force-angle profile in on-water single sculling. Cross-sectional study design. Bivariate functional principal components analysis (bfPCA) was applied to force-angle data to identify the main modes of variance in curves of forty highly skilled male and female rowers (national and international level), rowing at 32 strokes per minute in a single scull boat. Separate discriminant function analyses for each side of the boat showed strong classification of rowers for gender. Force application close to (or closely around) the perpendicular oar position was demonstrated to be different between genders. A mixed ANOVA exploring gender, boat side and their interaction revealed that bow and stroke side forces were also statistically different from each other independently of gender. A main effect, independent of side of the boat, was also present for gender and no interaction was found between gender and boat side. Bow side forces seemingly acted as a driver of power and peak force production, while stroke side forces may have acted as a mediator of propulsive forces with an additional potential role in steering due to known asymmetrical offsets in boat rigging. Results demonstrate that propulsive force differences according to gender and boat-side are evident and must be acknowledged and accounted for before force-angle graphs are explored relative to performance measures. Copyright © 2017. Published by Elsevier Ltd.
The generation of side force by distributed suction
NASA Technical Reports Server (NTRS)
Roberts, Leonard; Hong, John
1993-01-01
This report provides an approximate analysis of the generation of side force on a cylinder placed horizontal to the flow direction by the application of distributed suction on the rearward side of the cylinder. Relationships are derived between the side force coefficients and the required suction coefficients necessary to maintain attached flow on one side of the cylinder, thereby inducing circulation around the cylinder and a corresponding side force.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
Proportioning the airplane for lateral stability
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Proportioning for lateral aircraft control included: (1) directional stability (slope of curve of yawing moment coefficient against sideslip), and (2) effective dihedral factor (slope of curve of rolling moment coefficient against sideslip). Basic forces influencing the directional stability of aircraft are indicated. Propeller side force, basic fuselage yaw, and vertical tail side force contributed to yaw moment about center of gravity.
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu
2017-11-01
A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.
Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.
1995-01-01
An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.
NASA Technical Reports Server (NTRS)
Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.
1992-01-01
A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.
Multiple direction vibration fixture
Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.
1991-01-01
An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.
Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos
NASA Technical Reports Server (NTRS)
Denegre, J. M.; Danilchik, M. V.
1993-01-01
In fertilized eggs of the frog Xenopus, the vegetal yolk mass rotates away from the future dorsal side (J. P. Vincent and J. Gerhart, 1987, Dev. Biol. 123, 526-539), and a major rearrangement of the deep animal hemisphere cytoplasm produces a characteristic swirl in the prospective dorsal side (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). The relationship between this swirl and determination of the dorsal-ventral axis was further investigated by attempting to experimentally separate the positions of the swirl and the dorsal-ventral axis. Eggs were obliquely oriented in the gravity field to respecify the direction of yolk mass rotation and the position of the dorsal-ventral axis. When yolk mass rotation occurred in the absence of a sperm, as in activated eggs, a swirl pattern formed on the side away from which the yolk mass had rotated. In fertilized eggs tipped with the sperm entry point (SEP) down or to the side, swirl patterns were always found to form on the side away from which the yolk mass was displaced. However, in eggs tipped SEP up, in which the yolk mass was forced to rotate away from the SEP, more complicated rearrangements were observed in addition to the rotation-oriented swirl. Because the direction of yolk mass rotation was found to be influenced by both gravity and the actual position of the SEP in obliquely oriented eggs (SEP to the side), such complicated rearrangement patterns may result from opposing forces generated by both yolk mass rotation and the expanding sperm aster. Thus, except in cases in which the influences of SEP position and unit gravity opposed each other, it was not possible to experimentally separate the position of the deep cytoplasmic swirl from the direction of yolk mass rotation, and therefore the position of the prospective dorsal side.
Cornering characteristics of the main-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.
1988-01-01
An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.
Lin, Yi-Jia; Lee, Shih-Chi; Chang, Chao-Chin; Liu, Tsung-Han
2018-01-01
This study is aimed at determining the effects of midsole thickness on movement characteristic during side cutting movement. Fifteen athletes performed side-step cutting while wearing shoes with varying midsole thicknesses. Temporal-spatial and ground reaction force variables as well as foot and ankle frontal kinematics were used to describe breaking and propulsive movement characteristics and modulation strategies. Regardless of midsole thickness, temporal-spatial variables and breaking and propulsive force during side cutting were statistically unchanged. Significantly greater peaks of ankle inversion and plantarflexion with a thicker sole and greater midtarsal pronation with a thinner sole were observed. Current results demonstrated that hypotheses formed solely based on material testing were insufficient to understand the adaptations in human movement because of the redundancy of the neuromusculoskeletal system. Participants were able to maintain temporal-spatial performance during side cutting while wearing shoes with midsoles of varying thicknesses. Increased pronation for a thinner sole might help reduce the force of impact but might be associated with an increased risk of excessive stress on soft tissue. Increased peak of ankle inversion and plantarflexion for a thicker sole may be unfavorable for the stability of ankle joint. Information provided in human movement testing is crucial for understanding factors associated with movement characteristics and injury and should be considered in the future development of shoe design. PMID:29854000
Low-speed aerodynamic characteristics of a generic forward-swept-wing aircraft
NASA Technical Reports Server (NTRS)
Ross, J. C.; Matarazzo, A. D.
1982-01-01
Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce a direct side-force control.
Effect of geometric nonlinearity on acoustic modulation
NASA Astrophysics Data System (ADS)
Warnemuende, Kraig; Wu, Hwai-Chung
2005-05-01
Non-linear nondestructive testing is different from linear acoustic in that it correlates the presence and characteristics of a defect with acoustical signals whose frequencies differ from the frequencies of the emitted probe signal. The difference in frequencies between the probe signal and the resulting frequencies is due to a nonlinear transformation of the probe signal as it passes through a defect. Under acoustic interrogation due to longitudinal waves, as the compression phase passes the defect the two sides of the interface are in direct contact and the contact area increases. Similarly, the tensile phase passes through the defect, the two sides separate and the contact area decreases, thereby modulating the signal amplitude. The contact area depends on the roughness of the surface and on the magnitude of the cohesive forces that arise from the small crack openings. Such cohesive forces may be attributed to aggregate interlock (in plain concrete), fiber bridging (in fiber reinforced concrete) or both. In this paper, the frequency shifts of the probe elastic wave will be analytically related to the roughness and varying cohesive forces of the crack-like defect.
On occlusal forces in dentitions with implant-supported fixed cantilever prostheses.
Falk, H
1990-01-01
The main aims of this thesis were (1) to study the functional characteristics of dentitions with mandibular implant-supported fixed cantilever prostheses - IFCP s- occluding with complete dentures, (2) to study in detail the magnitudes and distributions of axially directed closing and chewing forces in such dentitions, (3) to study the influence of number and distribution of occlusal contacts on the magnitude and distribution of closing and chewing forces, (4) to assess the vertical bending moment and the resulting vertical bending stress in the cantilever joints and (5) to find out whether the force distribution over the cantilever beams and the resulting vertical bending stress in the cantilever joint are influenced by the type of prosthetic construction in the opposing jaw. Closing and chewing forces were registered in altogether seventeen subjects by means of miniature strain gauge transducers mounted bilaterally and symmetrically in performed matrices in prosthetic appliances. Four, six or eight transducers, evenly distributed over the tooth-arch, permitted registrations of axially directed occlusal forces in several occluding areas simultaneously. In Papers I-IV, the implant-supported prostheses were installed in the mandible and occluded with complete dentures. In Paper V, group A, the fixture-supported prostheses were installed in the maxilla and occluded with tooth-supported fixed partial dentures whereas in group B, the arrangements were analogous to those in Papers I-IV. All subjects exhibited a rhythmic chewing pattern and preferred one side for chewing although both sides were used. Most chewing sequences were terminated with swallowing with occlusal force development. The mean total forces acting over the tooth-arch varied somewhat between groups and occlusal arrangements but averaged 350 and 170 N for closing and chewing respectively. Closing and chewing forces increased distally along the cantilever beams when occluding with complete dentures and decreased distally when occluding with fixed partial dentures. The distally increasing force distribution pattern could be altered to a distally decreasing force distribution pattern by infraoccluding the second cantilever unit by as little as 100 microns. Calculated vertical bending moments and stresses in the cantilever joints of the preferred chewing sides created by closing and chewing forces were larger in dentitions where the IFCP occluded with a complete denture than in dentitions where the IFCP occluded with a tooth-supported fixed partial denture.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
For a body of revolution with afterbody side strakes, an experimental investigation was conducted in the Ames 6- by 6-Foot Wind Tunnel to determine the effects on the aerodynamic characteristics of forebody geometry, nose strakes, body side strakes, Reynolds number, Mach number, and angle of attack. Aerodynamic force and moment characteristics were measured for the straked cylindrical afterbody (cylinder fineness ratio of 7) with tangent ogive noses of fineness ratio 2.5 to 5.0. In addition, the straked cylinder afterbody was tested with an ogive nose having a rounded tip and an ogive nose with two different nose strake arrangements. The data demonstrate that the aerodynamic characteristics for a body of revolution with side strakes can be significantly affected by changes in nose fineness ratio, nose bluntness, Reynolds number, Mach number, and, of course, angle of attack. Removing the strakes from the cylindrical aftersection greatly decreased the lift, but this removal hardly changed the maximum magnitudes of the undesirable side forces that developed at angles of attack greater than about 25 deg for subsonic Mach numbers.
Altering Effort Costs in Parkinson's Disease with Noninvasive Cortical Stimulation
Salimpour, Yousef; Mari, Zoltan K.
2015-01-01
In Parkinson's disease (PD), the human brain is capable of producing motor commands, but appears to require greater than normal subjective effort, particularly for the more-affected side. What is the nature of this subjective effort and can it be altered? We used an isometric task in which patients produced a goal force by engaging both arms, but were free to assign any fraction of that force to each arm. The patients preferred their less-affected arm, but only in some directions. This preference was correlated with lateralization of signal-dependent noise: the direction of force for which the brain was less willing to assign effort to an arm was generally the direction for which that arm exhibited greater noise. Therefore, the direction-dependent noise in each arm acted as an implicit cost that discouraged use of that arm. To check for a causal relationship between noise and motor cost, we used bilateral transcranial direct current stimulation of the motor cortex, placing the cathode on the more-affected side and the anode on the less-affected side. This stimulation not only reduced the noise on the more-affected arm, it also increased the willingness of the patients to assign force to that arm. In a 3 d double-blind study and in a 10 d repeated stimulation study, bilateral stimulation of the two motor cortices with cathode on the more-affected side reduced noise and increased the willingness of the patients to exert effort. This stimulation also improved the clinical motor symptoms of the disease. SIGNIFICANCE STATEMENT In Parkinson's disease, patients are less willing to assign force to their affected arm. Here, we find that this pattern is direction dependent: directions for which the arm is noisier coincide with directions for which the brain is less willing to assign force. We hypothesized that if we could reduce the noise on the affected arm, then we may increase the willingness for the brain to assign force to that arm. We found a way to do this via noninvasive cortical stimulation. In addition to reducing effort costs associated with the affected arm, the cortical stimulation also improved clinical motor symptoms of the disease. PMID:26338339
Okada, Takeshi; Ishikawa, Tatsuya; Nishimura, Hiromi; Suzuki, Akifumi
2012-12-01
Visual loss following craniotomy is a serious postoperative complication in which elevation of ocular pressure during retraction of the skin flap may cause retinal ischemia. We reported that continuous monitoring of extraocular pressure with the FlexiForce sensor may avoid excessive skin flap retraction during craniotomy and thus prevent ocular complications. Between January 2008 and December 2011, we analyzed data from 46 consecutive patients for whom continuous monitoring of extraocular pressure with FlexiForce sensor was performed. This sensor continuously displays the compressive force, allowing surgeons to check values on the monitor at any time. An alarm sounds if 50 gf is exceeded. We analyzed the temporal course of extraocular pressure and the relationship with patient characteristics. No visual complications were encountered in this patient series. Maximum compressive force during craniotomy was 35.8±27.2 gf, with increases typically seen when surgeons used hooks or drills. However, due to the alarm, no prolonged periods of high force were noted in any patient. Effective methods for reducing force were: (1) taking off hooks on the compressive side; (2) changing the direction of hook tension; and (3) placing cushions such as gauze under the side of the skin flap. Maximum compressive force during microsurgery was 21.8±18.4 gf, and correlated with the beginning force of microsurgery. Compressive force was greatly reduced compared to the force reported previously. The etiologies of visual disability are not fully understood, but this sensor may be helpful in reducing extraocular compression.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Taleghani, J.
1975-01-01
Five forebody models of various shapes were tested in the Ames 6- by 6-Foot Wind Tunnel to determine the aerodynamic characteristics at Mach numbers from 0.25 to 2 at a Reynolds number of 800000. At a Mach number of 0.6 the Reynolds number was varied from 0.4 to 1.8 mil. Angle of attack was varied from -2 deg to 88 deg at zero sideslip. The purpose of the investigation was to determine the effect of Mach number of the side force that develops at low speeds and zero sideslip for all of these forebody models when the nose is pointed. Test results show that with increasing Mach number the maximum side forces decrease to zero between Mach numbers of 0.8 and 1.5, depending on the nose angle; the smaller the nose angle of the higher the Mach number at which the side force exists. At a Mach number of 0.6 there is some variation of side force with Reynolds number, the variation being the largest for the more slender tangent ogive.
NASA Technical Reports Server (NTRS)
Ribner, Herbert S
1945-01-01
It was realized as early as 1909 that a propeller in yaw develops a side force like that of a fin. In 1917, R. G. Harris expressed this force in terms of the torque coefficient for the unyawed propeller. Of several attempts to express the side force directly in terms of the shape of the blades, however, none has been completely satisfactory. An analysis that incorporates induction effects not adequately covered in previous work and that gives good agreement with experiment over a wide range of operating conditions is presented. The present analysis shows that the fin analogy may be extended to the form of the side-force expression and that the effective fin area may be taken as the projected side area of the propeller.
Yan, Xiulin; He, Weijun; Lin, Tao; Liu, Jun; Bai, Xiaofeng; Yan, Guangqi; Lu, Li
2013-02-01
The aim of this study was to explore the biomechanical effects on the craniomaxillary complex of bone anchorage and dental anchorage during maxillary protraction. We established 2 finite element models. One simulated maxillary protraction with dental anchorage in the maxillary first molars and the other with bone anchorage in the infrazygomatic buttresses of the maxilla. The magnitude of the applied forces was 500 g per side, and the force directions were 0°, 10°, 20°, and 30° forward and downward relative to the occlusal plane. The finite element model of the craniomaxillary complex could displace in an almost translatory manner when the force direction was about 20° in the bone anchorage model and about 30° in the dental anchorage model. The nodes representing the sutures at the back of the maxilla showed greater stress in the bone anchorage model than in the dental anchorage model in the same force direction. It is the opposite at the front of the maxilla. We should determine the direction of applied force according to the anchorage location and skeletal characteristics of patients before maxillary protraction. The dramatic effects of maxillary protraction with bone anchorage can be based on the advantages of bone anchorage, not on the changes in the region of the applied force. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes
NASA Technical Reports Server (NTRS)
Vandam, C. P.; Roskam, J.
1983-01-01
Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.
NASA Technical Reports Server (NTRS)
Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.
1978-01-01
Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.
PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset.
Miller, Carl S; Madura, Nathaniel H; Schneider, Lawrence W; Klinich, Kathleen D; Reed, Matthew P; Rupp, Jonathan D
2013-11-01
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject. The masses of the sleds and the force- deflection characteristics of the energy-absorbing interface material between the sleds were set to provide the impactor sled with a velocity profile that matched the average driver door velocity history produced in a series of side NCAP tests. Impactor padding was also selected so that average ATD pelvis and thorax responses from the same series of side NCAP tests were reproduced when the ATD used in these tests was impacted using the average door-velocity history. Each subject was first impacted on one side of the body using an initial impactor speed of 3 m/s. If a post-test CT scan and strain-gage data revealed two or fewer non-displaced rib fractures, then the PMHS was impacted on the contralateral side of the body at a speed of 8 m/s or 10 m/s. The results of tests in the 3 m/s and 8 m/s conditions were used to develop force-deflection response corridors for the abdomen, force history response corridors for the pelvis (iliac wing and greater trochanter), the midthigh, and the thorax. Response corridors for the lateral acceleration of the pelvis were also developed. Future work will compare side impact ATD responses to these response corridors.
Role of Tool Shoulder End Features on Friction Stir Weld Characteristics of 6082 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Mugada, Krishna Kishore; Adepu, Kumar
2018-03-01
Understanding the temperature generation around the tool shoulder contact is one of the important aspects of the friction stir welding process. In the present study, the effects of various tool shoulder end feature on the temperature and mechanical properties of the 6082 aluminum alloy were investigated. The experimental results show that the axial force during the welding is considerably reduced by using tools with shoulder end features. The detailed observation revealed that around the tool shoulder contact, the amount of heat generation is higher between trialing edge (TE) to retreating side-leading edge corner (RS-LE) counter clockwise direction and lower between RS-LE to TE clockwise direction. Out of the four shoulder end featured tools, the welds produced with ridges shoulder tool resulted in superior properties with significantly lower axial force (approximately 32%) compared to plane shoulder tool.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
Analysis of Handling Qualities Design Criteria for Active Inceptor Force-Feel Characteristics
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Lusardi, Jeff A.
2013-01-01
The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.
2013-01-01
Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Methods Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Results Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC’s (>0.9). Conclusions A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high comparability of the measurement-wheels for the different propulsion parameters. Data from both wheels seem suitable to be used together or interchangeably in experiments on motor control and wheelchair propulsion performance. A high variability in forces and timing between the left and right side were found during the execution of this bimanual task, reflecting the human motor control process. PMID:23360756
Vegter, Riemer J K; Lamoth, Claudine J; de Groot, Sonja; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-01-29
Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC's (>0.9). A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high comparability of the measurement-wheels for the different propulsion parameters. Data from both wheels seem suitable to be used together or interchangeably in experiments on motor control and wheelchair propulsion performance. A high variability in forces and timing between the left and right side were found during the execution of this bimanual task, reflecting the human motor control process.
Cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Vogler, William A.
1989-01-01
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0 deg to 12 deg. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0 deg to 4 deg under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
How accurately do force fields represent protein side chain ensembles?
Petrović, Dušan; Wang, Xue; Strodel, Birgit
2018-05-23
Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
A Double-Sided Linear Primary Permanent Magnet Vernier Machine
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250
A double-sided linear primary permanent magnet vernier machine.
Du, Yi; Zou, Chunhua; Liu, Xianxing
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Attack allocation optimizations produce stability indices for unsymmetrical forces that indicate significant regions of both stability and instability and that have their minimum values roughly when the two sides have equal forces. This note derives combined stability indices for unsymmetrical offensive force configurations. The indices are based on optimal allocations of offensive missiles between vulnerable missiles and value based on the minimization of first strike cost, which is done analytically. Exchanges are modeled probabalistically and their results are converted into first and second strike costs through approximations to the damage to the value target sets held at risk. The stabilitymore » index is the product of the ratio of first to second strike costs seen by the two sides. Optimal allocations scale directly on the opponent`s vulnerable missiles, inversely on one`s own total weapons, and only logarithmically on the attacker`s damage preference, kill probability, and relative target set. The defender`s allocation scales in a similar manner on the attacker`s parameters. First and second strike magnitudes increase roughly linearly for the side with greater forces and decrease linearly for the side with fewer. Conversely, the first and second strike magnitudes decrease for the side with greater forces and increase for the side with fewer. These trends are derived and discussed analytically. The resulting stability indices exhibit a minimum where the two sides have roughly equal forces. If one side has much larger forces than the other, his costs drop to levels low enough that he is relatively insensitive to whether he strikes first or second. These calculations are performed with the analytic attack allocation appropriate for moderate forces, so some differences could be expected for the largest of the forces considered.« less
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Kelley, Henry L.
2000-01-01
Two large-scale, two-dimensional helicopter tail boom models were used to determine the effects of passive venting on boom down loads and side forces in hovering crosswind conditions. The models were oval shaped and trapezoidal shaped. Completely porous and solid configurations, partial venting in various symmetric and asymmetric configurations, and strakes were tested. Calculations were made to evaluate the trends of venting and strakes on power required when applied to a UH-60 class helicopter. Compared with the UH-60 baseline, passive venting reduced side force but increased down load at flow conditions representing right sideward flight. Selective asymmetric venting resulted in side force benefits close to the fully porous case. Calculated trends on the effects of venting on power required indicated that the high asymmetric oval configuration was the most effective venting configuration for side force reduction, and the high asymmetric with a single strake was the most effective for overall power reduction. Also, curves of side force versus flow angle were noticeable smoother for the vented configurations compared with the solid baseline configuration; this indicated a potential for smoother flight in low-speed crosswind conditions.
Reentry vehicle aerodynamics and control at very high angle of attack
NASA Astrophysics Data System (ADS)
Merret, Jason Michael
In recent flight tests the X-38 reentry test vehicle spins during the deployment of the drogue parachute. An experimental aerodynamic study has been conducted at the University of Illinois using a scale model of the X-38 to explore the cause of this problem. A six-component sting balance was used to measure the forces and moments on the 4.7% wind tunnel model at angles of attack from -7° to 95°. In addition, surface pressure taps and flow visualization techniques were utilized to determine the forebody pressures and surface flowfield on the model. The effect of Reynolds number and boundary-layer state were also examined. The investigation suggests that the spinning under the drogue parachute was caused by asymmetric vortex formation. At angles of attack between 75° and 90° vortex asymmetry developed in all of the cases without separation geometrically fixed. This flow asymmetry produced large side forces and yawing moments. The Reynolds number effect and the effect of the boundary-layer state were noticeable, but did not greatly change the side force and yawing moment characteristics of the model. The micro-geometry of the model had a large effect on the side force generated by the vortex positioning. The effects of forced oscillations were also examined and it was determined that the side forces were still present during the oscillations. Control of the vortices and side forces was obtained by applying strakes to the side of the forebody of the model.
Study on collision resistance characteristics of the side tanks with water inside
NASA Astrophysics Data System (ADS)
Liu, Yuxi; Hu, Jinwen; Liu, Ting; Wu, Can
2018-05-01
When we evaluate the safety performance of ships against external events, one of the most important indicator is the collision resistance to which water inside the side tanks also make some contributions because of the water effect. To further analyze the interaction mechanism, different collision velocities and side tank waterlines are set for the analysis model. Results indicate the outside shell and the inner shell of the side structure significantly enhanced the collision resistance performance to a certain extension. The water effect on the failure of the outside shell is unobvious, while, it performs a great influence on the destructive reaction force of the inner shell. When the velocity of the coming bulbous bow gradually increases, the destructive reaction forces of the outside shell and the inner shell increase with a decreasing rate. Besides, water influence the collision characteristics of the inner shell a lot when the waterlines are below the upper rib of the strong frame.
A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China
NASA Astrophysics Data System (ADS)
Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai
2018-06-01
Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.
Drag and Side Force Reduction for Cyclicsts in Echelon Formation
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Cunningham, Alec; Lovell, Adam
2017-11-01
When riding directly behind another cyclist (drafting), a rider can use up to 30% less energy. This technique is often used during competitions, yet drafting in the presence of a cross wind has not been studied extensively. To investigate the effect of side-wind on drafting, 1:11 scale models of two different cyclists were rapid-prototyped and tested in a wind tunnel. The drag and side forces were measured in formations of up to 4 models. The results suggest that there is a significant decrease in both drag and side force when a cyclist is riding in another cyclist's wake. Positioning with no off-stream-wise offset result in the largest reduction of forces. When riding in a group of four cyclists, the second and third cyclist experience the largest force reduction. The size of the leading cyclist affects the reduction of forces, particularly when the leading cyclist is smaller. The results are dependent on the Reynolds number, but appear to be independent at higher Reynolds numbers. Initial full scale tests were conducted at the UNH Flow Physics Facility.
Proteus: a direct forcing method in the simulations of particulate flows
NASA Astrophysics Data System (ADS)
Feng, Zhi-Gang; Michaelides, Efstathios E.
2005-01-01
A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered. Under the periodic boundary conditions, the particles move faster. The simulations show that the sedimentation characteristics in a box with periodic boundary conditions at the two sides are very close to those found in the sedimentation of two-dimensional circular particles. In the Greek mythology Proteus is a hero, the son of Poseidon. In addition to his ability to change shapes and take different forms at will, Zeus granted him the power to make correct predictions for the future. One cannot expect better attributes from a numerical code.
Improved side-chain torsion potentials for the Amber ff99SB protein force field
Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E
2010-01-01
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171
A method for estimating mount isolations of powertrain mounting systems
NASA Astrophysics Data System (ADS)
Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao
2018-07-01
A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
Sinsurin, Komsak; Srisangboriboon, Sarun; Vachalathiti, Roongtiwa
2017-07-01
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2 × 4, limb × direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p < .05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p < .05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.
NASA Technical Reports Server (NTRS)
Johnson, Harold I.
1946-01-01
Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original vertical tail for smal1 sides1ip angles at low speeds but little consistent change in directional stability was effected by the ventral fin at higher speeds, The effectiveness of the ventral fin was generally much less when used with the enlarged vertical tail than when used with the original vertical tail. The ventral and dorsal fins were found to be very effective in eliminating rudder-force reversals which occurred in low-speed, high-engine-power, sideslipped conditions of flight . Sideslip tests at two altitudes for approximately the sane engine power and indicated airspeed showed that a small decrease in static directional stability occurred with increasing altitude and this decrease in stability was attributed to the increased propeller blade angles required at high altitudes. The variations of rudder pedal force with indicated airspeed using normal rated power and a constant rudder tab setting through the speed range were desirably small for all the configurations tested. The rudder pedal force changed by about 50 pounds for a power change from engine idling power, to normal rated power and this pedal force change was largely independent of airspeed or of vertical-tail configuration for the various configurations tested.
Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas
2015-01-01
Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.
Topological mechanical metamaterials have perfectly directional bulk response
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb
The elastic response of typical materials to a local load is stress and strain in all directions. Here, we show contrariwise that mechanical frames with balanced numbers of constraints and degrees of freedom (the ''Maxwell'' condition) can experience stress and/or strain on only one side of a load. Kane and Lubensky showed, in a recent, seminal work, that such systems possess a topologically nontrivial phonon band structure corresponding to the electronic modes of topological insulators. Applying bulk-boundary correspondence, they demonstrated a signature physical consequence: the shifting of zero modes resultant from missing bonds from one edge to another. We now show that the same topological invariant governs such a system's bulk response: when bonds are swollen at one point the lattice does not distort evenly around it but instead only on one side dictated by the topological polarization. Similarly, when general forces are applied to a polarized lattice tension is induced in bonds only on one side of the applied force. Hence, topological polarization represents a sharp and robust way to direct force and motion and the response (Green's) function is a fundamental bulk signature of topological polarization. Bethe/KIC Fellowship, and the National Science Foundation Grant No. NSF DMR- 1308089.
NASA Astrophysics Data System (ADS)
Gao, Chuanyu; He, Jiabao; Zhang, Yan; Cong, Jinxin; Han, Dongxue; Wang, Guoping
2018-03-01
The northeastern region of China, at the limit of the summer monsoon, is characterized by the presence of mountains that influenced by the Asian summer monsoon on one side and the westerlies on the other; however, few studies have compared the environmental characteristics on the two sides of these mountains. In this study, two peatland cores from the western and eastern sides of the Great Hinggan Mountains were investigated to better understand the climatic and environmental conditions and the measurements of black carbon (BC) and δ13C-BC were used to reconstruct the fire history and environmental characteristics during the last millennium. Our results showed that the variations in the δ13C-BC values are more sensitive to climate changes than the BC fluxes, and the climate forcing mechanisms differed between the two sides of the mountains. Lower δ13C-BC values around 500 cal yr BP on the western side of the mountains indicated climate conditions were wetter than that on the eastern side, and were influenced by low sea surface temperatures in the North Atlantic Ocean. The region east of the mountains was mainly influenced by the strong Asian summer monsoon, and the decreasing of δ13C-BC values indicated climate conditions became wetter from 250 cal yr BP to the present and were wetter than that on the western side after 150 cal yr BP. Moreover, when one of these two forcing factors weakened and the other strengthened (e.g. from 400 to 150 cal yr BP), climate conditions in these two sides were similar.
Are inertial forces ever of significance in cricket, golf and other sports?
NASA Astrophysics Data System (ADS)
Robinson, Garry; Robinson, Ian
2017-04-01
In previous papers we investigated the motion of a spherical projectile rotating about an arbitrary axis, subject to a drag force, a lift or Magnus force, and in the presence of a wind. The aim was to determine the motion of balls used in sporting games, primarily cricket. Newton’s laws of motion apply in an inertial (unaccelerated) coordinate system, but the rotating Earth is not an inertial system. In such a non-inertial system two additional forces are present, the Coriolis force which produces a side-ways movement, and the centrifugal force. Generally these two inertial forces produce noticeable effects only on the large scale, when either the time of travel and/or the path length is large. In this paper we have added both of these forces to the equations of motion. In addition, we have also included a ground friction force in order to simulate a ball rolling over a surface or, more generally, a body moving through a resistive medium such as water. Here we quantitatively investigate the magnitude and direction of the effect of the inertial forces in a number of cases. It is found that, as expected, the effects of the inertial forces are generally small for ball games. In cricket the side-ways movement is ≲1 cm for a throw from the boundary and ≲1 mm for a slow bowler’s delivery, and for a long drive in golf it is ≲10 cm. In lawn bowls the side-ways movement can be ∼2.8 cm, which may be significant, given the nature of this sport. The inertial forces are also potentially of relevance in sporting events not employing spherical projectiles. For example, in Olympic rowing we find that the side-ways movement can be more than 40 m for a 2 km race if it is not compensated for, and nearly 20 m for a 4 min mile event in athletics. The effect is also of significance in events such as swimming and horse racing. The importance of this is that athletes may not be aware of the effect and, in the case of rowing for example, may attribute it to side-ways currents, winds, or a deficiency in their rowing style. As a further complication, the magnitude of the side-ways movement is latitude dependent and its direction is hemisphere dependent, being to the right in the northern hemisphere and to the left in the southern hemisphere.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Gloss, B. B.
1975-01-01
Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.
NASA Astrophysics Data System (ADS)
Schöpa, A.; Chao, W. A.; Burtin, A.; Hovius, N.
2016-12-01
We have analysed signals from a network of 52 seismic stations that recorded a large landslide at the steep-sided Askja caldera, Central Iceland, on 21 July 2014. As no direct observations where made, the seismic signals are a very valuable record not only to describe the landslide dynamics in great detail but also to identify triggers and precursors of the slide useful for early warning purposes. This study is motivated by the high hazard potential of the side as the landslide created a tsunami in the caldera lake with waves up to 60 m high reaching famous tourist spots at the northern lake shore. Analysis of the high frequencies reveals that the main slope failure started at 23.24UTC. The relatively long rise time of 40 s until the maximum peak ground velocity was reached points towards cascading failure of the caldera wall. The high seismic energies recorded during the first two minutes of the slide are the result of colliding and impacting blocks. Velocity peaks in the seismic signals following the main failure are indicative for subsequent slope failures that occur less frequent, with shorter duration and lower amplitude during the twelve hours after the main event. The high frequency records of the stations up to 30 km away from the landslide source area show that the background noise level started to increase 20 min before the main failure, with amplitudes up to three times the background level about seven minutes before the main slide. Five minutes before the main failure, amplitudes decreased back to the background level. The characteristic increase and decrease in ground velocities before the main landslide could be implemented in a monitoring and early warning system of the caldera walls at Askjas. Inversion of the long-period signals (0.025-0.05 Hz) enables us to describe the history of the forces acting on the Earth during the landslide. The maximum acceleration of the moving mass was reached 40 s after the start of the slide with unloading forces directed to the SE, in the opposite direction of the landslide path. After the transition from acceleration to deceleration, the force vectors strike to the NW, the reloading direction of the Earth. Calculated horizontal and vertical total displacements of 1258 m and 411 m as well as the inverted location of the landslide at the SE side of the caldera lake are consistent with field observations.
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
Wind Tunnel Results of Pneumatic Forebody Vortex Control Using Rectangular Slots a Chined Forebody
NASA Technical Reports Server (NTRS)
Alexander, Michael; Meyn, Larry A.
1994-01-01
A subsonic wind tunnel investigation of pneumatic vortex flow control on a chined forebody using slots was accomplished at a dynamic pressure of 50 psf resulting in a R(n)/ft of 1.3 x 10(exp 6). Data were acquired from angles of attack ranging from -4deg to +34deg at side slips of +0.4deg and +10.4deg. The test article used in this study was the 10% scale Fighter Lift and Control (FLAC) advanced diamond winged, vee-tailed fighter configuration. Three different slot blowing concepts were evaluated; outward, downward, and tangential with ail blowing accomplished asymmetrically. The results of three different mass flows (0.067, 0.13, and 0.26 lbm/s; C(sub mu)'s of less than or equal to 0.006, 0.011. and 0.022 respectively) were analyzed and reported. Test data are presented on the effects of mass flows, slot lengths and positions and blowing concepts on yawing moment and side force generation. Results from this study indicate that the outward and downward blowing slots developed yawing moment and side force increments in the direction opposite of the blowing side while the tangential blowing slots generated yawing moment and side force increments in the direction towards the blowing side. The outward and downward blowing slots typically produced positive pitching moment increments while the tangential blowing slots typically generated negative pitching moment increments. The slot blowing nearest the forebody apex was most effective at generating the largest increments and as the slot was moved aft or increased in length, its effectiveness at generating forces and moments diminished.
[Walking with canes and forearm-crutches (author's transl)].
