NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Monte Carlo Methodology Serves Up a Software Success
NASA Technical Reports Server (NTRS)
2003-01-01
Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.
Wada, Takao; Ueda, Noriaki
2013-01-01
The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Muntz, E. Phillip; Erwin, Daniel A.
1990-01-01
Shock wave thickness predictions from Monte Carlo Direct Simulations, using differential scattering and the Maitland-Smith-Aziz interatomic potential, underpredict experiments as shock Mach numbers increase above about 4. Examination of several sources of data has indicated that at relatively high energies the repulsive portion of accepted potentials such as the Maitland-Smith-Aziz may be too steep. An Exponential-6 potential due to Ross, based on high energy molecular beam scattering data and shock velocity measurements in liquid argon, has been combined with the lower energy portion of the Maitland-Smith-Aziz potential. When this hybrid potential is used in Monte Carlo Direct Simulations, agreement with experiments is improved over the previous predictions using the pure Maitland-Smith-Aziz form.
Procedure for Adapting Direct Simulation Monte Carlo Meshes
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Wilmoth, Richard G.; Carlson, Ann B.; Rault, Didier F. G.
1992-01-01
A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources.
Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Errington, Jeffrey R.
2003-06-01
An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.
Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.
Garcia, Alejandro L; Wagner, Wolfgang
2003-11-01
In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.
NASA Technical Reports Server (NTRS)
Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas
2000-01-01
An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.
Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Hash, David B.; Hassan, H. A.
1997-01-01
A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.
Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature
NASA Astrophysics Data System (ADS)
Tisovský, Tomáš; Vít, Tomáš
Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.
Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1990-01-01
Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; ...
2015-08-14
The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less
Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less
Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; ...
2016-08-31
In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less
NASA Technical Reports Server (NTRS)
Woo, Myeung-Jouh; Greber, Isaac
1995-01-01
Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.
Patti, Alessandro; Cuetos, Alejandro
2012-07-01
We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.
NASA Astrophysics Data System (ADS)
César Mansur Filho, Júlio; Dickman, Ronald
2011-05-01
We study symmetric sleepy random walkers, a model exhibiting an absorbing-state phase transition in the conserved directed percolation (CDP) universality class. Unlike most examples of this class studied previously, this model possesses a continuously variable control parameter, facilitating analysis of critical properties. We study the model using two complementary approaches: analysis of the numerically exact quasistationary (QS) probability distribution on rings of up to 22 sites, and Monte Carlo simulation of systems of up to 32 000 sites. The resulting estimates for critical exponents β, \\beta /\
Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446
Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer
2016-12-01
We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Simulation of Thermal Neutron Transport Processes Directly from the Evaluated Nuclear Data Files
NASA Astrophysics Data System (ADS)
Androsenko, P. A.; Malkov, M. R.
The main idea of the method proposed in this paper is to directly extract thetrequired information for Monte-Carlo calculations from nuclear data files. The met od being developed allows to directly utilize the data obtained from libraries and seehs to be the most accurate technique. Direct simulation of neutron scattering in themmal energy range using file 7 ENDF-6 format in terms of code system BRAND has beer achieved. Simulation algorithms have been verified using the criterion x2
State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC)
NASA Astrophysics Data System (ADS)
Oblapenko, G. P.; Kashkovsky, A. V.; Bondar, Ye A.
2017-02-01
In the present work, the application of state-to-state models of vibrational energy exchanges to the Direct Simulation Monte Carlo (DSMC) is considered. A state-to-state model for VT transitions of vibrational energy in nitrogen and oxygen, based on the application of the inverse Laplace transform to results of quasiclassical trajectory calculations (QCT) of vibrational energy transitions, along with the Forced Harmonic Oscillator (FHO) state-to-state model is implemented in DSMC code and applied to flows around blunt bodies. Comparisons are made with the widely used Larsen-Borgnakke model and the in uence of multi-quantum VT transitions is assessed.
Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*
Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G
2014-01-01
Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine. PMID:24200697
NASA Astrophysics Data System (ADS)
Sboev, A. G.; Ilyashenko, A. S.; Vetrova, O. A.
1997-02-01
The method of bucking evaluation, realized in the MOnte Carlo code MCS, is described. This method was applied for calculational analysis of well known light water experiments TRX-1 and TRX-2. The analysis of this comparison shows, that there is no coincidence between Monte Carlo calculations, obtained by different ways: the MCS calculations with given experimental bucklings; the MCS calculations with given bucklings evaluated on base of full core MCS direct simulations; the full core MCNP and MCS direct simulations; the MCNP and MCS calculations, where the results of cell calculations are corrected by the coefficients taking into the account the leakage from the core. Also the buckling values evaluated by full core MCS calculations have differed from experimental ones, especially in the case of TRX-1, when this difference has corresponded to 0.5 percent increase of Keff value.
Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations
NASA Astrophysics Data System (ADS)
Contreras, S.; Padilla, N.; Lagos, C. D. P.
2017-12-01
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, D; Badano, A; Sempau, J
Purpose: Variance reduction techniques (VRTs) are employed in Monte Carlo simulations to obtain estimates with reduced statistical uncertainty for a given simulation time. In this work, we study the bias and efficiency of a VRT for estimating the response of imaging detectors. Methods: We implemented Directed Sampling (DS), preferentially directing a fraction of emitted optical photons directly towards the detector by altering the isotropic model. The weight of each optical photon is appropriately modified to maintain simulation estimates unbiased. We use a Monte Carlo tool called fastDETECT2 (part of the hybridMANTIS open-source package) for optical transport, modified for VRT. Themore » weight of each photon is calculated as the ratio of original probability (no VRT) and the new probability for a particular direction. For our analysis of bias and efficiency, we use pulse height spectra, point response functions, and Swank factors. We obtain results for a variety of cases including analog (no VRT, isotropic distribution), and DS with 0.2 and 0.8 optical photons directed towards the sensor plane. We used 10,000, 25-keV primaries. Results: The Swank factor for all cases in our simplified model converged fast (within the first 100 primaries) to a stable value of 0.9. The root mean square error per pixel for DS VRT for the point response function between analog and VRT cases was approximately 5e-4. Conclusion: Our preliminary results suggest that DS VRT does not affect the estimate of the mean for the Swank factor. Our findings indicate that it may be possible to design VRTs for imaging detector simulations to increase computational efficiency without introducing bias.« less
Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Salvio, A.; Bedwani, S.; Carrier, J-F.
2014-08-15
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Study of the Transition Flow Regime using Monte Carlo Methods
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Oliver, B. V.; Clark, R. E.; Johnson, D. L.; Maenchen, J. E.; Menge, P. R.; Olson, C. L.; Rovang, D. C.
2002-03-01
Dose-rate calculations for intense electron-beam diodes using particle-in-cell (PIC) simulations along with Monte Carlo electron/photon transport calculations are presented. The electromagnetic PIC simulations are used to model the dynamic operation of the rod-pinch and immersed-B diodes. These simulations include algorithms for tracking electron scattering and energy loss in dense materials. The positions and momenta of photons created in these materials are recorded and separate Monte Carlo calculations are used to transport the photons to determine the dose in far-field detectors. These combined calculations are used to determine radiographer equations (dose scaling as a function of diode current and voltage) that are compared directly with measured dose rates obtained on the SABRE generator at Sandia National Laboratories.
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
Jin, Dongliang; Coasne, Benoit
2017-10-24
Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.
Monte Carlo modeling of the Siemens Optifocus multileaf collimator.
Laliena, Victor; García-Romero, Alejandro
2015-05-01
We have developed a new component module for the BEAMnrc software package, called SMLC, which models the tongue-and-groove structure of the Siemens Optifocus multileaf collimator. The ultimate goal is to perform accurate Monte Carlo simulations of the IMRT treatments carried out with Optifocus. SMLC has been validated by direct geometry checks and by comparing quantitatively the results of simulations performed with it and with the component module VARMLC. Measurements and Monte Carlo simulations of absorbed dose distributions of radiation fields sensitive to the tongue-and-groove effect have been performed to tune the free parameters of SMLC. The measurements cannot be accurately reproduced with VARMLC. Finally, simulations of a typical IMRT field showed that SMLC improves the agreement with experimental measurements with respect to VARMLC in clinically relevant cases. 87.55. K. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Efficient Monte Carlo Methods for Biomolecular Simulations.
NASA Astrophysics Data System (ADS)
Bouzida, Djamal
A new approach to efficient Monte Carlo simulations of biological molecules is presented. By relaxing the usual restriction to Markov processes, we are able to optimize performance while dealing directly with the inhomogeneity and anisotropy inherent in these systems. The advantage of this approach is that we can introduce a wide variety of Monte Carlo moves to deal with complicated motions of the molecule, while maintaining full optimization at every step. This enables the use of a variety of collective rotational moves that relax long-wavelength modes. We were able to show by explicit simulations that the resulting algorithms substantially increase the speed of the simulation while reproducing the correct equilibrium behavior. This approach is particularly intended for simulations of macromolecules, although we expect it to be useful in other situations. The dynamic optimization of the new Monte Carlo methods makes them very suitable for simulated annealing experiments on all systems whose state space is continuous in general, and to the protein folding problem in particular. We introduce an efficient annealing schedule using preferential bias moves. Our simulated annealing experiments yield structures whose free energies were lower than the equilibrated X-ray structure, which leads us to believe that the empirical energy function used does not fully represent the interatomic interactions. Furthermore, we believe that the largest discrepancies involve the solvent effects in particular.
On predicting contamination levels of HALOE optics aboard UARS using direct simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1993-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flowfield and surface conditions and geometric orientations in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. Problems resolving species outgassing and vent flux rates that varied over many orders of magnitude were handled using species weighting factors. Results relating to contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface are presented, along with data related to code performance. Using procedures developed in standard contamination analyses, the cumulative level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated to be about 2700A.
Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, D.; Asai, M.; Brink, P.L.
There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less
Takada, Kenta; Kumada, Hiroaki; Liem, Peng Hong; Sakurai, Hideyuki; Sakae, Takeji
2016-12-01
We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
Experimental validation of a direct simulation by Monte Carlo molecular gas flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shufflebotham, P.K.; Bartel, T.J.; Berney, B.
1995-07-01
The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
Czerwiński, M; Mroczka, J; Girasole, T; Gouesbet, G; Gréhan, G
2001-03-20
Our aim is to present a method of predicting light transmittances through dense three-dimensional layered media. A hybrid method is introduced as a combination of the four-flux method with coefficients predicted from a Monte Carlo statistical model to take into account the actual three-dimensional geometry of the problem under study. We present the principles of the hybrid method, some exemplifying results of numerical simulations, and their comparison with results obtained from Bouguer-Lambert-Beer law and from Monte Carlo simulations.
2015-09-01
direction, so if the simulation domain is set to be a certain size, then that presents a hard ceiling on the thickness of a film that may be grown in...FFA, Los J, Cuppen HM, Bennema P, Meekes H. MONTY: Monte Carlo crystal growth on any crystal structure in any crystallographic orientation...mhoffman.github.io/kmos/. 23. Kiravittaya S, Schmidt OG. Quantum-dot crystal defects. Applied Physics Letters. 2008;93:173109. 24. Leetmaa M
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.
1992-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
Hanford, Amanda D; O'Connor, Patrick D; Anderson, James B; Long, Lyle N
2008-06-01
In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
Direct Simulation Monte Carlo Simulations of Low Pressure Semiconductor Plasma Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gochberg, L. A.; Ozawa, T.; Deng, H.
2008-12-31
The two widely used plasma deposition tools for semiconductor processing are Ionized Metal Physical Vapor Deposition (IMPVD) of metals using either planar or hollow cathode magnetrons (HCM), and inductively-coupled plasma (ICP) deposition of dielectrics in High Density Plasma Chemical Vapor Deposition (HDP-CVD) reactors. In these systems, the injected neutral gas flows are generally in the transonic to supersonic flow regime. The Hybrid Plasma Equipment Model (HPEM) has been developed and is strategically and beneficially applied to the design of these tools and their processes. For the most part, the model uses continuum-based techniques, and thus, as pressures decrease below 10more » mTorr, the continuum approaches in the model become questionable. Modifications have been previously made to the HPEM to significantly improve its accuracy in this pressure regime. In particular, the Ion Monte Carlo Simulation (IMCS) was added, wherein a Monte Carlo simulation is used to obtain ion and neutral velocity distributions in much the same way as in direct simulation Monte Carlo (DSMC). As a further refinement, this work presents the first steps towards the adaptation of full DSMC calculations to replace part of the flow module within the HPEM. Six species (Ar, Cu, Ar*, Cu*, Ar{sup +}, and Cu{sup +}) are modeled in DSMC. To couple SMILE as a module to the HPEM, source functions for species, momentum and energy from plasma sources will be provided by the HPEM. The DSMC module will then compute a quasi-converged flow field that will provide neutral and ion species densities, momenta and temperatures. In this work, the HPEM results for a hollow cathode magnetron (HCM) IMPVD process using the Boltzmann distribution are compared with DSMC results using portions of those HPEM computations as an initial condition.« less
Direct simulation Monte Carlo prediction of on-orbit contaminant deposit levels for HALOE
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1994-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flow field and surface conditions and geometric orientations for the satellite in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. A detailed description of the adaptation of this solution method to the study of the satellite's environment is also presented. Results pertaining to the satellite's environment are presented regarding contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface, along with data related to code performance. Using procedures developed in standard contamination analyses, along with many worst-case assumptions, the cumulative upper-limit level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated at about 13,350 A.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.