Bergmann, G; Kölbel, R; Rauschenbach, N; Rohlmann, A
1978-02-01
Partial weight bearing is frequently prescribed but cannot be controlled adequately. In a previous paper the change of forces at the hip joint as effected by a one sided cane was determined by instrumentation of the cane and a mechanical analysis of gait on a walkway. In the present study we looked at the conditions for control of partial weightbearing when two forearm crutches are used. Instrumented crutches and a forceplate were used. In walking with two forearm crutches the total of the ground reaction forces and the force pattern differ from those in free walking. The total of two crutch forces plus the force at the leg with partial weightbearing exceeds that caused by body weight alone. This is due to mass accelerations in a changed gait pattern. When the maximal leg force is reduced from 100% body weight to zero, the additional dynamic forces exceed those caused by body weight alone by 4%-19%. Only 2% of the additional dynamic forces act on the controlateral crutch while the rest is transmitted through the ipsilateral crutch. The crutch force pattern on the ipsilateral side depends more on individual gait characteristics than does that on the controlateral side. Load reduction is more pronounced in the late stages of the stand phase than in the early ones.
UNEQUAL RISK: COMBAT OCCUPATIONS IN THE VOLUNTEER MILITARY
MacLEAN, ALAIR; PARSONS, NICHOLAS L.
2011-01-01
This study evaluates the characteristics of the men who served in the volunteer military in combat occupations. It examines whether these characteristics stem from supply-side or demand-side decisions, or reflect class bias. The findings suggest that, on the supply side, men who had greater academic abilities were more likely to go to college, thereby avoiding military service and the possibility of serving in a combat occupation. On the demand side, the armed forces were more likely to exclude men with lower academic abilities but were more likely to assign such men in the military to combat occupations. Net of the impacts of these supply-side and demand-side decisions, men who served in combat occupations still differed from those who did not in terms of their family background. The impact of family background was stronger on entering the military than on being assigned to combat occupations once in the military. PMID:21691446
Xie, Jintao; Zhang, Jianbin; Zheng, Xitao; Ye, Junran; Deng, Dongmei
2018-04-30
We study the paraxial propagation of the radially polarized Airy beams (RPAiBs) in uniaxial crystals orthogonal to the optical axis analytically and numerically. The propagation trajectory, the intensity and the radiation forces of the RPAiBs are investigated and the properties are elucidated by numerical examples in this paper. Results show that the RPAiBs evolve into the beams produced by the x-direction electric field (RPAiXBs) and the y-direction electric field (PRAiYBs) which are totally different in uniaxial crystals. During the propagation, the intensity of the RPAiXBs transfers from the side lobe in the x-direction to the main lobe and finally returns to the side lobe in the x-direction again, but that of the RPAiYBs transfers from the side lobe in the y-direction to the main lobe and flows to the side lobe in the x-direction at last. The effect of the intensity focusing for the RPAiXBs can be modulated by the ratio of the extraordinary index (ne) to the ordinary index (no) in anisotropic medium, which contributes to the intensity focusing of the RPAiBs in a short distance a lot. We can adjust the intensity distribution especially the focusing position, the propagation trajectory and the radiation forces distributions of the RPAiXBs through choosing an appropriate value of the ratio of ne to no to meet the actual usage accordingly.
Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz
2015-01-01
Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791
Effects of turbulence on the drag force on a golf ball
NASA Astrophysics Data System (ADS)
Cross, Rod
2016-09-01
Measurements are presented of the drag force on a golf ball dropped vertically into a tank of water. As observed previously in air, the drag coefficient drops sharply when the flow becomes turbulent. The experiment would be suitable for undergraduate students since it can be undertaken at low ball speeds and since the effects of turbulence are easily observed on video film. A modified golf ball was used to show how a ball with a smooth and a rough side, such as a cricket ball, is subject to a side force when the ball surface itself is asymmetrical in the transverse direction.
Design considerations of manipulator and feel system characteristics in roll tracking
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Aponso, Bimal L.
1988-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such control system features of typical modern fighter aircraft roll rate command mechanizations as: (1) force versus displacement sensing side-stick type manipulator, (2) feel force/displacement gradient, (3) feel system versus command prefilter dynamic lag, and (4) flight control system effective time delay. The experiment encompassed some 48 manipulator/filter/aircraft configurations. Displacement side-stick experiment results are given and compared with the previous force sidestick experiment results. Attention is focused on control bandwidth, excitement (peaking) of the neuromuscular mode, feel force/displacement gradient effects, time delay effects, etc. Section 5 is devoted to experiments with a center-stick in which force versus displacement sensing, feel system lag, and command prefilter lag influences on tracking performance and pilot preference are investigated.
A methodology to model physical contact between structural components in NASTRAN
NASA Technical Reports Server (NTRS)
Prabhu, Annappa A.
1993-01-01
Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.
Keenan, Karen A; Wohleber, Meleesa F; Perlsweig, Katherine A; Baldwin, Thomas M; Caviston, Michael; Lovalekar, Mita; Connaboy, Christopher; Nindl, Bradley C; Beals, Kim
2017-11-01
Previous research has examined lower extremity (LE) musculoskeletal injury (MSI) patterns and risk factors in Special Operations Forces (SOF) trainees, conventional military personnel, and athletes; however, it is unclear if SOF have the same patterns/risk factors. This study aimed to determine the association of musculoskeletal, balance, and physiological characteristics with LE MSI in SOF. Cohort study. A total of 726 Air Force (N=140), Navy Sea, Air, and Land (N=301), and Special Warfare Combatant Crewmen (N=285) SOF (age=25.72±4.77years, height=178.34±6.63cm, weight=84.28±9.03kg) participated in laboratory testing, including: LE muscular strength and flexibility; balance; body composition; anaerobic power/capacity; and aerobic capacity. Medical charts were reviewed for LE MSI 365days following laboratory testing. Participants were assigned by injury status and laboratory data stratified by tertile. Chi-square statistics were calculated to determine the frequency of LE MSI across tertiles for each characteristic. There was a significant association between LE MSI and: ankle inversion strength (weaker side: Χ(2)=17.703; stronger side: Χ(2)=18.911; p≤0.001); ankle eversion/inversion strength ratio (lower side: Χ(2)=13.456; higher side: Χ(2)=16.885; p≤0.001); hamstring flexibility (less flexible: Χ(2)=19.930; more flexible Χ(2)=15.185; p≤0.001); gastrocnemius-soleus flexibility (less flexible: Χ(2)=7.889, p=0.019); dynamic balance asymmetry (Χ(2)=7.444, p=0.024); Vestibular and Preference ratios (Χ(2)=9.124, p=0.010 and Χ(2)=6.572, p=0.037, respectively); and aerobic capacity (Χ(2)=13.935, p=0.001). Characteristics associated with LE MSI are unique in SOF. Human performance program initiatives should include efforts to optimize ankle strength and flexibility, maintain moderate hamstring flexibility, expand dynamic balance strategies, and maximize aerobic capacity to reduce LE MSI risk. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Dual optical mechanical position tracker
NASA Astrophysics Data System (ADS)
Everett, S. L., Jr.
1985-06-01
This patent application describes an apparatus for retaining control of moving carriage impact dot matrix print heads when subjected to strong external forces such as shock and/or vibration. Position and direction of carriage movement is provided by a photo emitter-sensor assembly and a slotted timing wheel or disc having a plurality of equally spaced slots whose slot width is equal to the slot separation. The slot width is sufficient to frame a pair of side-by-side emitters which operate in conjunction with a pair of side-by-side sensors on the other side of the timing wheel. The order or sequence in which the sensors receive photo energy from their respective emitters indicates the direction of rotation of the timing wheel while simultaneous reception of photo energy by the side-by-side sensors provides an indication of valid rest position of the carriage drive motor.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Howell, M. H.
1976-01-01
An experimental investigation was conducted in the Ames 6-by-6-Foot Wind Tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat-plate wings. Eighteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that taper ratio and aspect ratio had only small effect on the aerodynamic characteristics, especially at the higher angles of attack. Undesirable side forces and yawing moments, which developed at angles of attack greater than about 25 deg, were generally no greater than those for the bodies tested alone. As for the bodies alone, the side forces and yawing moments increased as the nose fineness ratio increased and/or as the subsonic Mach number decreased.
Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Sakuma, Yutaka
Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.
Scoliosis corrective force estimation from the implanted rod deformation using 3D-FEM analysis.
Abe, Yuichiro; Ito, Manabu; Abumi, Kuniyoshi; Sudo, Hideki; Salmingo, Remel; Tadano, Shigeru
2015-01-01
Improvement of material property in spinal instrumentation has brought better deformity correction in scoliosis surgery in recent years. The increase of mechanical strength in instruments directly means the increase of force, which acts on bone-implant interface during scoliosis surgery. However, the actual correction force during the correction maneuver and safety margin of pull out force on each screw were not well known. In the present study, estimated corrective forces and pull out forces were analyzed using a novel method based on Finite Element Analysis (FEA). Twenty adolescent idiopathic scoliosis patients (1 boy and 19 girls) who underwent reconstructive scoliosis surgery between June 2009 and Jun 2011 were included in this study. Scoliosis correction was performed with 6mm diameter titanium rod (Ti6Al7Nb) using the simultaneous double rod rotation technique (SDRRT) in all cases. The pre-maneuver and post-maneuver rod geometry was collected from intraoperative tracing and postoperative 3D-CT images, and 3D-FEA was performed with ANSYS. Cobb angle of major curve, correction rate and thoracic kyphosis were measured on X-ray images. Average age at surgery was 14.8, and average fusion length was 8.9 segments. Major curve was corrected from 63.1 to 18.1 degrees in average and correction rate was 71.4%. Rod geometry showed significant change on the concave side. Curvature of the rod on concave and convex sides decreased from 33.6 to 17.8 degrees, and from 25.9 to 23.8 degrees, respectively. Estimated pull out forces at apical vertebrae were 160.0N in the concave side screw and 35.6N in the convex side screw. Estimated push in force at LIV and UIV were 305.1N in the concave side screw and 86.4N in the convex side screw. Corrective force during scoliosis surgery was demonstrated to be about four times greater in the concave side than in convex side. Averaged pull out and push in force fell below previously reported safety margin. Therefore, the SDRRT maneuver was safe for correcting moderate magnitude curves. To prevent implant breakage or pedicle fracture during the maneuver in a severe curve correction, mobilization of spinal segment by releasing soft tissue or facet joint could be more important than using a stronger correction maneuver with a rigid implant.
Function-dependent shape characteristics of the human skull.
Witzel, U; Preuschoft, H
2002-06-01
Using the FEM-program ANSYS 5.4, we have shaped a model of the human skull in which the flow of forces and the relative location and magnitudes of stresses are investigated. Forces are applied from below through the tooth row of the upper jaw. An ample volume is provided for the transmission of these bite forces upward to the roof of the braincase, where bearings counteract the forces from below. Within this volume, no other morphological features are considered than two cone-shaped orbits and a nasal channel which has a rounded, triangular cross section, extending upward between the orbits. Under loads (= bite forces) acting simultaneously in the directions and relative sizes of realistic bite- and chewing forces, there occurred stress concentrations inside the model which resemble closely the morphological characteristics of the human skull. The most remarkable pathways of stresses correspond to Toldt's and Benninghoff's nasal, zygomatic and pterygoid pillars. Aside from these stress concentrations, stress-free regions become visible at places, where the skull shows excavations: the vaulted palate with canalis incisivus, the canine fossa, superior and inferior orbital fissure, or cavities like the maxillary sinuses and cavum cranii. Behind the posterior molars and the pterygoid, the stresses disappear abruptly, and in the side wall of the nasal cavity a maxillary hiatus remains without stresses. A flow of forces comparable to, but not at the exact position of the zygomatic arch extends from the highly stressed zygomatic bone rearward and upward. In a later step of simulation, somewhat deeper, at the place of the really existing zygomatic arch, a series of small forces was applied, which correspond to the resultant force that is created by the redirection of the pull of the m. masseter into the temporal fascia. This--biologically reasonable--manipulation of the model leads to a reduction of the forces in the zygomatic bone, and to a downward shift of the zygomatic arch and its isolation from the skull's side wall by a deep, stress-free temporal fossa. The similarity between the stress flow in the model and the shape of the skull seems to indicate that the skull, like the bones of the postcranial skeleton, develops its shape in dependence from the mechanic stressing through the process of causal histogenesis. In view of experimental results, the possibility cannot be ruled out, that the safety factors in the skull deviate from those in the postcranial skeleton.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
Large Eddy Simulation of Ducted Propulsors in Crashbac
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2008-11-01
Flow around a ducted marine propulsor is computed using the large eddy simulation methodology under crashback conditions. Crashback is an operating condition where a propulsor rotates in the reverse direction while the vessel moves in the forward direction. It is characterized by massive flow separation and highly unsteady propeller loads, which affect both blade life and maneuverability. The simulations are performed on unstructured grids using the algorithm developed by Mahesh at al. (2004, J. Comput. Phys 197). The flow is computed at the advance ratio J=-0.7 and Reynolds number Re=480,000 based on the propeller diameter. Average and RMS values of the unsteady loads such as thrust, torque, and side force on the blades and duct are compared to experiment. It is seen that even though effects of the duct on thrust and torque are not large enough, those on the side force are significant. The rms of side forces is much higher in the presence of the duct. Pressure distributions on blade surfaces and duct surface are examined and used to explain this effect. This work was supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Holloran-Schwartz, M Brigid; Gavard, Jeffrey A; Martin, Jared C; Blaskiewicz, Robert J; Yeung, Patrick P
2016-01-01
To compare the intraoperative direct costs of a single-use energy device with reusable energy devices during laparoscopic hysterectomy. A randomized controlled trial (Canadian Task Force Classification I). An academic hospital. Forty-six women who underwent laparoscopic hysterectomy from March 2013 to September 2013. Each patient served as her own control. One side of the uterine attachments was desiccated and transected with the single-use device (Ligasure 5-mm Blunt Tip LF1537 with the Force Triad generator). The other side was desiccated and transected with reusable bipolar forceps (RoBi 5 mm), and transected with monopolar scissors using the same Covidien Force Triad generator. The instrument approach used was randomized to the attending physician who was always on the patient's left side. Resident physicians always operated on the patient's right side and used the converse instruments of the attending physician. Start time was recorded at the utero-ovarian pedicle and end time was recorded after transection of the uterine artery on the same side. Costs included the single-use device; amortized costs of the generator, reusable instruments, and cords; cleaning and packaging of reusable instruments; and disposal of the single-use device. Operating room time was $94.14/min. We estimated that our single use-device cost $630.14 and had a total time savings of 6.7 min per case, or 3.35 min per side, which could justify the expense of the device. The single-use energy device had significant median time savings (-4.7 min per side, p < .001) and total intraoperative direct cost savings ($254.16 per case). A single-use energy device that both desiccates and cuts significantly reduced operating room time to justify its own cost, and it also reduced total intraoperative direct costs during laparoscopic hysterectomy in our institution. Operating room cost per minute varies between institutions and must be considered before generalizing our results. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Wu, Ming; Hsu, Chao-Jung; Kim, Janis
2018-01-01
The goal of this study was to determine how individuals post-stroke response to the lateral assistance force applied to the pelvis during treadmill walking. Ten individuals post chronic (> 6 months) stroke were recruited to participate in this study. A controlled assistance force (~10% of body weight) was applied to the pelvis in the lateral direction toward the paretic side during stance of the paretic leg. Kinematics of the pelvis and legs were recorded. Applying pelvis assistance force facilitated weight shifting toward the paretic side, resulting in a more symmetrical gait pattern but also inducing an enlarged range of motion of the pelvis during early adaptation period. The neural system of individuals post stroke adapted to the pelvis assistance force and showed an aftereffect consists of reduced range of motion of the pelvis following load release during post adaptation period. PMID:28813835
Wu, Ming; Hsu, Chao-Jung; Kim, Janis
2017-07-01
The goal of this study was to determine how individuals post-stroke response to the lateral assistance force applied to the pelvis during treadmill walking. Ten individuals post chronic (> 6 months) stroke were recruited to participate in this study. A controlled assistance force (∼10% of body weight) was applied to the pelvis in the lateral direction toward the paretic side during stance of the paretic leg. Kinematics of the pelvis and legs were recorded. Applying pelvis assistance force facilitated weight shifting toward the paretic side, resulting in a more symmetrical gait pattern but also inducing an enlarged range of motion of the pelvis during early adaptation period. The neural system of individuals post stroke adapted to the pelvis assistance force and showed an aftereffect consists of reduced range of motion of the pelvis following load release during post adaptation period.
Stretch force guides finger-like pattern of bone formation in suture
Kou, Xiao-Xing; Zhang, Ci; Zhang, Yi-Mei; Cui, Zhen; Wang, Xue-Dong; Liu, Yan; Liu, Da-Wei; Zhou, Yan-Heng
2017-01-01
Mechanical tension is widely applied on the suture to modulate the growth of craniofacial bones. Deeply understanding the features of bone formation in expanding sutures could help us to improve the outcomes of clinical treatment and avoid some side effects. Although there are reports that have uncovered some biological characteristics, the regular pattern of sutural bone formation in response to expansion forces is still unknown. Our study was to investigate the shape, arrangement and orientation of new bone formation in expanding sutures and explore related clinical implications. The premaxillary sutures of rat, which histologically resembles the sutures of human beings, became wider progressively under stretch force. Micro-CT detected new bones at day 3. Morphologically, these bones were forming in a finger-like pattern, projecting from the maxillae into the expanded sutures. There were about 4 finger-like bones appearing on the selected micro-CT sections at day 3 and this number increased to about 18 at day 7. The average length of these projections increased from 0.14 mm at day 3 to 0.81 mm at day 7. The volume of these bony protuberances increased to the highest level of 0.12 mm3 at day 7. HE staining demonstrated that these finger-like bones had thick bases connecting with the maxillae and thin fronts stretching into the expanded suture. Nasal sections had a higher frequency of finger-like bones occuring than the oral sections at day 3 and day 5. Masson-stained sections showed stretched fibers embedding into maxillary margins. Osteocalcin-positive osteoblasts changed their shapes from cuboidal to spindle and covered the surfaces of finger-like bones continuously. Alizarin red S and calcein deposited in the inner and outer layers of finger-like bones respectively, which showed that longer and larger bones formed on the nasal side of expanded sutures compared with the oral side. Interestingly, these finger-like bones were almost paralleling with the direction of stretch force. Inclined force led to inclined finger-like bones formation and deflection of bilateral maxillae. Additionally, heavily compressive force caused fracture of finger-like bones in the sutures. These data together proposed the special finger-like pattern of bone formation in sutures guided by stretch force, providing important implications for maxillary expansion. PMID:28472133
A Two-Axis Direct Fluid Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.
2010-01-01
This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.
Zeighami, A; Aissaoui, R; Dumas, R
2018-03-01
Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
High-speed landslide mechanism extracted from long-period surface waves
NASA Astrophysics Data System (ADS)
Zhao, Juan
2016-04-01
Long-period seismic signals gathered at stations far from landslide area can be used to recover the landslide source force applied on ground during the rapid sliding process. This force history is helpful to improve our ability to deduce the characteristics of the event as well as the dynamic properties of bulk motion. We use source mechanism inversion to analyse two different large landslides. Seismic waves generated by these two events have been recorded respectively by more than 5 stations, with the distance range from 69km to 1325km. The first event is the sudden failure happened at Qianjiangping village (30.97°N, 110.61°E) on 13 July 2003, on the bank of the Qinggan river. The landslide flow brought about 20 million cubic meters rock and soil masses right into the river in a short time. It moved about 250 meters in the main sliding direction of S45°E before stopped by the opposite bank. It is a typical reservoir landslide, which has been compared to the 1963 Vaiont landslide in Italy. The other event is the Xiaolin (120.64°E; 23.16°N) deep-seated landslide, located in southwestern Taiwan and had volume of about 27 million cubic meters. The landslide moved in the westward direction, divided into two streams at about the middle of the run-out, because there had been a small ridge and two valleys extended from the west side of the ridge. The deposit spreading length of this landslide is about 2300 meters. We discuss the different characteristics of the two events in both geological structure and movement mode based on the field survey. Then we show that those differences are also revealed by the source force-time functions from inversion.
Thermal actuator improvements: tapering and folding
NASA Astrophysics Data System (ADS)
Sinclair, Michael J.; Wang, Kerwin
2003-04-01
Electrothermal actuation is not a popular technology for today"s MEMS transducers due to its relatively slow response and large appetite for power. The large displacement with high force and low voltage gives reason to try to improve thermal actuator"s operating characteristics. This paper describes some improvements to thermal actuators, mainly in increased output energy per actuator chip area and area utilization. The devices presented here are a variation of the chevron thermal actuator - one with two sets of thermally expanding beams pushing at a slight angle on either side of a suspended shuttle, causing it to be displaced parallel to the substrate. One improvement is to taper the thermal expansion beams so they exhibit a higher strain energy, allowing a larger thermal input power and hence more output mechanical power per beam. Another improvement is to move (fold) both sets of thermal beams to the same side of the shuttle so all are exerting force on the same side. The thermal expansion beams cause compression against the shuttle and work against one or two orthogonal cold beams in tension to produce an output force and displacement. This resembles a pseudo-bimorph array with the exception of having far fewer non-force-producing beams to bend.
Model studies of crosswind landing-gear configurations for STOL aircraft
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Byrdsong, T. A.
1973-01-01
A dynamic model was used to directly compare four different crosswind landing gear mechanisms. The model was landed as a free body onto a laterally sloping runway used to simulate a crosswind side force. A radio control system was used for steering to oppose the side force as the model rolled to a stop. The configuration in which the landing gears are alined by the pilot and locked in the direction of motion prior to touchdown gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing roll. Nose wheel steering was confirmed to be better than steering with nose and main gears differentially or together. Testing is continuing to obtain quantitative data to establish an experimental data base for validation of an analytical program that will be capable of predicting full scale results.
Self-force as a probe of global structure
NASA Astrophysics Data System (ADS)
Davidson, Karl; Poisson, Eric
2018-05-01
We calculate the self-force on an electric charge and electric dipole held at rest in a closed universe that results from joining two copies of Minkowski spacetime at a common boundary. Spacetime is strictly flat on each side of the boundary, but there is curvature at the surface layer required to join the two Minkowski spacetimes. We find that the self-force on the charge is always directed away from the surface layer. This is analogous to the case of an electric charge held at rest inside a spherical shell of matter, for which the self-force is also directed away from the shell. For the dipole, the direction of the self-force is a function of the dipole's position and orientation. Both self-forces become infinite when the charge or dipole is made to approach the surface layer. This study reveals that a self-force can arise even when the Riemann tensor vanishes at the position of the charge or dipole; in such cases the self-force is a manifestation of the global curvature of spacetime.
Meyer, Sarah; Beyens, Hilde; Dejaeger, Eddy; Verheyden, Geert
2017-01-01
Impaired balance is common post stroke and can be assessed by means of force-platforms measuring center of pressure (COP) displacements during static standing, or more dynamically during lateral maximum weight shift (MWS). However, activities of daily life also include diagonal MWS and since force platforms are nowadays commercially available, investigating lateral and diagonal MWS in a clinical setting might be feasible and clinically relevant. We investigated lateral and diagonal MWS while standing in patients with stroke (PwS) and healthy controls (HC), evaluated MWS towards the affected and the non-affected side for PwS and correlated MWS with measures of balance, gait and fear of falling. In a cross-sectional observational study including 36 ambulatory sub-acute inpatients and 32 age-matched HC, a force platform (BioRescue, RM Ingénierie, France) was used to measure lateral and diagonal MWS in standing. Clinical outcome measures collected were Berg Balance Scale and Community Balance and Mobility Scale (CBMS) for balance, 10-meter walk test (10MWT) for gait speed and Falls Efficacy Scale–international version for fear of falling. MWS for PwS towards the affected side was significantly smaller compared to HC (lateral: p = 0.029; diagonal-forward: p = 0.000). MWS for PwS was also significantly reduced towards the affected side in the diagonal-forward direction (p = 0.019) compared to the non-affected side of PwS. Strong correlations were found for MWS for PwS in the diagonal-forward direction towards the affected side, and clinical measures of balance (CBMS: r = 0.66) and gait speed (10MWT: r = 0.66). Our study showed that ambulatory sub-acute PwS, in comparison to HC, have decreased ability to shift their body weight diagonally forward in standing towards their affected side. This reduced ability is strongly related to clinical measures of balance and gait speed. Our results suggest that MWS in a diagonal-forward direction should receive attention in rehabilitation of ambulatory sub-acute PwS in an inpatient setting. PMID:28809939
van Dijk, Margaretha M; Meyer, Sarah; Sandstad, Solveig; Wiskerke, Evelyne; Thuwis, Rhea; Vandekerckhove, Chesny; Myny, Charlotte; Ghosh, Nitesh; Beyens, Hilde; Dejaeger, Eddy; Verheyden, Geert
2017-01-01
Impaired balance is common post stroke and can be assessed by means of force-platforms measuring center of pressure (COP) displacements during static standing, or more dynamically during lateral maximum weight shift (MWS). However, activities of daily life also include diagonal MWS and since force platforms are nowadays commercially available, investigating lateral and diagonal MWS in a clinical setting might be feasible and clinically relevant. We investigated lateral and diagonal MWS while standing in patients with stroke (PwS) and healthy controls (HC), evaluated MWS towards the affected and the non-affected side for PwS and correlated MWS with measures of balance, gait and fear of falling. In a cross-sectional observational study including 36 ambulatory sub-acute inpatients and 32 age-matched HC, a force platform (BioRescue, RM Ingénierie, France) was used to measure lateral and diagonal MWS in standing. Clinical outcome measures collected were Berg Balance Scale and Community Balance and Mobility Scale (CBMS) for balance, 10-meter walk test (10MWT) for gait speed and Falls Efficacy Scale-international version for fear of falling. MWS for PwS towards the affected side was significantly smaller compared to HC (lateral: p = 0.029; diagonal-forward: p = 0.000). MWS for PwS was also significantly reduced towards the affected side in the diagonal-forward direction (p = 0.019) compared to the non-affected side of PwS. Strong correlations were found for MWS for PwS in the diagonal-forward direction towards the affected side, and clinical measures of balance (CBMS: r = 0.66) and gait speed (10MWT: r = 0.66). Our study showed that ambulatory sub-acute PwS, in comparison to HC, have decreased ability to shift their body weight diagonally forward in standing towards their affected side. This reduced ability is strongly related to clinical measures of balance and gait speed. Our results suggest that MWS in a diagonal-forward direction should receive attention in rehabilitation of ambulatory sub-acute PwS in an inpatient setting.
Origin of bending in uncoated microcantilever - Surface topography?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in
2014-01-27
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.
Mechanical design in embryos: mechanical signalling, robustness and developmental defects.
Davidson, Lance A
2017-05-19
Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Author(s).
Electrical-assisted double side incremental forming and processes thereof
Roth, John; Cao, Jian
2014-06-03
A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
Observations of Thermospheric Horizontal Winds at Watson Lake, Yukon Territory (lambda=65 Deg N)
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.; Killeen, T. L.; Solomon, Stanley C.
1996-01-01
Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.
In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities
2012-05-01
DEGRADED ACCEPTABLE Mitchell Aponso (1995) Watson Schroeder (1990) 0.75 lb/in 2.3 lb/in2.9 lb/in5.9 lb/in Side Stk - lon Side Stk - lat Center Stk Figure...vestibular feedback ( and respectively), and the visual error compensation ( ). A key feature of this approach is the modeling of proprioceptive...and vestibular feedback, and is the proportional component of the visual compensation strategy. At its core the fundamental concept of the HQSF
C-SIDE: The control-structure interaction demonstration experiment
NASA Technical Reports Server (NTRS)
Mohl, James B.; Davis, Hugh W.
1993-01-01
The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion.
Effects of Forced Air Warming on Airflow around the Operating Table.
Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio
2018-01-01
Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.
NASA Technical Reports Server (NTRS)
Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.
Decomposition of superimposed ground reaction forces into left and right force profiles
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, P. R.
1993-01-01
The process of collecting ground reaction force data by mounting a forceplate beneath a treadmill belt has the advantage that numerous walking trials can be analyzed without the problem of subjects 'targeting' their footsteps. However, a potential problem is that the measured forces represent a summation of bilateral force profiles during the double support phase of walking. To address this issue, an algorithm is described for decomposing superimposed ground reaction force data into individual left and right profiles. It is based on an examination of the side-to-side oscillations of the measured center of pressure (CoP). Whenever the measured CoP exceeds a certain threshold, it is assumed that the person is being supported by a single limb, and the measured GRF data reflect the forces under that limb. Conversely, when the measured CoP indicates that both feet are on the treadmill, it is assumed that the location of the individual CoP under each foot is given by wL2 and wR2. These quantities reflect the greatest excursion of the measured CoP towards the left and right sides of the forceplate, respectively. With this assumption, individual GRF profiles can be calculated by means of solving two simultaneous equations--one describing the equilibrium of forces in the vertical direction, and one describing the equilibrium of moments about an antero-posterior axis of the forceplate. The algorithm describing this procedure is simple enough to be implemented on a spreadsheet and yields estimates for average force, impulse, peak force and stance time that are typically within 3% of the true values.
Worldsid Assessment of Far Side Impact Countermeasures
Pintar, Frank A.; Yoganandan, Narayan; Stemper, Brian D.; Bostrom, Ola; Rouhana, Stephen W.; Smith, Stuart; Sparke, Laurie; Fildes, Brian N.; Digges, Kennerly H.
2006-01-01
Far side impact trauma has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to assess the potential usefulness of countermeasures and assess the trade-offs associated with generic countermeasure design. Because the WorldSID dummy has demonstrated promise as a potential far side impact dummy, it was chosen to assess countermeasures in this mode. A unique far side impact buck was designed for a sled test system that included, as a standard configuration, a center console and outboard three-point belt system. This configuration assumed a left side driver with a right side impact. The buck allowed for additional options of generic restraints including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o’clock PDOF) or a 60-degree (2-o’clock PDOF) orientation. A total of 19 WorldSID tests were completed. The inboard shoulder belt configuration produced high shear forces in the lower neck (2430 N) when the belt position was placed over the mid portion of the neck. Shear forces were reduced and of opposite sign when the inboard belt position was horizontal and over the shoulder; forces were similar to the standard outboard belt configuration (830 – 1100 N). A shoulder or thorax restraint was effective in limiting the head excursion, but each caused significant displacement at the corresponding region on the dummy. A shoulder restraint resulted in shoulder displacements of 30 – 43 mm. A thorax restraint caused thorax deflections of 39 – 64 mm. Inboard restraints for far side impacts can be effective in reducing head excursion but the specific design and placement of these restraints determine their overall injury mitigating characteristics. PMID:16968638
Inferring biological evolution from fracture patterns in teeth.
Lawn, Brian R; Bush, Mark B; Barani, Amir; Constantino, Paul J; Wroe, Stephen
2013-12-07
It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed. © 2013 Elsevier Ltd. All rights reserved.
Technology of forced flow and once-through boiling: A survey. [pressure distribution
NASA Technical Reports Server (NTRS)
Poppendieck, H. F.; Sabin, C. M.
1975-01-01
Representative boiling heat transfer and pressure drop information obtained primarily from past NASA and AEC programs is presented which is applicable to forced flow and once-through boiler systems. The forced convection boiler has a number of advantages: little possibility of flow mal-distribution; heat transfer characteristics are usually consistent; and conductances are predictable, so that higher heat fluxes may be employed with safety (which leads to more compact, lighter weight equipment). It was found that in gas-fired systems particularly, the controlling heat transfer resistance may be on the hot side, so that increased fluxes would require extended surfaces. If in a power generation system the working fluid is very expensive, a forced flow boiler can be designed especially for small holdup volume. If the fluid is temperature sensitive, the boiling side wall temperatures can be tailored to maintain maximum heat transfer rates without overheating the fluid. The forced flow and once-through configurations may be the only type which can satisfy a specific need (such as the automotive Rankine cycle power plant design having a very short time-response boiler).
NASA Astrophysics Data System (ADS)
Bicen, Baris
Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz--10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.
Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Michel, R. W.
1983-01-01
An evaluation liquid oxygen (LOX) and various hydrocarbon fuels as low cost alternative propellants suitable for future space transportation system applications was done. The emphasis was directed toward low earth orbit maneuvering engine and reaction control engine systems. The feasibility of regeneratively cooling an orbit maneuvering thruster was analytically determined over a range of operating conditions from 100 to 1000 psia chamber pressure and 1000 to 10,000-1bF thrust, and specific design points were analyzed in detail for propane, methane, RP-1, ammonia, and ethanol; similar design point studies were performed for a film-cooled reaction control thruster. Heat transfer characteristics of propane were experimentally evaluated in heated tube tests. Forced convection heat transfer coefficients were determined. Seventy-seven hot firing tests were conducted with LOX/propane and LOX/ethanol, for a total duration of nearly 1400 seconds, using both heat sink and water-cooled calorimetric chambers. Combustion performance and stability and gas-side heat transfer characteristics were evaluated.
Sugii, Mari Miura; Barreto, Bruno de Castro Ferreira; Francisco Vieira-Júnior, Waldemir; Simone, Katia Regina Izola; Bacchi, Ataís; Caldas, Ricardo Armini
2018-01-01
The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.
Strong liquid-crystalline polymeric compositions
Dowell, Flonnie
1993-01-01
Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-08
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each other or the main chain.
In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Ott, Carl Raymond; Malpica, Carlos A.; von Gruenhagen, Wolfgang
2012-01-01
The effect of inceptor feel-system characteristics on piloted handling qualities has been a research topic of interest for many years. Most of the research efforts have focused on advanced fly-by-wire fixed-wing aircraft with only a few studies investigating the effects on rotorcraft. Consequently, only limited guidance is available on how cyclic force-feel characteristics should be set to obtain optimal handling qualities for rotorcraft. To study this effect, the U.S. Army Aeroflightdynamics Directorate working with the DLR Institute of Flight Systems in Germany under Task X of the U.S. German Memorandum of Understanding have been conducting flight test evaluations. In the U.S., five experimental test pilots have completed evaluations of two Mission Task Elements (MTEs) from ADS-33E-PRF and two command/response types for a matrix of center-stick cyclic force-feel characteristics at Moffett Field. In Germany, three experimental test Pilots have conducted initial evaluations of the two MTEs with two command/response types for a parallel matrix of side-stick cyclic force-feel characteristics at WTD-61 in Manching. The resulting data set is used to correlate the effect of changes in natural frequency and damping ratio of the cyclic inceptor on the piloted handling qualities. Existing criteria in ADS-33E and a proposed Handling Qualities Sensitivity Function that includes the effects of the cyclic force-feel characteristics are also evaluated against the data set and discussed.
How propeller suction is the dominant factor for ship accidents at shallow water conditions
NASA Astrophysics Data System (ADS)
Acar, Dursun; Alpar, Bedri; Ozeren, Sinan
2017-04-01
The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder control. Additionally the second water drainage from the shallow ridge area by the propeller's left-directed suction created a shallower environment. Similar situation for example collision of two ships during their side by side forward motions; their positions will be approached and listed to each other more same as downslope movement because of the shared area's water level collapse occur more by two propeller's suction.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
14 CFR 25.255 - Out-of-trim characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-trim characteristics. (a) From an initial condition with the airplane trimmed at cruise speeds up to.../MFC and VDF/MDF the direction of the primary longitudinal control force may not reverse. (c) Except as... flight test with regard to reversal of primary longitudinal control force, flight tests must be...
NASA Technical Reports Server (NTRS)
Guy, Lawrence D; Hadaway, William M
1955-01-01
Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.
Drag forces of natural trees of different size: experiments in a towing tank
NASA Astrophysics Data System (ADS)
Jalonen, Johanna; Järvelä, Juha
2013-04-01
Reliable estimation of hydraulic resistance is of great importance in practical applications such as river and wetland restoration as well as flood prediction and management. Parameters describing riparian vegetation need to be physically sound and readily measurable. For these purposes, several researchers have studied the hydraulic resistance in flumes with living and artificial plants both in arrays and with isolated plants. However, due to the restrictions of flume size the experiments are often conducted with parts of trees, twigs or branches. Consequently, it is not clear how the size (parts of trees or small trees vs. full scale trees) affects the hydraulic resistance. We conducted direct drag force measurements for 23 tree individuals of different heights (0.9 m - 3.5 m) in a towing tank. The investigated species were Common Alder (Alnus glutinosa), Goat Willow (Salix caprea), Silver Birch (Betula pendula) and White Birch (Betula pubescens). The forces were measured at velocity ranges of 0.1-2.5 m/s and 0.1-2.0 m/s both in leafy and leafless conditions, respectively. The measurement system consisted of three load cells measuring the main flow direction. Two different load cell setups were used depending on the size of the specimen to allow for accurate force measurement. For the smaller trees the load cells were replaced with more sensitive sensors, and the resulting ranges of the load cells were from 1 to 1000 N and from 0.1 to 100 N. Frontal and side projected areas and bending of the specimens were recorded during the measurements using submerged video cameras. For all specimens, wet and dry biomass, projected area in still air, and one-sided leaf area were determined. In order to construct a 3D-model of the trees, the specimens were laser scanned from three directions with a terrestrial laser scanner (TLS). The resulting point cloud had a millimeter resolution, and provided detailed information about the plant characteristics, such as leaf area, projected area, and stem volume with the corresponding vertical distributions. The experiments provided information for improving understanding about the impact of tree size on drag (different plant properties such as flexibility and deformation), contribution of foliage to drag, and characterization of vegetation (laser scanning vs. biomass and photographs). The results showed that the contribution of leaves to the total drag decreased from 80% at the lowest velocity (0.1 m/s) to around 40% for velocities above 0.5 m/s. For the smaller trees, height 90-150 cm, the contribution of leaves to the total drag was 50% at the velocity of 0.5 m/s and higher. These differences may be attributed to the different tree morphology of the smaller trees compared to the taller trees. The differences in the flexibility and plant characteristics will be elaborated in the further analyses of the data.
NASA Astrophysics Data System (ADS)
Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun
2018-02-01
Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.
Analysis of motion of the body of a motor car hit on its side by another passenger car
NASA Astrophysics Data System (ADS)
Gidlewski, M.; Prochowski, L.
2016-09-01
Based on an analysis of the course of a few experimental crash tests, a physical model and afterwards a mathematical model were prepared to describe the motion of bodies of the vehicles involved during the phase of impact. The motion was analysed in a global coordinate system attached to the road surface. Local coordinate systems were also adopted with their origins being placed at the centres of mass of the vehicles. Equations of motion of the model were derived. The calculation results enabled defining the influence of the location of the point of impact against the vehicle side on e.g. the following: - time history of the impact force exerted by the impacting car (A) on the impacted car (B) as well as characteristic values of this force and of the impulse of the impact force; - time histories showing changes in the velocity of the centre of vehicle mass and in the angle of deviation of the velocity vector from the direction of motion of the impacted vehicle before the collision; - trajectory of the centre of mass and angle of rotation of the body of the impacted vehicle. The calculations were focused on the initial period of motion of the body of the impacted vehicle, up to the instant of 200 ms from the start of the collision process. After this time, the vehicles separate from each other and move independently. The results obtained from the calculations covering this initial period make it possible to determine the starting-point values of the parameters to be taken for further calculations of the free post-impact motion of the cars.
NASA Astrophysics Data System (ADS)
Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.
2010-01-01
Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for P
NASA Astrophysics Data System (ADS)
Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.
2016-09-01
Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.
Human's Capability to Discriminate Spatial Forces at the Big Toe.
Hagengruber, Annette; Höppner, Hannes; Vogel, Jörn
2018-01-01
A key factor for reliable object manipulation is the tactile information provided by the skin of our hands. As this sensory information is so essential in our daily life it should also be provided during teleoperation of robotic devices or in the control of myoelectric prostheses. It is well-known that feeding back the tactile information to the user can lead to a more natural and intuitive control of robotic devices. However, in some applications it is difficult to use the hands as natural feedback channels since they may already be overloaded with other tasks or, e.g., in case of hand prostheses not accessible at all. Many alternatives for tactile feedback to the human hand have already been investigated. In particular, one approach shows that humans can integrate uni-directional (normal) force feedback at the toe into their sensorimotor-control loop. Extending this work, we investigate the human's capability to discriminate spatial forces at the bare front side of their toe. A state-of-the-art haptic feedback device was used to apply forces with three different amplitudes-2 N, 5 N, and 8 N-to subjects' right big toes. During the experiments, different force stimuli were presented, i.e., direction of the applied force was changed, such that tangential components occured. In total the four directions up (distal), down (proximal), left (medial), and right (lateral) were tested. The proportion of the tangential force was varied corresponding to a directional change of 5° to 25° with respect to the normal force. Given these force stimuli, the subjects' task was to identify the direction of the force change. We found the amplitude of the force as well as the proportion of tangential forces to have a significant influence on the success rate. Furthermore, the direction right showed a significantly different successrate from all other directions. The stimuli with a force amplitude of 8 N achieved success rates over 89% in all directions. The results of the user study provide evidence that the subjects were able to discriminate spatial forces at their toe within defined force amplitudes and tangential proportion.
Human's Capability to Discriminate Spatial Forces at the Big Toe
Hagengruber, Annette; Höppner, Hannes; Vogel, Jörn
2018-01-01
A key factor for reliable object manipulation is the tactile information provided by the skin of our hands. As this sensory information is so essential in our daily life it should also be provided during teleoperation of robotic devices or in the control of myoelectric prostheses. It is well-known that feeding back the tactile information to the user can lead to a more natural and intuitive control of robotic devices. However, in some applications it is difficult to use the hands as natural feedback channels since they may already be overloaded with other tasks or, e.g., in case of hand prostheses not accessible at all. Many alternatives for tactile feedback to the human hand have already been investigated. In particular, one approach shows that humans can integrate uni-directional (normal) force feedback at the toe into their sensorimotor-control loop. Extending this work, we investigate the human's capability to discriminate spatial forces at the bare front side of their toe. A state-of-the-art haptic feedback device was used to apply forces with three different amplitudes—2 N, 5 N, and 8 N—to subjects' right big toes. During the experiments, different force stimuli were presented, i.e., direction of the applied force was changed, such that tangential components occured. In total the four directions up (distal), down (proximal), left (medial), and right (lateral) were tested. The proportion of the tangential force was varied corresponding to a directional change of 5° to 25° with respect to the normal force. Given these force stimuli, the subjects' task was to identify the direction of the force change. We found the amplitude of the force as well as the proportion of tangential forces to have a significant influence on the success rate. Furthermore, the direction right showed a significantly different successrate from all other directions. The stimuli with a force amplitude of 8 N achieved success rates over 89% in all directions. The results of the user study provide evidence that the subjects were able to discriminate spatial forces at their toe within defined force amplitudes and tangential proportion. PMID:29692718
Natural Characteristics of The Herringbone Gear Transmission System
NASA Astrophysics Data System (ADS)
Zhou, Jianxing; Sun, Wenlei; Cao, Li
2018-03-01
According to the structure characteristics of herringbone gear transmission, a more realistic dynamic model of the transmission system is built in consideration of the inner excitation, herringbone gears axial positioning and sliding bearing etc. The natural frequencies of the system are calculated, and the vibration mode is divided into symmetric vibration modes and asymmetric vibration modes. The time history of system dynamic force is obtained by solving the dynamic model. The effects of the connection stiffness of left and right sides of herringbone gears and axial support stiffness on natural characteristics are discussed.
DeJong, Stacey L.; Lang, Catherine E.
2012-01-01
Objectives Although healthy individuals have less force production capacity during bilateral muscle contractions compared to unilateral efforts, emerging evidence suggests that certain aspects of paretic upper limb task performance after stroke may be enhanced by moving bilaterally instead of unilaterally. We investigated whether the bilateral movement condition affects grip force differently on the paretic side of people with post-stroke hemiparesis, compared to their non-paretic side and both sides of healthy young adults. Methods Within a single session, we compared: 1) maximal grip force during unilateral vs. bilateral contractions on each side, and 2) force contributed by each side during a 30% submaximal bilateral contraction. Results Healthy controls produced less grip force in the bilateral condition, regardless of side (- 2.4% difference), and similar findings were observed on the non-paretic side of people with hemiparesis (- 4.5% difference). On the paretic side, however, maximal grip force was increased by the bilateral condition in most participants (+11.3% difference, on average). During submaximal bilateral contractions in each group, the two sides each contributed the same percentage of unilateral maximal force. Conclusions The bilateral condition facilitates paretic limb grip force at maximal, but not submaximal levels. Significance In some people with post-stroke hemiparesis, the paretic limb may benefit from bilateral training with high force requirements. PMID:22248812
Esper, Luis Augusto; Sbrana, Michyele Cristhiane; Cunha, Mércia Jussara da Silva; Moreira, Guilherme Santos; de Almeida, Ana Lúcia Pompéia Fraga
2012-01-01
Objective. To evaluate characteristics of smile related to visibility in individuals with cleft lip, alveolus, and palate. Design. Cross-sectional. Setting. HRAC/USP, Brazil. Patients. Individuals with repaired complete unilateral cleft lip and palate (n = 45), aged 15-30 years. Interventions. Frontal facial photographs were obtained in natural and forced smiles (n = 135). Six specialists in periodontics evaluated the photographs as to the smile line, thickness, and curve of the upper lip. Main Outcome Measures. The cleft area was compared with the contralateral region. Results were expressed as percentages and means. The findings were compared between groups of periodontists. Results. Statistically significant relationship was observed in the smile line between examiners and between natural and forced smiles, regardless of the association with the cleft side. The lip was thicker at rest and thinner in the forced smile, as also evaluated by the group not experienced with cleft care. The curve of the upper lip in natural and forced smiles was considered as close to straight by both groups, regardless of the cleft. Conclusion. The smile in individuals with clefts was regarded as average for both cleft and noncleft sides. The thickness was characterized as average to thin, being thinner in forced smile and when analyzed by the group not experienced with cleft care. In the average, the curve of the upper lip was considered as straight. The present study elucidates some characteristics related to the smile in individuals with repaired unilateral cleft lip, alveolus, and palate.
Esper, Luis Augusto; Sbrana, Michyele Cristhiane; Cunha, Mércia Jussara da Silva; Moreira, Guilherme Santos; de Almeida, Ana Lúcia Pompéia Fraga
2012-01-01
Objective. To evaluate characteristics of smile related to visibility in individuals with cleft lip, alveolus, and palate. Design. Cross-sectional. Setting. HRAC/USP, Brazil. Patients. Individuals with repaired complete unilateral cleft lip and palate (n = 45), aged 15–30 years. Interventions. Frontal facial photographs were obtained in natural and forced smiles (n = 135). Six specialists in periodontics evaluated the photographs as to the smile line, thickness, and curve of the upper lip. Main Outcome Measures. The cleft area was compared with the contralateral region. Results were expressed as percentages and means. The findings were compared between groups of periodontists. Results. Statistically significant relationship was observed in the smile line between examiners and between natural and forced smiles, regardless of the association with the cleft side. The lip was thicker at rest and thinner in the forced smile, as also evaluated by the group not experienced with cleft care. The curve of the upper lip in natural and forced smiles was considered as close to straight by both groups, regardless of the cleft. Conclusion. The smile in individuals with clefts was regarded as average for both cleft and noncleft sides. The thickness was characterized as average to thin, being thinner in forced smile and when analyzed by the group not experienced with cleft care. In the average, the curve of the upper lip was considered as straight. The present study elucidates some characteristics related to the smile in individuals with repaired unilateral cleft lip, alveolus, and palate. PMID:23227326
NASA Astrophysics Data System (ADS)
Renson, Ludovic; Barton, David A. W.; Neild, Simon A.
Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1974-01-01
An experimental investigation was conducted to determine the effect of forebody geometry, a grit ring around the nose, Reynolds number, Mach number, and angle of attack on the aerodynamic characteristics of a body of revolution. Aerodynamic force and moment characteristics were measured for a cylindrical body with tangent ogive noses of fineness ratio 2.5, 3.0, 3.5, and 5.0. The cylindrical body was tested with an ogive nose having a rounded tip and an ogive nose with two different nose strake arrangements. Aerodynamic configurations were tested at various Mach numbers, angles of attack, and Reynolds numbers. The data demonstrate that the aerodynamic characteristics for a body of revolution can be significantly affected by changes in nose fineness ratio, nose bluntness, Reynolds number, Mach number, and, of course, angle of attack. Nose strakes increased the normal forces but had little effect on the side forces that developed at subsonic Mach numbers for alpha greater than about 25. A grit ring around the nose had little or no effect on the aerodynamic characteristics.
Liu, Na; Yu, Ruifeng
2018-06-01
This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA basedmore » on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.« less
Optical Pulling and Pushing Forces in Bilayer P T -Symmetric Structures
NASA Astrophysics Data System (ADS)
Alaee, Rasoul; Christensen, Johan; Kadic, Muamer
2018-01-01
We investigate the optical force exerted on a parity-time-symmetric bilayer made of balanced gain and loss. We show that an asymmetric optical pulling or pushing force can be exerted on this system depending on the direction of impinging light. The optical pulling or pushing force has a direct physical link to the optical characteristics embedded in the non-Hermitian bilayer. Furthermore, we suggest taking advantage of the optically generated asymmetric force to launch vibrations of an arbitrary shape, which is useful for the contactless probing of mechanical deformations.
NASA Astrophysics Data System (ADS)
Tanohata, Naoki; Seki, Hirokazu
This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.
Strong liquid-crystalline polymeric compositions
Dowell, F.
1993-12-07
Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.
Cornering characteristics of the nose-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Vogler, W. A.; Tanner, J. A.
1981-01-01
An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
Jovanović, S
1992-01-01
An influence of verticalization of the resulting force of weight-bearing on the hip joint "R" on the morphological characteristics of the medullar canal on the proximal edge of the shaft of femur was researched. Progressive degenerative changes of the hip joint with a consequent sideways limping or changes of the collodiaphysial angle (ccd angle) were the cause of the verticalization of the resulting force "R". The analysis of patients treated and operated on The Orthopaedic Department of the General Hospital Osijek and The Orthopaedic Clinic of The Medical Faculty of The University of Zagreb. The research, undoubtedly, proved that the patients with coxarthrosis and side-ways in the hip or with changed collodiaphysial angle experienced verticalization of the resulting force of weigh-bearing of the hip joint and the proximal edge of femur which caused morphological changes of the medular canal of the shaft of femur.
Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.
Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo
2017-08-29
This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.
Liu, Yang; Gao, Binghong; Li, Jiru; Ma, Zuchang; Sun, Yining
2018-06-07
The aim of this study was to investigate whether changes on foot-stretcher height were associated with characteristics of better rowing performance. Ten male rowers performed a 200 m rowing trial at their racing rate at each of three foot-stretcher heights. A single scull was equipped with an accelerometer to collect boat acceleration, an impeller with embedded magnets to collect boat speed, specially designed gate sensors to collect gate force and angle, and a compact string potentiometer to collect leg drive length. All sensor signals were sampled at 50 Hz. A one-way repeated measures ANOVA showed that raising foot-stretcher position had a significant reduction on total gate angle and leg drive length. However, a raised foot-stretcher position had a deeper negative peak of boat acceleration at the catch, a lower boat fluctuation, a faster leg drive speed, a larger gate force for the port and starboard side separately. This could be attributed to the optimisation of the magnitude and direction of the foot force with a raised foot-stretcher position. Although there was a significant negative influence of a raised foot-stretcher position on two kinematic variables, biomechanical evidence suggested that a raised foot-stretcher position could contribute to the improvement of rowing performance.
1989-12-01
to the fullest extent; it has then to become effective in concrete hallucination , since, it had no direct psychological access.... But with the...even though the ears are interfaced with the auditory cortex of both sides of the brain, the interface to the opposite side is much stronger. The...melodies, and recognition of faces has been demonstrated by female infants, but not male, as early as four months of age. Because female infants hear better
2009-04-27
an aromatic acidic polymer such as SPEEK or SPSf. Figure 5 shows four basic polymers in which benzimidazole (BIm), amino- benzimidazole (ABIm...Z., A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Polyetheretherketone and Polysulfone Bearing Benzimidazole Side Groups for...Sulfonated Poly(ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters
Lai, Xinghua; Ma, Chunsheng; Hu, Jingwen; Zhou, Qing
2012-09-01
Occupant injury in real world vehicle accidents can be significantly affected by a set of crash characteristics, of which impact direction and impact location (or damage location) in general scale interval (e.g., frontal impact is frequently defined as general damage to vehicle frontal end with impact angle range of 11-1 o'clock) have been identified to associate with injury outcome. The effects of crash configuration in more specific scale of interval on the injury characteristics have not been adequately investigated. This paper presents a statistical analysis to investigate the combined effects of specific impact directions and impact locations on the serious-to-fatal injuries of driver occupants involved in near-side collisions using crash data from National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for the calendar years of 1995-2005. The screened injury dataset is categorized by three impact locations (side front, side center and side distributed) and two impact directions (oblique impact at 10 o'clock and pure lateral impact at 9 o'clock), resulting in six crash configurations in total. The weighted counts and the risks of different types of injuries in each subgroup are calculated, with which the relative risks along with 95% confidence intervals under oblique impacts versus lateral impacts in each impact location category are computed. Accordingly, the most frequent injury patterns, the risks and the coded-sources of serious thoracic injuries in different crash configurations are identified. The approach adopted in the present study provides new perspectives into occupant injury outcomes and associated mechanism. Results of the analyses reveal the importance of consideration of the crash configurations beyond the scope of existing side-impact regulatory tests and stress the necessity of vehicle crashworthiness and restraint system design in omni-direction to better protect occupants in real-world crash scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Receptive Side of Teaching
ERIC Educational Resources Information Center
Hruska, Barbara
2008-01-01
When observing teachers in action, one is likely to witness explaining, modeling, managing, guiding, and encouraging. These expressive behaviors constitute a directive force moving outward from teacher to students. Though less visible to an outside observer, teaching also requires receptive skills, the ability to take in information by being fully…
Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C
2015-03-01
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated. Copyright © 2014. Published by Elsevier B.V.
Paetyangkul, Anchalee; Türk, Tamer; Elekdağ-Türk, Selma; Jones, Allan S; Petocz, Peter; Cheng, Lam L; Darendeliler, M Ali
2011-03-01
Orthodontic force duration can affect the severity of root resorption. The aim of this clinical study was to investigate the amounts of root resorption volumetrically after the application of controlled light and heavy forces in the buccal direction for 4, 8, and 12 weeks. The sample consisted of 54 maxillary first premolars in 36 patients (mean age, 14.9 years; 21 girls, 15 boys) who required first premolar extractions as part of their orthodontic treatment. The teeth were allocated into 3 groups that varied in the duration of force application: 4, 8, or 12 weeks. The right or left first premolars were randomly selected to receive 2 levels of forces. A light buccally directed orthodontic force of 25 g was applied to the experimental tooth on 1 side, while a heavy orthodontic force of 225 g was applied on the contralateral premolar. At the end of the experimental period, the teeth were extracted and scanned with the microcomputed-tomography x-ray system. Resorption crater analysis was performed with specially designed software for direct volumetric measurements. Significant differences in the extent of root resorption were found between 4, 8, and 12 weeks of force application (P <0.001), with substantially more severe resorption in the longer force duration groups. The light force produced significantly less root resorption than did the heavy force. After 4, 8, or 12 weeks of buccally directed orthodontic forces applied on the maxillary first premolars, the volumes of root resorption craters were found to be related to the duration and the magnitude of the forces. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Correlation of side-force and yawing-moment data for TACV configurations at large angles of sideslip
DOT National Transportation Integrated Search
1974-01-01
Methods developed by Woolard and Ruetenik and Zartarian for predicting the side force and yawing moment on TACV configurations due to side winds are compared against available data from wind-tunnel tests. The predicted side force based on slender-bod...
Sunnevång, Cecilia; Sui, Bo; Lindkvist, Mats; Krafft, Maria
2015-01-01
This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant. National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used. The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome. Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.
Hillery, S C; Wallace, E S; McIlhagger, R; Watson, P
1997-08-01
The aim of this study was to assess, by means of gait analysis, the effect on the gait of a trans-tibial amputee of altering the mass and the moment of inertia of a dynamic elastic response prosthesis. One male amputee was analysed for four to five walking trials at normal and fast cadences, using the VICON system of motion analysis and an AMTI force plate. The kinematic variables of cadence, swing time, single support time and joint angles for the knee and hip on the affected and intact sides were analysed. The ground reaction force was also analysed. The sample size was limited to one as an example to indicate the changes which are possible through simply changing the inertial characteristics. Descriptive statistics are used to demonstrate these changes. Three mass conditions for the prosthesis were analysed m1: 1080g; m2: 1080 + 530g; m3: 1080 + 1460g. The m1 condition is the mass of the prosthesis with no added weight while m2 and m3 were attachments of the same geometrical shape but were made from different materials. It was felt that the large mass range would highlight biomechanical adjustments as a result of its alteration. The effect on selected temporal characteristics were that as the speed increased the cadence changed and the affected side single support times as a percentage of the gait cycle were altered. The effect on the joint angles was also apparent at the hip and knee of both sides. The ground reaction force patterns were similar for all three mass conditions, though the impact peak which was evident in the intact limb was missing, indicating a shock absorbing property in the prosthesis. Clearly, changing the mass and moment of inertia has an effect on the kinematic variables of gait and should be considered when designing a prosthesis.
Hydrodynamic force characteristics in the splash zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daliri, M.R.; Haritos, N.
1996-12-31
A comprehensive experimental study concerned with the hydrodynamic force characteristics of both rigid and compliant surface piercing cylinders, with a major focus on the local nature of these characteristics as realized in the splash zone and in the fully submerged zone immediately below this region, has been in progress at the University of Melbourne for the last three years. This paper concentrates on a portion of this study associated with uni-directional regular wave inputs with wave steepness (H/{lambda}) in the range 0.0005--0.1580 and Keulegan-Carpenter (KC) numbers in the range 2--15 which encompasses inertia force dominant (KC<5) to drag force significantmore » conditions (5« less
NASA Astrophysics Data System (ADS)
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
Load reduction of a monopile wind turbine tower using optimal tuned mass dampers
NASA Astrophysics Data System (ADS)
Tong, Xin; Zhao, Xiaowei; Zhao, Shi
2017-07-01
We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.
Xue, Xiuzhan; Yu, Cunming; Wang, Jingming; Jiang, Lei
2016-12-27
Microbubbles are tiny bubbles with diameters below 50 μm. Because of their minute buoyant force, the microbubbles stagnate in aqueous media for a long time, and they sometimes cause serious damage. Most traditional methods chosen for elimination of gas bubbles utilize buoyancy forces including chemical methods and physical methods, and they only have a minor effect on microbubbles. Several approaches have been developed to collect and transport microbubbles in aqueous media. However, the realization of innovative strategies to directly collect and transport microbubbles in aqueous media remains a big challenge. In nature, both spider silk and cactus spines take advantage of their conical-shaped surface to yield the gradient of Laplace pressure and surface free energy for collecting fog droplets from the environment. Inspired by this, we introduce here the gradient of Laplace pressure and surface free energy to the interface of superhydrophobic copper cones (SCCs), which can continuously collect and directionally transport CO 2 microbubbles (from tip side to base side) in CO 2 -supersaturated solution. A gas layer was formed when the microbubbles encounter the SCCs. This offers a channel for microbubble directional transportation. The efficiency of microbubble transport is significantly affected by the apex angle of SCCs and the carbon dioxide concentration. The former provides different gradients of Laplace pressure as the driving force. The latter represents the capacity, which offers the quantity of CO 2 microbubbles for collection and transportation. We believe that this approach provides a simple and valid way to remove microbubbles.
Fitzharris, Michael; Franklyn, Melanie; Frampton, Richard; Yang, King; Morris, Andrew; Fildes, Brian
2004-09-01
Using in-depth, real-world motor vehicle crash data from the United States and the United Kingdom, we aimed to assess the incidence and risk factors associated with thoracic aorta injuries. De-identified National Automotive Sampling System Crashworthiness Data System (U.S.) and Co-operative Crash Injury Study (U.K.) data formed the basis of this retrospective analysis. Logistic regression was used to assess the level of risk of thoracic aorta injury associated with impact direction, seat belt use and, given the asymmetry of the thoracic cavity, whether being struck toward the left side of the body was associated with increased risk in side-impact crashes. A total of 13,436 U.S. and 3,756 U.K. drivers and front seat passengers were analyzed. The incidence of thoracic aorta injury in the U.S. and U.K. samples was 1.5% (n = 197) and 1.9% (n = 70), respectively. The risk was higher for occupants seated on the side closest to the impact than for occupants involved in frontal impact crashes. This was the case irrespective of whether the force was applied toward the left (belted: relative risk [RR], 4.6; 95% confidence interval [CI], 2.9-7.1; p < 0.001) or the right side (belted: RR, 2.6; 95% CI, 1.4-5.1; p < 0.004) of the occupant's body. For occupants involved in side-impact crashes, there was no difference in the risk of thoracic aorta injury whether the impacting force was applied toward the left or toward the right side of the occupant's body. Seat belt use provided a protective benefit such that the risk of thoracic aorta injury among unbelted occupants was three times higher than among belted occupants (RR, 3.0; 95% CI, 2.2-4.3; p < 0.001); however, the benefit varied across impact direction. Thoracic aorta injuries were found to be associated with high impact severity, and being struck by a sports utility vehicle relative to a passenger vehicle (RR, 1.7; 95% CI, 1.2-2.3; p = 0.001). Aortic injuries have been conventionally associated with frontal impacts. However, emergency clinicians should be aware that occupants of side-impact crashes are at greater risk, particularly if the occupant was unbelted and involved in a crash of high impact severity.
Kon, Kazuhiro; Shiota, Makoto; Sakuyama, Aoi; Ozeki, Maho; Kozuma, Wataru; Kawakami, Sawako; Kasugai, Shohei
2017-02-01
The present study aimed to evaluate the effect of implant prostheses on the occlusal force and area as well as the distribution of occlusal loading in unilateral free-end and intermediate missing cases. Fourteen healthy subjects (7 free-end missing cases in the first and second molars and 7 intermediate missing cases in the first molar region) were included. Six months after the implant prosthesis was placed, an occlusal evaluation was performed with or without the implant superstructure by using Dental Prescale film and an occluder device. In free-end missing cases, the total occlusal force and area, implant-side occlusal force and area, and implant-side occlusal force and area of the residual natural teeth were significantly affected by the implant prostheses. In intermediate missing cases, the implant-side occlusal force of the residual natural teeth was significantly affected by the implant prostheses. In free-end missing cases, the proportions of implant-side occlusal force, non-implant-side occlusal force, and implant-side occlusal force of the residual natural teeth relative to the total occlusal force were significantly affected by the implant prostheses. In the intermediate missing cases, the proportion of the implant-side occlusal force of the residual natural teeth relative to the total occlusal force was significantly affected by the implant prostheses. The proportion of the occlusal area was also significantly affected. In free-end missing cases, implant prostheses significantly increased the occlusal force and area, which resulted in the proper occlusal distribution. In intermediate missing cases, an implant prosthesis may only improve the same-side occlusal loading of the natural teeth.
NASA Astrophysics Data System (ADS)
Cho, Yong-Jung; Kim, Woo-Sic; Lee, Yeol-Hyeong; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun
2018-06-01
We investigated the mechanism of formation of the hump that occurs in the current-voltage I-V characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) that are exposed to long-term drain bias stress under illumination. Transfer characteristics showed two-stage degradation under the stress. At the beginning of the stress, the I-V characteristics shifted in the negative direction with a degradation of subthreshold slope, but the hump phenomenon developed over time in the I-V characteristics. The development of the hump was related to creation of defects, especially ionized oxygen vacancies which act as shallow donor-like states near the conduction-band minimum in a-IGZO. To further investigate the hump phenomenon we measured a capacitance-voltage C-V curve and performed two-dimensional device simulation. Stretched-out C-V for the gate-to-drain capacitance and simulated electric field distribution which exhibited large electric field near the drain side of TFT indicated that VO2+ were generated near the drain side of TFT, but the hump was not induced when VO2+ only existed near the drain side. Therefore, the degradation behavior under DBITS occurred because VO2+ were created near the drain side, then were migrated to the source side of the TFT.
Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation
NASA Astrophysics Data System (ADS)
Wang, Weiling; Wang, Zhaohui; Luo, Sen; Ji, Cheng; Zhu, Miaoyong
2017-12-01
A 3D parallel cellular automaton-finite volume method (CA-FVM) model was used to simulate the equiaxed dendritic growth of an Fe-0.82 wt pct C alloy with xy- in- out and xyz- in- out type forced flows and the columnar dendritic growth with y- in- out type forced flow. In addition, the similarities and differences between the results of the 3D and 2D models are discussed and summarized in detail. The capabilities of the 3D and 2D CA-FVM models to predict the dendritic growth of the alloy with forced flow are validated through comparison with the boundary layer correction and Oseen-Ivanstov models, respectively. Because the forced flow can pass around perpendicular arms of the dendrites, the secondary arms at the sides upstream from the perpendicular arms are more developed than those on the upstream side of the upstream arms, especially at higher inlet velocities. In addition, compared to the xy- in- out case, the growth of the downstream arms is less inhibited and the secondary arms are more developed in the xyz- in- out case because of the greater lateral flow around their tips. Compared to the 3D case, the 2D equiaxed dendrites are more asymmetrical and lack secondary arms because of the thicker solute envelope. In the 3D case, the columnar dendrites on the upstream side (left one) are promoted, while the middle and downstream dendrites are inhibited in sequence. However, the sequential inhibition starts on the upstream side in the 2D case. This is mainly because the melt can pass around the upstream branch in 3D space. However, it can only climb over the upstream tip in 2D space. Additionally, the secondary arms show upstream development, which is more significant with increasing inlet velocity. The level of development of the secondary arms is also affected by the decay of the forced flow in the flow direction.
Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas
NASA Astrophysics Data System (ADS)
Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.
1993-07-01
A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.
Aerodynamics in the classroom and at the ball park
NASA Astrophysics Data System (ADS)
Cross, Rod
2012-04-01
Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.
Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration
NASA Technical Reports Server (NTRS)
Hahne, David E.
1989-01-01
Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.
Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps
NASA Astrophysics Data System (ADS)
Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki
A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.
DeVoria, Adam C.
2017-01-01
This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139
Level III preventive medicine in a counterinsurgency environment.
Licina, Derek J
2008-01-01
As the Department of Defense moves forward to secure Baghdad, military forces are being strategically dispersed in very austere environments. These forces live and work side-by-side with their Iraqi counterparts in an effort to clear, hold, and reconstruct the city block by block, and further separate the insurgents from the general population. Level II preventive medicine (PM) personnel directly support these forces and keep them in the fight by reducing acute illness and disease and nonbattle injuries. Level III PM is performing the traditional PM mission of reducing both acute and chronic illness while conducting Deployment Occupational Environmental Health Surveillance and supporting Level II PM. However, the doctrinal basis of Level III allocation and priorities of core competencies have shifted. Are we meeting the need? This article attempts to answer the question based on experience as a Level III PM detachment commander in Baghdad, and provide recommendations for change across the spectrum of the Army's structure of doctrine, organizations, training, materiel, leadership, education, personnel, and facilities.
Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2017-11-01
In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.