2018-06-01
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.
Yang, Li; Wang, Guobao; Qi, Jinyi
2016-04-01
Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.
Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations
NASA Astrophysics Data System (ADS)
Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.
2018-07-01
One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We consider simulations in which the number of photon packets is Poisson distributed, while the weight assigned to a single photon packet follows any distribution of choice. We show how to estimate the statistical uncertainty of the sum of weights in each bin from the output of a single radiative-transfer simulation. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalize existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.
Parameter Accuracy in Meta-Analyses of Factor Structures
ERIC Educational Resources Information Center
Gnambs, Timo; Staufenbiel, Thomas
2016-01-01
Two new methods for the meta-analysis of factor loadings are introduced and evaluated by Monte Carlo simulations. The direct method pools each factor loading individually, whereas the indirect method synthesizes correlation matrices reproduced from factor loadings. The results of the two simulations demonstrated that the accuracy of…
Evolution of egoism on semi-directed and undirected Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
2015-05-01
Through Monte Carlo simulations, we study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals. Interactions and reproduction among computational agents are simulated on undirected and semi-directed Barabási-Albert (BA) networks. We study the Hammond-Axelrod (HA) model on undirected and semi-directed BA networks for the asexual reproduction case. With a small modification in the traditional HA model, our simulations showed that egoism wins, differently from other results found in the literature where ethnocentric strategy is common. Here, mechanisms such as reciprocity are absent.
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.
2018-02-01
The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2018-01-01
The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
NASA Astrophysics Data System (ADS)
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2017-03-01
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
Shahbazi-Gahrouei, Daryoush; Ayat, Saba
2012-01-01
Radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs is important to weigh the risks and benefits of this method. The aim of this study is to measure the absorbed doses of important organs by Monte Carlo N Particle (MCNP) simulation and comparing the results of different methods of dosimetry by performing a t-paired test. To calculate the absorbed dose of thyroid, sternum, and cervical vertebra using the MCNP code, *F8 tally was used. Organs were simulated by using a neck phantom and Medical Internal Radiation Dosimetry (MIRD) method. Finally, the results of MCNP, MIRD, and Thermoluminescent dosimeter (TLD) measurements were compared by SPSS software. The absorbed dose obtained by Monte Carlo simulations for 100, 150, and 175 mCi administered 131I was found to be 388.0, 427.9, and 444.8 cGy for thyroid, 208.7, 230.1, and 239.3 cGy for sternum and 272.1, 299.9, and 312.1 cGy for cervical vertebra. The results of paired t-test were 0.24 for comparing TLD dosimetry and MIRD calculation, 0.80 for MCNP simulation and MIRD, and 0.19 for TLD and MCNP. The results showed no significant differences among three methods of Monte Carlo simulations, MIRD calculation and direct experimental dosimetry using TLD. PMID:23717806
Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong
2015-09-01
The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix
NASA Astrophysics Data System (ADS)
Van Rossum, Daniel R; Wollaeger, Ryan T
2014-08-01
The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.
NASA Astrophysics Data System (ADS)
Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.
2011-10-01
An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Li, Zheng; Levin, Deborah A.
2011-05-01
In this work, we propose a new heat accommodation model to simulate freely expanding homogeneous condensation flows of gaseous carbon dioxide using a new approach, the statistical Bhatnagar-Gross-Krook method. The motivation for the present work comes from the earlier work of Li et al. [J. Phys. Chem. 114, 5276 (2010)] in which condensation models were proposed and used in the direct simulation Monte Carlo method to simulate the flow of carbon dioxide from supersonic expansions of small nozzles into near-vacuum conditions. Simulations conducted for stagnation pressures of one and three bar were compared with the measurements of gas and cluster number densities, cluster size, and carbon dioxide rotational temperature obtained by Ramos et al. [Phys. Rev. A 72, 3204 (2005)]. Due to the high computational cost of direct simulation Monte Carlo method, comparison between simulations and data could only be performed for these stagnation pressures, with good agreement obtained beyond the condensation onset point, in the farfield. As the stagnation pressure increases, the degree of condensation also increases; therefore, to improve the modeling of condensation onset, one must be able to simulate higher stagnation pressures. In simulations of an expanding flow of argon through a nozzle, Kumar et al. [AIAA J. 48, 1531 (2010)] found that the statistical Bhatnagar-Gross-Krook method provides the same accuracy as direct simulation Monte Carlo method, but, at one half of the computational cost. In this work, the statistical Bhatnagar-Gross-Krook method was modified to account for internal degrees of freedom for multi-species polyatomic gases. With the computational approach in hand, we developed and tested a new heat accommodation model for a polyatomic system to properly account for the heat release of condensation. We then developed condensation models in the framework of the statistical Bhatnagar-Gross-Krook method. Simulations were found to agree well with the experiment for all stagnation pressure cases (1-5 bar), validating the accuracy of the Bhatnagar-Gross-Krook based condensation model in capturing the physics of condensation.
A New Approach to Monte Carlo Simulations in Statistical Physics
NASA Astrophysics Data System (ADS)
Landau, David P.
2002-08-01
Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
NASA Astrophysics Data System (ADS)
Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
Schwerdtfeger, Peter; Smits, Odile; Pahl, Elke; Jerabek, Paul
2018-06-12
State-of-the-art relativistic coupled-cluster theory is used to construct many-body potentials for the rare gas element radon in order to determine its bulk properties including the solid-to-liquid phase transition from parallel tempering Monte Carlo simulations through either direct sampling of the bulk or from a finite cluster approach. The calculated melting temperature are 201(3) K and 201(6) K from bulk simulations and from extrapolation of finite cluster values, respectively. This is in excellent agreement with the often debated (but widely cited) and only available value of 202 K, dating back to measurements by Gray and Ramsay in 1909. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Power, H.
2017-01-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error. PMID:28878974
Molecular-level simulations of turbulence and its decay
Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; ...
2017-02-08
Here, we provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov –5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can bemore » used to investigate turbulent flows quantitatively.« less
NASA Astrophysics Data System (ADS)
Gelb, Lev D.; Chakraborty, Somendra Nath
2011-12-01
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.
Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations
NASA Astrophysics Data System (ADS)
Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.
2018-04-01
One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We show how to estimate the statistical uncertainty given the output of just a single radiative-transfer simulation in which the number of photon packets follows a Poisson distribution and the weight (e.g. energy or luminosity) of a single packet may follow an arbitrary distribution. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalise existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.
2012-10-01
One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de
2016-02-15
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
NASA Astrophysics Data System (ADS)
Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.
2016-02-01
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.
Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.
NASA Astrophysics Data System (ADS)
Kivel, Niko; Potthast, Heiko-Dirk; Günther-Leopold, Ines; Vanhaecke, Frank; Günther, Detlef
The interface between the atmospheric pressure plasma ion source and the high vacuum mass spectrometer is a crucial part of an inductively coupled plasma-mass spectrometer. It influences the efficiency of the mass transfer into the mass spectrometer, it also contributes to the formation of interfering ions and to mass discrimination. This region was simulated using the Direct Simulation Monte Carlo method with respect to the formation of shock waves, mass transport and mass discrimination. The modeling results for shock waves and mass transport are in overall agreement with the literature. Insights into the effects and geometrical features causing mass discrimination could be gained. The overall observed collision based mass discrimination is lower than expected from measurements on real instruments, supporting the assumptions that inter-particle collisions play a minor role in this context published earlier. A full representation of the study, for two selected geometries, is given in form of a movie as supplementary data.
Bahreyni Toossi, Mohammad Taghi; Momennezhad, Mehdi; Hashemi, Seyed Mohammad
2012-01-01
Aim Exact knowledge of dosimetric parameters is an essential pre-requisite of an effective treatment in radiotherapy. In order to fulfill this consideration, different techniques have been used, one of which is Monte Carlo simulation. Materials and methods This study used the MCNP-4Cb to simulate electron beams from Neptun 10 PC medical linear accelerator. Output factors for 6, 8 and 10 MeV electrons applied to eleven different conventional fields were both measured and calculated. Results The measurements were carried out by a Wellhofler-Scanditronix dose scanning system. Our findings revealed that output factors acquired by MCNP-4C simulation and the corresponding values obtained by direct measurements are in a very good agreement. Conclusion In general, very good consistency of simulated and measured results is a good proof that the goal of this work has been accomplished. PMID:24377010
NASA Technical Reports Server (NTRS)
Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing
2016-01-01
Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1981-01-01
A collisionless quasi-parallel shock is simulated by Monte Carlo techniques. The scattering of all velocity particles from thermal to high energy is assumed to occur so that the mean free path is directly proportional to velocity times the mass-to-charge-ratio, and inversely proporational to the plasma density. The shock profile and velocity spectra are obtained, showing preferential acceleration of high A/Z particles relative to protons. The inclusion of the back pressure of the scattering particles on the inflowing plasma produces a smoothing of the shock profile, which implies that the spectra are steeper than for a discontinuous shock.
NASA Astrophysics Data System (ADS)
Rambalakos, Andreas
Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the exponent in the crack propagation rate (Paris equation) and the yield strength of the elements are considered in the analytical model. The structural component is assumed to consist of a prescribed number of elements. This Monte Carlo simulation methodology is used to determine the required non-periodic inspections so that the reliability of the structural component will not fall below a prescribed minimum level. A sensitivity analysis is conducted to determine the effect of three key parameters on the specification of the non-periodic inspection intervals: namely a parameter associated with the time to crack initiation, the applied nominal stress fluctuation and the minimum acceptable reliability level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böcklin, Christoph, E-mail: boecklic@ethz.ch; Baumann, Dirk; Fröhlich, Jürg
A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithmmore » works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.« less
NASA Astrophysics Data System (ADS)
Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.
2016-09-01
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A
2016-09-21
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
NASA Astrophysics Data System (ADS)
Piersall, Shannon D.; Anderson, James B.
1991-07-01
In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
Tringe, J. W.; Ileri, N.; Levie, H. W.; ...
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.; Estabrook, K.; Everett, M.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of sphericalmore » dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.« less
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Burt, Jonathan M.
2016-01-01
There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.
Radiation Modeling with Direct Simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Hassan, H. A.
1991-01-01
Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
NASA Astrophysics Data System (ADS)
Fairbanks, Hillary R.; Doostan, Alireza; Ketelsen, Christian; Iaccarino, Gianluca
2017-07-01
Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) simulation that achieves variance reduction by simulating the governing equations on a series of spatial (or temporal) grids with increasing resolution. Instead of directly employing the fine grid solutions, MLMC estimates the expectation of the quantity of interest from the coarsest grid solutions as well as differences between each two consecutive grid solutions. When the differences corresponding to finer grids become smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to compute the difference expectations, thus leading to a reduction in the overall work. This paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), where a low-rank approximation to the solution on each grid, obtained primarily based on coarser grid solutions, is used as a control variate for estimating the expectations involved in MLMC. Cost estimates as well as numerical examples are presented to demonstrate the advantage of this new MLCV approach over the standard MLMC when the solution of interest admits a low-rank approximation and the cost of simulating finer grids grows fast.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
Sechopoulos, Ioannis; Ali, Elsayed S M; Badal, Andreu; Badano, Aldo; Boone, John M; Kyprianou, Iacovos S; Mainegra-Hing, Ernesto; McMillan, Kyle L; McNitt-Gray, Michael F; Rogers, D W O; Samei, Ehsan; Turner, Adam C
2015-10-01
The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of the research project, but, typically, such validation involves either comparison of simulation results to physical measurements or to previously published results obtained with established Monte Carlo codes. The former is complicated due to nuances of experimental conditions and uncertainty, while the latter is challenging due to typical graphical presentation and lack of simulation details in previous publications. In addition, entering the field of Monte Carlo simulations in general involves a steep learning curve. It is not a simple task to learn how to program and interpret a Monte Carlo simulation, even when using one of the publicly available code packages. This Task Group report provides a common reference for benchmarking Monte Carlo simulations across a range of Monte Carlo codes and simulation scenarios. In the report, all simulation conditions are provided for six different Monte Carlo simulation cases that involve common x-ray based imaging research areas. The results obtained for the six cases using four publicly available Monte Carlo software packages are included in tabular form. In addition to a full description of all simulation conditions and results, a discussion and comparison of results among the Monte Carlo packages and the lessons learned during the compilation of these results are included. This abridged version of the report includes only an introductory description of the six cases and a brief example of the results of one of the cases. This work provides an investigator the necessary information to benchmark his/her Monte Carlo simulation software against the reference cases included here before performing his/her own novel research. In addition, an investigator entering the field of Monte Carlo simulations can use these descriptions and results as a self-teaching tool to ensure that he/she is able to perform a specific simulation correctly. Finally, educators can assign these cases as learning projects as part of course objectives or training programs.