Numerical study of heat transfer characteristics in BOG heat exchanger
NASA Astrophysics Data System (ADS)
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
Walker, A M; Applegate, C; Pfau, T; Sparkes, E L; Wilson, A M; Witte, T H
2016-10-03
Movement of a racehorse simulator differs to that of a real horse, but the effects of these differences on jockey technique have not been evaluated. We quantified and compared the kinematics and kinetics of jockeys during gallop riding on a simulator and real horses. Inertial measurement units were attached mid-shaft to the long bones of six jockeys and the sacrum of the horse or simulator. Instrumented stirrups were used to measure force. Data were collected during galloping on a synthetic gallop or while riding a racehorse simulator. Jockey kinematics varied more on a real horse compared to the simulator. Greater than double the peak stirrup force was recorded during gallop on real horses compared to the simulator. On the simulator stirrup forces were symmetrical, whereas on a real horse peak forces were higher on the opposite side to the lead limb. Asymmetric forces and lateral movement of the horse and jockey occurs away from the side of the lead leg, likely a result of horse trunk roll. Jockeys maintained a more upright trunk position on a real horse compared to simulator, with no change in pitch. The feet move in phase with the horse and simulator exhibiting similar magnitude displacements in all directions. In contrast the pelvis was in phase with the horse and simulator in the dorso-ventral and medio-lateral axes while a phase shift of 180° was seen in the cranio-caudal direction indicating an inverted pendulum action of the jockey. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct Measurement of the Surface Energy of Graphene.
van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan
2017-06-14
Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.
Low-speed wind-tunnel tests of an advanced eight-bladed propeller
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Gentry, G. L., Jr.; Dunham, D. M.
1985-01-01
As part of a research program on advanced turboprop aircraft aerodynamics, a low-speed wind-tunnel investigation was conducted to document the basic performance and force and moment characteristics of an advanced eight-bladed propeller. The results show that in addition to the normal force and pitching moment produced by the propeller/nacelle combination at angle of attack, a significant side force and yawing moment are also produced. Furthermore, it is shown that for test conditions wherein compressibility effects can be ignored, accurate simulation of propeller performance and flow fields can be achieved by matching the nondimensional power loading of the model propeller to that of the full-scale propeller.
NASA Technical Reports Server (NTRS)
Greer, H. D.
1972-01-01
The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.
1959-12-16
Side view of a F-105B (serial #54-0102) photographed on Rogers Dry Lakebed at Edwards Air Force Base, California in 1959. The black stripes across the left wheel-panel complete the lettering on the bottom of the wing when wheels are retracted. Two of the F-105B characteristics are fuselage length of 61 feet 1.33 inches and a wing area of 385.0 square feet.
Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G
2017-10-13
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p < 0.004 to p < 0.001). The RPD angle and RtRMS-QRS best differentiated the groups. Combined, the 2 novel criteria gave 81.8% sensitivity, 90.9% specificity and odds ratio of 45.0 (95% confidence interval 15.8 to 128.2). ARVD/C disease process may lead to development of subtle ECG abnormalities that can be distinguishable using right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.
1996-03-22
During the final phase of tests with the HARV, Dryden technicians installed nose strakes, which were panels that fitted flush against the sides of the forward nose. When the HARV was at a high alpha, the aerodynamics of the nose caused a loss of directional stability. Extending one or both of the strakes results in strong side forces that, in turn, generated yaw control. This approach, along with the aircraft's Thrust Vectoring Control system, proved to be stability under flight conditions in which conventional surfaces, such as the vertical tails, were ineffective.
Rarefaction Effects in Hypersonic Aerodynamics
NASA Astrophysics Data System (ADS)
Riabov, Vladimir V.
2011-05-01
The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.
Supply-Side Demographics: Labor Force Growth in the Late 1980s and Its Impact on American Business.
ERIC Educational Resources Information Center
Yatrakis, Pan G.; Dino, Richard N.
1980-01-01
The purpose of this study was to determine through the estimation of reduced-form equations whether there is a direct causal connection between the impending short supply of labor and the incentive for businesses to increase their capital investments, with a consequent increase in productivity. (Editor)
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
Imai, T; Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M
2014-01-01
The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture.
NASA Technical Reports Server (NTRS)
Johnston, D. E.; Mcruer, D. T.
1986-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).
Spin and Recovery Characteristics of the Curtiss-Wright XP-87 Airplane
NASA Technical Reports Server (NTRS)
Berman, Theodore
1947-01-01
The spin and recovery characteristics of the Curtiss-Wright XP-87 airplane, as well as the spin-recovery parachute requirements, the control forces that would be encountered in the spin, and the best method for the crew to attempt an emergency escape, are presented in this report. The characteristics were estimated rather than determined by model tests because the XP-87 dimensional and mass characteristics were considered to be noncritical and because data were available from model tests of several similar airplanes. The study indicated that the recovery characteristics of the airplane will be satisfactory for all loadings if the controls are reversed fully and rapidly. The control forces, however, will probably be beyond the capabilities of the pilot unless some additional balance or a booster is used. A 6-foot tail parachute or a 3.5-foot wing-tip parachute with a drag coefficient of 0.7 will be a satisfactory, emergency spin-recovery device for spin demonstrations. If it is necessary for the crew to abandon the spinning airplane, they should leave from the outboard side of the cockpit.
Transient aerodynamic characteristics of vans during the accelerated overtaking process
NASA Astrophysics Data System (ADS)
Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li
2018-04-01
This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.
Twinning of amphibian embryos by centrifugation
NASA Technical Reports Server (NTRS)
Black, S. D.
1984-01-01
In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.
Resistance of equine tibiae and radii to side impact loads.
Piskoty, G; Jäggin, S; Michel, S A; Weisse, B; Terrasi, G P; Fürst, A
2012-11-01
There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≈ 0.926 · v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries. © 2012 EVJ Ltd.
Cell force mapping using a double-sided micropillar array based on the moiré fringe method
NASA Astrophysics Data System (ADS)
Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.
2014-07-01
The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.
Jame, David W; West, Jan M; Dooley, Philip C; Stephenson, D George
2004-01-01
The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute ("test") or not ("control"). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l(-1)) significantly shifted the force-pCa curve by 0.08-0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9-10 mmol l(-1)) induced a significant shift of the force-pCa curve by 0.18-0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force-pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36-40 mmol l(-1)), like arginine affected the force-pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08-0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.
Kim, Jin Hyun; Lee, Ki-Kwang; Kong, Se Jin; An, Keun Ok; Jeong, Jin Hwa; Lee, Yong Seuk
2014-08-01
Less mature athletes exhibit biomechanical parameters during cutting maneuvers that may place these athletes at greater risk for injury than their more mature counterparts, especially if the maneuvers are unanticipated. However, most studies on risk factors for anterior cruciate ligament (ACL) injury have focused on neuromuscular and knee kinematic differences between the sexes, not on the biomechanical parameters between specific sporting maneuvers. (1) Anticipation will have a greater effect than the type of cutting maneuver (side- vs cross-cutting) in terms of the biomechanical risk factors for ACL injuries, and (2) the biomechanical risk factors will be different between the 2 types of maneuvers. Controlled laboratory study. Thirty-seven young, male middle school soccer players participated in this study. Three-dimensional motion analysis featuring ground-reaction force and electromyography of the right leg was used. Kinematics, kinetics, and electromyography data for each athlete were analyzed during anticipated and unanticipated side- and cross-cutting maneuvers. The differences between anticipated and unanticipated states as well as between side- and cross-cutting maneuvers were calculated and compared. After unanticipated side-cutting, the time to peak ground-reaction force was longer and peak values were smaller compared with anticipated side-cutting. Flexion, valgus, and internal rotations in the knee joint were larger, and greater flexion and valgus moments were observed. The vastus lateralis and vastus medialis showed lower activity, and the lateral gastrocnemius showed higher activity after unanticipated side-cutting maneuvers. With unanticipated cross-cutting, the time to peak ground-reaction force was longer and peak values were smaller compared with anticipated cross-cutting, and the lateral gastrocnemius showed higher activity. Differences in the peak values of the mediolateral and vertical forces were smaller in the cross-cutting maneuver than in side-cutting. Changes in flexion and adduction of the hip joint, flexion of the knee joint, and inversion of the ankle joint were larger during side-cutting. Although there were some interactions between direction and anticipation, anticipating a cutting maneuver generally had a greater effect than the type of maneuver when there was no significant interaction. Increases in the valgus angle and moment of the knee joint and higher lateral gastrocnemius activity during the late period showed an association with ACL injury risk factors during side-cutting, and higher lateral gastrocnemius activity during the early period showed an association with injury risk factors during cross-cutting. © 2014 The Author(s).
Validation of the Inverted Pendulum Model in standing for transtibial prosthesis users.
Rusaw, David F; Ramstrand, Simon
2016-01-01
Often in balance assessment variables associated with the center of pressure are used to draw conclusions about an individual's balance. Validity of these conclusions rests upon assumptions that movement of the center of pressure is inter-dependent on movement of the center of mass. This dependency is mechanical and is referred to as the Inverted Pendulum Model. The following study aimed to validate this model both kinematically and kinetically, in transtibial prosthesis users and a control group. Prosthesis users (n=6) and matched control participants (n=6) stood quietly while force and motion data were collected under three conditions (eyes-open, eyes-closed, and weight-bearing feedback). Correlation coefficients were used to investigate the relationships between height and excursion of markers and center of masses in mediolateral/anteroposterior-directions, difference between center of pressure and center of mass and the center of mass acceleration in mediolateral/anteroposterior directions, magnitude of mediolateral/anteroposterior-component forces and center of mass acceleration, angular position of ankle and excursion in mediolateral/anteroposterior-directions, and integrated force signals. Results indicate kinematic validity of similar magnitudes (mean (SD) marker-displacement) between prosthesis users and control group for mediolateral- (r=0.77 (0.17); 0.74 (0.19)) and anteroposterior-directions (r=0.88 (0.18); 0.88 (0.19)). Correlation between difference of center of pressure and center of mass and the center of mass acceleration was negligible on the prosthetic side (r = 0.08 (0.06)) vs. control group (r=-0.51(0.13)). Results indicate kinematic validity of the Inverted Pendulum Model in transtibial prosthesis users but kinetic validity is questionable, particularly on the side with a prosthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
μPIV measurements of two-phase flows of an operated direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens
2013-05-01
In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.
Modeling emergent large-scale structures of barchan dune fields
NASA Astrophysics Data System (ADS)
Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.
2013-12-01
In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-06-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-04-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
NASA Astrophysics Data System (ADS)
Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki
2018-02-01
Three-dimensional growth morphologies of equiaxed dendrites growing under forced convection, with their preferred growth direction inclined from the flow direction, were investigated by performing large-scale phase-field lattice Boltzmann simulations on a graphical-processing-unit supercomputer. The tip velocities of the dendrite arms with their preferred growth directions inclined toward the upstream and downstream directions increased and decreased, respectively, as a result of forced convection. In addition, the tip velocities decreased monotonically as the angle between the preferred growth direction and the upstream direction increased. Here, the degree of acceleration of the upstream tips was larger than the degree of deceleration of the downstream tips. The angles between the actual tip growth directions and the preferred growth direction of the dendrite arms exhibited a characteristic change with two local maxima and two local minima.
Decoding the mechanical fingerprints of biomolecules.
Dudko, Olga K
2016-01-01
The capacity of biological macromolecules to act as exceedingly sophisticated and highly efficient cellular machines - switches, assembly factors, pumps, or motors - is realized through their conformational transitions, that is, their folding into distinct shapes and selective binding to other molecules. Conformational transitions can be induced, monitored, and manipulated by pulling individual macromolecules apart with an applied force. Pulling experiments reveal, for a given biomolecule, the relationship between applied force and molecular extension. Distinct signatures in the force-extension relationship identify a given biomolecule and thus serve as the molecule's 'mechanical fingerprints'. But, how can these fingerprints be decoded to uncover the energy barriers crossed by the molecule in the course of its conformational transition, as well as the associated timescales? This review summarizes a powerful class of approaches to interpreting single-molecule force spectroscopy measurements - namely, analytically tractable approaches. On the fundamental side, analytical theories have the power to reveal the unifying principles underneath the bewildering diversity of biomolecules and their behaviors. On the practical side, analytical expressions that result from these theories are particularly well suited for a direct fit to experimental data, yielding the important parameters that govern biological processes at the molecular level.
Efficiency of a flapping propulsion system based on two side-by-side pitching foils
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2017-11-01
We explore the propulsive performance of two foils flapping side-by-side in a wide variety of configurations, for different foil separations, pitching amplitudes and frequencies and phase differences. Direct force and torque measurements will be shown in each situation, after a thorough parametric study, that led to the identification of highly efficient modes of propulsion. The especially designed experimental rig allowed the computation of efficiencies globally and at each shaft in the system. Planar and volumetric Particle Image Velocimetry (PIV) allowed a detailed description of the wake generated by the system, for each different kinematics investigated. The investigation is part of an ambitious project with the aim of producing a high efficient and highly manoeuvrable flapping propulsion system for underwater vehicles. Funding from Spanish Ministry MINECO through Grant DPI2015-71645-P is gratefully acknowledged.
Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian
2014-06-01
Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.
2014-01-01
Background End-to-side anastomoses to connect the distal end of the great saphenous vein (GSV) to small target coronary arteries are commonly performed in sequential coronary artery bypass grafting (CABG). However, the oversize diameter ratio between the GSV and small target vessels at end-to-side anastomoses might induce adverse hemodynamic condition. The purpose of this study was to describe a distal end side-to-side anastomosis technique and retrospectively compare the effect of distal end side-to-side versus end-to-side anastomosis on graft flow characteristics. Methods We performed side-to-side anastomoses to connect the distal end of the GSV to small target vessels on 30 patients undergoing off-pump sequential CABG in our hospital between October 2012 and July 2013. Among the 30 patients, end-to-side anastomoses at the distal end of the GSV were initially performed on 14 patients; however, due to poor graft flow, those anastomoses were revised into side-to-side anastomoses. We retrospectively compared the intraoperative graft flow characteristics of the end-to-side versus side-to-side anastomoses in the 14 patients. The patient outcomes were also evaluated. Results We found that the side-to-side anastomosis reconstruction improved intraoperative flow and reduced pulsatility index in all the 14 patients significantly. The 16 patients who had the distal end side-to-side anastomoses performed directly also exhibited satisfactory intraoperative graft flow. Three-month postoperative outcomes for all the patients were satisfactory. Conclusions Side-to-side anastomosis at the distal end of sequential vein grafts might be a promising strategy to connect small target coronary arteries to the GSV. PMID:24884776
Atomic oxygen reactor having at least one sidearm conduit
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1994-01-01
An apparatus for treating a microporous structure with atomic oxygen is presented. The apparatus includes a main gas chamber for flowing gas in an axial direction and a source of gas, containing atomic oxygen, connected for introducing the gas into the main gas chamber. The apparatus employs at least one side arm extending from the main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.
Scapular-Muscle Performance: Two Training Programs in Adolescent Swimmers
Van de Velde, Annemie; De Mey, Kristof; Maenhout, Annelies; Calders, Patrick; Cools, Ann M.
2011-01-01
Abstract Context: Swimming requires well-balanced scapular-muscle performance. An additional strength-training program for the shoulders is pursued by swimmers, but whether these muscle-training programs need to be generic or specific for endurance or strength is unknown. Objective: To evaluate isokinetic scapular-muscle performance in a population of adolescent swimmers and to compare the results of training programs designed for strength or muscle endurance. Design: Controlled laboratory study. Setting: University human research laboratory. Patients or Other Participants: Eighteen adolescent swimmers. Intervention(s): Each participant pursued a 12-week scapular-training program designed to improve either muscle strength or muscle endurance. Main Outcome Measure(s): Bilateral peak force, fatigue index, and protraction/retraction strength ratios before and after the scapular-training program. Results: Scapular protraction/retraction ratios were slightly higher than 1 (dominant side = 1.08, nondominant side = 1.25, P = .006). Side-to-side differences in retraction strength were apparent both before and after the training program (P = .03 and P = .05, respectively). After the training program, maximal protraction (P < .05) and retraction (P < .01) strength improved on the nondominant side. Peak force and fatigue index were not different between the training groups. The fatigue indexes for protraction on both sides (P < .05) and retraction on the nondominant side (P = .009) were higher after the training program. Conclusions: We describe the scapular-muscle characteristics of a group of adolescent swimmers. Both muscle-strength and muscle-endurance programs improved absolute muscle strength. Neither of the strength programs had a positive effect on scapular-muscle endurance. Our results may be valuable for coaches and physiotherapists when they are designing exercise programs for swimmers. PMID:21391801
Analysis of Motorcycle Weave Mode by using Energy Flow Method
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Katayama, Tsuyoshi
The activation mechanism of motorcycle weave mode is clarified within the framework of the energy flow method, which calculates energy flow of mechanical forces in each motion. It is demonstrated that only a few mechanical forces affect the stability of the weave mode from among a total of about 40 mechanical forces. The activation of the lateral, yawing and rolling motions destabilize the weave mode, while activation of the steering motion stabilizes the weave mode. A detailed investigation of the energy flow of the steering motion reveals that the steering motion plays an important role in clarifying the characteristics of the weave mode. As activation of the steering motion progresses the phase of the front tire side force, and the weave mode is consequently stabilized. This paper provides a design guide for stabilizing the weave mode and the wobble mode compatibility.
Do the peak and mean force methods of assessing vertical jump force asymmetry agree?
Lake, Jason P; Mundy, Peter D; Comfort, Paul; Suchomel, Timothy J
2018-05-21
The aim of this study was to assess agreement between peak and mean force methods of quantifying force asymmetry during the countermovement jump (CMJ). Forty-five men performed four CMJ with each foot on one of two force plates recording at 1,000 Hz. Peak and mean were obtained from both sides during the braking and propulsion phases. The dominant side was obtained for the braking and propulsion phase as the side with the largest peak or mean force and agreement was assessed using percentage agreement and the kappa coefficient. Braking phase peak and mean force methods demonstrated a percentage agreement of 84% and a kappa value of 0.67 (95% confidence limits: 0.45-0.90), indicating substantial agreement. Propulsion phase peak and mean force methods demonstrated a percentage agreement of 87% and a kappa value of 0.72 (95% confidence limits: 0.51-0.93), indicating substantial agreement. While agreement was substantial, side-to-side differences were not reflected equally when peak and mean force methods of assessing CMJ asymmetry were used. These methods should not be used interchangeably, but rather a combined approach should be used where practitioners consider both peak and mean force to obtain the fullest picture of athlete asymmetry.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
Disposable soft 3 axis force sensor for biomedical applications.
Chathuranga, Damith Suresh; Zhongkui Wang; Yohan Noh; Nanayakkara, Thrishantha; Hirai, Shinichi
2015-08-01
This paper proposes a new disposable soft 3D force sensor that can be used to calculate either force or displacement and vibrations. It uses three Hall Effect sensors orthogonally placed around a cylindrical beam made of silicon rubber. A niobium permanent magnet is inside the silicon. When a force is applied to the end of the cylinder, it is compressed and bent to the opposite side of the force displacing the magnet. This displacement causes change in the magnetic flux around the ratiomatric linear sensors (Hall Effect sensors). By analysing these changes, we calculate the force or displacement in three directions using a lookup table. This sensor can be used in minimal invasive surgery and haptic feedback applications. The cheap construction, bio-compatibility and ease of miniaturization are few advantages of this sensor. The sensor design, and its characterization are presented in this work.
For the greater goods? Ownership rights and utilitarian moral judgment.
Millar, J Charles; Turri, John; Friedman, Ori
2014-10-01
People often judge it unacceptable to directly harm a person, even when this is necessary to produce an overall positive outcome, such as saving five other lives. We demonstrate that similar judgments arise when people consider damage to owned objects. In two experiments, participants considered dilemmas where saving five inanimate objects required destroying one. Participants judged this unacceptable when it required violating another's ownership rights, but not otherwise. They also judged that sacrificing another's object was less acceptable as a means than as a side-effect; judgments did not depend on whether property damage involved personal force. These findings inform theories of moral decision-making. They show that utilitarian judgment can be decreased without physical harm to persons, and without personal force. The findings also show that the distinction between means and side-effects influences the acceptability of damaging objects, and that ownership impacts utilitarian moral judgment. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn’t been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect. PMID:25679522
Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing
Marsden, J F; Castellote, J; Day, B L
2002-01-01
Galvanic vestibular stimulation (GVS) evokes responses in muscles of both legs when bilateral stimuli are applied during normal stance. We have used this technique to assess whether asymmetrical standing alters the distribution of responses in the two legs. Subjects stood either asymmetrically with 75 % of their body weight on one leg or symmetrically with each leg taking 50 % of their body weight. The net response in each leg was taken from changes in ground reaction force measured from separate force plates under each foot. The net force profile consisted of a small initial force change that peaked at ∼200 ms followed by an oppositely directed larger component that peaked at ∼450 ms. We analysed the second force component since it was responsible for the kinematic response of lateral body sway and tilt towards the anode. In the horizontal plane, both legs produced lateral force responses that were in the same direction but larger in the leg ipsilateral to the cathodal ear. There were also vertical force responses that were of equal size in both legs but acted in opposite directions. When subjects stood asymmetrically the directions of the force responses remained the same but their magnitudes changed. The lateral force response became 2-3 times larger for the more loaded leg and the vertical forces increased 1.5 times on average for both legs. Control experiments showed that these changes could not be explained by either the consistent (< 5 deg) head tilt towards the side of the loaded leg or the changes in background muscle activity associated with the asymmetrical posture. We conclude that the redistribution of force responses in the two legs arises from a load-sensing mechanism. We suggest there is a central interaction between load-related afferent input from the periphery and descending motor signals from balance centres. PMID:12096073
An analytical method on the surface residual stress for the cutting tool orientation
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2010-03-01
The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.
Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man
2015-01-01
Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.
SOUTHEAST AND NORTHEAST SIDES. Looking west Edwards Air Force ...
SOUTHEAST AND NORTHEAST SIDES. Looking west - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Fuel & Water Tank, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Hidden regularity and universal classification of fast side chain motions in proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajeshwar, Rajitha; Smith, Jeremy C.; Krishnam, Marimuthu
Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 s MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O axis 2), populationsmore » of side chain rotamer states (ρ), conformational entropies (S conf), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O axis 2 and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O axis 2 and the side chain rotamer populations (ρ). In conclusion, the apparent universality in O axis 2 versus correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.« less
Winds and the orientation of a coastal plane estuary plume
NASA Astrophysics Data System (ADS)
Xia, Meng; Xie, Lian; Pietrafesa, Leonard J.
2010-10-01
Based on a calibrated coastal plane estuary plume model, ideal model hindcasts of estuary plumes are used to describe the evolution of the plume pattern in response to river discharge and local wind forcing by selecting a typical partially mixed estuary (the Cape Fear River Estuary or CFRE). With the help of an existing calibrated plume model, as described by Xia et al. (2007), simulations were conducted using different parameters to evaluate the plume behavior type and its change associated with the variation of wind forcing and river discharge. The simulations indicate that relatively moderate winds can mechanically reverse the flow direction of the plume. Downwelling favorably wind will pin the plume to the coasts while the upwelling plume could induce plume from the left side to right side in the application to CFRE. It was found that six major types of plumes may occur in the estuary and in the corresponding coastal ocean. To better understand these plumes in the CFRE and other similar river estuary systems, we also investigated how the plumes transition from one type to another. Results showed that wind direction, wind speed, and sometimes river discharge contribute to plume transitions.
Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M
2014-01-01
Objectives: The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. Methods: A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. Results: 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Conclusions: Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture. PMID:24336313
Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite
NASA Astrophysics Data System (ADS)
Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin
2011-06-01
The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.
Accelerated dry curing of hams.
Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W
1985-01-01
Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.
Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph
2018-07-02
Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effect of Capsulotomy and Capsular Repair on Hip Distraction: A Cadaveric Investigation.
Khair, M Michael; Grzybowski, Jeffrey S; Kuhns, Benjamin D; Wuerz, Thomas H; Shewman, Elizabeth; Nho, Shane J
2017-03-01
To quantify how increasing interportal capsulotomy size affects the force required to distract the hip and to biomechanically compare simple side-to-side suture repair to acetabular-based suture anchors as capsular repair techniques. Twelve fresh-frozen cadaveric hip specimens were dissected to the capsuloligamentous complex of the hip joint and fixed in a material testing system, such that a pure axial distraction of the iliofemoral ligament could be achieved. After each hip in was tested an intact state, sequential distraction was tested with 2, 4, 6, and 8 cm capsulotomies. Specimens were assigned randomly to be repaired with either 4 side-to-side suture repair (n = 6) or 2 double-loaded all-suture anchors (n = 6). The distraction force as well as the relative distraction force percentage normalized to the intact capsule were compared between suture repair and suture anchor repair groups. Increasing the size of the capsulotomy resulted in less force required to distract the hip to 6 mm. The force decreased as the capsulotomy was extended with statistical significance in distraction force seen between the intact state and the 4 cm (P = .003), 6 cm (P < .001), and 8 cm (P ≤ .001) capsulotomy but not for the intact state compared to the 2 cm capsulotomy (P = .28). Statistical significance in relative distraction force was seen for each of the capsulotomy conditions (P < .001 for all conditions compared with the intact state). The side-to-side suture repair construct (104.3% of intact force) required greater force to distraction to 6 mm compared with the suture anchor repair (87.1% of intact force) (P = .008). An interportal capsulotomy significantly affected the force required to distract the hip in a cadaveric model, with the larger the size of capsulotomy resulting in less force required to distract the hip. When we performed an interportal capsulotomy, the iliofemoral ligament strength was altered significantly but capsular repair with either side-to-side sutures or suture anchor-based repair was able to restore the capsular strength to a native intact hip. We found, however, that the side-to-side suture repair was better able to restore the distraction force compared with suture anchor repair. Capsular management during hip arthroscopy remains a debated topic, with multiple techniques involving both capsulotomy and capsular closure published in the literature. This study provides insight into capsular stability against axial stress under capsulotomy and capsular repair conditions. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Landis, K. H.; Aiken, E. W.
1982-01-01
Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.
The effect of linear spring number at side load of McPherson suspension in electric city car
NASA Astrophysics Data System (ADS)
Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.
2017-01-01
The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.
Abolghasemian, Mansour; Samiezadeh, Saeid; Jafari, Davood; Bougherara, Habiba; Gross, Allan E; Ghazavi, Mohammad T
2013-06-01
To study the direction and biomechanical consequences of hip center of rotation (HCOR) migration in Crowe type III and VI hips after total hip arthroplasty, post-operative radiographs and CT scans of several unilaterally affected hips were evaluated. Using a three-dimensional model of the human hip, the HCOR was moved in all directions, and joint reaction force (JRF) and abductor muscle force (AMF) were calculated for single-leg stance configuration. Comparing to the normal side, HCOR had displaced medially and inferiorly by an average of 23.4% and 20.8%, respectively, of the normal femoral head diameter. Significant decreases in JRF (13%) and AMF (46.13%) were observed in a presumptive case with that amount of displacement. Isolated inferior displacement had a small, increasing effect on these forces. In Crowe type III and IV hips, the HCOR migrates inferiorly and medially after THA, resulting in a decrease in JRF, AMF, and abductor muscle contraction force. Copyright © 2013 Elsevier Inc. All rights reserved.
14 CFR 23.255 - Out of trim characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... apply: (a) From an initial condition with the airplane trimmed at cruise speeds up to VMO/MMO, the... speeds between VFC/MFC and VDF/MDF , the direction of the primary longitudinal control force may not... control force, flight tests must be accomplished from the normal acceleration at which a marginal...
14 CFR 23.255 - Out of trim characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... an initial condition with the airplane trimmed at cruise speeds up to VMO/MMO, the airplane must have... VDF/MDF , the direction of the primary longitudinal control force may not reverse. (c) Except as... exist during flight test with regard to reversal of primary longitudinal control force, flight tests...
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Hydrodynamic force characteristics of slender cylinders in the splash zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haritos, N.; Daliri, M.R.
1995-12-31
This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash zone on the hydrodynamic force characteristics of such cylinders to wave loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash zone with the corresponding results obtained from similarly instrumented segments located in the fully submerged zone and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular waves suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash zone which only marginally exceeds the corresponding values observed for a submerged segment immediately below this zone.« less
Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations
NASA Astrophysics Data System (ADS)
Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo
2016-04-01
We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.
Modifying the inlet characteristics of a Turbulent Coanda Wall Jet
NASA Astrophysics Data System (ADS)
Pandey, Anshuman; Gregory, James W.
2017-11-01
The Coanda effect has been ingeniously used over the past century for augmentation of lift. More recently, NOTAR helicopters have employed the use of the Coanda effect for producing the stabilizing side force with quieter and safer configurations. A manifestation of the Coanda effect in its simplest form is a wall jet issuing tangentially to a cylinder that tends to stay attached to the cylinder over turning angles as large as 180 degrees. An experimental study on such a configuration has been performed in this work to understand the effect of inlet characteristics on the evolution of the wall jet. In previous studies, it has been found that the radial momentum influx is maximum near the inlet and it provides the necessary centrifugal force for the jet to stay attached. So it can be hypothesized that a protrusion of the upper wall of the nozzle that issues the jet would lead to an earlier separation and decreased efficiency. On the other hand, the predisposition of the jet to stay attached to the flat surface of the protrusion could create a separation bubble between the jet and the curved wall and lead to increased suction. These competing phenomena have been explored using Particle Image Velocimetry performed in the streamwise direction at mid-span location of a 3 ft long cylinder. The effect of varying the length of the protrusion for different combinations of initial jet width and flow velocity has been studied to understand how changing the inlet affects the efficiency of the wall jet.
Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.
Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217
NASA Technical Reports Server (NTRS)
Martin, R. M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.
1988-01-01
Acoustic data are presented from a 40 percent scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aerodynamic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. Acoustic results presented are used to assess the acoustic far field of BVI noise, to map the directivity and temporal characteristics of BVI impulsive noise, and to show the existence of retreating-side BVI signals. The characterics of the acoustic radiation patterns, which can often be strongly focused, are found to be very dependent on rotor operating condition. The acoustic signals exhibit multiple blade-vortex interactions per blade with broad impulsive content at lower speeds, while at higher speeds, they exhibit fewer interactions per blade, with much sharper, higher amplitude acoustic signals. Moderate-amplitude BVI acoustic signals measured under the aft retreating quadrant of the rotor are shown to originate from the retreating side of the rotor.
Power-assistive finger exoskeleton with a palmar opening at the fingerpad.
Heo, Pilwon; Kim, Jung
2014-11-01
This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.
NASA Astrophysics Data System (ADS)
Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi
2017-10-01
This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
Sano, Hitomi; Shionoya, Kaori; Ogawa, Rei
2014-04-01
We studied the relationship between mechanical force and nail curvature. The effect of different frequencies and strengths of mechanical force on nail curvature was assessed. In Study 1, 63 carpenters and 63 office workers were enrolled, and the configurations of their thumb nails were assessed by measuring the curve index (defined as nail height/width) and pinch strength. In Study 2, nail curvature and pinch strength of jazz bassists, who characteristically do not use the right fourth and fifth fingers but use the left fifth finger a lot, were compared. In Study 3, the thumb nail curvature and pinch strength of the dominant and nondominant sides of the 126 participants from Study 1 were compared. Study 1: Carpenters had a significantly lower mean thumb nail curve index and higher mean pinch strength. Study 2: The nails of the unused right fourth and fifth fingers were much more curved than the nails of the frequently used left fourth and fifth fingers. The pinch strength of the right fifth finger was much weaker than the pinch strength of the left fifth finger. Study 3: The dominant side had a significantly lower nail curve index and higher pinch strength. The frequency and strength of mechanical forces on finger nails significantly affect nail appearance. © 2014 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Control of robotic assistance using poststroke residual voluntary effort.
Makowski, Nathaniel S; Knutson, Jayme S; Chae, John; Crago, Patrick E
2015-03-01
Poststroke hemiparesis limits the ability to reach, in part due to involuntary muscle co-activation (synergies). Robotic approaches are being developed for both therapeutic benefit and continuous assistance during activities of daily living. Robotic assistance may enable participants to exert less effort, thereby reducing expression of the abnormal co-activation patterns, which could allow participants to reach further. This study evaluated how well participants could perform a reaching task with robotic assistance that was either provided independent of effort in the vertical direction or in the sagittal plane in proportion to voluntary effort estimated from electromyograms (EMG) on the affected side. Participants who could not reach targets without assistance were enabled to reach further with assistance. Constant anti-gravity force assistance that was independent of voluntary effort did not reduce the quality of reach and enabled participants to exert less effort while maintaining different target locations. Force assistance that was proportional to voluntary effort on the affected side enabled participants to exert less effort and could be controlled to successfully reach targets, but participants had increased difficulty maintaining a stable position. These results suggest that residual effort on the affected side can produce an effective command signal for poststroke assistive devices.
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677
Schneider, William R.
1989-01-01
Methods and apparatus for removing a pollutant such as dust (33) from a fluid stream (34). A nested array of fibers (35) is provided in a substantially annular container (36) having openings in its inner (32) and outer (31) cylindrical sides of such size as to retain the fibers (35) within the container while permitting fluid (34) to pass through easily, and the pollutant-containing fluid stream (34) is passed through at least a substantial portion of the container (36) from a region (37) outside the outer side (31) to a region (38) inside the inner side (32). Thus a substantial fraction of the pollutant (33) is separated from the fluid stream (34) in a portion of the nested array (35) generally nearer to the outer side (31) of the container (36) than to the inner side (31). From time to time the container (36) is rotated about its axis to remove a substantial fraction of the separated pollutant (33) from the nested array (35), by tumbling action and by the force of gravity, through the openings in the outer side (31) of the container (36). To assist in this removal, purging fluid (41) may be directed back through the container (36) from the inner side (32) during the tumbling.
Free-Spinning-Tunnel Tests of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane
NASA Technical Reports Server (NTRS)
Daughtridge, Lee T., Jr.
1948-01-01
An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
Carbon-nanotube probes for three-dimensional critical-dimension metrology
NASA Astrophysics Data System (ADS)
Park, B. C.; Ahn, S. J.; Choi, J.; Jung, K. Y.; Song, W. Y.
2006-03-01
We fabricate three kinds of carbon nanotube (CNT) probes to be employed in critical dimension atomic force microscope (CD-AFM). Despite unique advantages in its size and hardness, use of nanotube tip has been limited due to the lack of reproducible control of CNT orientation and its shape. We proposed that CNT alignment issues can be addressed based on the ion beam bending process, where a CNT free-standing on the apex of an AFM tip aligns itself in parallel to the FIB direction so that its free end is directed toward the ion source, with no external electric or magnetic field involved. The process allowed us to embody cylindrical probes of CNT diameters, and subsequently two additional types of CNT tips. One is ball-ended CNT tip which has, at the end of CNT tip, side-protrusions of tungsten/amorphous carbon in the horizontal dithering direction. The other is 'bent' CNT tip where the end of CNT is bent to a side direction. Using the former type of CNT tip, both sides of trench/line sidewall can be measured except for bottom corners, while the corners can be reached with the latter type, but the only one sidewall can be measured at a tip setting. The three types of tips appear to satisfy the requirements in both the size and accessibility to the re-entrant sidewall, and are awaiting actual test in CD-AFM.
Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng
2017-05-29
We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.
Stabilizing windings for tilting and shifting modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardin, S.C.; Christensen, U.R.
1982-02-26
This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure
NASA Astrophysics Data System (ADS)
Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin
2011-09-01
In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.
NASA Astrophysics Data System (ADS)
Li, Hai-bo; Liu, Ming-chang; Xing, Wan-bo; Shao, Shuai; Zhou, Jia-wen
2017-07-01
The Jinping I underground powerhouse is deeply buried and is one of the largest underground powerhouses in China. As a result of high levels of in situ stress, complex geological conditions and the effects of excavation in adjacent caverns, the surrounding rock mass has been severely deformed and broken, and excavation damaged zones (EDZs) have become major obstacles to the design of cavern excavation and support. Field investigations and monitoring data indicated that there are two main modes of failure: high tangential stress induced failure and progressive failure, which have occurred on the mountain side and the river valley side of the Jinping I underground powerhouse. These two main modes of failure were due to strong secondary principal stress forces in the sub-parallel directions and sub-vertical directions, acting on the axes of the main powerhouse on the mountain side and on the river valley side, respectively. Deformations and EDZs on the river valley side were generally larger than those found along the mountain side, and the distribution of deformations was consistent with the distribution of EDZs. The evolution of the EDZ on the river valley side has clearly been time dependent, especially along the downstream arch abutment, and the EDZ was considerably enlarged with further excavation. Additionally, the deformation of the surrounding rock mass was first initiated from the edge of the excavation area and gradually extended to deeper areas away from the opening. However, the EDZ on the mountain side was enlarged only during the first two phases of excavation. The extension of pre-existing cracks and the creation of new fractures has mainly occurred in the oldest EDZ section, and the HDZ has been visibly enlarged, whereas the EDZ has shown little change in other excavation phases.
Numerical analysis of tangential slot blowing on a generic chined forebody
NASA Technical Reports Server (NTRS)
Agosta, Roxana M.
1994-01-01
A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.
Characteristics of Bone Injuries Resulting from Knife Wounds Incised with Different Forces.
Humphrey, Caitlin; Kumaratilake, Jaliya; Henneberg, Maciej
2017-11-01
The aim of this research was to experimentally determine the characteristics of incised bone wounds, which are commonly found in defense injuries. A specially constructed pivoting arm device was used to inflict wounds with controlled forces and direction. Five knives were selected to inflict the wounds on porcine forelimbs. Eight incised wounds were made per knife per force. A larger knife and a greater force caused longer and wider bone wounds. Comparisons of individual knives at the two forces produced varying results in the bone wounds. A correlation was seen between the force and the length (r = 0.69), width (r = 0.63), and depth (r = 0.57) of bone wounds. Serrated-edge and nonserrated knives can be distinguished from the appearance of the wound. The outcomes may be applicable in forensic investigations to ascertain the forces associated with incised wounds and identify the specific knife used. © 2017 American Academy of Forensic Sciences.
High-Frequency Vibration of the Organ of Corti in Vitro
NASA Astrophysics Data System (ADS)
Scherer, M. P.; Nowotny, M.; Dalhoff, E.; Zenner, H.-P.; Gummer, A. W.
2003-02-01
The mechanism by which the electromechanical force generated by the outer hair cells (OHC) produces the exquisite sensitivity, frequency selectivity and dynamic range of the cochlea is unknown. To address this question, we measured the electrically induced radial vibration pattern at different levels within the organ of Corti of the guinea pig. Two in vitro preparations were used: 1) a half turn including modiolar bone and cochlear partition, without tectorial membrane (TM); the basilar membrane (BM) was supported from its tympanal side. 2) A temporal bone preparation, where the bony wall was removed above and below the measurement location to permit introduction of electrodes. In the latter case, the cochlear partition was in its normal mechanical environment, with free swinging BM and with TM. Velocity of BM, reticular lamina (RL), and upper and lower sides of the TM in response to broadband electrical stimulation of the OHCs was measured with a laser Doppler vibrometer. The interferometer was sensitive enough to permit measurement without reflective beads or the like. The frequency range of the stimulation was 480 Hz - 70 kHz. Displacement amplitudes were constant up to 10 kHz, after which they dropped with -14 to -17 dB/oct. Moving across the RL in the radial direction, phase reversals characteristic of pivoting points occurred above the pillar cells and the outer tunnel. No phase reversals were observed on the BM and TM.
NASA Technical Reports Server (NTRS)
Capone, F. J.
1975-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the induced lift characteristics of a vectored thrust concept in which a rectangular jet exhaust nozzle was located in the fuselage at the wing trailing edge. The effects of nozzle deflection angles of 0 deg to 45 deg were studied at Mach numbers from 0.4 to 1.2, at angles of attack up to 14 deg, and with thrust coefficients up to 0.35. Separate force balances were used to determine total aerodynamic and thrust forces as well as thrust forces which allowed a direct measurement of jet turning angle at forward speeds. Wing pressure loading and flow characteristics using oil flow techniques were also studied.
Flows about a rotating circular cylinder by the discrete-vortex method
NASA Astrophysics Data System (ADS)
Kimura, Takeyoshi; Tsutahara, Michihisa
1987-01-01
A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.
The Advantage of Standing Up to Fight and the Evolution of Habitual Bipedalism in Hominins
Carrier, David R.
2011-01-01
Background Many quadrupedal species stand bipedally on their hindlimbs to fight. This posture may provide a performance advantage by allowing the forelimbs to strike an opponent with the range of motion that is intrinsic to high-speed running, jumping, rapid braking and turning; the range of motion over which peak force and power can be produced. Methodology/Principal Findings To test the hypothesis that bipedal (i.e., orthograde) posture provides a performance advantage when striking with the forelimbs, I measured the force and energy produced when human subjects struck from “quadrupedal” (i.e., pronograde) and bipedal postures. Downward and upward directed striking energy was measured with a custom designed pendulum transducer. Side and forward strikes were measured with a punching bag instrumented with an accelerometer. When subjects struck downward from a bipedal posture the work was 43.70±12.59% (mean ± S.E.) greater than when they struck from a quadrupedal posture. Similarly, 47.49±17.95% more work was produced when subjects struck upward from a bipedal stance compared to a quadrupedal stance. Importantly, subjects did 229.69±44.19% more work in downward than upward directed strikes. During side and forward strikes the force impulses were 30.12±3.68 and 43.04±9.00% greater from a bipedal posture than a quadrupedal posture, respectively. Conclusions/Significance These results indicate that bipedal posture does provide a performance advantage for striking with the forelimbs. The mating systems of great apes are characterized by intense male-male competition in which conflict is resolved through force or the threat of force. Great apes often fight from bipedal posture, striking with both the fore- and hindlimbs. These observations, plus the findings of this study, suggest that sexual selection contributed to the evolution of habitual bipedalism in hominins. PMID:21611167
Modern medical practice: a profession in transition.
Merry, M D
1984-05-01
Modern medical practice is in a state of transition. The solo practitioner is slowly giving way to the large organized groups of health care providers. Driving this force of change is a change in payment for health care services from cost plus to preestablished pricing. For the first time, medical practice patterns are having a direct impact on the financial viability of the health care institution. To maintain quality of patient care and contain costs, more and more physicians are becoming involved in the administrative side of running a hospital. This article describes the forces of change, the change itself, and the future of medicine.
Skating mechanics of change-of-direction manoeuvres in ice hockey players.
Fortier, Antoine; Turcotte, René A; Pearsall, David J
2014-11-01
Ice hockey requires rapid transitions between skating trajectories to effectively navigate about the ice surface. Player performance relates in large part to effective change-of-direction manoeuvres, but little is known about how those skills are performed mechanically and the effect of equipment design on them. The purpose of this study was to observe the kinetics involved in those manoeuvres as well as to compare whether kinetic differences may result between two skate models of varying ankle mobility. Eight subjects with competitive ice hockey playing experience performed rapid lateral (90°) left and right change-of-direction manoeuvres. Kinetic data were collected using force strain gauge transducers on the blade holders of the skates. Significantly greater forces were applied by the outside skate (50-70% body weight, %BW) in comparison to the inside skate (12-24%BW, p < 0.05). Skate model and turn direction had no main effect, though significant mixed interactions between leg side (inside/outside) with skate model or turn direction (p < 0.05) were observed, with a trend for left-turn dominance. This study demonstrates the asymmetric dynamic behaviour inherent in skating change-of-direction tasks.
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
Brauchli, Lorenz M; Keller, Heidi; Senn, Christiane; Wichelhaus, Andrea
2011-05-01
Nickel-titanium orthodontic archwires are used with bonded appliances for initial leveling. However, precise bending of these archwires is difficult and can lead to changes within the crystal structure of the alloy, thus changing the mechanical properties unpredictably. The aim of this study was to evaluate different bending methods in relation to the subsequent mechanical characteristics of the alloy. The mechanical behaviors of 3 archwires (Copper NiTi 35°C [Ormco, Glendora, Calif], Neo Sentalloy F 80 [GAC International, Bohemia, NY], and Titanol Low Force [Forestadent, Pforzheim, Germany]) were investigated after heat-treatment in a dental furnace at 550-650°C, treatment with an electrical current (Memory-Maker, Forestadent), and cold forming. In addition, the change in A(f) temperature was registered by means of differential scanning calorimetry. Heat-treatment in the dental furnace as well as with the Memory-Maker led to widely varying force levels for each product. Cold forming resulted in similar or slightly reduced force levels when compared to the original state of the wires. A(f) temperatures were in general inversely proportional to force levels. Archwire shape can be modified by using either chair-side technique (Memory-Maker, cold forming) because the superelastic behavior of the archwires is not strongly affected. However it is important to know the specific changes in force levels induced for each individual archwire with heat-treatment. Cold forming resulted in more predictable forces for all products tested. Therefore, cold forming is recommended as a chair-side technique for the shaping of NiTi archwires. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Fortescue, P.; Nicoll, D.
1962-04-24
A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)
NASA Astrophysics Data System (ADS)
Hesar, Siamak G.; Parker, Jeffrey S.; Leonard, Jason M.; McGranaghan, Ryan M.; Born, George H.
2015-12-01
We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth-Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters.
Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.
Soba, Alejandro; González, Graciela; Calivar, Lucas; Marshall, Guillermo
2012-11-01
Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted in the direction of the magnetic force. We study the nature of the inclined growth through experiments and theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction. Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle trajectories, thus, growth orientation.
Descriptive sensory analysis of marinated and non-marinated wooden breast fillet portions.
Maxwell, A D; Bowker, B C; Zhuang, H; Chatterjee, D; Adhikari, K
2018-05-14
The wooden breast (WB) myopathy influences muscle composition and texture characteristics in broiler breast meat. It is unknown if marination reduces the negative influence of WB on meat sensory quality or if WB effects are uniform throughout the Pectoralis major. The objective of this study was to determine the effects of marination on the sensory attributes and instrumental shear force measurements of the ventral (skin-side) and dorsal (bone-side) portions of normal and severe WB meat. Sixty butterfly fillets (30 normal and 30 severe WB) were selected from the deboning line of a commercial processing plant. Individual fillets were portioned into ventral and dorsal halves. Portions from one side of each butterfly were used as non-marinated controls, and portions from the other side were vacuum-tumble marinated (16 rpm, -0.6 atm, 4°C, 20 min) with 20% (wt/wt) marinade to meat ratio. Marinade was formulated to target a concentration of 0.75% (w/v) salt and 0.45% (w/v) sodium tripolyphosphate in the final product. Descriptive sensory analysis (9 trained panelists) was conducted to evaluate visual, texture, and flavor attributes (0-15 point scale) of breast portions along with Warner-Bratzler shear force. Significant interaction effects between WB and marination were not observed for the sensory attributes. Greater springiness, cohesiveness, hardness, fibrousness, and chewiness scores were observed in WB samples (P < 0.001). Marination decreased cohesiveness, hardness, and chewiness (P < 0.05) and increased juiciness (P = 0.002). The effects of WB on sensory texture attributes were more apparent in the ventral portions of the breast fillets. Flavor attributes (salty and brothy) increased (P < 0.001) with marination. In non-marinated samples, shear force was similar between normal and WB samples. In marinated samples, however, shear force was greater (P < 0.001) in WB samples. Data suggest that the WB effect on meat sensory quality is not uniform throughout the Pectoralis major and that WB-related differences in cooked meat sensory texture attributes are lessened but not eliminated by vacuum-tumbling marination.
Dutcher, S. K.
2016-01-01
Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This ‘flutter’ instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force. PMID:27798276
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia (‘toes’), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres (‘heels’) in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking. PMID:26559941
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays.
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.
SOUTH FRONT AND EAST SIDE. January, 1998 Edwards Air ...
SOUTH FRONT AND EAST SIDE. January, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, Stephen B.
1986-01-01
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.
Direct dynamics simulation of the impact phase in heel-toe running.
Gerritsen, K G; van den Bogert, A J; Nigg, B M
1995-06-01
The influence of muscle activation, position and velocities of body segments at touchdown and surface properties on impact forces during heel-toe running was investigated using a direct dynamics simulation technique. The runner was represented by a two-dimensional four- (rigid body) segment musculo-skeletal model. Incorporated into the muscle model were activation dynamics, force-length and force-velocity characteristics of seven major muscle groups of the lower extremities: mm. glutei, hamstrings, m. rectus femoris, mm. vasti, m. gastrocnemius, m. soleus and m. tibialis anterior. The vertical force-deformation characteristics of heel, shoe and ground were modeled by a non-linear visco-elastic element. The maximum of a typical simulated impact force was 1.6 times body weight. The influence of muscle activation was examined by generating muscle stimulation combinations which produce the same (experimentally determined) resultant joint moments at heelstrike. Simulated impact peak forces with these different combinations of muscle stimulation levels varied less than 10%. Without this restriction on initial joint moments, muscle activation had potentially a much larger effect on impact force. Impact peak force was to a great extent influenced by plantar flexion (85 N per degree of change in foot angle) and vertical velocity of the heel (212 N per 0.1 m s-1 change in velocity) at touchdown. Initial knee flexion (68 N per degree of change in leg angle) also played a role in the absorption of impact. Increased surface stiffness resulted in higher impact peak forces (60 N mm-1 decrease in deformation).(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of polarization force on head-on collision between multi-solitons in dusty plasma
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Sethi, Papihra; Saini, N. S.
2018-03-01
Head-on collision among dust acoustic (DA) multi-solitons in a dusty plasma with ions featuring non-Maxwellian hybrid distribution under the effect of the polarization force is investigated. The presence of the non-Maxwellian ions leads to eloquent modifications in the polarization force. Specifically, an increase in the superthermality index of ions (via κi) and nonthermal parameter (via α) diminishes the polarization parameter. By employing the extended Poincaré-Lighthill-Kuo method, two sided KdV equations are derived. The Hirota direct method is used to obtain multi-soliton solutions for each KdV equation, and all of them move along the same direction where the fastest moving soliton eventually overtakes the others. The expressions for collisional phase shifts after head-on collision of two, four, and six-(DA) solitons are derived under the influence of polarization force. It is found that the effect of polarization force and the presence of non-Maxwellian ions have an emphatic influence on the phase shifts after the head-on collision of DA rarefactive multi-solitons. In a small amplitude limit, the impact of polarization force on time evolution of multi-solitons is also illustrated. It is intensified that the present theoretical pronouncements actually effectuate in laboratory experiments and in space/astrophysical environments, in particular in Saturn's magnetosphere and comet tails.
Passive asymmetric transport of hesperetin across isolated rabbit cornea.
Srirangam, Ramesh; Majumdar, Soumyajit
2010-07-15
Hesperetin, an aglycone of the flavanone hesperidin, is a potential candidate for the treatment of diabetic retinopathy and macular edema. The purpose of this investigation was to determine solubility, stability and in vitro permeability characteristics of hesperetin across excised rabbit corneas. Aqueous and pH dependent solubility was determined using standard shake flask method. Solution stability was evaluated as a function of pH (1.2-9) and temperature (25 and 40 degrees C). Permeability of hesperetin was determined across the isolated rabbit cornea utilizing a side-bi-side diffusion apparatus, in the apical to basolateral (A-B) and basolateral to apical (B-A) directions. Hesperetin displayed asymmetrical transcorneal transport with a 2.3-fold higher apparent permeability in the B-A direction compared to the A-B direction. The transport process was observed to be pH dependent. Surprisingly, however, the involvement of efflux transporters or proton-coupled carrier-systems was not evident in this asymmetric transcorneal diffusion process. The passive and pH dependent corneal transport of hesperetin could probably be attributable to corneal ultrastructure, physicochemical characteristics of hesperetin and the role of transport buffer components. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Li, Weidong; Li, Shiqi; Fu, Yan; Chen, Jacon
2017-03-01
Different from walking, ladder climbing requires four-limb coordination and more energy exertion for below-knee amputees (BKAs). We hypothesized that functional deficiency of a disabled limb shall be compensated by the other three intact limbs, showing an asymmetry pattern among limbs. Hand and foot forces of six below-knee amputees and six able-bodied people were collected. Hand, foot and hand/foot sum force variances between groups (non-BKA, intact side and prosthetic side) were carefully examined. Our hypothesis was validated that there is asymmetry between prosthetic and intact side. Results further showed that the ipsilateral hand of the prosthetic leg is stronger than the hand on the intact side, compensating weakness of the prosthetic leg. Effects of ladder rung separations and ladder slant on asymmetric force distribution of BKAs were evaluated, indicating that rung separation has a more significant interactive effect on hand/foot force of BKAs than ladder slant.
Linear magnetic spring and spring/motor combination
NASA Technical Reports Server (NTRS)
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
NASA Astrophysics Data System (ADS)
Nakajima, Atsushi; Hirata, Katsuhiro; Niguchi, Noboru; Kato, Masayuki
2018-03-01
Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.
Takatsuka, Kazuo
2017-02-28
The Longuet-Higgins (Berry) phase arising from nonadiabatic dynamics and the Aharonov-Bohm phase associated with the dynamics of a charged particle in the electromagnetic vector potential are well known to be individually a manifestation of a class of the so-called geometrical phase. We herein discuss another similarity between the force working on a charged particle moving in a magnetic field, the Lorentz force, and a force working on nuclei while passing across a region where they have a strong quantum mechanical kinematic (nonadiabatic) coupling with electrons in a molecule. This kinematic force is indeed akin to the Lorentz force in that its magnitude is proportional to the velocity of the relevant nuclei and works in the direction perpendicular to its translational motion. Therefore this Lorentz-like nonadiabatic force is realized only in space of more or equal to three dimensions, thereby highlighting a truly multi-dimensional effect of nonadiabatic interaction. We investigate its physical significance qualitatively in the context of breaking of molecular spatial symmetry, which is not seen otherwise without this force. This particular symmetry breaking is demonstrated in application to a coplanar collision between a planar molecule and an atom sharing the same plane. We show that the atom is guided by this force to the direction out from the plane, resulting in a configuration that distinguishes one side of the mirror plane from the other. This can serve as a trigger for the dynamics towards molecular chirality.
Piezotronic Effect in Polarity-Controlled GaN Nanowires.
Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin
2015-08-25
Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. Edwards ...
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi
NASA Astrophysics Data System (ADS)
Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.
2017-12-01
It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.
NASA Astrophysics Data System (ADS)
Fleury, Vincent; Murukutla, Ameya Vaishnavi; Chevalier, Nicolas R.; Gallois, Benjamin; Capellazzi-Resta, Marina; Picquet, Pierre; Peaucelle, Alexis
2016-08-01
We present a detailed study of the formation of the amniotic sac in the avian embryo, and a comparison with the crocodile amniotic sac. We show that the amniotic sac forms at a circular line of stiffness contrast, separating rings of cell domains. Cells align at this boundary, and this in turn orients and concentrates the tension forces. The tissue fold which forms the amniotic sac is locked exactly along this line due to the colocalization of the stiffness contrast and of the tensile force. In addition, the tensile force plays a regenerative role when the amniotic sac is cut. The fold forming the ventral side of the embryo displays the same characteristics. This work shows that amniote embryogenesis consists of a cascade of buckling events taking place at the boundaries between regions of differing mechanical properties. Hence, amniote embryogenesis relies on a simple and robust biomechanical scheme used repeatedly, and selected ancestrally.
Manufacture of annular cermet articles
Forsberg, Charles W.; Sikka, Vinod K.
2004-11-02
A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.
Analysis of Carbon Nanotubes and Graphene Nanoribbons with Folded Racket Shapes
NASA Astrophysics Data System (ADS)
Borum, Andy; Plaut, Raymond; Dillard, David
2011-10-01
When carbon nanotubes and graphene nanoribbons become long, they may self-fold and form tennis racket-like shapes. This phenomenon is analyzed in two ways by treating a nanotube or nanoribbon as an elastica. First, an approach from adhesion science is used, in which the two sides of the racket handle are assumed to be straight and bonded together with constant or no separation. New analytical results are obtained involving the shape, bending energy, and adhesion energy of the self-folded structures. These relations show that the dimensions of the racket loop are proportional to the square root of the flexural rigidity. The second analysis uses the Lennard-Jones potential to model the van der Waals forces between the two sides of the racket. A nanoribbon is considered, and the interatomic forces are integrated along the length and across the width of the nanoribbon. The resulting integro-differential equations are solved using the finite difference method. The racket handle is found to be in compression and the separation between the two sides of the racket handle decreases in the direction of the racket loop. The results for the Lennard-Jones model approximately satisfy the relationship between the dimensions and the flexural rigidity found using the adhesion model.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking. PMID:29563883
Effect of buoyancy on appearance and characteristics of surface tension repeated auto-oscillations.
Kovalchuk, N M; Vollhardt, D
2005-08-11
The effect of buoyancy on spontaneous repeated nonlinear oscillations of surface tension, which appear at the free liquid interface by dissolution of a surfactant droplet under the interface, is considered on the basis of direct numerical simulation of the model system behavior. The oscillations are the result of periodically rising and fading Marangoni instability. The buoyancy force per se cannot lead to the oscillatory behavior in the considered system, but it influences strongly both the onset and decay of the instability and therefore, affects appearance and characteristics of the oscillations. If the surfactant solution density is smaller than the density of the pure liquid, then the buoyancy force leads to a considerable decrease of the induction period and the period of oscillations. The buoyancy force affects also the dependence of the oscillation characteristics on the system dimensions. The results of the simulations are compared with the available experimental data.
NASA Technical Reports Server (NTRS)
Ball, J. W.; Lindahl, R. H.
1976-01-01
The purpose of the test was to investigate the nature of the Orbiter boundary layer characteristics at angles of attack from -4 to 32 degrees at a Mach number of 4.6. The effect of large grit, employed as transition strips, on both the nature of the boundary layer and the force and moment characteristics were investigated along with the effects of large negative elevon deflection on lee side separation. In addition, laminar and turbulent boundary layer separation phenomena which could cause asymmetric flow separation were investigated.
Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng
2014-11-01
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809 nm) if the directions of cutting and MRF polishing are along the (110) direction.
Mahdy, M R C; Danesh, Md; Zhang, Tianhang; Ding, Weiqiang; Rivy, Hamim Mahmud; Chowdhury, Ariful Bari; Mehmood, M Q
2018-02-16
The stimulating connection between the reversal of near-field plasmonic binding force and the role of symmetry-breaking has not been investigated comprehensively in the literature. In this work, the symmetry of spherical plasmonic heterodimer-setup is broken forcefully by shining the light from a specific side of the set-up instead of impinging it from the top. We demonstrate that for the forced symmetry-broken spherical heterodimer-configurations: reversal of lateral and longitudinal near-field binding force follow completely distinct mechanisms. Interestingly, the reversal of longitudinal binding force can be easily controlled either by changing the direction of light propagation or by varying their relative orientation. This simple process of controlling binding force may open a novel generic way of optical manipulation even with the heterodimers of other shapes. Though it is commonly believed that the reversal of near-field plasmonic binding force should naturally occur for the presence of bonding and anti-bonding modes or at least for the Fano resonance (and plasmonic forces mostly arise from the surface force), our study based on Lorentz-force dynamics suggests notably opposite proposals for the aforementioned cases. Observations in this article can be very useful for improved sensors, particle clustering and aggregation.
Anterior Tibial Translation in Collegiate Athletes with Normal Anterior Cruciate Ligament Integrity
Rosene, John M.; Fogarty, Tracey D.
1999-01-01
Objective: To examine differences in anterior tibial translation (ATT) among sports, sex, and leg dominance in collegiate athletes with normal anterior cruciate ligament integrity. Design and Setting: Subjects from various athletic teams were measured for ATT in right and left knees. Subjects: Sixty subjects were measured for ATT with a KT-1000 knee arthrometer. Measurements: Statistical analyses were computed for each sex and included a 2 × 3 × 4 mixed-factorial analysis of variance (ANOVA) for anterior cruciate ligament displacement, right and left sides, and force and sport. A 2 × 2 × 3 mixed-factorial ANOVA was computed to compare means for sex and force. A 2 × 3 mixed-factorial ANOVA was computed to compare sex differences across 3 forces. Results: For males and females, no significant interactions were found among leg, force, and sport for mean ATT, for leg and sport or leg and force, or for translation values between dominant and nondominant legs. Males had a significant interaction for force and sport, and a significant difference was found for side of body, since the right side had less translation than the left side. Females had greater ATT than males at all forces. Conclusions: Sex differences exist for ATT, and differences in ATT exist among sports for both sexes. Differences between the right and left sides of the body should be expected when making comparisons of ligamentous laxity. ImagesFigure 2.Figure 3.Figure 5. PMID:16558565
Turbulent structure of stably stratified inhomogeneous flow
NASA Astrophysics Data System (ADS)
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...
2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA
Observation hall along west side. Looking south to escape ladder. ...
Observation hall along west side. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. Edwards ...
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Porosity of porcine bladder acellular matrix: impact of ACM thickness.
Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman
2003-12-01
The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003
The Measurement of Motivation with Science Students
ERIC Educational Resources Information Center
Mubeen, Sarwat; Reid, Norman
2014-01-01
Motivation is an inner force that activates and provides direction to our thought, feelings and actions. Two main characteristics of motivation are goal directed behavior and persistence. Motivated people persistently work for the goal until it is achieved. This paper explores the nature of motivation in the context of learning and seeks to relate…
Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-03-01
We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular (
Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration
NASA Technical Reports Server (NTRS)
Fox, Mike C.; Forrest, Dana K.
1993-01-01
A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.
Understanding reversals of a rattleback
NASA Astrophysics Data System (ADS)
Rauch-Wojciechowski, Stefan; Przybylska, Maria
2017-07-01
A counterintuitive unidirectional (say counterclockwise) motion of a toy rattleback takes place when it is started by tapping it at a long side or by spinning it slowly in the clockwise sense of rotation. We study the motion of a toy rattleback having an ellipsoidal-shaped bottom by using frictionless Newton equations of motion of a rigid body rolling without sliding in a plane. We simulate these equations for tapping and spinning initial conditions to see the contact trajectory, the force arm and the reaction force responsible for torque turning the rattleback in the counterclockwise sense of rotation. Long time behavior of such a rattleback is, however, quasi-periodic and a rattleback starting with small transversal oscillations turns in the clockwise direction.
NASA Astrophysics Data System (ADS)
Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.
2017-12-01
As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, ...
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, NORTH PART. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ...
14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NORTH REAR AND WEST SIDE, Looking southeast down Saturn Boulevard. ...
NORTH REAR AND WEST SIDE, Looking southeast down Saturn Boulevard. February, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. Edwards ...
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. Edwards ...
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. Edwards ...
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...
SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA
6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ...
6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.
Dental work force strategies during a period of change and uncertainty.
Brown, L J
2001-12-01
Both supply and demand influence the ability of the dental work force to adequately and efficiently provide dental care to a U.S. population growing in size and diversity. Major changes are occurring on both sides of the dental care market. Among factors shaping the demand for dental care are changing disease patterns, shifting population demographics, the extent and features of third-party payment, and growth of the economy and the population. The capacity of the dental work force to provide care is influenced by enhancements of productivity and numbers of dental health personnel, as well as their demographic and practice characteristics. The full impact of these changes is difficult to predict. The dentist-to-population ratio does not reflect all the factors that must be considered to develop an effective dental work force policy. Nationally, the dental work force is likely to be adequate for the next several years, but regional work force imbalances appear to exist and may get worse. Against this backdrop of change and uncertainty, future dental work force strategies should strive for short-term responsiveness while avoiding long-term inflexibility. Trends in the work force must be continually monitored. Thorough analysis is required, and action should be taken when necessary.
Fischer, K; Schopfer, P
1998-07-01
During gravitropic and phototropic curvature of the maize coleoptile, the cortical microtubules (MTs) adjacent to the outer epidermal cell wall assume opposite orientations at the two sides of the organ. Starting from a uniformly random pattern during straight growth in darkness, the MTs reorientate perpendicularly to the organ axis at the outer (faster growing) side and parallel to the organ axis at the inner (slower growing) side. As similar reorientations can be induced during straight growth by increasing or decreasing the effective auxin concentration, it has been proposed that these reorientations may be used as a diagnostic test for assessing the auxin status of the epidermal cells during tropic curvature. This idea was tested by determining the MT orientations in the coleoptile of intact maize seedlings in which the gravitropic or phototropic curvature was prevented or inversed by an appropriate mechanical counterforce. Forces that just prevented the coleoptile from curving in a gravity or light field prevented reorientations of the MTs. Forces strong enough to overcompensate the tropic stimuli by enforcing curvature in the opposite direction induced reorientations of the MTs opposite to those produced by tropic stimulation. These results show that the MTs at the outer surface of the coleoptile respond to changes in mechanical tissue strain rather than to gravitropic or phototropic stimuli and associated changes at the level of auxin or any other element in the signal transduction chain between perception of tropic stimuli and asymmetric growth response. It is proposed that cortical MTs can act as strain gauges in a positive feed-back regulatory circle utilized for amplification and stabilization of environmentally induced changes in the direction of elongation growth.
Cowley, Hanni R; Ford, Kevin R; Myer, Gregory D; Kernozek, Thomas W; Hewett, Timothy E
2006-01-01
Context: High school female athletes are most likely to sustain a serious knee injury during soccer or basketball, 2 sports that often involve a rapid deceleration before a change of direction or while landing from a jump. Objective: To determine if female high school basketball and soccer players show neuromuscular differences during landing and cutting tasks and to examine neuromuscular differences between tasks and between dominant and nondominant sides. Design: A 3-way mixed factorial design investigating the effects of sport (basketball, soccer), task (jumping, cutting), and side (dominant, nondominant). Setting: Laboratory. Patients or Other Participants: Thirty high school female athletes who listed either basketball or soccer as their only sport of participation (basketball: n = 15, age = 15.1 ± 1.7 years, experience = 6.9 ± 2.2 years, height = 165.3 ± 7.9 cm, mass = 61.8 ± 9.3 kg; soccer: n = 15, age = 14.8 ± 0.8 years, experience = 8.8 ± 2.5 years, height = 161.8 ± 4.1 cm, mass = 54.6 ± 7.6 kg). Main Outcome Measure(s): Ground reaction forces, stance time, valgus angles, and valgus moments were assessed during (1) a drop vertical jump with an immediate maximal vertical jump and (2) an immediate side-step cut at a 45° angle. Results: Basketball athletes had greater ground reaction forces (P < .001) and decreased stance time (P < .001) during the drop vertical jump, whereas soccer players had greater ground reaction forces (P <.001) and decreased stance time (P < .001) during the cut. Subjects in both sports had greater valgus angles (initial contact and maximum, P = .02 and P = .012, respectively) during cutting than during the drop vertical jump. Greater valgus moments (P = .006) were noted on the dominant side during cutting. Conclusions: Our subjects demonstrated differences in ground reaction forces and stance times during 2 movements associated with noncontact anterior cruciate ligament injuries. Knee valgus moment and angle were significantly influenced by the type of movement performed. Sport-specific neuromuscular training may be warranted, with basketball players focusing on jumping and landing and soccer players focusing on unanticipated cutting maneuvers. PMID:16619097
13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO ...
13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO MAIN ROOM. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad ...
NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad track to AF Plant 72 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA
ERIC Educational Resources Information Center
National Council for the Social Studies, Washington, DC.
This task force report is designed to focus attention on the young adolescent learner and provide direction for developing appropriate and meaningful social studies instruction for the middle school. Schools at the middle level characteristically focus on the unique developmental needs of young adolescents. A number of these needs are listed, in…
Barrier Beach Breaching from the Lagoon Side, With Reference to Northern California
2008-01-01
northwest of San Francisco in Sonoma County . Near the mouth of the Russian River, the coast is punctuated by small pocket beaches separating steep...management plan.” Prepared for U.S. Army Corps of Engineers, San Fran- cisco District and Sonoma County Water Agency, Walnut Creek, CA, 50 p. Goodwin, P...Planning Sonoma County and California Coastal Con- servancy under the direction of the Russian River Estuary Task Interagency Task Force. Phillip
1997-01-01
The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.