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, A; Zbijewski, W; Bolch, W
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods,more » are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all necessary data on material composition, source, geometry, scoring and other parameters provided. The results of these simulations when performed with the four most common publicly available Monte Carlo packages are also provided in tabular form. The Task Group 195 Report will be useful for researchers needing to validate their Monte Carlo work, and for trainees needing to learn Monte Carlo simulation methods. In this symposium we will review the recent advancements in highperformance computing hardware enabling the reduction in computational resources needed for Monte Carlo simulations in medical imaging. We will review variance reduction techniques commonly applied in Monte Carlo simulations of medical imaging systems and present implementation strategies for efficient combination of these techniques with GPU acceleration. Trade-offs involved in Monte Carlo acceleration by means of denoising and “sparse sampling” will be discussed. A method for rapid scatter correction in cone-beam CT (<5 min/scan) will be presented as an illustration of the simulation speeds achievable with optimized Monte Carlo simulations. We will also discuss the development, availability, and capability of the various combinations of computational phantoms for Monte Carlo simulation of medical imaging systems. Finally, we will review some examples of experimental validation of Monte Carlo simulations and will present the AAPM Task Group 195 Report. Learning Objectives: Describe the advances in hardware available for performing Monte Carlo simulations in high performance computing environments. Explain variance reduction, denoising and sparse sampling techniques available for reduction of computational time needed for Monte Carlo simulations of medical imaging. List and compare the computational anthropomorphic phantoms currently available for more accurate assessment of medical imaging parameters in Monte Carlo simulations. Describe experimental methods used for validation of Monte Carlo simulations in medical imaging. Describe the AAPM Task Group 195 Report and its use for validation and teaching of Monte Carlo simulations in medical imaging.« less
Gelb, Lev D; Chakraborty, Somendra Nath
2011-12-14
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics
Kuselman, Ilya; Pennecchi, Francesca; Epstein, Malka; Fajgelj, Ales; Ellison, Stephen L R
2014-12-01
Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for determination of distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert judgments were taken into account by means of different probability mass functions (pmfs). As a case study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by ICP-MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior were compared. Variability of the scores, as standard deviation of the simulated score values from the distribution mean, was used for assessment of the score robustness. A range of the score values, calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the case study, can be assessed as satisfactory for the quality risk management and improvement of a laboratory quality system against human errors. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wang, Wen-Chung
2004-01-01
The Pearson correlation is used to depict effect sizes in the context of item response theory. Amultidimensional Rasch model is used to directly estimate the correlation between latent traits. Monte Carlo simulations were conducted to investigate whether the population correlation could be accurately estimated and whether the bootstrap method…
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε –2) or (ε –2(lnε) 2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε –3) for direct simulation Monte Carlomore » or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10 –5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Park, S; Jeong, J
Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage usingmore » a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4-DNA.« less
De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei
2014-01-01
We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152
Poster — Thur Eve — 47: Monte Carlo Simulation of Scp, Sc and Sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
The in-water output ratio (Scp), in-air output ratio (Sc), and phantom scattering factor (Sp) are important parameters for radiotherapy dose calculation. Experimentally, Scp is obtained by measuring the dose rate ratio in water phantom, and Sc the water Kerma rate ratio in air. There is no method that allows direct measurement of Sp. Monte Carlo (MC) method has been used to simulate Scp and Sc in literatures, similar to experimental setup, but no MC direct simulation of Sp available yet to the best of our knowledge. We propose in this report a method of performing direct MC simulation of Sp.more » Starting from the definition, we derived that Sp of a clinical photon beam can be approximated by the ratio of the dose rates contributed from the primary beam for a given field size to the reference field size. Since only the primary beam is used, any Linac head scattering should be excluded from the simulation, which can be realized by using the incident electron as a scoring parameter for MU. We performed MC simulations for Scp, Sc and Sp. Scp matches well with golden beam data. Sp obtained by the proposed method agrees well with what is obtained using the traditional method, Sp=Scp/Sc. Since the smaller the field size, the more the primary beam dominates, our Sp simulation method is accurate for small field. By analyzing the calculated data, we found that this method can be used with no problem for large fields. The difference it introduced is clinically insignificant.« less
Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
Di Staso, G; Clercx, H J H; Succi, S; Toschi, F
2016-11-13
Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Wu, H.-H.; Chen, C.-C.; Chen, C.-M.
2012-03-01
We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.
Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2009-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
Advanced Hybrid Modeling of Hall Thruster Plumes
2010-06-16
Hall thruster operated in the Large Vacuum Test Facility at the University of Michigan. The approach utilizes the direct simulation Monte Carlo method and the Particle-in-Cell method to simulate the collision and plasma dynamics of xenon neutrals and ions. The electrons are modeled as a fluid using conservation equations. A second code is employed to model discharge chamber behavior to provide improved input conditions at the thruster exit for the plume simulation. Simulation accuracy is assessed using experimental data previously
NASA Astrophysics Data System (ADS)
Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim
2016-03-01
Diverging beam illumination is widely used in many optical techniques especially in fiber optic applications and coherence phenomenon is one of the most important properties to consider for these applications. Until now, people have used Monte Carlo simulations to study the backscattering coherence phenomenon in collimated beam illumination only. We are the first one to study the coherence phenomenon under the exact diverging beam geometry by taking into account the impossibility of the existence for the exact time-reversed path pairs of photons, which is the main contribution to the backscattering coherence pattern in collimated beam. In this work, we present a Monte Carlo simulation that considers the influence of the illumination numerical aperture. The simulation tracks the electric field for the unique paths of forward path and reverse path in time-reversed pairs of photons as well as the same path shared by them. With this approach, we can model the coherence pattern formed between the pairs by considering their phase difference at the collection plane directly. To validate this model, we use the Low-coherence Enhanced Backscattering Spectroscopy, one of the instruments looking at the coherence pattern using diverging beam illumination, as the benchmark to compare with. In the end, we show how this diverging configuration would significantly change the coherent pattern under coherent light source and incoherent light source. This Monte Carlo model we developed can be used to study the backscattering phenomenon in both coherence and non-coherence situation with both collimated beam and diverging beam setups.
Multi-pass Monte Carlo simulation method in nuclear transmutations.
Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M
2016-12-01
Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10 25 or 10 26 members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10 25 . Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10 28 steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio
Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, the method and the relative differences between organ dose simulation and measurement is unclear. The purpose of this study was to compare organ doses evaluated by Monte Carlo simulation with doses evaluated by in-phantom dosimetry. The simulation software Radimetrics (Bayer) was used for the calculation of organ dose. Measurement was performed with radio-photoluminescence glass dosimeter (RPLD) set at various organ positions within RANDO phantom. To evaluate difference of CT scanner, two different CT scanners were used in this study. Angular dependence of RPLD and measurement of effective energy were performed for each scanner. The comparison of simulation and measurement was evaluated by relative differences. In the results, angular dependence of RPLD at two scanners was 31.6±0.45 mGy for SOMATOM Definition Flash and 29.2±0.18 mGy for LightSpeed VCT. The organ dose was 42.2 mGy (range, 29.9-52.7 mGy) by measurements and 37.7 mGy (range, 27.9-48.1 mGy) by simulations. The relative differences of organ dose between measurement and simulation were 13%, excluding of breast's 42%. We found that organ dose by simulation was lower than by measurement. In conclusion, the results of relative differences will be useful for evaluating organ doses for individual patients by simulation software Radimetrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Lee, C; Failla, G
Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Vygornitskii, Nikolai V.; Gigiberiya, Volodymyr A.; Tarasevich, Yuri Yu.
2016-12-01
The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k -mers (orientation of the k -mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k -mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k -mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, pi, (pi∈[0 ,pj] , where pj is the jamming concentration), lengths of k -mers (k ∈[1 ,12 ] ), and solvent evaporation rates, u . For completely dried films, the spatial distributions of k -mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k -mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi, k , and u .
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
Inglis, Stephen; Melko, Roger G
2013-01-01
We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.
Direct simulation with vibration-dissociation coupling
NASA Technical Reports Server (NTRS)
Hash, David B.; Hassan, H. A.
1992-01-01
The majority of implementations of the Direct Simulation Monte Carlo (DSMC) method of Bird do not account for vibration-dissociation coupling. Haas and Boyd have proposed the vibrationally-favored dissociation model to accomplish this task. This model requires measurements of induction distance to determine model constants. A more general expression has been derived that does not require any experimental input. The model is used to calculate one-dimensional shock waves in nitrogen and the flow past a lunar transfer vehicle (LTV). For the conditions considered in the simulation, the influence of vibration-dissociation coupling on heat transfer in the stagnation region of the LTV can be significant.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1992-01-01
Turbulent combustion can not be simulated adequately by conventional moment closure turbulent models. The probability density function (PDF) method offers an attractive alternative: in a PDF model, the chemical source terms are closed and do not require additional models. Because the number of computational operations grows only linearly in the Monte Carlo scheme, it is chosen over finite differencing schemes. A grid dependent Monte Carlo scheme following J.Y. Chen and W. Kollmann has been studied in the present work. It was found that in order to conserve the mass fractions absolutely, one needs to add further restrictions to the scheme, namely alpha(sub j) + gamma(sub j) = alpha(sub j - 1) + gamma(sub j + 1). A new algorithm was devised that satisfied this restriction in the case of pure diffusion or uniform flow problems. Using examples, it is shown that absolute conservation can be achieved. Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
NASA Astrophysics Data System (ADS)
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
Analysis of Naval Ammunition Stock Positioning
2015-12-01
model takes once the Monte -Carlo simulation determines the assigned probabilities for site-to-site locations. Column two shows how the simulation...stockpiles and positioning them at coastal Navy facilities. A Monte -Carlo simulation model was developed to simulate expected cost and delivery...TERMS supply chain management, Monte -Carlo simulation, risk, delivery performance, stock positioning 15. NUMBER OF PAGES 85 16. PRICE CODE 17
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
[Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].
Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio
Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.
NASA Astrophysics Data System (ADS)
Barghouthi, I.; Barakat, A.
We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F-region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ion-neutral O+ -- O resonant charge exchange and polarization interactions as well as Coulomb self-collisions O+ -- O+. At a few hundreds kilometers of altitude, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and, consequently, the influence of O+ -- O+ Coulomb collisions becomes significant. In this study we consider the effect of O+ -- O+ collisions on the incoherent radar spectra in the presence of large electric field (˜ 100 mVm-1). As altitude increases, (i.e. the role of O+ -- O+ becomes significant), the 1-D O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+ -- O+ Coulomb collisions act to istropize the 1-D O+ velocity distribution, and modify the radar spectrum accordingly, by transferring thermal energy from the perpendicular direction to the parallel direction.
NASA Astrophysics Data System (ADS)
Garzon, B.
Several simulations of dipolar and quadrupolar linear Kihara fluids using the Monte Carlo method in the canonical ensemble have been performed. Pressure and internal energy have been directly determined from simulations and Helmholtz free energy using thermodynamic integration. Simulations were carried out for fluids of fixed elongation at two different densities and several values of temperature and dipolar or quadrupolar moment for each density. Results are compared with the perturbation theory developed by Boublik for this same type of fluid and good agreement between simulated and theoretical values was obtained especially for quadrupole fluids. Simulations are also used to obtain the liquid structure giving the first few coefficients of the expansion of pair correlation functions in terms of spherical harmonics. Estimations of the triple point temperature to critical temperature ratio are given for some dipole and quadrupole linear fluids. The stability range of the liquid phase of these substances is shortly discussed and an analysis about the opposite roles of the dipole moment and the molecular elongation on this stability is also given.
System reliability of randomly vibrating structures: Computational modeling and laboratory testing
NASA Astrophysics Data System (ADS)
Sundar, V. S.; Ammanagi, S.; Manohar, C. S.
2015-09-01
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Helled, Ravit; Sorella, Sandro
2018-01-01
Understanding planetary interiors is directly linked to our ability of simulating exotic quantum mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by planetary scientists, although this method allows only for a qualitative description of the phase diagram. Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other EOS calculations and are very timely given the accurate determination of Jupiter's gravitational field from the NASA Juno mission and the effort to determine its structure.
Monte Carlo simulation of a near-continuum shock-shock interaction problem
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Wilmoth, Richard G.
1992-01-01
A complex shock interaction is calculated with direct simulation Monte Carlo (DSMC). The calculation is performed for the near-continuum flow produced when an incident shock impinges on the bow shock of a 0.1 in. radius cowl lip for freestream conditions of approximately Mach 15 and 35 km altitude. Solutions are presented both for a full finite-rate chemistry calculation and for a case with chemical reactions suppressed. In each case, both the undisturbed flow about the cowl lip and the full shock interaction flowfields are calculated. Good agreement has been obtained between the no-chemistry simulation of the undisturbed flow and a perfect gas solution obtained with the viscous shock-layer method. Large differences in calculated surface properties when different chemical models are used demonstrate the necessity of adequately representing the chemistry when making surface property predictions. Preliminary grid refinement studies make it possible to estimate the accuracy of the solutions.
Variance reduction for Fokker–Planck based particle Monte Carlo schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorji, M. Hossein, E-mail: gorjih@ifd.mavt.ethz.ch; Andric, Nemanja; Jenny, Patrick
Recently, Fokker–Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1–3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker–Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker–Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied.more » Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.« less
A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy
NASA Astrophysics Data System (ADS)
Schablitzki, T.; Rogal, J.; Drautz, R.