Physical Characteristics Underpinning Lunging and Change of Direction Speed in Fencing.
Turner, Anthony; Bishop, Chris; Chavda, Shyam; Edwards, Mike; Brazier, Jon; Kilduff, Liam P
2016-08-01
Turner, A, Bishop, C, Chavda, S, Edwards, M, Brazier, J, Kilduff, LP. Physical characteristics underpinning lunging and change of direction speed in fencing. J Strength Cond Res 30(8): 2235-2241, 2016-Lunge velocity (LV) and change of direction speed (CODS) are considered fundamental to success during fencing competitions; investigating the physical characteristics that underpin these is the aim of this study. Seventy fencers from the British Fencing National Academy took part and on average (±SD) were 16.83 ± 1.72 years of age, 178.13 ± 8.91 cm tall, 68.20 ± 9.64 kg in mass, and had 6.25 ± 2.23 years fencing experience. The relationship between anthropometric characteristics (height, arm span, and adductor flexibility) and measures of lower-body power (bilateral and unilateral countermovement jump height and reactive strength index) were examined in their ability to influence LV and CODS. In testing the former, fencers lunged (over a self-selected distance) to and from a force plate, where front leg impact and rear leg propulsive force were quantified; the lunging distance was divided by time to establish LV. Change of direction speed was measured over 12 m involving shuttles of between 2 and 4 m. Results revealed that LV and CODS averaged at 3.35 m·s and 5.45 seconds, respectively, and in both cases, standing broad jump was the strongest predictor (r = 0.51 and -0.65, respectively) of performance. Rear leg drive and front leg impact force averaged at 14.61 N·kg and 3 times body weight, respectively, with single leg jumps revealing an asymmetry favoring the front leg of 9 ± 8%. In conclusion, fencers should train lower-body power emphasizing horizontal displacement, noting that this seems to offset any advantage one would expect fencers of a taller stature to have. Also, the commonly reported asymmetry between legs is apparent from adolescence and thus also requires some attention.
NASA Astrophysics Data System (ADS)
Kordyum, Elizabeth; Sobol, Margaryta; Kalinina, Yana; Bogatina, Nina; Kondrachuk, Alexander
Recently it was shown that roots reveal negative gravitropism in the weak combined magnetic field (CMF) with the frequency resonance to the cyclotron frequency of Ca2+ ions. A negative gravitropic reaction in the CMF occurs by a usual physiological process. Experiments in the CMF confirmed that gravitropism is plastid-based and Ca2+ ions participate in this process. Unlike control, amyloplasts-statoliths are not displacing on the lower side of a gravistimulated root but tend to group in the center of a statocyte during 30 min under gravistimulation in the CMF. In an hour of gravistimulation, they are localized near one of the statocyte longitudinal wall. Now we determined that amyloplasts are localized along the statocyte upper longitudinal side. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. On the basis of the obtained data there is a question, what forces promote displacing of amyloplasts against a gravitational vector? In the paper, three possible explanations are discussed: 1) CMF + Ca2+ action on the distribution of elastic forces in cytoskeleton, 2) CMF + Ca2+ action on the distribution of electric field in statocytes, and 3) CMF action on energy and direction of Ca2+ ion rotation according to the ion cyclotron resonance model that can lead to paradoxical Ca2+ redistribution.
[Dynamics of decapitation after falling in a self-tightening rope noose].
Wehner, Heinz-Dieter; Schulz, Martin Manfred; Wehner, Arno
2006-01-01
In decapitation by dropping into a slip noose, it is in principle justified to doubt that suicide is involved. It must hence always be checked whether the dynamics to be inferred from the concrete facts can result in decapitation. Essential characteristics of the dynamics are the deceleration forces (tractional force of the rope) that are determined by the height of the drop, the directional force of the rope and the body mass of the victim as well as the density of the lines of centripetal force acting on the neck. However, the appropriateness of the dynamics must at all events be corroborated by compatible autopsy and scientific criminological findings with regard to the characteristic wound morphology, the intravital signs, the trace analysis and the topography of the fiber ablation traces on the rope that are due to the effect of heat.
Inertial mass of an elementary particle from the holographic scenario
NASA Astrophysics Data System (ADS)
Giné, Jaume
2017-03-01
Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.
Smulders, F J M; Hiesberger, J; Hofbauer, P; Dögl, B; Dransfield, E
2006-09-01
Beef has a requirement for refrigerated storage up to 14 d to achieve adequate aging and a tender product. To achieve this aging with little spoilage and no surface drying, vacuum packaging is attractive, because it is inherently simple and offers a clear indication to the packer when the process has failed or there is risk of spoilage. However, there is increasing pressure on the meat industry to limit the use of packaging materials in view of their cost and the cost involved in their recovery and recycling. The purpose of this report was to evaluate an alternative storage system in containers using modified atmospheres at reduced pressure (approximately 25 kPa). The quality of the meat for both container- and vacuum-packed treatments was measured during chilled storage for up to 3 wk. Storage time had the most significant effect on quality characteristics, irrespective of the packaging method. Storage in containers under a 70%N2:30%CO2 gas mixture gave characteristics similar to beef stored under vacuum. Storage in containers under 100% CO2 produced less drip loss than under 70%N2:30%CO2, but generally container storage produced 3 times as much drip loss as vacuum packaging. Shear force of the LM was unaffected by the type of packaging, and at d 2 after slaughter (i.e., before the storage trial was begun), sarcomere lengths of muscles intended for container storage were similar to those destined for vacuum storage. During the packaging treatment, the comparison between the storage systems was always done within 1 animal using one carcass-half for container storage and the other half for vacuum packaging; all bulls were shackled from the left hindleg during bleeding. The majority of the muscles from the left sides had lower shear force values than those from the right sides at the earlier storage times (2 and 9 d after slaughter) but had similar values after longer storage (16 and 23 d after slaughter). This is the first report that shackling beef carcasses from the left side can result in more tender meat in the LM from that side. The increased tenderness in the LM from the shackled side probably resulted from an early decrease in pH and an increase in calpain activity after mechanical strain of the muscles on the shackled side. This effect of shackling should be taken into account when designing systematic comparisons of tenderness in beef.
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, S.B.
1986-04-01
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B
2016-05-19
The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.
Tension amplification in tethered layers of bottle-brush polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.
2016-02-26
In this paper, molecular dynamics simulations of a coarse-grained bead–spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones N bb (50 ≤ N bb ≤ 200) and side chains N sc (50 ≤ N sc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate.more » From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.« less
Active control of noise on the source side of a partition to increase its sound isolation
NASA Astrophysics Data System (ADS)
Tarabini, Marco; Roure, Alain; Pinhede, Cedric
2009-03-01
This paper describes a local active noise control system that virtually increases the sound isolation of a dividing wall by means of a secondary source array. With the proposed method, sound pressure on the source side of the partition is reduced using an array of loudspeakers that generates destructive interference on the wall surface, where an array of error microphones is placed. The reduction of sound pressure on the incident side of the wall is expected to decrease the sound radiated into the contiguous room. The method efficiency was experimentally verified by checking the insertion loss of the active noise control system; in order to investigate the possibility of using a large number of actuators, a decentralized FXLMS control algorithm was used. Active control performances and stability were tested with different array configurations, loudspeaker directivities and enclosure characteristics (sound source position and absorption coefficient). The influence of all these parameters was investigated with the factorial design of experiments. The main outcome of the experimental campaign was that the insertion loss produced by the secondary source array, in the 50-300 Hz frequency range, was close to 10 dB. In addition, the analysis of variance showed that the active noise control performance can be optimized with a proper choice of the directional characteristics of the secondary source and the distance between loudspeakers and error microphones.
Effect of gender, facial dimensions, body mass index and type of functional occlusion on bite force.
Koç, Duygu; Doğan, Arife; Bek, Bülent
2011-01-01
Some factors such as gender, age, craniofacial morphology, body structure, occlusal contact patterns may affect the maximum bite force. Thus, the purposes of this study were to determine the mean maximum bite force in individuals with normal occlusion, and to examine the effect of gender, facial dimensions, body mass index (BMI), type of functional occlusion (canine guidance and group function occlusion) and balancing side interferences on it. Thirty-four individuals aged 19-20 years-old were selected for this study. Maximum bite force was measured with strain-gauge transducers at first molar region. Facial dimensions were defined by standardized frontal photographs as follows: anterior total facial height (ATFH), bizygomathic facial width (BFW) and intergonial width (IGW). BMI was calculated using the equation weight/height². The type of functional occlusion and the balancing side interferences of the subjects were identified by clinical examination. Bite force was found to be significantly higher in men than women (p<0.05). While there was a negative correlation between the bite force and ATFH/BFW, ATFH/IGW ratios in men (p<0.05), women did not show any statistically significant correlation (p>0.05). BMI and bite force correlation was not statistically significant (p>0.05). The average bite force did not differ in subjects with canine guidance or group function occlusion and in the presence of balancing side interferences (p>0.05). Data suggest that bite force is affected by gender. However, BMI, type of functional occlusion and the presence of balancing side interferences did not exert a meaningful influence on bite force. In addition, transverse facial dimensions showed correlation with bite force in only men.
Virtual reality using guided imagery to create Kanji or Hiragana by computer graphics: I
NASA Astrophysics Data System (ADS)
Ishigame, Masaaki; Miura, Nozomu; Hosaka, Akiko
1997-04-01
We have been studying a kind of word-processor that is able to create Japanese characters, Kanji or Hiragana strings in the cursive style, using an electronic writing brush model. Int his paper, we describe in detail the operation characteristics of the electronic writing brush which we have proposed. We defined a touch shape pattern of the electronic writing brush as a form which is projected as a circle and a cone. The brush goes on certain points of the skeleton of the character figure which is given as skeleton data. The thickness of the line is determined by a diametric variable brush pressure. Our progressive action model can rotate the direction of the writing brush tip corresponding to the difference angle between the direction of brush tip and the direction of the brush movement, and also the softness of the writing brush to express the writing brush method called the side writing brush. The front side and back side of the writing brush can be expressed in a calligraphic drawing. With our technique we can draw characters in actual stroke order on a virtual computer plane as if they are written by an actual writing brush.
Flapping propulsion with side-by-side pitching foils
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2016-11-01
Fish schools are one of the most common types of collective behaviour observed in nature. One of the reasons why fish swim in groups, is to reduce the cost of transport of the school. In this work we explore the propulsive performance of two foils flapping in a symmetric configuration, i.e. with an out-of-phase flapping motion. Direct thrust measurements and Particle Image Velocimetry (PIV) allowed a detailed examination of the forces and the wake generated by the system, for different kinematics (swept angles and frequencies) and shaft separations. For certain specific cases, volumetric PIV shows major differences on how the different structures in the wake of the system evolve, depending on the imposed kinematics and the side-by-side separation between the foils. Results obtained will be compared against data produced with isolated flapping foils with similar imposed kinematics, with the aim to better understand the interactions between both and the performance of the system as a whole. The author would like to acknowledge the financial support provided by the Spanish Ministerio de Economia y competitividad (MINECO) through Grant DPI2015-71645-P.
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, ...
11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST ...
3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST DOOR. BUILDING 8826 IS IN BACKGROUND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south ...
2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south southwest toward water tank complex. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
Design, analysis, and fabrication of a piezoelectric force plate
NASA Astrophysics Data System (ADS)
Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.
2017-04-01
Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.
NASA Technical Reports Server (NTRS)
Buchholz, R. E.
1972-01-01
The results are presented that were obtained from a wind tunnel tests to improve space shuttle booster baseline lateral-directional stability, control characteristics, and cruise engine location optimization. Tests were conducted in a 7 x 10-foot transonic wind tunnel. The model employed was a 0.015-scale replica of a space shuttle booster. The three major objectives of this test were to determine the following: (1) force, static stability, and control effectiveness characteristics for varying angles of positive and negative wing dihedral and various combinations of wing tip and centerline dorsal fins; (2) force and static stability characteristics of cruise engines location on the body below the high aerodynamic canard; and (3) control effectiveness for the low-mounted wing configuration. The wing dihedral study was conducted at a cruise Mach number of 0.40 and simulated altitude of 10,000 feet. Portions of the test were conducted to determine the control surfaces stability and control characteristics over the Mach number range of 0.4 to 1.2. The aerodynamic characteristics determined are based on a unit Reynolds number of approximately 2 million per foot. Boundary layer trip strips were employed to induce boundary layer transition.
Hu, Zhongwei; Sun, Wei; Zhang, Bi
2012-01-01
Understanding biomechanical responses during soft tissue cutting is important for developing surgical simulators and robot-assisted surgery with haptic feedback. The biomechanics involved in the aortic tissue cutting process is largely unknown. In this study, porcine ascending aorta was selected as a representative aortic tissue, and tissue cutting experiments were performed using a novel tissue cutting apparatus. The tissue cutting responses under various cutting conditions were investigated, including differing initial tissue lateral holding force and distance, cutting speed, cutter inclination angle, tissue anatomical orientation and thickness. The results from this study suggest that a “break-in” cutting force of about 4 – 12 N, a cutter “break-in” distance of 5 – 15 mm, and a continuous cutting force of 2 – 4 N were needed to cut through the porcine ascending aorta tissue. For all testing conditions investigated in this study, the cutting force vs. the cutter displacement curves exhibited similar characteristics. More importantly, this study demonstrated that tissue cutting involving one or more of the following conditions: a larger lateral holding force, a smaller lateral hold distance, a higher cutting speed or a larger inclination angle, could result in a smaller “break in” cutting force and a smaller “break-in” distance. In addition, it was found that the cutting force in the vessel longitudinal direction was larger than that in the circumferential direction. There was a strong correlation between the tissue thickness and the cutting force. The experimental results reported in this study could provide a basis for understanding the characteristic response of aortic tissue to scalpel cutting, and offer insight into the development of surgical simulators. PMID:23262306
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
Mapping intramuscular tenderness variation in four major muscles of the beef round.
Reuter, B J; Wulf, D M; Maddock, R J
2002-10-01
The objective of this study was to quantify intramuscular tenderness variation within four muscles from the beef round: biceps femoris (BF), semitendinosus (ST), semimembranosus (SM), and adductor (AD). At 48 h postmortem, the BF, ST, SM, and AD were dissected from either the left or right side of ten carcasses, vacuum packaged, and aged for an additional 8 d. Each muscle was then frozen and cut into 2.54-cm-thick steaks perpendicular to the long axis of the muscle. Steaks were broiled on electric broilers to an internal temperature of 71 degrees C. Location-specific cores were obtained from each cooked steak, and Warner-Bratzler shear force was evaluated. Definable intramuscular shear force variation (SD = 0.56 kg) was almost twice as large as between-animal shear force variation (SD = 0.29 kg) and 2.8 times as large as between-muscle variation (SD = 0.20 kg). The ranking of muscles from greatest to least definable intramuscular shear force variation was BF, SM, ST, and AD (SD = 1.09, 0.72, 0.29, and 0.15 kg, respectively). The BF had its lowest shear force values at the origin (sirloin end), intermediate shear force values at the insertion, and its highest shear force values in a middle region 7 to 10 cm posterior to the sirloin-round break point (P < 0.05). The BF had lower shear force values toward the ST side than toward the vastus lateralis side (P < 0.05). The ST had its lowest shear force values in a 10-cm region in the middle, and its highest shear force values toward each end (P < 0.05). The SM had its lowest shear force values in the first 10-cm from the ischial end (origin), and its highest shear force values in a 13-cm region at the insertion end (P < 0.05). Generally, shear force was lower toward the superficial (medial) side than toward the deep side of the SM (P < 0.05). There were no intramuscular differences in shear force values within the AD (P > 0.05). These data indicate that definable intramuscular tenderness variation is substantial and could be used to develop alternative fabrication and(or) merchandising methods for beef round muscles.
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Watson, Carolyn B.
1987-01-01
An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.
Fabrication of flexible and vertical silicon nanowire electronics.
Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2012-06-13
Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN ...
12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN PRE-VALVE DECK (2ND LEVEL). Looking south. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Structural safety assessment for FLNG-LNGC system during offloading operation scenario
NASA Astrophysics Data System (ADS)
Hu, Zhi-qiang; Zhang, Dong-wei; Zhao, Dong-ya; Chen, Gang
2017-04-01
The crashworthiness of the cargo containment systems (CCSs) of a floating liquid natural gas (FLNG) and the side structures in side-by-side offloading operations scenario are studied in this paper. An FLNG vessel is exposed to potential threats from collisions with a liquid natural gas carrier (LNGC) during the offloading operations, which has been confirmed by a model test of FLNG-LNGC side-by-side offloading operations. A nonlinear finite element code LS-DYNA is used to simulate the collision scenarios during the offloading operations. Finite element models of an FLNG vessel and an LNGC are established for the purpose of this study, including a detailed LNG cargo containment system in the FLNG side model. Based on the parameters obtained from the model test and potential dangerous accidents, typical collision scenarios are defined to conduct a comprehensive study. To evaluate the safety of the FLNG vessel, a limit state is proposed based on the structural responses of the LNG CCS. The different characteristics of the structural responses for the primary structural components, energy dissipation and collision forces are obtained for various scenarios. Deformation of the inner hull is found to have a great effect on the responses of the LNG CCS, with approximately 160 mm deformation corresponding to the limit state. Densely arranged web frames can absorb over 35% of the collision energy and be proved to greatly enhance the crashworthiness of the FLNG side structures.
NASA Technical Reports Server (NTRS)
Curry, R. E.; Sim, A. G.
1984-01-01
A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1981-01-01
A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.
The effect of spin in swing bowling in cricket: model trajectories for spin alone
NASA Astrophysics Data System (ADS)
Robinson, Garry; Robinson, Ian
2015-02-01
In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is significant. For a given amount of spin the amount of side-ways movement increases as the bowler's delivery arm becomes more horizontal. This technique could also be exploited by normal spin bowlers as well as swing bowlers.
Torque limited drive for manual valves
Elliott, Philip G.; Underwood, Daniel E.
1989-01-01
The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.
Torque limited drive for manual valves
Elliott, Philip G.; Underwood, Daniel E.
1989-06-06
The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.
Molecular Simulations in Astrobiology
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)
2001-01-01
One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel processors. Work in this direction is in progress. Two specific series of simulations that demonstrate how peptides self-organize and function in membranes are discussed. In one series of simulations, it was shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and, simultaneously, fold into two different helical structures, which remain in equilibrium. Once in the membrane, the peptides can readily change their orientation, especially in response to local electric fields. This structural and orientational flexibility of peptides with changing conditions may have provided a mechanism of transmitting signals between the environment and the interior of the protocell. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations demonstrate that protons move through the gate by a "shuttle" mechanism, wherein one histidine is protonated on the extracellular side and, subsequently, the proton bound on the opposite side is released.
Karadeniz, Ersan I; Gonzales, Carmen; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali
2013-05-01
To evaluate the null hypothesis that fluoride intake via drinking water has no effect on orthodontic root resorption in humans after orthodontic force application for 4 weeks and 12 weeks of retention. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from two cities in Turkey. These cities had a high and low fluoride concentration in public water of ≥2 pm and ≤0.05 pm, respectively. The patients were randomly separated into four groups of 12 each: group 1HH, high fluoride (≥2 ppm) and heavy force (225 g); group 2LH, low fluoride (≤0.05 ppm) and heavy force; group 3HL, high fluoride and light force (25 g); and group 4LL, low fluoride and light force. Light or heavy buccal tipping force was applied on the upper first premolars for 28 days. At day 28, the left premolars were extracted (positive control side); the right premolars (experimental side) were extracted after 12 weeks of retention. The samples were analyzed with microcomputed tomography. On the positive control side, under heavy force application, the high fluoride groups exhibited less root resorption (P = .015). On the experimental side, it was found that fluoride reduced the total volume of root resorption craters; however, this effect was not statistically significant (P = .237). Moreover, the results revealed that under heavy force application experimental teeth exhibited more root resorption than positive control groups. The null hypothesis could not be rejected. High fluoride intake from public water did not have a beneficial effect on the severity of root resorption after a 4-week orthodontic force application and 12 weeks of passive retention.
General equilibrium characteristics of a dual-lift helicopter system
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Kanning, G.
1986-01-01
The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.
NASA Technical Reports Server (NTRS)
Kupcis, E. A.
1974-01-01
The effects of the Refan JT8D side engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane were investigated using the Boeing-Vertol 20 x 20 ft Low-Speed Wind Tunnel. A powered model of the 727-200 was tested in groud effect in the landing configuration. The Refan target reverser configuration was evaluated relative to the basic production 727 airplane with its clamshell-deflector door thrust reverser design. The Refan configuration had slightly improved directional control characteristics relative to the basic airplane. Clocking the Refan thrust reversers 20 degrees outboard to direct the reverser flow away from the vertical tail, had little effect on directional control. However, clocking them 20 degrees inboard resulted in a complete loss of rudder effectiveness for speeds greater than 90 knots. Variations in Refan reverser lip/fence geometry had a minor effect on directional control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Optimizations of missile allocation based on linearized exchange equations produce accurate allocations, but the limits of validity of the linearization are not known. These limits are explored in the context of the upload of weapons by one side to initially small, equal forces of vulnerable and survivable weapons. The analysis compares analytic and numerical optimizations and stability induces based on aggregated interactions of the two missile forces, the first and second strikes they could deliver, and they resulting costs. This note discusses the costs and stability indices induced by unilateral uploading of weapons to an initially symmetrical low force configuration.more » These limits are quantified for forces with a few hundred missiles by comparing analytic and numerical optimizations of first strike costs. For forces of 100 vulnerable and 100 survivable missiles on each side, the analytic optimization agrees closely with the numerical solution. For 200 vulnerable and 200 survivable missiles on each side, the analytic optimization agrees with the induces to within about 10%, but disagrees with the allocation of the side with more weapons by about 50%. The disagreement comes from the interaction of the possession of more weapons with the shift of allocation from missiles to value that they induce.« less
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force
NASA Astrophysics Data System (ADS)
Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.
2016-02-01
Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.
NASA Astrophysics Data System (ADS)
Zhao, Xingqian; Xu, Wei; Shuai, Changgeng; Hu, Zechao
2017-12-01
A mechanical impedance model of a coupled motor-shaft-bearing system has been developed to predict the dynamic characteristics and partially validated by comparing the computing results with finite element method (FEM), including the comparison of displacement amplitude in x and z directions at the two ends of the flexible coupling, the comparison of normalized vertical reaction force in z direction at bearing pedestals. The results demonstrate that the developed model can precisely predict the dynamic characteristics and the main advantage of such a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an important role in the isolation system design.
3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, ...
3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, FROM NEAR OBSERVATION POST NO. 3. Looking south southeast from below. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, ...
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, TEST STAND 1-E, IN LEFT DISTANCE. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
Acute transient hemiparesis induced by lightning strike.
Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira
2015-07-01
According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.
NASA Astrophysics Data System (ADS)
BLÜTHNER, R.; SEIDEL, H.; HINZ, B.
2002-05-01
Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.
Chen, Jia-Kun; Huang, Rong Fung; Peng, Kuan-Lin
2012-01-01
The effects of draft on the flow and spillage characteristics of wall-mounted and jet-isolated range hoods were investigated. A specially designed draft generator that could supply low-swirl air current was used to provide "cross draft" from three directions, lateral (θ = 0(o)), oblique (θ = 45(o)), and front (θ = 90(o)), with respect to the center point of the range hoods. Flow characteristics of oil mist were inspected through visualization of smoke flows with light scattering (laser light sheet-assisted visualization of smoke flow). The leakage mechanisms, which were closely related to the flow features, were studied by examining both movies and still pictures showing smoke-flow evolution. The sulfur hexafluoride tracer gas concentration detection method was employed to measure the capture indices. The results showed that the lateral draft pushed the pollutants generated under the hood in the opposite direction and induced serious spillage. The oblique draft pushed the pollutants toward both the rear wall and opposite side and induced more serious spillage than did the lateral draft. The frontal draft forced the pollutants to bifurcate into streams moving toward the left and the right, and induced the most serious pollutant spillage among the three tested drafts. Pollutant spillage became critically significant as the cross draft velocity was increased to greater than 0.2 m/sec. Spillage of pollutants increased as the velocity of the cross draft was increased. Increasing the suction flow rate of the range hood may increase resistance to the draft, but the benefits were limited at draft velocities greater than 0.2 m/sec. Both range hoods had a similarly low capture index under the influence of the lateral draft. For the oblique and frontal drafts, the jet-isolated range hood demonstrated a higher capture index than did the wall-mounted range hood.
Knudsen pump inspired by Crookes radiometer with a specular wall
NASA Astrophysics Data System (ADS)
Baier, Tobias; Hardt, Steffen; Shahabi, Vahid; Roohi, Ehsan
2017-03-01
A rarefied gas is considered in a channel consisting of two infinite parallel plates between which an evenly spaced array of smaller plates is arranged normal to the channel direction. Each of these smaller plates is assumed to possess one ideally specularly reflective and one ideally diffusively reflective side. When the temperature of the small plates differs from the temperature of the sidewalls of the channel, these boundary conditions result in a temperature profile around the edges of each small plate that breaks the reflection symmetry along the channel direction. This in turn results in a force on each plate and a net gas flow along the channel. The situation is analyzed numerically using the direct simulation Monte Carlo method and compared with analytical results where available. The influence of the ideally specularly reflective wall is assessed by comparing with simulations using a finite accommodation coefficient at the corresponding wall. The configuration bears some similarity to a Crookes radiometer, where a nonsymmetric temperature profile at the radiometer vanes is generated by different temperatures on each side of the vane, resulting in a motion of the rotor. The described principle may find applications in pumping gas on small scales driven by temperature gradients.
Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming
2017-10-01
To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Displacement of organelles in plant gravireceptor cells by vibrational forces and ultrasound.
NASA Astrophysics Data System (ADS)
Kuznetsov, O.; Nechitailo, G.; Kuznetsov, A.
Plant gravity perception can be studied by displacing statoliths inside receptor cells by forces other than gravity. Due to mechanical heterogeneity of statocytes various ponderomotive forces can be used for this purpose. In a plant subjected to non- symmetric vibrations statoliths experience inertial force proportional to the difference between their density and that of cytoplasm and to the instantaneous acceleration of the cell. This force causes cyclic motion of statoliths relative to cytoplasm and, depending on the profile of oscillations, can result in a net displacement of them (due to complex rheology of the cell interior), similar to sedimentation. This can be described as "vibrational" ponderomotive force acting on the statoliths. Vertically growing Arabidopsis seedlings, subjected to horizontal, sawtooth shaped oscillations (250 Hz, 1.5 mm amplitude), showed 17+/-2o root curvature toward and shoot curvature of 11+/-3o against the stronger acceleration. When the polarity of the oscillations was reversed, the direction of curvature of shoots and roots was also reversed. Control experiments with starchless mutants (TC7) produced no net curvature, which indicates that dense starch-filled amyloplasts are needed for the effect. These control experiments also eliminate touch-induced reactions or other side-effects as the cause of the curvature. Linum roots curved 25+/-7o . Ceratodon protonemata subjected to the same oscillations have shown displacement of plastids and curvature consistent with the pattern observed during graviresponse: positively gravitropic wwr mutant curved in the direction of the plastid displacement, WT curved in the opposite direction. Acoustic ponderomotive forces, originating from transfer of a sonic beam momentum to the medium due to sound scattering and attenuation in a mechanically heterogeneous system, also can displace statoliths. Vertical flax seedlings curved away from the ultrasonic source (800 kHz, 0.1 W/cm2 ) presumably as a reaction to amyloplasts displacement by acoustic forces. Besides investigating the graviperception mechanism, vibrational and acoustic forces can serve as tools for analyzing mechanical properties of cell interior. Practical applications of this technology could include providing directional stimuli for plants in microgravity by low doses of vibrations. Vibrations present on board of spacecraft may have vectorial effects on plants and other organisms, and their influence should be assessed.
The ReaxFF reactive force-field: Development, applications, and future directions
Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...
2016-03-04
The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less
Homentcovschi, Dorel; Aubrey, Matthew J; Miles, Ronald N
2006-02-01
It has been shown that the parasitoid fly Ormia Ochracea exhibits exceptional sound localization ability achieved through the mechanical coupling of its eardrums [R. N. Miles et al., J. Acoust. Soc. Am. 98, 3059-3070 (1995)]. Based on this biological system a new directional microphone has been designed, having as a basic element a special diaphragm undergoing a rocking motion. This paper considers a 2D model of the microphone in which the diaphragm is considered as a 2D plate having slits on the sides. The slits lead to a backing volume limited by an infinite rigid wall parallel to the diaphragm in its neutral position. The reflection and diffraction of an incoming plane wave by this system are studied to determine the resultant force and resultant moment of pressure upon the diaphragm. The results show that such a microphone will be driven better in the case of narrow slits and deep cavities.
Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath
NASA Astrophysics Data System (ADS)
Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia
2017-04-01
Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.
Mao, Shun; Lu, Ganhua; Yu, Kehan; ...
2010-01-01
We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.
Pitching Flexible Propulsors: Experimental Assessment of Performance Characteristics
2014-05-09
velocities pointing in this direction contribute to an overall momentum deficit in the wake , which may be quantitatively related to the drag force on...and explained the source of some of the additional vorticity in the wake of the foil that may have otherwise been ignored or treated as noise in the...is conducted through reduction of the measured force and torque data and multiple wake flow analysis techniques, including particle image
NASA Technical Reports Server (NTRS)
James, Carlton S.
1960-01-01
An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.
Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo
2016-06-01
In hip-hop dance, the elements of motion that discriminate the skill levels of dancers and that influence the evaluations by judges have not been clearly identified. This study set out to extract these motion characteristics from the side-step movements of hip-hop dancing. Eight expert and eight non-expert dancers performed side-step movements, which were recorded using a motion capture system. Nine experienced judges evaluated the dancers' performances. Several parameters, including the range of motion (ROM) of the joint angles (neck, trunk, hip, knee, and face inclination) and phase delays between these angular motions were calculated. A quarter-cycle phase delay between the neck motion and other body parts, seen only in the expert dancers, is highlighted as an element that can distinguish dancers' skill levels. This feature of the expert dancers resulted in a larger ROM during the face inclination than that for the non-expert dancers. In addition, the experts exhibited a bottom-to-top segmental sequence in the horizontal direction while the non-experts did not demonstrate any such sequential motion. Of these kinematic parameters, only the ROM of the face inclination was highly correlated to the judging score and is regarded as being the most appealing element of the side-step movement.
Surface waves on the tailward flanks of the Earth's magnetopause
NASA Technical Reports Server (NTRS)
Seon, J.; Frank, L. A.; Lazarus, A. J.; Lepping, R. P.
1995-01-01
Forty-three examples of ISEE 1 tailward flank side magnetopause crossings are examined and directly compared with upstream solar wind parameters. The crossings are classified into two groups. In the first group, a few sudden magnetopause crossings are observed, whereas repeated magnetopause crossings and oscillatory motions, often with boundary layer signatures, are observed in the second group. These distinctive characteristics of the two groups are interpreted in terms of the surface waves due to the Kelvin-Helmholtz instability. It is found that low solar wind speed tends to favor characteristics of the first group, whereas high solar wind speed yields those of the second group. However, no evident correlations between the groups and the interplanetary magnetic field directions are found.
Biomechanics important to interpret radiographs of the hip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, D.I.; Scott, J.A.
1983-02-01
Biomechanic principles have important implications to film interpretation. Angulation of the femoral neck results in four different types of forces: compression on the medial side, tension on the lateral side, shear stress in the center, and torque forces at the neck-shaft angle. The body's response to these forces results in recognicable trabecular patterns which respond in a predictable manner to disease states. Surgical intervention in the form of hip replacement or fracture fixation must reflect these engineering consideration.
65. March 1978. Copy of enlargement from original 11Omm blackandwhite ...
65. March 1978. Copy of enlargement from original 11Omm black-and-white aerial negative from Sortie 414, made by United States Air Force, Tactical Reconaissance Wing, Ninth Air Force, at Shaw Air Force Base, Sumter, South Carolina. Overhead aerial view of Borough House with surrounding grounds and adjacent properties. - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC
5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. ...
5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. 8668) IN MIDDLE DISTANCE AT LEFT, AND TEST AREAS 1-120 AND 1-125 BEYOND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong
2017-07-01
A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).
NASA Astrophysics Data System (ADS)
Takahashi, Toshimichi
2018-05-01
The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.
The effects of poling on physiological, kinematic and kinetic responses in roller ski skating.
Grasaas, Erik; Hegge, Ann Magdalen; Ettema, Gertjan; Sandbakk, Øyvind
2014-09-01
We investigated the effects of poling on physiological, kinematic and kinetic responses in the G4 skating technique where the poling movement is synchronized with the leg push-off on one side (strong side) followed by a forward arm swing during the leg push-off on the other side (weak side). G4 skating with (G4-P) and without (G4-NP) poling was compared in 17 elite male cross-country skiers during 4-min submaximal tests on a 2% inclined roller ski treadmill at 10, 15 and 20 km h(-1). G4-P demonstrated less ventilatory stress and higher gross efficiency compared to G4-NP at all velocities, and the blood lactate concentration was lower at the high velocity (all P < 0.05). Furthermore, longer cycle lengths and lower cycle rates were found with G4-P at all velocities, with correspondingly lower peak ski forces, increased ski velocities and less angling and edging of the skis (all P < 0.05). The peak ski forces on the strong side were lower than on the weak side with G4-P at all velocities (all P < 0.05), but no differences between the sides were found with G4-NP. The reduced physiological cost, higher gross efficiency and longer cycle lengths together with the lower ski forces at a given work rate with G4-P demonstrate the effectiveness of poling in the G4 skating technique. Thus, poling provides possibilities to increase total propulsion, to reduce ski forces and to enhance skiing efficiency.
Does combined strength training and local vibration improve isometric maximum force? A pilot study.
Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim
2017-01-01
The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.
Impact face influence on low velocity impact performance of interply laminated plates
NASA Astrophysics Data System (ADS)
Manikandan, Periyasamy; Chai, Gin Boay
2015-03-01
Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.
Origin of accelerated and hindered sedimentation of two particles in wet foam.
Jing, Zefeng; Feng, Chenchen; Wang, Shuzhong; Xu, Donghai
2018-03-20
To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam.
Sensorimotor dysfunction of grasping in schizophrenia: a side effect of antipsychotic treatment?
Nowak, D A; Connemann, B J; Alan, M; Spitzer, M
2006-01-01
Background Antipsychotic treatment in schizophrenia is frequently associated with extrapyramidal side effects. Objective behavioural measures to evaluate the severity of extrapyramidal side effects in the clinical setting do not exist. Objectives This study was designed to investigate grasping movements in five drug naive and 13 medicated subjects with schizophrenia and to compare their performance with that of 18 healthy control subjects. Deficits of grip force performance were correlated with clinical scores of both parkinson‐like motor disability and psychiatric symptom severity Methods Participants performed vertical arm movements with a handheld instrumented object and caught a weight that was dropped into a handheld cup either expectedly from the opposite hand or unexpectedly from the experimenter's hand. The scaling of grip force and the temporospatial coupling between grip and load force profiles was analysed. The psychiatric symptom severity was assessed by the positive and negative symptom score of schizophrenia and the brief psychiatric rating scale. Extrapyramidal symptoms were assessed by the unified Parkinson's disease rating scale. Results Drug naive subjects with schizophrenia performed similar to healthy controls. In contrast, medicated subjects with schizophrenia exhibited excessive grip force scaling and impaired coupling between grip and load force profiles. These performance deficits were strongly correlated with the severity of both extrapyramidal side effects related to antipsychotic therapy and negative symptoms related to the underlying pathology. Conclusions These data provide preliminary evidence that deficits of sensorimotor performance in schizophrenia are, at least in part, related to the side effects of antipsychotic treatment. The investigation of grasping movements may provide a sensitive measure to objectively evaluate extrapyramidal side effects related to antipsychotic therapy. PMID:16614027
Neurochemical and behavioral indices of exercise reward are independent of exercise controllability
Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2016-01-01
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814
NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT ...
NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA
Lindau, Manfred; Hall, Benjamin A.; Chetwynd, Alan; Beckstein, Oliver; Sansom, Mark S.P.
2012-01-01
Fusion of neurosecretory vesicles with the plasma membrane is mediated by SNARE proteins, which transfer a force to the membranes. However, the mechanism by which this force transfer induces fusion pore formation is still unknown. The neuronal vesicular SNARE protein synaptobrevin 2 (syb2) is anchored in the vesicle membrane by a single C-terminal transmembrane (TM) helix. In coarse-grain molecular-dynamics simulations, self-assembly of the membrane occurred with the syb2 TM domain inserted, as expected from experimental data. The free-energy profile for the position of the syb2 membrane anchor in the membrane was determined using umbrella sampling. To predict the free-energy landscapes for a reaction pathway pulling syb2 toward the extravesicular side of the membrane, which is the direction of the force transfer from the SNARE complex, harmonic potentials were applied to the peptide in its unbiased position, pulling it toward new biased equilibrium positions. Application of piconewton forces to the extravesicular end of the TM helix in the simulation detached the synaptobrevin C-terminus from the vesicle's inner-leaflet lipid headgroups and pulled it deeper into the membrane. This C-terminal movement was facilitated and hindered by specific mutations in parallel with experimentally observed facilitation and inhibition of fusion. Direct application of such forces to the intravesicular end of the TM domain resulted in tilting motion of the TM domain through the membrane with an activation energy of ∼70 kJ/mol. The results suggest a mechanism whereby fusion pore formation is induced by movement of the charged syb2 C-terminus within the membrane in response to pulling and tilting forces generated by C-terminal zippering of the SNARE complex. PMID:23009845
Lindau, Manfred; Hall, Benjamin A; Chetwynd, Alan; Beckstein, Oliver; Sansom, Mark S P
2012-09-05
Fusion of neurosecretory vesicles with the plasma membrane is mediated by SNARE proteins, which transfer a force to the membranes. However, the mechanism by which this force transfer induces fusion pore formation is still unknown. The neuronal vesicular SNARE protein synaptobrevin 2 (syb2) is anchored in the vesicle membrane by a single C-terminal transmembrane (TM) helix. In coarse-grain molecular-dynamics simulations, self-assembly of the membrane occurred with the syb2 TM domain inserted, as expected from experimental data. The free-energy profile for the position of the syb2 membrane anchor in the membrane was determined using umbrella sampling. To predict the free-energy landscapes for a reaction pathway pulling syb2 toward the extravesicular side of the membrane, which is the direction of the force transfer from the SNARE complex, harmonic potentials were applied to the peptide in its unbiased position, pulling it toward new biased equilibrium positions. Application of piconewton forces to the extravesicular end of the TM helix in the simulation detached the synaptobrevin C-terminus from the vesicle's inner-leaflet lipid headgroups and pulled it deeper into the membrane. This C-terminal movement was facilitated and hindered by specific mutations in parallel with experimentally observed facilitation and inhibition of fusion. Direct application of such forces to the intravesicular end of the TM domain resulted in tilting motion of the TM domain through the membrane with an activation energy of ∼70 kJ/mol. The results suggest a mechanism whereby fusion pore formation is induced by movement of the charged syb2 C-terminus within the membrane in response to pulling and tilting forces generated by C-terminal zippering of the SNARE complex. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
14 CFR 27.151 - Flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...
14 CFR 29.151 - Flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...
Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor
NASA Astrophysics Data System (ADS)
Barzegar Gerdroodbary, M.; Ganji, D. D.; Taeibi-Rahni, M.; Vakilipour, Shidvash
2017-07-01
In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.
Herr, Yeek; Kwon, Young-Hyuk; Kim, Seong-Hun; Kim, Eun-Cheol
2014-01-01
This prospective randomized split-mouth study was performed to examine the effects of absorbable collagen membrane (ACM) application in augmented corticotomy using deproteinized bovine bone mineral (DBBM), during orthodontic buccal tipping movement in the dog. After buccal circumscribing corticotomy and DBBM grafting into the decorticated area, flaps were repositioned and sutured on control sides. ACM was overlaid and secured with membrane tacks, on test sides only, and the flaps were repositioned and sutured. Closed coil springs were used to apply 200 g orthodontic force in the buccolingual direction on the second and third premolars, immediately after primary flap closure. The buccal tipping angles were 31.19 ± 14.60° and 28.12 ± 11.48° on the control and test sides, respectively. A mean of 79.5 ± 16.0% of the buccal bone wall was replaced by new bone on the control side, and on the test side 78.9 ± 19.5% was replaced. ACM application promoted an even bone surface. In conclusion, ACM application in augmented corticotomy using DBBM might stimulate periodontal tissue reestablishment, which is useful for rapid orthodontic treatment or guided bone regeneration. In particular, ACM could control the formation of mesenchymal matrix, facilitating an even bone surface. PMID:25276824
Xiao, Senbo; Xiao, Shijun; Gräter, Frauke
2013-06-14
Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.
Mericske-Stern, R; Hofmann, J; Wedig, A; Geering, A H
1993-01-01
Numerous investigations give evidence of improvement of masticatory performance when edentulous patients have had implants placed. A comparative study was carried out to investigate the oral function and tactile sensibility of patients restored with implant-supported overdentures. Twenty-six patients with ITI implants and 18 patients with natural-tooth roots were selected. The minimal pressure threshold perceived in vertical and horizontal directions was registered with dynamometers. Maximal occlusal force was recorded with a miniature bite recorder placed between each pair of antagonistic teeth on both jaw sides separately. All measurements were repeated three times and the average was calculated. The records of minimal perceived pressure revealed a significantly higher threshold (factor 100) for the implant group. In both test groups, values registered in the vertical direction were slightly increased. A tendency for test subjects with implants to reach higher maximal occlusal force was observed, but not at a statistically significant level. In both test groups, the average maximum was found on the second premolar. The minimal pressure threshold seems to depend on the presence of receptors in the periodontal ligament. The records of maximal occlusal force, which were similar in both test groups, lead to the assumption that the limitation in maximal occlusal capacity of overdenture wearers is multifactorial and does not depend on the presence of a periodontal ligament.
NASA Technical Reports Server (NTRS)
Applin, Z. T.; Coe, P. L., Jr.
1986-01-01
A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.
Canadian Light Infantry in Adaptive Dispersed Operations
2012-05-17
participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light
Canadian Light Infantry in Adaptive Dispersed Operations
2012-05-22
participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light
GBLD10+: a compact low-power 10 Gb/s VCSEL driver
Zhang, T.; Kulis, S.; Gui, P.; ...
2016-01-13
We report the design and implementation of the GBLD10+, a low-power 10 Gb/s VCSEL driver for High Energy Physics (HEP) applications. With new circuit techniques, the driver consumes only 31 mW and occupies a small area of 400 μm × 1750 μm including the IO PADs and sealrings. These characteristics allow for multiple GBLD10+ ICs to be assembled side by side in a compact module, with each one directly wire bonded to one VCSEL diode. Finally, this makes the GBLD10+ a suitable candidate for the Versatile Link PLUS (VL +) project, offering flexibility in configuring multiple transmitters and receivers.
On the prediction of auto-rotational characteristics of light airplane fuselages
NASA Technical Reports Server (NTRS)
Pamadi, B. N.; Taylor, L. W., Jr.
1984-01-01
A semi-empirical theory is presented for the estimation of aerodynamic forces and moments acting on a steadily rotating (spinning) airplane fuselage, with a particular emphasis on the prediction of its auto-rotational behavior. This approach is based on an extension of the available analytical methods for high angle of attack and side-slip and then coupling this procedure with strip theory for application to a rotating airplane fuselage. The analysis is applied to the fuselage of a light general aviation airplane and the results are shown to be in fair agreement with experimental data.
Yun, M H; Cannon, D; Freivalds, A; Thomas, G
1997-10-01
Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system will be used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. Here, an operator gives directives to a robot in the same natural way that human may direct another. Phrases such as "put that there" cause the robot to define a grasping strategy and motion strategy to complete the task on its own. In the VR-PAD concept, pointing is done using virtual tools such that an operator can appear to graphically grasp real items in live video. Rather than requiring full duplication of forces and kinesthetic movement throughout a task as is required in manual telemanipulation, hand posture and force are now specified only once. The grasp parameters then become object flavors. The robot maintains the specified force and hand posture flavors for an object throughout the task in handling the real workpiece or item of interest. In the Computer integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with Force-Sensitive Resistor (FSR) (pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach will finesse the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.
Pai, C N; Shinshi, T; Shimokohbe, A
2010-01-01
Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.
2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. ...
2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. NOTE CONCRETE PROTECTION SLAB FOR UNDERGROUND CONTROL ROOM AND ESCAPE HATCH ON GROUND AT RIGHT MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Stadter, Greg; Grabowski, Jurek G; Burke, Christine; Aldaghlas, Tayseer A; Robinson, Linda; Fakhry, Samir M
2008-12-01
Side impact crashes, the most lethal type, account for 26% of all motor vehicle crashes in the United States. The purpose of this study is to delineate side impact airbag (SIAB) deployment rates, injury rates, and analyze crash factors associated with SIAB deployment and occupant injury. All passenger vehicles equipped with SIABs that were involved in a side impact crash were identified from the National Automotive Sampling System database. Crashes with multiple impacts, ejections, unbelted drivers or rollovers were excluded from the study. The outcome variables of interest were SIAB deployment and driver injury. SIAB deployment was compared in similar crashes to analyze the impact on driver's injury severity score. Other crash factors were also examined to analyze what role they play in SIAB deployment rates and injury rates, such as plane of contact, striking object and Delta-V. The data set for this study contained 247 drivers in near and far side crashes in vehicles with installed SIABs. Overall SIAB deployment was 43% in side impact crashes. A significant factor associated with both the SIAB deployment rate and the driver's injury rate was increased Delta-V. SIABs do not deploy consistently in crashes with a high Delta-V or with a lateral primary direction of force and a front plane of contact. In these two scenarios, further research is warranted on SIAB deployments. With SIAB deployment, it appears drivers are able to sustain a higher Delta-V impact without serious injury.
Directional solidification of Bi-Mn alloys using an applied magnetic field
NASA Technical Reports Server (NTRS)
Decarlo, J. L.; Pirich, R. G.
1987-01-01
Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.
Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0
NASA Technical Reports Server (NTRS)
Davis. Marl C.; White, J. Terry
2006-01-01
The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.
X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0
NASA Technical Reports Server (NTRS)
Davis, Mark C.; White, J. Terry
2008-01-01
The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.
Dynamic Response of the Hybrid III 3 Year Old Dummy Head and Neck During Side Air Bag Loading
Duma, Stefan M.; Crandall, Jeff R.; Pilkey, Walter D.; Seki, Kazuhiro; Aoki, Takashi
1998-01-01
This paper presents the results from fourteen (n = 14) tests designed to evaluate the response and injury potential of a Hybrid III 3 year old dummy subject to loading by a deploying seat mounted side air bag. An instrumented Hybrid III 3 year old dummy was used for tests in two different occupant positions chosen to maximize head and neck loading. Four seat mounted thoracic side air bags were used that varied only in the level of inflator output. NHTSA’s neck injury criteria for complex loading, referred to as Nij, was modified to include moment values for both anterioposterior and lateral directions. The results of this testing indicate that side air bag loading can result in forces and moments approaching injury threshold values. While there is considerable uncertainty as to the validity of published injury criteria due to the lack of child biomechanical data, this study demonstrates the sensitivity of child response to initial position which may provide insight into placement and geometry of side airbag systems. Furthermore, the data indicates a relationship between airbag inflator properties and child dummy response for a given airbag geometry. Recently, automobile manufacturers have begun implementing side air bags as a safety feature to mitigate injuries resulting from side impact collisions. Unlike the case for the passenger side air bag, the injury potential to an out-of-position child in side airbag loading has not been presented in the literature. The purpose of this research is to evaluate the response of a Hybrid III 3 year old dummy subject to loading by a deploying side air bag.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Method of Determining the Aerodynamic Characteristics of a Flying Vehicle from the Surface Pressure
NASA Astrophysics Data System (ADS)
Volkov, V. F.; Dyad'kin, A. A.; Zapryagaev, V. I.; Kiselev, N. P.
2017-11-01
The paper presents a description of the procedure used for determining the aerodynamic characteristics (forces and moments acting on a model of a flying vehicle) obtained from the results of pressure measurements on the surface of a model of a re-entry vehicle with operating retrofire brake rockets in the regime of hovering over a landing surface is given. The algorithm for constructing the interpolation polynomial over interpolation nodes in the radial and azimuthal directions using the assumption on the symmetry of pressure distribution over the surface is presented. The aerodynamic forces and moments at different tilts of the vehicle are obtained. It is shown that the aerodynamic force components acting on the vehicle in the regime of landing and caused by the action of the vertical velocity deceleration nozzle jets are negligibly small in comparison with the engine thrust.
Amano, M; Umeda, G; Nakajima, H; Yatsuki, K
1988-01-01
The characteristic work actions of female shoe manufacturing assembly line workers were analyzed by the records of 8-mm cine-films. The relationship between cervicobrachial disorders and work actions was investigated as a cross-sectional factor control study by using sex-age matched pairs for non-assembly line workers (102 pairs). The following conclusions were obtained: 1) The assembly line workers handled about 3,400 sneaker shoes per day on the assembly line. A completed shoe weighed 200-500 g. The metal last weighted 400-1,200 g. As the lines were not completely mechanized, the workers passed shoes to the next worker by hand. 2) In the line selected for the study of work actions, 28 female workers and one male worker were engaged. The work direction of the line was one-way (from left to right or vice versa). The actions of the workers were classified into four fundamental actions: i) grasping the shoe or tool, ii) extending or iii) bending of the arms, and iv) keeping the arms in a certain position. These fundamental actions were repeated more than 3,400 times per day by each worker. The time spent in holding a shoe in the left hand was longer than that of the right hand in holding a shoe or tool. 3) Results of medical examinations showed a higher prevalence in assembly line workers than that in non-assembly line workers. Especially the prevalence rate of tapping test, pain sensibility test, vibratory sensibility test, Morley's test, tenosynovitis in the fingers, tenderness at spinal muscle around the thoracic vertebrae, levator muscle of scapula, trapezius muscle, rhomboid muscle, infraspinatus muscle, greater pectoral muscle, anterior scalene muscle, thenar eminence, biceps muscle of arm, brachioradial muscle, and antebrachial flexor muscle were found to be different significantly by McNemar's test between the two groups. These disorders were appeared in the left shoulder, arm and hand. 4) As the non-assembly line workers were not engaged in compulsory work or in one-way work direction, they injured the right side (skillful side). On the contrary, it is considered that compulsory transfer of shoes and one-way work direction imposes a heavier load on the left side of the body in assembly line workers, and consequently they injured the left side more severely. 5) It is concluded that the sustained task of handing over shoes to the next worker or one-way work direction caused cervicobrachial disorders of assembly line workers, especially on the left side of the body.
Total dynamic response of a PSS vehicle negotiating asymmetric road excitations
NASA Astrophysics Data System (ADS)
Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim
2012-12-01
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.
Mechanically driven centrifugal pyrolyzer
Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL
2012-03-06
An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.
NASA Technical Reports Server (NTRS)
Olson, D. A.
1991-01-01
The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.
NASA Astrophysics Data System (ADS)
Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory
2017-10-01
The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.
NASA Technical Reports Server (NTRS)
Smith, John W.; Montgomery, Terry
1996-01-01
During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.
Noise Reduction of Aircraft Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)
2009-01-01
A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...
2015-08-21
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less
Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy
2009-02-01
In this paper, we present a framework based on the generalized lattice Boltzmann equation (GLBE) using multiple relaxation times with forcing term for eddy capturing simulation of wall-bounded turbulent flows. Due to its flexibility in using disparate relaxation times, the GLBE is well suited to maintaining numerical stability on coarser grids and in obtaining improved solution fidelity of near-wall turbulent fluctuations. The subgrid scale (SGS) turbulence effects are represented by the standard Smagorinsky eddy viscosity model, which is modified by using the van Driest wall-damping function to account for reduction of turbulent length scales near walls. In order to be able to simulate a wider class of problems, we introduce forcing terms, which can represent the effects of general nonuniform forms of forces, in the natural moment space of the GLBE. Expressions for the strain rate tensor used in the SGS model are derived in terms of the nonequilibrium moments of the GLBE to include such forcing terms, which comprise a generalization of those presented in a recent work [Yu, Comput. Fluids 35, 957 (2006)]. Variable resolutions are introduced into this extended GLBE framework through a conservative multiblock approach. The approach, whose optimized implementation is also discussed, is assessed for two canonical flow problems bounded by walls, viz., fully developed turbulent channel flow at a shear or friction Reynolds number (Re) of 183.6 based on the channel half-width and three-dimensional (3D) shear-driven flows in a cubical cavity at a Re of 12 000 based on the side length of the cavity. Comparisons of detailed computed near-wall turbulent flow structure, given in terms of various turbulence statistics, with available data, including those from direct numerical simulations (DNS) and experiments showed good agreement. The GLBE approach also exhibited markedly better stability characteristics and avoided spurious near-wall turbulent fluctuations on coarser grids when compared with the single-relaxation-time (SRT)-based approach. Moreover, its implementation showed excellent parallel scalability on a large parallel cluster with over a thousand processors.
The hindlimb in walking horses: 2. Net joint moments and joint powers.
Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R
2001-01-01
The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.
A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing
NASA Astrophysics Data System (ADS)
Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.
2010-02-01
Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.
The transition to a deterrence posture more reliant on strategic defenses
NASA Astrophysics Data System (ADS)
Chrzanowski, Paul L.
1988-12-01
Strategic nuclear deterrence is currently based on the overwhelming capability of the arsenals of the two superpowers. Massive damage would be inflicted upon the military forces and industrial capacity of both sides should nuclear war occur and escalation of conflict not be controlled. Nuclear deterrence has fostered a condition of peace in central Europe and an absence of direct conflict between the U.S. and the Soviet Union. However, some question whether deterrence will remain effective into the indefinite future, and should deterrence fail the consequences are grave.
A Piloted Simulator Evaluation of Transport Aircraft Rudder Pedal Force/Feel Characteristics
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2008-01-01
A piloted simulation study has been conducted in a fixed-base research simulator to assess the directional handling qualities for various rudder pedal feel characteristics for commercial transport airplanes. That is, the effects of static pedal force at maximum pedal travel, breakout force, and maximum pedal travel on handling qualities were studied. An artificial maneuver with a severe lateral wind shear and requiring runway tracking at an altitude of 50 feet in a crosswind was used to fully exercise the rudder pedals. Twelve active airline pilots voluntarily participated in the study and flew approximately 500 maneuvers. The pilots rated the maneuver performance with various rudder pedal feel characteristics using the Cooper- Harper rating scale. The test matrix had 15 unique combinations of the 3 static pedal feel characteristics. A 10-term, second-order equation for the Cooper-Harper pilot rating as a function of the 3 independent pedal feel parameters was fit to the data. The test matrix utilized a Central Composite Design that is very efficient for fitting an equation of this form. The equation was used to produce contour plots of constant pilot ratings as a function of two of the parameters with the third parameter held constant. These contour plots showed regions of good handling qualities as well as regions of degraded handling qualities. In addition, a numerical equation solver was used to predict the optimum parameter values (those with the lowest pilot rating). Quantitative pilot performance data were also analyzed. This analysis found that the peak values of the cross power spectra of the pedal force and heading angle could be used to quantify the tendency toward directional pilot induced oscillations (PIO). Larger peak values of the cross power spectra were correlated with larger (degraded) Cooper-Harper pilot ratings. Thus, the subjective data (Cooper-Harper pilot ratings) were consistent with the objective data (peak values of the cross power spectra).
Side-force alleviation on slender, pointed forebodies at high angles of attack
NASA Technical Reports Server (NTRS)
Rao, D. M.
1978-01-01
A new device was proposed for alleviating high angle-of-attack side force on slender, pointed forebodies. A symmetrical pair of separation strips in the form of helical ridges are applied to the forebody to disrupt the primary lee-side vortices and thereby avoid the instability that produces vortex asymmetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds no. 5,250,000 on a variety of forebody configurations and on a wing-body combination at angles of attack up to 56 degrees, demonstrated the effectiveness of the device.
Walking patterns and hip contact forces in patients with hip dysplasia.
Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik
2015-10-01
Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Hong-tao; Cai, Chun-mei; Fang, Chuan-zhi; Wu, Tian-feng
2013-10-01
In order to develop micro-nano probe having error self-correcting function and good rigidity structure, a new micro-nano probe system was developed based on six-dimensional micro-force measuring principle. The structure and working principle of the probe was introduced in detail. The static nonlinear decoupling method was established with BP neural network to do the static decoupling for the dimension coupling existing in each direction force measurements. The optimal parameters of BP neural network were selected and the decoupling simulation experiments were done. The maximum probe coupling rate after decoupling is 0.039% in X direction, 0.025% in Y direction and 0.027% in Z direction. The static measurement sensitivity of the probe can reach 10.76μɛ / mN in Z direction and 14.55μɛ / mN in X and Y direction. The modal analysis and harmonic response analysis under three dimensional harmonic load of the probe were done by using finite element method. The natural frequencies under different vibration modes were obtained and the working frequency of the probe was determined, which is higher than 10000 Hz . The transient response analysis of the probe was done, which indicates that the response time of the probe can reach 0.4 ms. From the above results, it is shown that the developed micro-nano probe meets triggering requirements of micro-nano probe. Three dimension measuring force can be measured precisely by the developed probe, which can be used to predict and correct the force deformation error and the touch error of the measuring ball and the measuring rod.
NASA Technical Reports Server (NTRS)
Beke, Andrew; Allen, J L
1953-01-01
Aerodynamic and performance characteristics of a conical spike nacelle-type inlet with two bypasses are presented at Mach numbers of 1.6, 1.8, and 2.0 for angles of attach up to 90 degrees. The bypasses were located 6 inlet diameters downstream of the inlet and were designed to discharge the bypass mass flow outward from the body axis. The inlet was designed to attain a mass-flow ratio of unity at a Mach number of 2.0. It is shown that discharging the bypass mass flow outward from the body nearly doubles the critical drag of a similar configuration but with bypass discharge in an axial direction. As a result of this greater drag, the net force on the model in the flight direction is reduced when comparison is made with the axial discharge case. The lift and pitching-moment coefficients are slightly higher than those for a configuration without bypasses. Approximately 25 % of the maximum inlet mass flow was discharged through the bypasses, and the pressure-recovery and mass-flow characteristics were in qualitative and quantitative agreement with the results of an investigation of a similar configuration with axial discharge.
Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E
2017-03-21
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.
2018-01-01
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons
NASA Technical Reports Server (NTRS)
Deppe, P. R.; Chalk, C. R.; Shafer, M. F.
1996-01-01
As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.
Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet
NASA Astrophysics Data System (ADS)
Proedrou, Elisavet; Hocke, Klemens
2016-06-01
We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ˜19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.
Rovira-Lastra, B; Flores-Orozco, E I; Ayuso-Montero, R; Peraire, M; Martinez-Gomis, J
2016-04-01
The aim of this cross-sectional study was to determine the preferred chewing side and whether chewing side preference is related to peripheral, functional or postural lateral preferences. One hundred and forty-six adults with natural dentition performed three masticatory assays, each consisting of five trials of chewing three pieces of silicon placed into a latex bag for 20 cycles, either freestyle or unilaterally on the right- or left-hand side. Occlusal contact area in the intercuspal position, maximum bite force, masticatory performance and cycle duration were measured and the lateral asymmetry of these variables was calculated. Laterality tests were performed to determine handedness, footedness, earedness and eyedness as functional preferences, and hand-clasping, arm-folding and leg-crossing as postural lateral preferences. The preferred chewing side was determined using three different methods: assessment of the first chewing cycle for each trial, calculation of the asymmetry index from all cycles and application of a visual analogue scale. Bivariate relationship and multiple linear regression analyses were performed. Among unilateral chewers, 77% of them preferred the right side for chewing. The factors most closely related to the preferred chewing side were asymmetry of bite force, asymmetry of masticatory performance and earedness, which explained up to 16% of the variance. Although several functional or postural lateral preferences seem to be related to the preferred chewing side, peripheral factors such as asymmetry of bite force and of masticatory performance are the most closely related to the preferred chewing side in adults with natural dentition. © 2015 John Wiley & Sons Ltd.
Grip Force Coordination during Bimanual Tasks in Unilateral Cerebral Palsy
ERIC Educational Resources Information Center
Islam, Mominul; Gordon, Andrew M.; Skold, Annika; Forssberg, Hans; Eliasson, Ann-Christin
2011-01-01
Aim: The aim of the study was to investigate coordination of fingertip forces during an asymmetrical bimanual task in children with unilateral cerebral palsy (CP). Method: Twelve participants (six males, six females; mean age 14y 4mo, SD 3.3y; range 9-20y;) with unilateral CP (eight right-sided, four left-sided) and 15 age-matched typically…
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices suchmore » as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.« less
NASA Astrophysics Data System (ADS)
Peng, Chunqing; Thio, Yonathan; Gerhardt, Rosario
2009-03-01
Conductive paper has been fabricated by layer-by-layer (LBL) assembly of polyelectrolytes and indium tin oxide (ITO) nanoparticles onto wood fibers, followed by traditional paper making method. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The AC electrical properties, measured for frequencies ranging from 0.01 Hz to 1 MHz, will be reported for the in-plane (IP) and through-the-thickness (TT) directions. With 10 bilayers of PSS/ITO assembly on wood fibers, the conductivity of as-prepared paper was improved by more than six orders of magnitude and reach to 5.2x10-6 S cm-1 in IP direction and 1.9x10-8 S cm-1 in TT direction. The percolation phenomenon of ITO nanoparticles through the handsheet in both directions was observed through current atomic force microscopy (I-AFM). By applying a bias voltage, either on one end of the paper stripes or on one side of the paper handsheet, the current can be detected on the other end of the paper stripes or on the other side of the paper handsheet. PEI can be used to modify the ITO suspension and significantly improve the LBL procedure. The mechanism of PEI modifying ITO colloidal suspension will be discussed.
Quiudini, Paulo Roberto; Pozza, Daniel Humberto; Pinto, Ary Dos Santos; de Arruda, Mauricio Ferraz; Guimarães, Antonio Sergio
2017-07-01
Due to the bite force importance in functionality of the masticatory system, this study aimed to characterize it in dolichofacial and brachyfacial individuals. A sample comprised by 190 patients was divided into two groups: 90 severe dolichofacial, and 100 severe brachyfacial individuals classified according to the VERT index and the face height ratio (Jarabak quotient). Bite force was measured by using an adjusted digital dynamometer and proper methodology. The sample met the parametric assumptions and presented statistical significance when right and left sides of dolichofacial and brachyfacial individuals were compared. However, within the same group, no differences between the left and right sides were found. Generally, bite force was higher for male, left masticator, age between 41-50 years, weighing over 100kg and between 1.81 and 1.90m tall. Based on the results of this cross-sectional study, it was possible to conclude that the bite force in severe brachyfacial individuals was significantly higher than in severe dolichofacial individuals, being influenced by gender, weight and height. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
Performance and cavitation characteristics of bi-directional hydrofoils
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2013-11-01
Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.
Patterson, Braydon M; Dalci, Oyku; Papadopoulou, Alexandra K; Madukuri, Suman; Mahon, Jonathan; Petocz, Peter; Spahr, Axel; Darendeliler, M Ali
2017-01-01
The purpose of this study was to investigate the effect of piezocision on orthodontically induced inflammatory root resorption. Fourteen patients were included in this split-mouth study; 1 side was assigned to piezocision, and the other side served as the control. Vertical corticotomy cuts of 4 to 5 mm in length were performed on either side of each piezocision premolar, and 150-g buccal tipping forces were applied to the premolars. After 4 weeks, the maxillary first premolars were extracted and scanned with microcomputed tomography. There was a significantly greater total amount of root resorption seen on the piezocision sides when compared with the control sides (P = 0.029). The piezocision procedure resulted in a 44% average increase in root resorption. In 5 patients, there was noticeable piezocision-related iatrogenic root damage. When that was combined with the orthodontic root resorption found on the piezocision-treated teeth, there was a statistically significant 110% average increase in volumetric root loss when compared with the control side (P = 0.005). The piezocision procedure that initiates the regional acceleratory phenomenon may increase the iatrogenic root resorption when used in conjunction with orthodontic forces. Piezocision applied close to the roots may cause iatrogenic damage to the neighboring roots and should be used carefully. Copyright © 2017.
Lee, Jong-Chul; Lee, Sangyoup
2013-09-01
Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2016-11-01
Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.
The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
Ptashnyk, Mariya; Seguin, Brian
2016-11-01
The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.
Direct yaw moment control and power consumption of in-wheel motor vehicle in steady-state turning
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2017-01-01
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.
Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils
NASA Astrophysics Data System (ADS)
McLennan, Anthony William
Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.
NASA Astrophysics Data System (ADS)
Masunaga, Eiji; Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu
2018-04-01
This study investigates the dynamics of tidally induced internal waves over a shallow ridge, the Izu-Ogasawara Ridge off the Japanese mainland, using a downscaled high-resolution regional ocean numerical model. Both the Kuroshio and tides contribute to the field of currents in the study area. The model results show strong internal tidal energy fluxes over the ridge, exceeding 3.5 kW m-1, which are higher than the fluxes along the Japanese mainland. The flux in the upstream side of the Kuroshio is enhanced by an interaction of internal waves and currents. The tidal forcing induces 92% of the total internal wave energy flux, exhibiting the considerable dominance of tides in internal waves. The tidal forcing enhances the kinetic energy, particularly in the northern area of the ridge where the Kuroshio Current is not a direct influence. The tidal forcing contributes to roughly 30% of the total kinetic energy in the study area.
Kepler's theory of force and his medical sources.
Regier, Jonathan
2014-01-01
Johannes Kepler (1571-1630) makes extensive use of souls and spiritus in his natural philosophy. Recent studies have highlighted their importance in his accounts of celestial generation and astrology. In this study, I would like to address two pressing issues. The first is Kepler's context. The biological side of his natural philosophy is not naively Aristotelian. Instead, he is up to date with contemporary discussions in medically flavored natural philosophy. I will examine his relationship to Melanchthon's anatomical-theological Liber de anima (1552) and to Jean Femel's very popular Physiologia (1567), two Galenic sources with a noticeable impact on how he understands the functions of life. The other issue that will direct my article is force at a distance. Medical ideas deeply inform Kepler's theories of light and solar force (virtus motrix). It will become clear that they are not a hindrance even to the hardcore of his celestial physics. Instead, he makes use of soul and spiritus in order to develop a fully mathematized dynamics.
Computational analysis of forebody tangential slot blowing
NASA Technical Reports Server (NTRS)
Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.
1994-01-01
An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.
NASA Technical Reports Server (NTRS)
Dwyer Cianciolo, Alicia; Powell, Richard W.