2017-06-01
Atomistic simulations of thermal desorption spectra for effusion from bulk materials to characterize binding or trapping sites are a challenging task as large system sizes as well as extended time scales are required. Here, we introduce an approach where we combine kinetic Monte Carlo with an analytic approximation of the superbasins within the framework of absorbing Markov chains. We apply our approach to the effusion of hydrogen from BCC iron, where the diffusion within bulk grains is coarse grained using absorbing Markov chains, which provide an exact solution of the dynamics within a superbasin. Our analytic approximation to the superbasin is transferable with respect to grain size and elliptical shapes and can be applied in simulations with constant temperature as well as constant heating rate. The resulting thermal desorption spectra are in close agreement with direct kinetic Monte Carlo simulations, but the calculations are computationally much more efficient. Our approach is thus applicable to much larger system sizes and provides a first step towards an atomistic understanding of the influence of structural features on the position and shape of peaks in thermal desorption spectra. This article is part of the themed issue 'The challenges of hydrogen and metals'.
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Levin, Deborah A.
2011-03-01
In the present work, we have simulated the homogeneous condensation of carbon dioxide and ethanol using the Bhatnagar-Gross-Krook based approach. In an earlier work of Gallagher-Rogers et al. [J. Thermophys. Heat Transfer 22, 695 (2008)], it was found that it was not possible to simulate condensation experiments of Wegener et al. [Phys. Fluids 15, 1869 (1972)] using the direct simulation Monte Carlo method. Therefore, in this work, we have used the statistical Bhatnagar-Gross-Krook approach, which was found to be numerically more efficient than direct simulation Monte Carlo method in our previous studies [Kumar et al., AIAA J. 48, 1531 (2010)], to model homogeneous condensation of two small polyatomic systems, carbon dioxide and ethanol. A new weighting scheme is developed in the Bhatnagar-Gross-Krook framework to reduce the computational load associated with the study of homogeneous condensation flows. The solutions obtained by the use of the new scheme are compared with those obtained by the baseline Bhatnagar-Gross-Krook condensation model (without the species weighting scheme) for the condensing flow of carbon dioxide in the stagnation pressure range of 1-5 bars. Use of the new weighting scheme in the present work makes the simulation of homogeneous condensation of ethanol possible. We obtain good agreement between our simulated predictions for homogeneous condensation of ethanol and experiments in terms of the point of condensation onset and the distribution of mass fraction of ethanol condensed along the nozzle centerline.
Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows
NASA Astrophysics Data System (ADS)
Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.
2008-12-01
With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.
Mankodi, T K; Bhandarkar, U V; Puranik, B P
2017-08-28
A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.
Numerical integration of detector response functions via Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
Numerical integration of detector response functions via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.; ...
2017-06-13
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne
2010-07-08
Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.
Simulations of hypersonic, high-enthalpy separated flow over a 'tick' configuration
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Deepak, N. R.; Gai, S. L.
2012-11-01
The effect of slip is investigated in direct simulation Monte Carlo and Navier-Stokes-based computations of the separated flow between an expansion and a following compression surface, a geometry we call the 'tick' configuration. This configuration has been chosen as a test of separated flow with zero initial boundary layer thickness, a flowfield well suited to Chapman's analytical separated flow theories. The predicted size of the separated region is different for the two codes, although both codes meet their respective particle or grid resolution requirements. Unlike previous comparisons involving cylinder flares or double cones, the separation does not occur in a region of elevated density, and is therefore well suited to the direct simulation Monte Carlo method because the effect of slip at the surface is significant. The reasons for the difference between the two calculations are hypothesized to be a combination of significant rarefaction effects near the expansion surface and the non-zero radius of the leading edge. When the leading edge radius is accounted for, the rarefaction effect at the leading edge is less significant and the behavior of the flowfields predicted by the two methods becomes more similar.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.
Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F
2015-02-01
The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
Evolution of ethnocentrism on undirected and directed Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich
2009-12-01
Using Monte Carlo simulations, we study the evolution of contingent cooperation and ethnocentrism in the one-shot game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, the ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism towards similar others highly depends on the network topology and the associated heterogeneity of the studied population.
Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen
NASA Technical Reports Server (NTRS)
Heaps, M. G.; Furman, D. R.; Green, A. E. S.
1975-01-01
A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.
MCNPX simulation of proton dose distribution in homogeneous and CT phantoms
NASA Astrophysics Data System (ADS)
Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.
2014-02-01
A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.
Direct simulation of high-vorticity gas flows
NASA Technical Reports Server (NTRS)
Bird, G. A.
1987-01-01
The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.
Direct Simulation of Reentry Flows with Ionization
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Hassan, H. A.
1989-01-01
The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.
[Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].
Furuta, Takuya
2017-01-01
Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.
Monte Carlo calculations of k{sub Q}, the beam quality conversion factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B. R.; Rogers, D. W. O.
2010-11-15
Purpose: To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors, k{sub Q}, for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of k{sub Q}. These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for calibrating external radiotherapy beams. Methods: Ionization chambers are modeled either from blueprints or manufacturers' user's manuals. The dose-to-air in the chamber is calculated using the EGSnrc user-code egs{sub c}hamber using 11 different tabulated clinical photon spectra for the incident beams. The dose to amore » small volume of water is also calculated in the absence of the chamber at the midpoint of the chamber on its central axis. Using a simple equation, k{sub Q} is calculated from these quantities under the assumption that W/e is constant with energy and compared to TG-51 protocol and measured values. Results: Polynomial fits to the Monte Carlo calculated k{sub Q} factors as a function of beam quality expressed as %dd(10){sub x} and TPR{sub 10}{sup 20} are given for each ionization chamber. Differences are explained between Monte Carlo calculated values and values from the TG-51 protocol or calculated using the computer program used for TG-51 calculations. Systematic uncertainties in calculated k{sub Q} values are analyzed and amount to a maximum of one standard deviation uncertainty of 0.99% if one assumes that photon cross-section uncertainties are uncorrelated and 0.63% if they are assumed correlated. The largest components of the uncertainty are the constancy of W/e and the uncertainty in the cross-section for photons in water. Conclusions: It is now possible to calculate k{sub Q} directly using Monte Carlo simulations. Monte Carlo calculations for most ionization chambers give results which are comparable to TG-51 values. Discrepancies can be explained using individual Monte Carlo calculations of various correction factors which are more accurate than previously used values. For small ionization chambers with central electrodes composed of high-Z materials, the effect of the central electrode is much larger than that for the aluminum electrodes in Farmer chambers.« less
NASA Astrophysics Data System (ADS)
Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin
2017-07-01
Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.
Monte Carlo simulations of particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.
1994-01-01
The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.
Monte Carlo simulations in X-ray imaging
NASA Astrophysics Data System (ADS)
Giersch, Jürgen; Durst, Jürgen
2008-06-01
Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.
The Direct Lighting Computation in Global Illumination Methods
NASA Astrophysics Data System (ADS)
Wang, Changyaw Allen
1994-01-01
Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
NASA Astrophysics Data System (ADS)
Caporali, E.; Chiarello, V.; Galeati, G.
2014-12-01
Peak discharges estimates for a given return period are of primary importance in engineering practice for risk assessment and hydraulic structure design. Different statistical methods are chosen here for the assessment of flood frequency curve: one indirect technique based on the extreme rainfall event analysis, the Peak Over Threshold (POT) model and the Annual Maxima approach as direct techniques using river discharge data. In the framework of the indirect method, a Monte Carlo simulation approach is adopted to determine a derived frequency distribution of peak runoff using a probabilistic formulation of the SCS-CN method as stochastic rainfall-runoff model. A Monte Carlo simulation is used to generate a sample of different runoff events from different stochastic combination of rainfall depth, storm duration, and initial loss inputs. The distribution of the rainfall storm events is assumed to follow the GP law whose parameters are estimated through GEV's parameters of annual maximum data. The evaluation of the initial abstraction ratio is investigated since it is one of the most questionable assumption in the SCS-CN model and plays a key role in river basin characterized by high-permeability soils, mainly governed by infiltration excess mechanism. In order to take into account the uncertainty of the model parameters, this modified approach, that is able to revise and re-evaluate the original value of the initial abstraction ratio, is implemented. In the POT model the choice of the threshold has been an essential issue, mainly based on a compromise between bias and variance. The Generalized Extreme Value (GEV) distribution fitted to the annual maxima discharges is therefore compared with the Pareto distributed peaks to check the suitability of the frequency of occurrence representation. The methodology is applied to a large dam in the Serchio river basin, located in the Tuscany Region. The application has shown as Monte Carlo simulation technique can be a useful tool to provide more robust estimation of the results obtained by direct statistical methods.
Rapid Monte Carlo Simulation of Gravitational Wave Galaxies
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane L.
2015-01-01
With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.
Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.
2008-02-01
Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.
COCOA: Simulating Observations of Star Cluster Simulations
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2017-03-01
COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.
García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M
2010-07-01
In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
Monte Carlo sampling in diffusive dynamical systems
NASA Astrophysics Data System (ADS)
Tapias, Diego; Sanders, David P.; Altmann, Eduardo G.
2018-05-01
We introduce a Monte Carlo algorithm to efficiently compute transport properties of chaotic dynamical systems. Our method exploits the importance sampling technique that favors trajectories in the tail of the distribution of displacements, where deviations from a diffusive process are most prominent. We search for initial conditions using a proposal that correlates states in the Markov chain constructed via a Metropolis-Hastings algorithm. We show that our method outperforms the direct sampling method and also Metropolis-Hastings methods with alternative proposals. We test our general method through numerical simulations in 1D (box-map) and 2D (Lorentz gas) systems.
Frequency-resolved Monte Carlo.
López Carreño, Juan Camilo; Del Valle, Elena; Laussy, Fabrice P
2018-05-03
We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less
Validation of the Monte Carlo simulator GATE for indium-111 imaging.
Assié, K; Gardin, I; Véra, P; Buvat, I
2005-07-07
Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.
Directional change of fluid particles in two-dimensional turbulence and of football players
NASA Astrophysics Data System (ADS)
Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai
2017-06-01
Multiscale directional statistics are investigated in two-dimensional incompressible turbulence. It is shown that the short-time behavior of the mean angle of directional change of fluid particles is linearly dependent on the time lag and that no inertial range behavior is observed in the directional change associated with the enstrophy-cascade range. In simulations of the inverse-cascade range, the directional change shows a power law behavior at inertial range time scales. By comparing the directional change in space-periodic and wall-bounded flow, it is shown that the probability density function of the directional change at long times carries the signature of the confinement. The geometrical origin of this effect is validated by Monte Carlo simulations. The same effect is also observed in the directional statistics computed from the trajectories of football players (soccer players in American English).
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
On simulations of rarefied vapor flows with condensation
NASA Astrophysics Data System (ADS)
Bykov, Nikolay; Gorbachev, Yuriy; Fyodorov, Stanislav
2018-05-01
Results of the direct simulation Monte Carlo of 1D spherical and 2D axisymmetric expansions into vacuum of condens-ing water vapor are presented. Two models based on the kinetic approach and the size-corrected classical nucleation theory are employed for simulations. The difference in obtained results is discussed and advantages of the kinetic approach in comparison with the modified classical theory are demonstrated. The impact of clusterization on flow parameters is observed when volume fraction of clusters in the expansion region exceeds 5%. Comparison of the simulation data with the experimental results demonstrates good agreement.
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
Beentjes, Casper H L; Baker, Ruth E
2018-05-25
Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.
SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Siderits, R; McKenna, M
2014-06-01
Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scannedmore » on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.« less
A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures.
Amato, Ernesto; Cicone, Francesco; Auditore, Lucrezia; Baldari, Sergio; Prior, John O; Gnesin, Silvano
2018-05-01
Choroid plexuses are vascular structures located in the brain ventricles, showing specific uptake of some diagnostic and therapeutic radiopharmaceuticals currently under clinical investigation, such as integrin-binding arginine-glycine-aspartic acid (RGD) peptides. No specific geometry for choroid plexuses has been implemented in commercially available software for internal dosimetry. The aims of the present study were to assess the dependence of absorbed dose to the choroid plexuses on the organ geometry implemented in Monte Carlo simulations, and to propose an analytical model for the internal dosimetry of these structures for 18 F, 64 Cu, 67 Cu, 68 Ga, 90 Y, 131 I and 177 Lu nuclides. A GAMOS Monte Carlo simulation based on direct organ segmentation was taken as the gold standard to validate a second simulation based on a simplified geometrical model of the choroid plexuses. Both simulations were compared with the OLINDA/EXM sphere model. The gold standard and the simplified geometrical model gave similar dosimetry results (dose difference < 3.5%), indicating that the latter can be considered as a satisfactory approximation of the real geometry. In contrast, the sphere model systematically overestimated the absorbed dose compared to both Monte Carlo models (range: 4-50% dose difference), depending on the isotope energy and organ mass. Therefore, the simplified geometric model was adopted to introduce an analytical approach for choroid plexuses dosimetry in the mass range 2-16 g. The proposed model enables the estimation of the choroid plexuses dose by a simple bi-parametric function, once the organ mass and the residence time of the radiopharmaceutical under investigation are provided. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Optical simulation of flying targets using physically based renderer
NASA Astrophysics Data System (ADS)
Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen
2018-02-01
The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.
Das, R K; Li, Z; Perera, H; Williamson, J F
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.
Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen
2015-03-01
Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.
The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
Temleitner, László; Pusztai, László; Schweika, Werner
2007-08-22
The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.
Collisional Evolution of the Enceladus Neutral Cloud
NASA Technical Reports Server (NTRS)
Cassidy, T. A.; Johnson, R. E.; Hendrix, A. R.
2011-01-01
Water vapor ejected from Saturn's small moon Enceladus easily escapes its meager gravity to form a Saturn-encircling cloud with a low collision rate. Observations show that the cloud is quite broad in the radial direction, and we show here that collisions, though quite rare, may be largely responsible for this radial spreading. We modeled this cloud using the Direct Simulation Monte Carlo method, as fluid methods would be inappropriate for such a tenuous gas.
Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen
2011-07-21
We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.
An improved target velocity sampling algorithm for free gas elastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Walsh, Jonathan A.
We present an improved algorithm for sampling the target velocity when simulating elastic scattering in a Monte Carlo neutron transport code that correctly accounts for the energy dependence of the scattering cross section. The algorithm samples the relative velocity directly, thereby avoiding a potentially inefficient rejection step based on the ratio of cross sections. Here, we have shown that this algorithm requires only one rejection step, whereas other methods of similar accuracy require two rejection steps. The method was verified against stochastic and deterministic reference results for upscattering percentages in 238U. Simulations of a light water reactor pin cell problemmore » demonstrate that using this algorithm results in a 3% or less penalty in performance when compared with an approximate method that is used in most production Monte Carlo codes« less
An improved target velocity sampling algorithm for free gas elastic scattering
Romano, Paul K.; Walsh, Jonathan A.
2018-02-03
We present an improved algorithm for sampling the target velocity when simulating elastic scattering in a Monte Carlo neutron transport code that correctly accounts for the energy dependence of the scattering cross section. The algorithm samples the relative velocity directly, thereby avoiding a potentially inefficient rejection step based on the ratio of cross sections. Here, we have shown that this algorithm requires only one rejection step, whereas other methods of similar accuracy require two rejection steps. The method was verified against stochastic and deterministic reference results for upscattering percentages in 238U. Simulations of a light water reactor pin cell problemmore » demonstrate that using this algorithm results in a 3% or less penalty in performance when compared with an approximate method that is used in most production Monte Carlo codes« less
Monte Carlo Simulation to Estimate Likelihood of Direct Lightning Strikes
NASA Technical Reports Server (NTRS)
Mata, Carlos; Medelius, Pedro
2008-01-01
A software tool has been designed to quantify the lightning exposure at launch sites of the stack at the pads under different configurations. In order to predict lightning strikes to generic structures, this model uses leaders whose origins (in the x-y plane) are obtained from a 2D random, normal distribution.
Spin-Ice Thin Films: Large-N Theory and Monte Carlo Simulations
NASA Astrophysics Data System (ADS)
Lantagne-Hurtubise, Étienne; Rau, Jeffrey G.; Gingras, Michel J. P.
2018-04-01
We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.
Guo, Changning; Doub, William H; Kauffman, John F
2010-08-01
Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Chen, C. -C.; Wang, Yao
Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less
Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Chen, C. -C.; Wang, Yao
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding ofmore » the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less
Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
Kung, Y. F.; Chen, C. -C.; Wang, Yao; ...
2016-04-29
Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less
Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kung, Y. F.; Chen, C.-C.; Wang, Yao; Huang, E. W.; Nowadnick, E. A.; Moritz, B.; Scalettar, R. T.; Johnston, S.; Devereaux, T. P.
2016-04-01
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π ,π ) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.
Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.; Itikawa, Y.
1976-01-01
The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Ren, Chunsheng; Wang, Dezhen
2009-02-01
A model of one dimensional in position and three dimensional in velocity space self-consistent particle in cell with Monte Carlo collision technique was employed to simulate the argon discharge between the needle and plane electrodes at high pressure, in which a nanosecond rectangular pulse was applied to the needle electrode. The work focused on the investigation of the spatiotemporal evolution of the discharge versus the needle tip size and working gas pressure. The simulation results showed that the discharge occurred mainly in the region near the needle tip at atmospheric pressure, and that the small radius of the needle tip led to easy discharge. Reducing the gas pressure gave rise to a transition from a corona discharge to a glowlike discharge along the needle-to-plane direction. The microscopic mechanism for the transition can arguably be attributed to the peak of high-energy electrons occurring before the breakdown; the magnitude of the number of these electrons determined whether the breakdown can take place.
Effects of Raman scattering on the water-leaving radiance
NASA Technical Reports Server (NTRS)
Waters, Kirk J.
1995-01-01
The contribution of Raman scattering to the water-leaving radiance is examined using Monte Carlo simulations. Exit angle information is retained, allowing a comparison of different satellite viewing directions. Chlorophyll values of 0.0, 0.01, 0.1, and 1.0 mg Chl/cu m are simulated. Little directional variability is found, with the exception of the direct solar backscatter direction. The wavelength variability is greatest for low chlorophyll concentrations and is negligible for 1.0 mg Chl/cu m. At 550 nm the Raman contribution ranges from approximately 18% of the total water-leaving radiance for pure water to 3% for 1.0 mg Chl/cu m. At 440 nm the range is from 6% to 2%, indicating that Raman scattering will impact radiance ratios for ocean color satellite algorithms.
The AMIDAS Website: An Online Tool for Direct Dark Matter Detection Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Chung-Lin
2010-02-10
Following our long-erm work on development of model-independent data analysis methods for reconstructing the one-dimensional velocity distribution function of halo WIMPs as well as for determining their mass and couplings on nucleons by using data from direct Dark Matter detection experiments directly, we combined the simulation programs to a compact system: AMIDAS (A Model-Independent Data Analysis System). For users' convenience an online system has also been established at the same time. AMIDAS has the ability to do full Monte Carlo simulations, faster theoretical estimations, as well as to analyze (real) data sets recorded in direct detection experiments without modifying themore » source code. In this article, I give an overview of functions of the AMIDAS code based on the use of its website.« less
Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun
2016-09-01
The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
2013-07-01
also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32 B. MCNP PHYSICS OPTIONS ......................................................................................... 33 C. HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, J; PLA 302 Hospital, Beijing; Xu, S
2016-06-15
Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combinedmore » 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11275105). Thanks for the support from Accuray Corp.« less
NASA Astrophysics Data System (ADS)
Zhang, Guannan; Del-Castillo-Negrete, Diego
2017-10-01
Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.
dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver
NASA Astrophysics Data System (ADS)
White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.
2018-03-01
dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.
Simulating propagation of coherent light in random media using the Fredholm type integral equation
NASA Astrophysics Data System (ADS)
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
COCOA code for creating mock observations of star cluster models
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2018-04-01
We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.
TiOx deposited by magnetron sputtering: a joint modelling and experimental study
NASA Astrophysics Data System (ADS)
Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.
2018-05-01
This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.
Visual improvement for bad handwriting based on Monte-Carlo method
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2014-03-01
A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Pool, René; Heringa, Jaap; Hoefling, Martin; Schulz, Roland; Smith, Jeremy C; Feenstra, K Anton
2012-05-05
We report on a python interface to the GROMACS molecular simulation package, GromPy (available at https://github.com/GromPy). This application programming interface (API) uses the ctypes python module that allows function calls to shared libraries, for example, written in C. To the best of our knowledge, this is the first reported interface to the GROMACS library that uses direct library calls. GromPy can be used for extending the current GROMACS simulation and analysis modes. In this work, we demonstrate that the interface enables hybrid Monte-Carlo/molecular dynamics (MD) simulations in the grand-canonical ensemble, a simulation mode that is currently not implemented in GROMACS. For this application, the interplay between GromPy and GROMACS requires only minor modifications of the GROMACS source code, not affecting the operation, efficiency, and performance of the GROMACS applications. We validate the grand-canonical application against MD in the canonical ensemble by comparison of equations of state. The results of the grand-canonical simulations are in complete agreement with MD in the canonical ensemble. The python overhead of the grand-canonical scheme is only minimal. Copyright © 2012 Wiley Periodicals, Inc.
Neutron dose estimation in a zero power nuclear reactor
NASA Astrophysics Data System (ADS)
Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.
2016-10-01
This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.
Computer simulation of the carbon activity in austenite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murch, G.E.; Thorn, R.J.
1979-02-01
Carbon activity in austenite is described in terms of an Ising-like f.c.c. lattice gas model in which carbon interstitials repel only at the distance of nearest neighbors. A Monte Carlo simulation method in the petit canonical ensemble is employed to calculate directly the carbon activity as a function of composition and temperature. The computed activities are in satisfactory agreement with the experimental data, similarly for the decompostion of the activity to the partial molar enthalpy and entropy.
Potts Model in One-Dimension on Directed Small-World Networks
NASA Astrophysics Data System (ADS)
Aquino, Édio O.; Lima, F. W. S.; Araújo, Ascânio D.; Costa Filho, Raimundo N.
2018-06-01
The critical properties of the Potts model with q=3 and 8 states in one-dimension on directed small-world networks are investigated. This disordered system is simulated by updating it with the Monte Carlo heat bath algorithm. The Potts model on these directed small-world networks presents in fact a second-order phase transition with a new set of critical exponents for q=3 considering a rewiring probability p=0.1. For q=8 the system exhibits only a first-order phase transition independent of p.
Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model
NASA Astrophysics Data System (ADS)
Morin, Mario A.; Ficarazzo, Francesco
2006-04-01
Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.
DSMC Modeling of Flows with Recombination Reactions
2017-06-23
Rogasinsky, “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics,” Russ. J. Numer. Anal. Math ...reflection in steady flows,” Comput. Math . Appl. 35(1-2), 113–126 (1998). 45K. L. Wray, “Shock-tube study of the recombination of O atoms by Ar catalysts at
Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G
2018-05-07
Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Particle behavior simulation in thermophoresis phenomena by direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Wada, Takao
2014-07-01
A particle motion considering thermophoretic force is simulated by using direct simulation Monte Carlo (DSMC) method. Thermophoresis phenomena, which occur for a particle size of 1 μm, are treated in this paper. The problem of thermophoresis simulation is computation time which is proportional to the collision frequency. Note that the time step interval becomes much small for the simulation considering the motion of large size particle. Thermophoretic forces calculated by DSMC method were reported, but the particle motion was not computed because of the small time step interval. In this paper, the molecule-particle collision model, which computes the collision between a particle and multi molecules in a collision event, is considered. The momentum transfer to the particle is computed with a collision weight factor, where the collision weight factor means the number of molecules colliding with a particle in a collision event. The large time step interval is adopted by considering the collision weight factor. Furthermore, the large time step interval is about million times longer than the conventional time step interval of the DSMC method when a particle size is 1 μm. Therefore, the computation time becomes about one-millionth. We simulate the graphite particle motion considering thermophoretic force by DSMC-Neutrals (Particle-PLUS neutral module) with above the collision weight factor, where DSMC-Neutrals is commercial software adopting DSMC method. The size and the shape of the particle are 1 μm and a sphere, respectively. The particle-particle collision is ignored. We compute the thermophoretic forces in Ar and H2 gases of a pressure range from 0.1 to 100 mTorr. The results agree well with Gallis' analytical results. Note that Gallis' analytical result for continuum limit is the same as Waldmann's result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.
Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope ofmore » a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Adaptive Stress Testing of Airborne Collision Avoidance Systems
NASA Technical Reports Server (NTRS)
Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.
2015-01-01
This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.
Peelle's pertinent puzzle using the Monte Carlo technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawano, Toshihiko; Talou, Patrick; Burr, Thomas
2009-01-01
We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less
Cai, Yaomin; Guo, Zhixiong
2018-04-20
The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.
Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan
2016-05-01
In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Spreading of correlations in the Falicov-Kimball model
NASA Astrophysics Data System (ADS)
Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp
2018-04-01
We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.
Monte Carlo based approach to the LS-NaI 4πβ-γ anticoincidence extrapolation and uncertainty
Fitzgerald, R.
2016-01-01
The 4πβ-γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone. PMID:27358944
Sakota, Daisuke; Takatani, Setsuo
2012-05-01
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
NASA Astrophysics Data System (ADS)
Ševecek, Pavel; Broz, Miroslav; Nesvorny, David; Durda, Daniel D.; Asphaug, Erik; Walsh, Kevin J.; Richardson, Derek C.
2016-10-01
Detailed models of asteroid collisions can yield important constrains for the evolution of the Main Asteroid Belt, but the respective parameter space is large and often unexplored. We thus performed a new set of simulations of asteroidal breakups, i.e. fragmentations of intact targets, subsequent gravitational reaccumulation and formation of small asteroid families, focusing on parent bodies with diameters D = 10 km.Simulations were performed with a smoothed-particle hydrodynamics (SPH) code (Benz & Asphaug 1994), combined with an efficient N-body integrator (Richardson et al. 2000). We assumed a number of projectile sizes, impact velocities and impact angles. The rheology used in the physical model does not include friction nor crushing; this allows for a direct comparison to results of Durda et al. (2007). Resulting size-frequency distributions are significantly different from scaled-down simulations with D = 100 km monolithic targets, although they may be even more different for pre-shattered targets.We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions in N-body simulations of small asteroid families. Finally, we discuss various uncertainties related to SPH simulations.