2017-01-01
Precision landing on Mars is a challenge. All Mars lander missions prior to the 2012 Mars Science Laboratory (MSL) had landing location uncertainty ellipses on the order of hundreds of kilometers. Sending humans to the surface of Mars will likely require multiple landers delivered in close proximity, which will in turn require orders of magnitude improvement in landing accuracy. MSL was the first Mars mission to use an Apollo-derived bank angle guidance to reduce the size of the landing ellipse. It utilized commanded bank angle magnitude to control total range and bank angle reversals to control cross range. A shortcoming of this bank angle guidance is that the open loop phase of flight created by use of bank reversals increases targeting errors. This paper presents a comparison of entry, descent and landing performance for a vehicle with a low lift-to-drag ratio using both bank angle control and an alternative guidance called Direct Force Control (DFC). DFC eliminates the open loop flight errors by directly controlling two forces independently, lift and side force. This permits independent control of down range and cross range. Performance results, evaluated using the Program to Optimize Simulated Trajectories (POST2), including propellant use and landing accuracy, are presented.
Hayashi, Shigeki; Yasuki, Tsuyoshi; Kitagawa, Yuichi
2008-11-01
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models. Finite element simulations were conducted assuming a case where a passenger vehicle collides against a pole at 29km/h. Occupant kinematics, force-deformation responses and pressure levels were compared between cases with and without side airbag deployment. The results indicated that strain to the ribs and pressure to the organs was smaller with side airbag deployment. The side airbag widened the contact area at the torso, helping to distribute the force to the shoulder, arm and chest. Such distributed force helped generate relatively smaller deformation in the ribs. Furthermore, the side airbag deployment helped restrict the spine displacement. The smaller displacement contributed to lowering the magnitude of contact force between the torso and the door. The study also examined the correlations between the pressure levels in the internal organs, rib deflection, and V*C of chest. The study found that the V*C(t) peak appeared to be synchronized with the organ pressure peak, suggesting that the pressure level of the internal organs could be one possible indicator to estimate their injury risk.
132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB ...
132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB (BLDG. 751), QUALITY CONTROL BOARD ON LEFT. SOUTH SIDE OF TRANSFORMER ROOM (212) ON RIGHT SIDE OF PHOTOGRAPH, THROUGH OPEN DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Miyamoto-Kikuta, Sachiko; Ezaki, Taichi; Komuro, Terumasa
2009-10-01
The guinea-pig ileocaecal junction including the valve was studied by immunohistochemistry to clarify the organization of the muscle bundles, the enteric nerves and the interstitial cells of Cajal (ICC). This region clearly exhibited characteristic features in the distribution patterns of ICC in a proximal to distal direction: (1) the thickened portion of the terminal ileum immediately adjacent to the ileocecal junction contained many ICC throughout the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers, but ICC were few or absent in the rest of the ileum; (2) the ileal side of the valve contained ICC associated with the deep muscular plexus (ICC-DMP) as in the small intestine, whereas ICC-DMP were absent in the caecal side as in the caecum; (3) the valve contained many ICC-CM and ICC-LM in both the ileal and caecal sides; (4) many ICC associated with the myenteric plexus were observed in both the ileal and caecal sides of the valve, whereas they were only sparsely found in the caecum; (5) ICC were also observed around the submucosal plexus in a confined area of the terminal ileum and the ileocaecal valve. These observations provide morphological evidence that the terminal ileum and ileocaecal valve are specially equipped for their active involvement in the movement of the junctional area.
Mechanical Determinants of Faster Change of Direction Speed Performance in Male Athletes.
DosʼSantos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul
2017-03-01
Dos'Santos, T, Thomas, C, Jones, PA, and Comfort, P. Mechanical determinants of faster change of direction speed performance in male athletes. J Strength Cond Res 31(3): 696-705, 2017-Mechanical variables during change of directions, for example, braking and propulsive forces, impulses, and ground contact times (GCT) have been identified as determinants of faster change of direction speed (CODS) performance. The purpose of this study was to investigate the mechanical determinants of 180° CODS performance with mechanical characteristic comparisons between faster and slower performers; while exploring the role of the penultimate foot contact (PEN) during the change of direction. Forty multidirectional male athletes performed 6 modified 505 (mod505) trials (3 left and right), and ground reaction forces were collected across the PEN and final foot contact (FINAL) during the change of direction. Pearson's correlation coefficients and coefficients of determination were used to explore the relationship between mechanical variables and mod505 completion time. Independent T-tests and Cohen's d effect sizes (ES) were conducted between faster (n = 10) and slower (n = 10) mod505 performers to explore differences in mechanical variables. Faster CODS performance was associated (p ≤ 0.05) with shorter GCTs (r = 0.701-0.757), greater horizontal propulsive forces (HPF) (r = -0.572 to -0.611), greater horizontal braking forces (HBF) in the PEN (r = -0.337), lower HBF ratios (r = -0.429), and lower FINAL vertical impact forces (VIF) (r = 0.449-0.559). Faster athletes demonstrated significantly (p ≤ 0.05, ES = 1.08-2.54) shorter FINAL GCTs, produced lower VIF, lower HBF ratios, and greater HPF in comparison to slower athletes. These findings suggest that different mechanical properties are required to produce faster CODS performance, with differences in mechanical properties observed between fast and slower performers. Furthermore, applying a greater proportion of braking force during the PEN relative to the FINAL may be advantageous for turning performance.
Characterization of High-Frequency Excitation of a Wake by Simulation
NASA Technical Reports Server (NTRS)
Cain, Alan B.; Rogers, Michael M.; Kibens, Valdis; Mansour, Nagi (Technical Monitor)
2003-01-01
Insights into the effects of high-frequency forcing on free shear layer evolution are gained through analysis of several direct numerical simulations. High-frequency forcing of a fully turbulent plane wake results in only a weak transient effect. On the other hand, significant changes in the developed turbulent state may result when high-frequency forcing is applied to a transitional wake. The impacts of varying the characteristics of the high-frequency forcing are examined, particularly, the streamwise wavenumber band in which forcing is applied and the initial amplitude of the forcing. The high-frequency excitation is found to increase the dissipation rate of turbulent kinetic energy, to reduce the turbulent kinetic energy production rate, and to reduce the turbulent kinetic energy suppression increases with forcing amplitude once a threshold level has been reached. For a given initial forcing energy, the largest reduction in turbulent kinetic energy density was achieved by forcing wavenumbers that are about two to three times the neutral wavenumber determined from linear stability theory.
Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.
Zimmermann, W H; Fink, C; Kralisch, D; Remmers, U; Weil, J; Eschenhagen, T
2000-04-05
A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement. Copyright 2000 John Wiley & Sons, Inc.
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1977-01-01
A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.
NASA Astrophysics Data System (ADS)
Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng
2016-06-01
The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.
Torres, Hianne Miranda de; Arruda, Julyanna Jacinto de; Silva-Filho, João Manoel da; Faria, Danielle Lago Bruno de; Nascimento, Monikelly Carmo Chagas; Torres, Érica Miranda de
2017-01-01
The anatomical characteristics of permanent maxillary canines were evaluated through visual examination, periapical radiography, and cone beam computed tomography (CBCT), and measurements obtained from the images and directly on the teeth were compared. Fifty extracted human maxillary canines were classified according to the side of the mouth. The direction of root curvature and location of the apical foramen were also verified. Periapical radiographs and CBCTs of the specimens were obtained. The number of root canals was verified. Tooth length and the mesiodistal and buccopalatal widths of the root were measured directly on the specimens as well as on the radiographs and CBCTs. Data were analyzed by chi-square testing and analysis of variance (α = 0.05). All teeth-26 (52%) from the right side of the dental arch and 24 (48%) from the left-had only 1 main canal each. The apical foramen was located exactly in the root apex in 34 teeth (68%). Root curvature toward the distal side was observed in the apical third in 23 teeth (46%). There were no statistically significant differences between the canines' arch side and either the foramen location (P = 0.104) or the root curvature (P = 0.215). No statistically significant differences were found in measurements of tooth length (P = 0.669), mesiodistal root width (P = 0.517), or buccopalatal root width (P = 0.672) obtained from specimens and images. Both CBCTs and periapical radiographs were reliable for determining the tooth length, mesiodistal root width, and buccopalatal root width of maxillary canines and produced statistically similar measurements.
NASA Astrophysics Data System (ADS)
Ngodock, H.; Carrier, M.; Smith, S. R.; Souopgui, I.; Martin, P.; Jacobs, G. A.
2016-02-01
The representer method is adopted for solving a weak constraints 4dvar problem for the assimilation of ocean observations including along-track SSH, using a free surface ocean model. Direct 4dvar assimilation of SSH observations along the satellite tracks requires that the adjoint model be integrated with Dirac impulses on the right hand side of the adjoint equations for the surface elevation equation. The solution of this adjoint model will inevitably include surface gravity waves, and it constitutes the forcing for the tangent linear model (TLM) according to the representer method. This yields an analysis that is contaminated by gravity waves. A method for avoiding the generation of the surface gravity waves in the analysis is proposed in this study; it consists of removing the adjoint of the free surface from the right hand side (rhs) of the free surface mode in the TLM. The information from the SSH observations will still propagate to all other variables via the adjoint of the balance relationship between the barotropic and baroclinic modes, resulting in the correction to the surface elevation. Two assimilation experiments are carried out in the Gulf of Mexico: one with adjoint forcing included on the rhs of the TLM free surface equation, and the other without. Both analyses are evaluated against the assimilated SSH observations, SSH maps from Aviso and independent surface drifters, showing that the analysis that did not include adjoint forcing in the free surface is more accurate. This study shows that when a weak constraint 4dvar approach is considered for the assimilation of along-track SSH observations using a free surface model, with the aim of correcting the mesoscale circulation, an independent model error should not be assigned to the free surface.
Shishido, Keiichi; Peng, Qiyu; Jones, Ruth; Omata, Sadao; Constantinou, Christos E
2008-05-01
We characterized the vaginal pressure profile as a representation of closure forces along the length and circumference of the vaginal wall. Vaginal pressure profile data were used to test the hypothesis that the strength of pelvic floor muscle contractions differs significantly between continent women and women with stress urinary incontinence. Vaginal pressure profile recordings were made in 23 continent subjects and in 10 patients with stress urinary incontinence. The recordings characterized closure forces along the entire length of the vagina and identified differences among the anterior, posterior, left and right sides of the vaginal wall. Using a novel, directionally sensitive vaginal probe we made vaginal pressure profile measurements with the women at rest and during pelvic floor muscle contraction while supine. The nature of the vaginal pressure profile was characterized in terms of force distribution in the anterior and posterior vaginal walls, which was significantly greater than that on the left and right sides. The continent group had significant greater maximum pressure than the stress urinary incontinence group on the posterior side at rest (mean +/- SE 3.4 +/- 0.3 vs 2.01 +/- 0.36 N/cm(2)) and during pelvic floor muscle contraction (4.18 +/- 0.26 vs 2.25 +/- 0.41 N/cm(2)). The activity pressure difference between the posterior and anterior vaginal walls in the continent group was significantly increased when the pelvic floor muscles contracted vs that at rest (3.29 +/- 0.21 vs 2.45 +/- 0.26 N/cm(2)). However, the change observed in the stress urinary incontinence group was not significant (1.85 +/- 0.38 vs 1.35 +/- 0.27 N/cm(2)). The results demonstrate that the voluntary pelvic floor muscles impose significant closure forces along the vaginal wall of continent women but not in women with stress urinary incontinence. The implication of these findings is that extrinsic urethral closure pressure is insufficiently augmented by pelvic floor muscle contraction in women with stress urinary incontinence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caselli, E.; Powers, R.A.; Blaszczak, L.C.
2010-03-05
Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in {beta}-lactam inhibitors or {beta}-lactam substrates of serine {beta}-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.« less
Warner, J.C.; Schoellhamer, D.; Schladow, G.
2003-01-01
Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.
Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun
NASA Technical Reports Server (NTRS)
Banks, B. A.
1980-01-01
The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.
On the other side of the battle: Russian nurses in the Crimean War.
Benson, E R
1992-01-01
One redeeming feature that emerged from the horrors of the Crimean War was the skilled and compassionate nursing care provided by women. The work of Florence Nightingale and her nurses with the British forces is a familiar story. What is less well-known is that the fighting forces on the other side of the battle lines also had their contingent of nurses who helped to alleviate the suffering of their sick and wounded. This paper discusses the events leading up to the organization of Russia's volunteer nurses who provided care on their side of the battle.
Simultaneous mixing and pumping using asymmetric microelectrodes
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.
2007-10-01
This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
Rahemi, Hadi; Nigam, Nilima; Wakeling, James M
2014-01-01
Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.
Effect of mandibular advancement device on sleep bruxism score and sleep quality.
Solanki, Nehal; Singh, Balendra Pratap; Chand, Pooran; Siddharth, Ramashankar; Arya, Deeksha; Kumar, Lakshya; Tripathi, Suryakant; Jivanani, Hemant; Dubey, Abhishek
2017-01-01
The use of mandibular advancement devices (MADs) in the treatment of sleep bruxism is gaining widespread importance. However, the effects of MADs on sleep bruxism scores, sleep quality, and occlusal force are not clear. The purpose of this clinical study was to analyze the effect of MADs on sleep bruxism scores, sleep quality, and occlusal force. This uncontrolled before and after study enrolled 30 participants with sleep bruxism. Outcomes assessed were sleep quality, sleep bruxism scores (sleep bruxism bursts and sleep bruxism episodes/hour), and occlusal force before and after 15 and 30 days of using a MAD. Sleep bruxism scores were assessed by ambulatory polysomnography and sleep quality by using the Pittsburgh sleep quality index (PSQI). Occlusal force was recorded by using a digital gnathodynamometer in the first molar region on both sides. Statistical analysis was done by 1-factor repeated measures ANOVA (α=.05). Statistically significant reductions in sleep bruxism bursts/h, sleep bruxism episodes/h, and PSQI scores were found after 15 and 30 days of using a MAD (P<.001). Statistically significant reduction in occlusal force on both sides was found only after 15 days (P<.001) but not after 30 days of using a MAD (P=.292 on left side, and P=.575 on the right side). The study showed a short-term improvement in sleep bruxism scores, sleep quality, and reduction in occlusal force in sleep bruxism participants after using MADs. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Neurula rotation determines left-right asymmetry in ascidian tadpole larvae.
Nishide, Kazuhiko; Mugitani, Michio; Kumano, Gaku; Nishida, Hiroki
2012-04-01
Tadpole larvae of the ascidian Halocynthia roretzi show morphological left-right asymmetry. The tail invariably bends towards the left side within the vitelline membrane. The structure of the larval brain is remarkably asymmetric. nodal, a conserved gene that shows left-sided expression, is also expressed on the left side in H. roretzi but in the epidermis unlike in vertebrates. We show that nodal signaling at the late neurula stage is required for stereotypic morphological left-right asymmetry at later stages. We uncover a novel mechanism to break embryonic symmetry, in which rotation of whole embryos provides the initial cue for left-sided expression of nodal. Two hours prior to the onset of nodal expression, the neurula embryo rotates along the anterior-posterior axis in a counterclockwise direction when seen in posterior view, and then this rotation stops when the left side of the embryo is oriented downwards. It is likely that epidermis monocilia, which appear at the neurula rotation stage, generate the driving force for the rotation. When the embryo lies on the left side, protrusion of the neural fold physically prevents it from rotating further. Experiments in which neurula rotation is perturbed by various means, including centrifugation and sandwiching between glass, indicate that contact of the left epidermis with the vitelline membrane as a consequence of neurula rotation promotes nodal expression in the left epidermis. We suggest that chemical, and not mechanical, signals from the vitelline membrane promote nodal expression. Neurula rotation is also conserved in other ascidian species.
NASA Astrophysics Data System (ADS)
Ma, Guolong; Li, Liqun; Chen, Yanbin
2017-06-01
Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.
1997-01-01
Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.
NASA Astrophysics Data System (ADS)
Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.
2012-02-01
A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.
An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods
NASA Astrophysics Data System (ADS)
Posa, Antonio; Vanella, Marcos; Balaras, Elias
2017-12-01
Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.
An experimental study of dynamic characteristics of labyrinth seal
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Fukumoto, Koji; Mochida, Hideyuki
1994-01-01
The fluid force due to labyrinth seal sometimes makes the turbomachineries unstable under higher rotating speed, higher pressure and higher power. Therefore, it is important to predict the magnitude and the direction of the fluid force and to evaluate the stability of the rotor system in design process. This paper shows the experimental results of the fluid force induced by a straight labyrinth seal and the rotordynamic coefficients calculated from the fluid force. Influences of the number of fins under the rotating speed, whirling speed, inlet pressure, and inlet tangential velocity are mainly investigated on a stability of the rotor system. The results show that increase of the number of fins makes the fluid force small and the rotor system stable, an increase of inlet pressure makes the fluid forces large and an increase of inlet tangential velocity makes the rotor system unstable.
Servagent-Noinville; Revault; Quiquampoix; Baron
2000-01-15
Interactions between proteins and clays perturb biological activity in ecosystems, particularly soil extracellular enzyme activity. The pH dependence of hydrophobic, hydrophilic, and electrostatic interactions on the adsorption of bovine serum albumin (BSA) is studied. BSA secondary structures and hydration are revealed from computation of the Amide I and II FTIR absorption profiles. The influence of ionization of Asp, Glu, and His side chains on the adsorption processes is deduced from correlation between p(2)H dependent carboxylic/carboxylate ratio and Amide band profiles. We quantify p(2)H dependent internal and external structural unfolding for BSA adsorbed on montmorillonite, which is an electronegative phyllosilicate. Adsorption on talc, a hydrophobic surface, is less denaturing. The results emphasize the importance of electrostatic interactions in both adsorption processes. In the first case, charged side chains directly influence BSA adsorption that generate the structural transition. In the second case, the forces that attract hydrophobic side chains toward the protein-clay interface are large enough to distort peripheral amphiphilic helical domains. The resulting local unfolding displaces enough internal ionized side chains to prevent them from establishing salt bridges as for BSA native structure in solution. On montmorillonite, a particular feature is a higher protonation of the Asp and Glu side chains of the adsorbed BSA than in solution, which decreases coulombic repulsion. Copyright 2000 Academic Press.
Demand-side management: Why ratemaking should`nt control tax policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haney, J.D.
1995-01-01
As utilities spend money on demand-side management (DSM) programs, they usually deduct their costs currently as ordinary and necessary business expenses. However, state regulators may force deferral of DSM costs for ratemaking purposes, with possible consequences on tax returns. When regulators defer DSM costs, the Internal Revenue Service (IRS) has offered several theories to challenge current tax deductions. One theory requires capitilization instead of a current deduction if regulators include the DSM cost in rate base and provide for a rate of return on the balance. The IRS explained this theory two years ago in a White Paper on conservationmore » expenses: The direct relationship between a rate of return allowed by the Regulator for conservation expenditures allowed in rate base and future profits establishes a prima facie case for capitalization under the future benefit standard. The authors believe that IRS policy should not be linked to ratemaking decisions.« less
[The present and future state of minimized extracorporeal circulation].
Meng, Fan; Yang, Ming
2013-05-01
Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.
NASA Astrophysics Data System (ADS)
Ohkubo, Toshifumi; Park, Majung; Hirata, Masakazu; Oumi, Manabu; Nakajima, Kunio
In near-field optical recording, the combination of a triangular aperture and a polarized illuminating light is thought to be one of the most promising breakthroughs for improving both spatial resolution and signal-to-noise ratio. In light of this, we have already fabricated a triangular-aperture mounted optical head slider and demonstrated its superior performance while clarifying the influence of the polarization direction on the spatial resolution in the circumferential direction. When the polarization direction was perpendicular to the bottom side (which is parallel to the slider trailing edge) of the aperture, the highest spatial resolution and signal contrast were obtained, in spite of the usage of a fairly large aperture, indicating the presence of clear readout signal waveforms corresponding down to 100 nm line-and-space (L/S) patterns. In this study, we tried to experimentally clarify the influence of the polarization direction of the illuminating light on an aperture's field spread in the radial direction. In order to concretely evaluate the field spread, we prepared 1-mm-long linearly arranged (in the circumferential direction) L/S patterns on a metal-layered medium, and a piezo-electric actuator combined positioner. Intersecting the aperture at two portions of the tracks, directly acquired signal waveforms could be successfully transformed into the waveforms that would be obtained if the aperture had crossed the track at right angles. The field spreads in the radial direction were estimated to be approximately 250 nm when the polarization direction was perpendicular to the bottom side. In contrast, when the polarization direction was 45 degrees, the stationary field spread in the radial direction was estimated to be approximately 350 - 370 nm. It could be confirmed experimentally that both the highest spatial resolution in the circumferential direction and the smallest field spread in the radial direction were realized with the combination of the triangular aperture and the illuminating polarized light whose direction was perpendicular to the bottom side. Based on these results, the signal-to-noise ratio will be evaluated and discussed in the future with respect to the above-mentioned optimum aperture structure and conditions.
Hierarchical control of motor units in voluntary contractions.
De Luca, Carlo J; Contessa, Paola
2012-01-01
For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.
Hierarchical control of motor units in voluntary contractions
Contessa, Paola
2012-01-01
For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The “firing rate spectrum” presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units—both characteristics being well suited for generating and sustaining force during the fight-or-flight response. PMID:21975447
NASA Astrophysics Data System (ADS)
Bibi, Humera; Alam, Khan; Bibi, Samina
2017-08-01
This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.
Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo
2017-01-01
Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720
A new approach for vibration control in large space structures
NASA Technical Reports Server (NTRS)
Kumar, K.; Cochran, J. E., Jr.
1987-01-01
An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.
Blunt force lesions related to the heights of a fall.
Gupta, S M; Chandra, J; Dogra, T D
1982-03-01
Patterns of traumatic injuries due to fall from height certainly have an association with the amount of impact involved. A study of 63 medicolegal autopsies with the history of falls has been carried out during the period January 1974-July 1980. The injuries found were caused either by the direct impact, i.e., at the site of impact, or in a region distant from the site of impact of force as a result of transmitted force or indirect force. An attempt has been made to evaluate, generalize and correlate the characteristic pattern of the injuries to the various parts of the body with respect to various heights of fall. Stress has also been laid on the mechanism of production of these injuries in order to create a composite picture to help determine the most likely traumatic force in falls from height.
Direct anticoagulants and nursing: an approach from patient's safety.
Romero Ruiz, Adolfo; Romero-Arana, Adolfo; Gómez-Salgado, Juan
In recent years, a new line of treatment for the prevention of stroke in non-valvular atrial fibrillation, the so-called direct anticoagulants or new anticoagulants has appeared. The proper management and follow-up of these patients is essential to minimize their side effects and ensure patient safety. In this article, a description of these drugs is given, analyzing their characteristics, functioning and interactions together with the most habitual nursing interventions, as well as a reflection on the implications for the practice. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
dell'Isola, Francesco; Lekszycki, Tomasz; Pawlikowski, Marek; Grygoruk, Roman; Greco, Leopoldo
2015-12-01
In this paper, we study a metamaterial constructed with an isotropic material organized following a geometric structure which we call pantographic lattice. This relatively complex fabric was studied using a continuous model (which we call pantographic sheet) by Rivlin and Pipkin and includes two families of flexible fibers connected by internal pivots which are, in the reference configuration, orthogonal. A rectangular specimen having one side three times longer than the other is cut at 45° with respect to the fibers in reference configuration, and it is subjected to large-deformation plane-extension bias tests imposing a relative displacement of shorter sides. The continuum model used, the presented numerical models and the extraordinary advancements of the technology of 3D printing allowed for the design of some first experiments, whose preliminary results are shown and seem to be rather promising. Experimental evidence shows three distinct deformation regimes. In the first regime, the equilibrium total deformation energy depends quadratically on the relative displacement of terminal specimen sides: Applied resultant force depends linearly on relative displacement. In the second regime, the applied force varies nonlinearly on relative displacement, but the behavior remains elastic. In the third regime, damage phenomena start to occur until total failure, but the exerted resultant force continues to be increasing and reaches a value up to several times larger than the maximum shown in the linear regime before failure actually occurs. Moreover, the total energy needed to reach structural failure is larger than the maximum stored elastic energy. Finally, the volume occupied by the material in the fabric is a small fraction of the total volume, so that the ratio weight/resistance to extension is very advantageous. The results seem to require a refinement of the used theoretical and numerical methods to transform the presented concept into a promising technological prototype.
Tip-path-plane angle effects on rotor blade-vortex interaction noise levels and directivity
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Martin, Ruth M.
1988-01-01
Acoustic data of a scale model BO-105 main rotor acquired in a large aeroacoustic wind tunnel are presented to investigate the parametric effects of rotor operating conditions on blade-vortex interaction (BVI) impulsive noise. Contours of a BVI noise metric are employed to quantify the effects of rotor advance ratio and tip-path-plane angle on BVI noise directivity and amplitude. Acoustic time history data are presented to illustrate the variations in impulsive characteristics. The directionality, noise levels and impulsive content of both advancing and retreating side BVI are shown to vary significantly with tip-path-plane angle and advance ratio over the range of low and moderate flight speeds considered.
The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.
Toro-Ibacache, Viviana; O'Higgins, Paul
2016-07-01
Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2014-04-01
engine mechanic, selects a compressor blade to install in the core module of an F-16 jet engine. DLA Aviation has partnered with Air Force customers to...Support 9 Supporting the Fleet 14 Air Force Support 18 Beyond the Military Services 22 SERVICE TEAMS Side-by-Side Support Chemical Management Services...Marine Corps ordnance technicians load a missile at Kunsan Air Base, South Korea. Service members from the different military branches often work
1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...
1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Large motor units are selectively affected following a stroke.
Lukács, M; Vécsei, L; Beniczky, S
2008-11-01
Previous studies have revealed a loss of functioning motor units in stroke patients. However, it remained unclear whether the motor units are affected randomly or in some specific pattern. We assessed whether there is a selective loss of the large (high recruitment threshold) or the small (low recruitment threshold) motor units following a stroke. Forty-five stroke patients and 40 healthy controls participated in the study. Macro-EMG was recorded from the abductor digiti minimi muscle at two levels of force output (low and high). The median macro motor unit potential (macro-MUP) amplitude on the paretic side was compared with those on the unaffected side and in the controls. In the control group and on the unaffected side, the macro-MUPs were significantly larger at the high force output than at the low one. However, on the paretic side the macro-MUPs at the high force output had the same amplitude as those recorded at the low force output. These changes correlated with the severity of the paresis. Following a stroke, there is a selective functional loss of the large, high-threshold motor units. These changes are related to the severity of the symptoms. Our findings furnish further insight into the pathophysiology of the motor deficit following a stroke.
'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
Fang, Zhi; Wan, Lin-Yan; Chu, Liang-Yin; Zhang, Yan-Qiong; Wu, Jiang-Feng
2015-01-01
In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.
NASA Technical Reports Server (NTRS)
Brickey, J.; Brice, T.; Marks, K. E.
1971-01-01
Force tests on a 0.0035-scale model of the General Dynamics/Convair aerospace space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel. The configuration has a low delta wing, all-movable delta-planform canard controls, and a single vertical tail. The test was devoted to investigating the effects of various configuration variables upon lateral-directional characteristics. These variables included wing dihedral, rudder flare, and body flap deflection. Yaw runs were made at angles of attack of 6, 10, 15, 25, 30, and 35 degrees. The Mach number range for this test was 1.20 to 4.96.
Whole-body kinematic and dynamic response of restrained PMHS in frontal sled tests.
Forman, Jason; Lessley, David; Kent, Richard; Bostrom, Ola; Pipkorn, Bengt
2006-11-01
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes. This study presents data from 14 frontal sled tests describing the physical response of postmortem human surrogates (PMHS) in the following frontal crash environments: A) (5 tests) driver position, force-limited 3-point belt plus airbag restraint (FLB+AB), 48 km/h deltaV. B) (3 tests) passenger position, FLB+AB restraint, 48 km/h deltaV. C) (3 tests) passenger position, standard (not force-limited) 3-point belt plus air bag restraint (SB+AB), 48 km/h deltaV. D) (3 tests) passenger position, standard 3-point belt restraint (SB), 29 km/h deltaV. Reported data include x-axis and z-axis (SAE occupant reference frame) accelerations of the head, spine (upper, middle, and lower), and pelvis; rate of angular rotation of the head about y-axis; displacements of the head, upper spine, pelvis and knee relative to the vehicle buck; and deformation contours of the upper and lower chest. A variety of kinematic trends are identified across the different test conditions, including a decrease in head and thorax excursion and a change in the nature of the excursion in the driver position compared to the passenger position. Despite this increase in forward excursion when compared to the driver's side FLB+AB tests, the passenger's side FLB+AB tests resulted in greater peak thoracic (T8) x-axis accelerations (passenger's side -29 g; driver's side -22 g;) and comparable maximum chest deflection (passenger's side - 23+/-3.1% of the undeformed chest depth; driver's side - 23+/-5.6%; ). In the 48 km/h passenger's side tests, the head excursion associated with the force-limiting belt system was approximately 15% greater than that for a standard belt system in tests that were otherwise identical. This was accompanied by a decrease in chest deflection of approximately 20% with the force-limiting system. Despite the decrease in test speed, the 29 km/h passenger's side tests with standard (not force-limiting) 3-point belt restraints resulted in maximum chest deflection (16+/-5.6% average) comparable to that observed in the 48 km/h, FLB+AB, driver's side tests (21+/-3.1% average). Finally, forward head excursion was slightly higher in the 29 km/h passenger's side tests (33+/-1.1 cm average) than in the 48 km/h driver's side tests (27+/-3.7 cm average), and was lower than that in the 48 km/h FLB+AB (58+/-4.4 cm average) and SB+AB (46+/-2.1 cm average) passenger's side tests.
Ultrasonic Power Output Measurement by Pulsed Radiation Pressure
Fick, Steven E.; Breckenridge, Franklin R.
1996-01-01
Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084
Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku
2017-09-01
The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.
Characterisation of dry powder inhaler formulations using atomic force microscopy.
Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen
2015-10-15
Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.
2017-07-01
The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.
17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. ...
17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. NOTE CANVAS CURTAIN (RIGHT) USED TO COVER SOUTH SIDE OF MST BELOW LOWEST ENVIRONMENTAL DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.
Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang
2017-01-01
Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915
Study on Physical Mechanism of the Magnus Effect
NASA Astrophysics Data System (ADS)
Maruyama, Yuichi
Two kinds of methods of explaining the physical mechanism of the Magnus effect are compared with each other and fully discussed. The first method uses Bernoulli's theorem and the fluid velocity difference between both sides of the body. The second one is based on the momentum theorem which relates the lift force with the fluid acceleration perpendicular to the uniform flow direction, which is caused by the asymmetry of separation points. It is shown that the latter method is preferable because it can be strictly applied to the real flow field containing both the rotational and the irrotational flow regions.
Application of active controls technology to aircraft bide smoothing systems
NASA Technical Reports Server (NTRS)
Lapins, M.; Jacobson, I. D.
1975-01-01
A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.
Application of Active Controls Technology to Aircraft Ride Smoothing Systems
NASA Technical Reports Server (NTRS)
Lapins, Maris; Jacobson, Ira D.
1975-01-01
A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.
Lai, Wei-Jen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro
2018-01-01
The application of an appropriate force system is indispensable for successful orthodontic treatments. Second-order moment control is especially important in many clinical situations, so we developed a new force system composed of a straight orthodontic wire and two crimpable hooks of different lengths to produce the second-order moment. The objective of this study was to evaluate this new force system and determine an optimum condition that could be used in clinics. We built a premolar extraction model with two teeth according to the concept of a modified orthodontic simulator. This system was activated by applying contractile force from two hooks that generated second-order moment and force. The experimental device incorporated two sensors, and forces and moments were measured along six axes. We changed the contractile force and hook length to elucidate their effects. Three types of commercial wires were tested. The second-order moment was greater on the longer hook side of the model. Vertical force balanced the difference in moments between the two teeth. Greater contractile force generated a greater second-order moment, which reached a limit of 150 g. Excessive contractile force induced more undesired reactions in the other direction. Longer hooks induced greater moment generation, reaching their limit at 10 mm in length. The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications. Copyright © 2017. Published by Elsevier B.V.
Sandoval-Perez, Angelica; Pluhackova, Kristyna; Böckmann, Rainer A
2017-05-09
Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.
NASA Technical Reports Server (NTRS)
Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.
2014-01-01
On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.
High angle-of-attack aerodynamic characteristics of crescent and elliptic wings
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1989-01-01
Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.
NASA Technical Reports Server (NTRS)
Paulson, John W.; Johnson, Joseph L.
1947-01-01
At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.
Force transmission in migrating cells
Sauser, Roger; Ambrosi, Davide; Meister, Jean-Jacques; Verkhovsky, Alexander B.
2010-01-01
During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction–velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network’s slipping over the substrate. Treatment with inhibitors of the actin–myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter. PMID:20100912
Permanent magnet flux-biased magnetic actuator with flux feedback
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Inventor)
1991-01-01
The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.
Maeda, Hiroshi
2015-08-30
The enhanced permeability and retention (EPR) effect of solid tumors as seen with nanomedicines and macromolecular drugs is well known. However, many researchers appear to lack a full understanding of this effect. The effect varies depending on a patient's pathological and physiological characteristics and clinical condition. When a patient's systolic blood pressure is low side of about 90mmHg instead of 120-130mmHg, the hydrodynamic force pushing blood from the luminal side of a vessel into tumor tissue becomes significantly low, which results in a low EPR. Also, a vascular embolism in a tumor may impede blood flow and the EPR. Here, I describe the background of the EPR effect, heterogeneity of this effect, physiological and pathological factors affecting the effect, the EPR effect in metastatic tumors, artifacts of the EPR effect with micellar and liposomal drugs, problems of macromolecular drug stability and drug release, and access to target sites. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wallace, Arthur R.; Recant, I.G.
1943-01-01
The effect of various vertical tail arrangements upon the stability and control characteristics of an XP-62 fighter model was investigated. Rudder-free yaw characteristics with take-off power and flaps deflected were satisfactory after dorsal fin modifications. Directional stability was obtained with all modified vertical tails. Satisfactory rudder effectiveness resulted partly because the dual-rotation propellers produced no asymmetric yawing moments. Pedal forces in sideslips were undesirably large but may be easily reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less