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
Multivariate stochastic simulation with subjective multivariate normal distributions
P. J. Ince; J. Buongiorno
1991-01-01
In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
Gray: a ray tracing-based Monte Carlo simulator for PET
NASA Astrophysics Data System (ADS)
Freese, David L.; Olcott, Peter D.; Buss, Samuel R.; Levin, Craig S.
2018-05-01
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within % when accounting for differences in peak NECR. We also estimate the peak NECR to be kcps, or within % of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Direct Simulation Monte Carlo Application of the Three Dimensional Forced Harmonic Oscillator Model
2017-12-07
quasi -classical scattering theory [3,4] or trajectory [5] calculations, semiclassical, as well as close-coupled [6,7] or full [8] quantum mechanical...the quasi -classical trajectory (QCT) calculations approach for ab initio modeling of collision processes. The DMS method builds on an earlier work...nu ar y 30 , 2 01 8 | h ttp :// ar c. ai aa .o rg | D O I: 1 0. 25 14 /1 .T 52 28 to directly use quasi -classical or quantum mechanic
Decision-directed detector for overlapping PCM/NRZ signals.
NASA Technical Reports Server (NTRS)
Wang, C. D.; Noack, T. L.
1973-01-01
A decision-directed (DD) technique for the detection of overlapping PCM/NRZ signals in the presence of white Gaussian noise is investigated. The performance of the DD detector is represented by probability of error Pe versus input signal-to-noise ratio (SNR). To examine how much improvement in performance can be achieved with this technique, Pe's with and without DD feedback are evaluated in parallel. Further, analytical results are compared with those found by Monte Carlo simulations. The results are in good agreement.
Molecular gas dynamics applied to low-thrust propulsion
NASA Astrophysics Data System (ADS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-11-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Molecular gas dynamics applied to low-thrust propulsion
NASA Technical Reports Server (NTRS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-01-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime
NASA Astrophysics Data System (ADS)
Turansky, Craig P.
The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
NASA Astrophysics Data System (ADS)
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S
2015-12-07
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Mobit, P
2002-01-01
The energy responses of LiF-TLDs irradiated in megavoltage electron and photon beams have been determined experimentally by many investigators over the past 35 years but the results vary considerably. General cavity theory has been used to model some of the experimental findings but the predictions of these cavity theories differ from each other and from measurements by more than 13%. Recently, two groups or investigators using Monte Carlo simulations and careful experimental techniques showed that the energy response of 1 mm or 2 mm thick LiF-TLD irradiated by megavoltage photon and electron beams is not more than 5% less than unity for low-Z phantom materials like water or Perspex. However, when the depth of irradiation is significantly different from dmax and the TLD size is more than 5 mm, then the energy response is up to 12% less than unity for incident electron beams. Monte Carlo simulations of some of the experiments reported in the literature showed that some of the contradictory experimental results are reproducible with Monte Carlo simulations. Monte Carlo simulations show that the energy response of LiF-TLDs depends on the size of detector used in electron beams, the depth of irradiation and the incident electron energy. Other differences can be attributed to absolute dose determination and precision of the TL technique. Monte Carlo simulations have also been used to evaluate some of the published general cavity theories. The results show that some of the parameters used to evaluate Burlin's general cavity theory are wrong by factor of 3. Despite this, the estimation of the energy response for most clinical situations using Burlin's cavity equation agrees with Monte Carlo simulations within 1%.
NASA Astrophysics Data System (ADS)
Bubnis, Gregory J.
Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.
Monte Carlo simulation of aorta autofluorescence
NASA Astrophysics Data System (ADS)
Kuznetsova, A. A.; Pushkareva, A. E.
2016-08-01
Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.
Molecular-Level Simulations of the Turbulent Taylor-Green Flow
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Plimpton, S. J.; Torczynski, J. R.; Papadakis, G.
2017-11-01
The Direct Simulation Monte Carlo (DSMC) method, a statistical, molecular-level technique that provides accurate solutions to the Boltzmann equation, is applied to the turbulent Taylor-Green vortex flow. The goal of this work is to investigate whether DSMC can accurately simulate energy decay in a turbulent flow. If so, then simulating turbulent flows at the molecular level can provide new insights because the energy decay can be examined in detail from molecular to macroscopic length scales, thereby directly linking molecular relaxation processes to macroscopic transport processes. The DSMC simulations are performed on half a million cores of Sequoia, the 17 Pflop platform at Lawrence Livermore National Laboratory, and the kinetic-energy dissipation rate and the energy spectrum are computed directly from the molecular velocities. The DSMC simulations are found to reproduce the Kolmogorov -5/3 law and to agree with corresponding Navier-Stokes simulations obtained using a spectral method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Monte Carlo simulation of a photodisintegration of 3 H experiment in Geant4
NASA Astrophysics Data System (ADS)
Gray, Isaiah
2013-10-01
An upcoming experiment involving photodisintegration of 3 H at the High Intensity Gamma-Ray Source facility at Duke University has been simulated in the software package Geant4. CAD models of silicon detectors and wire chambers were imported from Autodesk Inventor using the program FastRad and the Geant4 GDML importer. Sensitive detectors were associated with the appropriate logical volumes in the exported GDML file so that changes in detector geometry will be easily manifested in the simulation. Probability distribution functions for the energy and direction of outgoing protons were generated using numerical tables from previous theory, and energies and directions were sampled from these distributions using a rejection sampling algorithm. The simulation will be a useful tool to optimize detector geometry, estimate background rates, and test data analysis algorithms. This work was supported by the Triangle Universities Nuclear Laboratory REU program at Duke University.
Physical Principle for Generation of Randomness
NASA Technical Reports Server (NTRS)
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Structural Reliability and Monte Carlo Simulation.
ERIC Educational Resources Information Center
Laumakis, P. J.; Harlow, G.
2002-01-01
Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)
The Monte Carlo Method. Popular Lectures in Mathematics.
ERIC Educational Resources Information Center
Sobol', I. M.
The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…
How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.
Lecca, Paola
2018-01-01
We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.
Kinetic theory for dilute cohesive granular gases with a square well potential.
Takada, Satoshi; Saitoh, Kuniyasu; Hayakawa, Hisao
2016-07-01
We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the validity of our theory by performing the direct simulation Monte Carlo.
Fixed forced detection for fast SPECT Monte-Carlo simulation
NASA Astrophysics Data System (ADS)
Cajgfinger, T.; Rit, S.; Létang, J. M.; Halty, A.; Sarrut, D.
2018-03-01
Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.
Fixed forced detection for fast SPECT Monte-Carlo simulation.
Cajgfinger, T; Rit, S; Létang, J M; Halty, A; Sarrut, D
2018-03-02
Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.
Monte Carlo simulation: Its status and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtha, J.A.
1997-04-01
Monte Carlo simulation is a statistics-based analysis tool that yields probability-vs.-value relationships for key parameters, including oil and gas reserves, capital exposure, and various economic yardsticks, such as net present value (NPV) and return on investment (ROI). Monte Carlo simulation is a part of risk analysis and is sometimes performed in conjunction with or as an alternative to decision [tree] analysis. The objectives are (1) to define Monte Carlo simulation in a more general context of risk and decision analysis; (2) to provide some specific applications, which can be interrelated; (3) to respond to some of the criticisms; (4) tomore » offer some cautions about abuses of the method and recommend how to avoid the pitfalls; and (5) to predict what the future has in store.« less
NASA Astrophysics Data System (ADS)
Yang, Guang; Weigand, Bernhard
2018-04-01
The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.
Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Williams, Richard; Grim, Joel
2013-08-15
Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by γ-ray and high-energy electrons is a likely cause of the light yield nonproportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Förster transfer. The KMC simulationsmore » reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the nonproportional γ-ray and electron response of inorganic scintillators.« less
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave
NASA Astrophysics Data System (ADS)
Yasuda, Shugo
2017-02-01
A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.
NASA Astrophysics Data System (ADS)
Kanjilal, Oindrila; Manohar, C. S.
2017-07-01
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.
Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.
Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus
2014-01-07
The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.
Evaluated teletherapy source library
Cox, Lawrence J.; Schach Von Wittenau, Alexis E.
2000-01-01
The Evaluated Teletherapy Source Library (ETSL) is a system of hardware and software that provides for maintenance of a library of useful phase space descriptions (PSDs) of teletherapy sources used in radiation therapy for cancer treatment. The PSDs are designed to be used by PEREGRINE, the all-particle Monte Carlo dose calculation system. ETSL also stores other relevant information such as monitor unit factors (MUFs) for use with the PSDs, results of PEREGRINE calculations using the PSDs, clinical calibration measurements, and geometry descriptions sufficient for calculational purposes. Not all of this information is directly needed by PEREGRINE. It also is capable of acting as a repository for the Monte Carlo simulation history files from which the generic PSDs are derived.
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres
NASA Astrophysics Data System (ADS)
García Muñoz, A.; Mills, F. P.
2017-08-01
PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-07-01
The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.
Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong
2014-12-21
The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.
Development of a Space Radiation Monte Carlo Computer Simulation
NASA Technical Reports Server (NTRS)
Pinsky, Lawrence S.
1997-01-01
The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.
NASA Technical Reports Server (NTRS)
Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.
2003-01-01
In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.
Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Bayard, David S.
2013-01-01
G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer.
DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake
NASA Technical Reports Server (NTRS)
Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.
1993-01-01
Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.
Assessment of predictive capabilities for aerodynamic heating in hypersonic flow
NASA Astrophysics Data System (ADS)
Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal
2017-04-01
The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.
DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations
A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates
NASA Astrophysics Data System (ADS)
Sundqvist, Kyle
2010-03-01
We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.
A method for radiological characterization based on fluence conversion coefficients
NASA Astrophysics Data System (ADS)
Froeschl, Robert
2018-06-01
Radiological characterization of components in accelerator environments is often required to ensure adequate radiation protection during maintenance, transport and handling as well as for the selection of the proper disposal pathway. The relevant quantities are typical the weighted sums of specific activities with radionuclide-specific weighting coefficients. Traditional methods based on Monte Carlo simulations are radionuclide creation-event based or the particle fluences in the regions of interest are scored and then off-line weighted with radionuclide production cross sections. The presented method bases the radiological characterization on a set of fluence conversion coefficients. For a given irradiation profile and cool-down time, radionuclide production cross-sections, material composition and radionuclide-specific weighting coefficients, a set of particle type and energy dependent fluence conversion coefficients is computed. These fluence conversion coefficients can then be used in a Monte Carlo transport code to perform on-line weighting to directly obtain the desired radiological characterization, either by using built-in multiplier features such as in the PHITS code or by writing a dedicated user routine such as for the FLUKA code. The presented method has been validated against the standard event-based methods directly available in Monte Carlo transport codes.
Liu, Y; Zheng, Y
2012-06-01
Accurate determination of proton dosimetric effect for tissue heterogeneity is critical in proton therapy. Proton beams have finite range and consequently tissue heterogeneity plays a more critical role in proton therapy. The purpose of this study is to investigate the tissue heterogeneity effect in proton dosimetry based on anatomical-based Monte Carlo simulation using animal tissues. Animal tissues including a pig head and beef bulk were used in this study. Both pig head and beef were scanned using a GE CT scanner with 1.25 mm slice thickness. A treatment plan was created, using the CMS XiO treatment planning system (TPS) with a single proton spread-out-Bragg-peak beam (SOBP). Radiochromic films were placed at the distal falloff region. Image guidance was used to align the phantom before proton beams were delivered according to the treatment plan. The same two CT sets were converted to Monte Carlo simulation model. The Monte Carlo simulated dose calculations with/without tissue omposition were compared to TPS calculations and measurements. Based on the preliminary comparison, at the center of SOBP plane, the Monte Carlo simulation dose without tissue composition agreed generally well with TPS calculation. In the distal falloff region, the dose difference was large, and about 2 mm isodose line shift was observed with the consideration of tissue composition. The detailed comparison of dose distributions between Monte Carlo simulation, TPS calculations and measurements is underway. Accurate proton dose calculations are challenging in proton treatment planning for heterogeneous tissues. Tissue heterogeneity and tissue composition may lead to isodose line shifts up to a few millimeters in the distal falloff region. By simulating detailed particle transport and energy deposition, Monte Carlo simulations provide a verification method in proton dose calculation where inhomogeneous tissues are present. © 2012 American Association of Physicists in Medicine.
Self-learning Monte Carlo method
Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...
2017-01-04
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrocky, Tomas, E-mail: tomas.dobrocky@insel.ch; Fuerstner, Markus, E-mail: markus.fuerstner@insel.ch; Klaeser, Bernd, E-mail: bernd.klaeser@insel.ch
2015-08-15
We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.
Response Matrix Monte Carlo for electron transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.
1990-11-01
A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less
Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling
NASA Astrophysics Data System (ADS)
Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe
2017-03-01
Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non-polarized reflectance using the ROMC tool is done, and our model shows good agreement with the ROMC reference.
DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept
NASA Astrophysics Data System (ADS)
Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert
2016-10-01
The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick
2017-01-01
A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
NASA Astrophysics Data System (ADS)
Fasnacht, Marc
We develop adaptive Monte Carlo methods for the calculation of the free energy as a function of a parameter of interest. The methods presented are particularly well-suited for systems with complex energy landscapes, where standard sampling techniques have difficulties. The Adaptive Histogram Method uses a biasing potential derived from histograms recorded during the simulation to achieve uniform sampling in the parameter of interest. The Adaptive Integration method directly calculates an estimate of the free energy from the average derivative of the Hamiltonian with respect to the parameter of interest and uses it as a biasing potential. We compare both methods to a state of the art method, and demonstrate that they compare favorably for the calculation of potentials of mean force of dense Lennard-Jones fluids. We use the Adaptive Integration Method to calculate accurate potentials of mean force for different types of simple particles in a Lennard-Jones fluid. Our approach allows us to separate the contributions of the solvent to the potential of mean force from the effect of the direct interaction between the particles. With contributions of the solvent determined, we can find the potential of mean force directly for any other direct interaction without additional simulations. We also test the accuracy of the Adaptive Integration Method on a thermodynamic cycle, which allows us to perform a consistency check between potentials of mean force and chemical potentials calculated using the Adaptive Integration Method. The results demonstrate a high degree of consistency of the method.
Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Koffeman, E N; Nakaji, T; Takatsu, J; Visser, J; Brandenburg, S
2017-09-01
Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150MeV, 190MeV and 230MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton's direction and position. A scattering angle cut of 8.7mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.
2014-12-01
We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jincheng; Rimsza, Jessica
Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less
Monte Carlo Simulation of Microscopic Stock Market Models
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich
Computer simulations with random numbers, that is, Monte Carlo methods, have been considerably applied in recent years to model the fluctuations of stock market or currency exchange rates. Here we concentrate on the percolation model of Cont and Bouchaud, to simulate, not to predict, the market behavior.
DSMC simulations of shock interactions about sharp double cones
NASA Astrophysics Data System (ADS)
Moss, James N.
2001-08-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
DSMC Simulations of Shock Interactions About Sharp Double Cones
NASA Technical Reports Server (NTRS)
Moss, James N.
2000-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
NASA Astrophysics Data System (ADS)
Morozov, A.; Krücken, R.; Ulrich, A.; Wieser, J.
2006-11-01
Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12keV electron beams at gas pressures from 250to1400hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.
Radiotherapy Monte Carlo simulation using cloud computing technology.
Poole, C M; Cornelius, I; Trapp, J V; Langton, C M
2012-12-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Gray: a ray tracing-based Monte Carlo simulator for PET.
Freese, David L; Olcott, Peter D; Buss, Samuel R; Levin, Craig S
2018-05-21
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a [Formula: see text] speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within [Formula: see text]% when accounting for differences in peak NECR. We also estimate the peak NECR to be [Formula: see text] kcps, or within [Formula: see text]% of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
Analytical Applications of Monte Carlo Techniques.
ERIC Educational Resources Information Center
Guell, Oscar A.; Holcombe, James A.
1990-01-01
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Optimization of the Monte Carlo code for modeling of photon migration in tissue.
Zołek, Norbert S; Liebert, Adam; Maniewski, Roman
2006-10-01
The Monte Carlo method is frequently used to simulate light transport in turbid media because of its simplicity and flexibility, allowing to analyze complicated geometrical structures. Monte Carlo simulations are, however, time consuming because of the necessity to track the paths of individual photons. The time consuming computation is mainly associated with the calculation of the logarithmic and trigonometric functions as well as the generation of pseudo-random numbers. In this paper, the Monte Carlo algorithm was developed and optimized, by approximation of the logarithmic and trigonometric functions. The approximations were based on polynomial and rational functions, and the errors of these approximations are less than 1% of the values of the original functions. The proposed algorithm was verified by simulations of the time-resolved reflectance at several source-detector separations. The results of the calculation using the approximated algorithm were compared with those of the Monte Carlo simulations obtained with an exact computation of the logarithm and trigonometric functions as well as with the solution of the diffusion equation. The errors of the moments of the simulated distributions of times of flight of photons (total number of photons, mean time of flight and variance) are less than 2% for a range of optical properties, typical of living tissues. The proposed approximated algorithm allows to speed up the Monte Carlo simulations by a factor of 4. The developed code can be used on parallel machines, allowing for further acceleration.
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-04-01
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Development of the ARISTOTLE webware for cloud-based rarefied gas flow modeling
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Grot, Jonathan; Cline, Jason A.
2016-11-01
Rarefied gas dynamics are important for a wide variety of applications. An improvement in the ability of general users to predict these gas flows will enable optimization of current, and discovery of future processes. Despite this potential, most rarefied simulation software is designed by and for experts in the community. This has resulted in low adoption of the methods outside of the immediate RGD community. This paper outlines an ongoing effort to create a rarefied gas dynamics simulation tool that can be used by a general audience. The tool leverages a direct simulation Monte Carlo (DSMC) library that is available to the entire community and a web-based simulation process that will enable all users to take advantage of high performance computing capabilities. First, the DSMC library and simulation architecture are described. Then the DSMC library is used to predict a number of representative transient gas flows that are applicable to the rarefied gas dynamics community. The paper closes with a summary and future direction.
DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation
NASA Technical Reports Server (NTRS)
Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.
2004-01-01
Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
2009-07-01
simulation. The pilot described in this paper used this two-step approach within a Define, Measure, Analyze, Improve, and Control ( DMAIC ) framework to...networks, BBN, Monte Carlo simulation, DMAIC , Six Sigma, business case 15. NUMBER OF PAGES 35 16. PRICE CODE 17. SECURITY CLASSIFICATION OF
Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J
2017-09-26
We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 -5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C 10 E 4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.
1994-07-01
In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
Pratx, Guillem; Xing, Lei
2011-01-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916
Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.
2011-01-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276
Tennant, Marc; Kruger, Estie
2013-02-01
This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT<>0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program
ERIC Educational Resources Information Center
Serrano, Agostinho; Santos, Flavia M. T.; Greca, Ileana M.
2004-01-01
The use of molecular dynamics and Monte Carlo methods has provided efficient means to stimulate the behavior of molecular liquids and solutions. A Monte Carlo simulation program is used to compute the structure of liquid water and of water as a solvent to Na(super +), Cl(super -), and Ar on a personal computer to show that it is easily feasible to…
Symmetry Breaking in a random passive scalar
NASA Astrophysics Data System (ADS)
Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto
2017-11-01
We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.
NASA Astrophysics Data System (ADS)
Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio
2017-02-01
The interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (5-ALA) is a safe and feasible treatment modality of malignant glioblastoma. In order to cover the tumour volume, the exact position of the light diffusers within the lesion is needed to decide precisely. The aim of this study is the development of evaluation method of treatment volume with 3D Monte Carlo simulation for iPDT using 5-ALA. Monte Carlo simulations of fluence rate were performed using the optical properties of the brain tissue infiltrated by tumor cells and normal tissue. 3-D Monte Carlo simulation was used to calculate the position of the light diffusers within the lesion and light transport. The fluence rate near the diffuser was maximum and decreased exponentially with distance. The simulation can calculate the amount of singlet oxygen generated by PDT. In order to increase the accuracy of simulation results, the parameter for simulation includes the quantum yield of singlet oxygen generation, the accumulated concentration of photosensitizer within tissue, fluence rate, molar extinction coefficient at the wavelength of excitation light. The simulation is useful for evaluation of treatment region of iPDT with 5-ALA.
Monte Carlo Simulation of a Segmented Detector for Low-Energy Electron Antineutrinos
NASA Astrophysics Data System (ADS)
Qomi, H. Akhtari; Safari, M. J.; Davani, F. Abbasi
2017-11-01
Detection of low-energy electron antineutrinos is of importance for several purposes, such as ex-vessel reactor monitoring, neutrino oscillation studies, etc. The inverse beta decay (IBD) is the interaction that is responsible for detection mechanism in (organic) plastic scintillation detectors. Here, a detailed study will be presented dealing with the radiation and optical transport simulation of a typical segmented antineutrino detector withMonte Carlo method using MCNPX and FLUKA codes. This study shows different aspects of the detector, benefiting from inherent capabilities of the Monte Carlo simulation codes.
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
2014-11-01
Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less
Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment
NASA Astrophysics Data System (ADS)
Ritsch, E.; Atlas Collaboration
2014-06-01
The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.
2013-10-15
We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
NASA Astrophysics Data System (ADS)
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Tool for Rapid Analysis of Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.
2011-01-01
Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.
Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q
2009-03-06
The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
NASA Astrophysics Data System (ADS)
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
An Overview of Importance Splitting for Rare Event Simulation
ERIC Educational Resources Information Center
Morio, Jerome; Pastel, Rudy; Le Gland, Francois
2010-01-01
Monte Carlo simulations are a classical tool to analyse physical systems. When unlikely events are to be simulated, the importance sampling technique is often used instead of Monte Carlo. Importance sampling has some drawbacks when the problem dimensionality is high or when the optimal importance sampling density is complex to obtain. In this…
Badal, Andreu; Badano, Aldo
2009-11-01
It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
The Wang-Landau Sampling Algorithm
NASA Astrophysics Data System (ADS)
Landau, David P.
2003-03-01
Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
Sechopoulos, Ioannis; Rogers, D W O; Bazalova-Carter, Magdalena; Bolch, Wesley E; Heath, Emily C; McNitt-Gray, Michael F; Sempau, Josep; Williamson, Jeffrey F
2018-01-01
Studies involving Monte Carlo simulations are common in both diagnostic and therapy medical physics research, as well as other fields of basic and applied science. As with all experimental studies, the conditions and parameters used for Monte Carlo simulations impact their scope, validity, limitations, and generalizability. Unfortunately, many published peer-reviewed articles involving Monte Carlo simulations do not provide the level of detail needed for the reader to be able to properly assess the quality of the simulations. The American Association of Physicists in Medicine Task Group #268 developed guidelines to improve reporting of Monte Carlo studies in medical physics research. By following these guidelines, manuscripts submitted for peer-review will include a level of relevant detail that will increase the transparency, the ability to reproduce results, and the overall scientific value of these studies. The guidelines include a checklist of the items that should be included in the Methods, Results, and Discussion sections of manuscripts submitted for peer-review. These guidelines do not attempt to replace the journal reviewer, but rather to be a tool during the writing and review process. Given the varied nature of Monte Carlo studies, it is up to the authors and the reviewers to use this checklist appropriately, being conscious of how the different items apply to each particular scenario. It is envisioned that this list will be useful both for authors and for reviewers, to help ensure the adequate description of Monte Carlo studies in the medical physics literature. © 2017 American Association of Physicists in Medicine.
Extreme Magnitude Earthquakes and their Economical Consequences
NASA Astrophysics Data System (ADS)
Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.
2011-12-01
The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsoulakis, Markos
2014-08-09
Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less
On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models. The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and the higher order correlations in the conventional moment closure models of the chemical source term can not be neglected, making the applications of such models impractical. The probability density function (pdf) method offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional models. A grid dependent Monte Carlo scheme was studied, since it is a logical alternative, wherein the number of computer operations increases only linearly with the increase of number of independent variables, as compared to the exponential increase in a conventional finite difference scheme. A new algorithm was devised that satisfies a restriction in the case of pure diffusion or uniform flow problems. Although for nonuniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.
Uusimäki, Toni; Margaris, Georgios; Trohidou, Kalliopi; Granitzer, Petra; Rumpf, Klemens; Sezen, Meltem; Kothleitner, Gerald
2013-12-07
Magnetite nanoparticles embedded within the pores of a mesoporous silicon template have been characterized using electron tomography. Linear least squares optimization was used to fit an arbitrary ellipsoid to each segmented particle from the three dimensional reconstruction. It was then possible to calculate the demagnetizing factors and the direction of the shape anisotropy easy axis for every particle. The demagnetizing factors, along with the knowledge of spatial and volume distribution of the superparamagnetic nanoparticles, were used as a model for magnetic Monte Carlo simulations, yielding zero field cooling/field cooling and magnetic hysteresis curves, which were compared to the measured ones. Additionally, the local curvature of the magnetite particles' docking site within the mesoporous silicon's surface was obtained in two different ways and a comparison will be given. A new iterative semi-automatic image alignment program was written and the importance of image segmentation for a truly objective analysis is also addressed.
Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup
2018-02-01
The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
Dose control for noncontact laser coagulation of tissue
NASA Astrophysics Data System (ADS)
Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.
1995-01-01
Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.
NASA Astrophysics Data System (ADS)
Aristilde, L.
2009-12-01
A controlling factor in the fate of antibiotics in the environment is their sequestration in soil particles including clay minerals. Of special interest is the interlayer adsorption by smectite clays, which has been shown to influence both the bioavailability and persistence of antibiotics in the soil environment. However, the interlayer structures of the bound antibiotics, essential to an accurate understanding of the adsorption mechanisms, are not well understood. Molecular simulations of oxytetracycline (OTC) with a model montmorillonite (MONT) clay were performed to gain insights into these structures for tetracycline antibiotics. Monte Carlo simulations were used for explorations of the clay layer spacing required for the adsorption of the antibiotic under different hydration states of the clay interlayer; these preliminary results were validated with previous X-ray diffraction patterns obtained following sorption experiments of OTC with MONT. Molecular dynamics relaxation simulations were performed subsequently in order to obtain geometry-optimized structures of the binding conformations of the intercalated antibiotic in the model MONT layers. This study contributes to a mechanistic understanding of the factors controlling the interlayer adsorption of the tetracycline antibiotics by the expandable smectite clay minerals. Figure 1. Optimized Monte Carlo simulation cell of OTC in the interlayer of MONT: perspective side view (top) and bottom view (bottom).
Evaluation of DNA damage induced by Auger electrons from 137Cs.
Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi
2016-11-01
To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
[Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].
Furuta, Takuya; Sato, Tatsuhiko
2015-01-01
Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.
NASA Astrophysics Data System (ADS)
Mowlawi, Ali Asghar; Yazdani, Majed
The detection of landmines using available technologies is a time consuming, expensive, and extremely dangerous job, so that there is a need for technological breakthroughs in this field. One of the safest and most effective technologies to landmine and explosive detection is the neutron backscattering technique. The slowing-down of fast neutrons to the thermal energy is a direct measure of the concentration of hydrogen, one of the main elements present in explosive materials. The elastic scattering of fast neutrons is affected by the strong resonances in the cross-section of the three other elements of explosives: nitrogen, oxygen, and carbon. In this work, Monte Carlo estimations of the soil moisture effects on landmine detection are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhyadhom, A; McGuinness, C; Descovich, M
Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert.more » Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm{sup 2} area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.« less
Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer
NASA Astrophysics Data System (ADS)
Granroth, G. E.; Hahn, S. E.
2015-01-01
Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (ORNL), has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores). This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.
WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization
NASA Astrophysics Data System (ADS)
Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.
NASA Astrophysics Data System (ADS)
Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.
2017-11-01
The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for determining the expected distribution of proton tracks and their thermal contribution within the detector. The correction factor for a 3.8 MeV proton pencil beam was determined and applied to the expected spectra. The corrected microdosimetric spectra was shown to have a good agreement with the ideal spectra.
Monte Carlo simulation of biomolecular systems with BIOMCSIM
NASA Astrophysics Data System (ADS)
Kamberaj, H.; Helms, V.
2001-12-01
A new Monte Carlo simulation program, BIOMCSIM, is presented that has been developed in particular to simulate the behaviour of biomolecular systems, leading to insights and understanding of their functions. The computational complexity in Monte Carlo simulations of high density systems, with large molecules like proteins immersed in a solvent medium, or when simulating the dynamics of water molecules in a protein cavity, is enormous. The program presented in this paper seeks to provide these desirable features putting special emphasis on simulations in grand canonical ensembles. It uses different biasing techniques to increase the convergence of simulations, and periodic load balancing in its parallel version, to maximally utilize the available computer power. In periodic systems, the long-ranged electrostatic interactions can be treated by Ewald summation. The program is modularly organized, and implemented using an ANSI C dialect, so as to enhance its modifiability. Its performance is demonstrated in benchmark applications for the proteins BPTI and Cytochrome c Oxidase.
Self-Learning Monte Carlo Method
NASA Astrophysics Data System (ADS)
Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup. This work is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
Monte Carlo Simulation Using HyperCard and Lotus 1-2-3.
ERIC Educational Resources Information Center
Oulman, Charles S.; Lee, Motoko Y.
Monte Carlo simulation is a computer modeling procedure for mimicking observations on a random variable. A random number generator is used in generating the outcome for the events that are being modeled. The simulation can be used to obtain results that otherwise require extensive testing or complicated computations. This paper describes how Monte…
Monte Carlo Particle Lists: MCPL
NASA Astrophysics Data System (ADS)
Kittelmann, T.; Klinkby, E.; Knudsen, E. B.; Willendrup, P.; Cai, X. X.; Kanaki, K.
2017-09-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular simulation packages.
ERIC Educational Resources Information Center
Houser, Larry L.
1981-01-01
Monte Carlo methods are used to simulate activities in baseball such as a team's "hot streak" and a hitter's "batting slump." Student participation in such simulations is viewed as a useful method of giving pupils a better understanding of the probability concepts involved. (MP)
Two-dimensional symmetry breaking of fluid density distribution in closed nanoslits.
Berim, Gersh O; Ruckenstein, Eli
2008-01-14
Stable and metastable fluid density distributions (FDDs) in a closed nanoslit between two identical parallel solid walls have been identified on the basis of a nonlocal canonical ensemble density functional theory. Similar to Monte Carlo simulations, periodicity of the FDD in one of the lateral (parallel to the walls surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered uniform. It was found that depending on the average fluid density in the slit, both uniform as well as nonuniform FDDs in the x direction can occur. The uniform FDDs are either symmetric or asymmetric about the middle plane between walls; the latter FDD being the consequence of a symmetry breaking across the slit. The nonuniform FDDs in the x direction occur either in the form of a bump on a thin liquid film covering the walls or as a liquid bridge between those walls and provide symmetry breaking in the x direction. For small and large average densities, the stable state is uniform in the x direction and is symmetric about the middle plane between walls. In the intermediate range of the average density and depending on the length L(x) of the FDD period, the stable state can be represented either by a FDD, which is uniform in the x direction and asymmetric about the middle of the slit (small values of L(x)), or by a bump- and bridgelike FDD for intermediate and large values of L(x), respectively. These results are in agreement with the Monte Carlo simulations performed earlier by other authors. Because the free energy of the stable state decreases monotonically with increasing L(x), one can conclude that the real period is very large (infinite) and that for the values of the parameters employed, a single bridge of finite length over the entire slit is generated.
Risk Assessment Techniques. A Handbook for Program Management Personnel
1983-07-01
tion; not directly usable without further development. 37. Lieber, R.S., "New Approaches for Quantifying Risk and Determining Sharing Arrangements...must be provided. Prediction intervals around cost estimating relationships (CERs) or Monte Carlo simulations will be used as proper in quantifying ... risk ." [emphasis supplied] Para 9.d. "The ISR will address the potential risk in the program office estimate by identifying ’risk’ areas and their
Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer
2010-10-01
continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
NASA Astrophysics Data System (ADS)
Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo
2017-02-01
Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.
Instrumental resolution of the chopper spectrometer 4SEASONS evaluated by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kajimoto, Ryoichi; Sato, Kentaro; Inamura, Yasuhiro; Fujita, Masaki
2018-05-01
We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.
Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses
Du, Jincheng; Rimsza, Jessica
2017-09-01
Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less
Infantino, Angelo; Valtieri, Lorenzo; Cicoria, Gianfranco; Pancaldi, Davide; Mostacci, Domiziano; Marengo, Mario
2015-12-01
In a medical cyclotron facility, (41)Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the (40)Ar(n,γ)(41)Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the (41)Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure (41)Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of (18)F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the (41)Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average (41)Ar saturation yield per one liter of air of (41)Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm(3) while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm(3) in the direct assessment and 6.92 ± 0.22 Bq/µA*dm(3) by the convolution neutron fluence-to-cross section. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
DSMC simulation of the interaction between rarefied free jets
NASA Technical Reports Server (NTRS)
Dagum, Leonardo; Zhu, S. H. K.
1993-01-01
This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.
Modeling Lidar Multiple Scattering
NASA Astrophysics Data System (ADS)
Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi
2016-06-01
A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool
NASA Astrophysics Data System (ADS)
Štěpán, Václav; Davídková, Marie
2016-11-01
We present an overview of the biophysical model RADAMOL developed as a Monte Carlo simulation tool for physical, physico-chemical and chemical stages of ionizing radiation action. Direct and indirect radiation damage by 10 keV electrons, and protons and alpha particles with energies from 1 MeV up to 30 MeV to a free DNA oligomer or DNA in the complex with lac repressor protein is analyzed. The role of radiation type and energy, oxygen concentration and DNA interaction with proteins on yields and distributions of primary biomolecular damage is demonstrated and discussed.
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Redler, Gage; Jones, Kevin C.; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C. H.
2018-01-01
Purpose Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. Methods To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Results Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Conclusions Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. PMID:29360151
Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H
2018-03-01
Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.
A Monte Carlo method using octree structure in photon and electron transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, K.; Maeda, S.
Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo; Sterpin, Edmond
2016-04-15
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithmmore » of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less
SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christ, D; Ding, G
Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp
2009-03-06
The indirect secondary electron contrast (ISEC) condition of the scanning electron microscopy (SEM) produces high contrast detection with minimal damage of unstained biological samples mounted under a thin carbon film. The high contrast image is created by a secondary electron signal produced under the carbon film by a low acceleration voltage. Here, we show that ISEC condition is clearly able to detect unstained bacteriophage T4 under a thin carbon film (10-15 nm) by using high-resolution field emission (FE) SEM. The results show that FE-SEM provides higher resolution than thermionic emission SEM. Furthermore, we investigated the scattered electron area within themore » carbon film under ISEC conditions using Monte Carlo simulation. The simulations indicated that the image resolution difference is related to the scattering width in the carbon film and the electron beam spot size. Using ISEC conditions on unstained virus samples would produce low electronic damage, because the electron beam does not directly irradiate the sample. In addition to the routine analysis, this method can be utilized for structural analysis of various biological samples like viruses, bacteria, and protein complexes.« less
NASA Astrophysics Data System (ADS)
Kazantsev, D. M.; Akhundov, I. O.; Shwartz, N. L.; Alperovich, V. L.; Latyshev, A. V.
2015-12-01
Ostwald ripening and step-terraced morphology formation on the GaAs(0 0 1) surface during annealing in equilibrium conditions are investigated experimentally and by Monte Carlo simulation. Fourier and autocorrelation analyses are used to reveal surface relief anisotropy and provide information about islands and pits shape and their size distribution. Two origins of surface anisotropy are revealed. At the initial stage of surface smoothing, crystallographic anisotropy is observed, which is caused presumably by the anisotropy of surface diffusion at GaAs(0 0 1). A difference of diffusion activation energies along [1 1 0] and [1 1 bar 0] axes of the (0 0 1) face is estimated as ΔEd ≈ 0.1 eV from the comparison of experimental results and simulation. At later stages of surface smoothing the anisotropy of the surface relief is determined by the vicinal steps direction. At the initial stage of step-terraced morphology formation the kinetics of monatomic islands and pits growth agrees with the Ostwald ripening theory. At the final stage the size of islands and pits decreases due to their incorporation into the forming vicinal steps.
Studies on muon tomography for archaeological internal structures scanning
NASA Astrophysics Data System (ADS)
Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.
2016-05-01
Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.
Parallel distributed, reciprocal Monte Carlo radiation in coupled, large eddy combustion simulations
NASA Astrophysics Data System (ADS)
Hunsaker, Isaac L.
Radiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional coupling of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was coupled with a turbulent, large-eddy simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively.
NASA Astrophysics Data System (ADS)
dos Santos, G. J.; Linares, D. H.; Ramirez-Pastor, A. J.
2018-04-01
The phase behaviour of aligned rigid rods of length k (k-mers) adsorbed on two-dimensional square lattices has been studied by Monte Carlo (MC) simulations and histogram reweighting technique. The k-mers, containing k identical units (each one occupying a lattice site) were deposited along one of the directions of the lattice. In addition, attractive lateral interactions were considered. The methodology was applied, particularly, to the study of the critical point of the condensation transition occurring in the system. The process was monitored by following the fourth order Binder cumulant as a function of temperature for different lattice sizes. The results, obtained for k ranging from 2 to 7, show that: (i) the transition coverage exhibits a decreasing behaviour when it is plotted as a function of the k-mer size and (ii) the transition temperature, Tc, exhibits a power law dependence on k, Tc ∼k 0 , 4, shifting to higher values as k increases. Comparisons with an analytical model based on a generalization of the Bragg-Williams approximation (BWA) were performed in order to support the simulation technique. A significant qualitative agreement was obtained between BWA and MC results.
Diffusion-Based Model for Synaptic Molecular Communication Channel.
Khan, Tooba; Bilgin, Bilgesu A; Akan, Ozgur B
2017-06-01
Computational methods have been extensively used to understand the underlying dynamics of molecular communication methods employed by nature. One very effective and popular approach is to utilize a Monte Carlo simulation. Although it is very reliable, this method can have a very high computational cost, which in some cases renders the simulation impractical. Therefore, in this paper, for the special case of an excitatory synaptic molecular communication channel, we present a novel mathematical model for the diffusion and binding of neurotransmitters that takes into account the effects of synaptic geometry in 3-D space and re-absorption of neurotransmitters by the transmitting neuron. Based on this model we develop a fast deterministic algorithm, which calculates expected value of the output of this channel, namely, the amplitude of excitatory postsynaptic potential (EPSP), for given synaptic parameters. We validate our algorithm by a Monte Carlo simulation, which shows total agreement between the results of the two methods. Finally, we utilize our model to quantify the effects of variation in synaptic parameters, such as position of release site, receptor density, size of postsynaptic density, diffusion coefficient, uptake probability, and number of neurotransmitters in a vesicle, on maximum number of bound receptors that directly affect the peak amplitude of EPSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
NASA Technical Reports Server (NTRS)
1976-01-01
The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.
Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, C; Gilmer, G; Zepeda-Ruiz, L
2007-05-04
The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less
A multiscale method for modeling high-aspect-ratio micro/nano flows
NASA Astrophysics Data System (ADS)
Lockerby, Duncan; Borg, Matthew; Reese, Jason
2012-11-01
In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.
MO-FG-BRA-01: 4D Monte Carlo Simulations for Verification of Dose Delivered to a Moving Anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholampourkashi, S; Cygler, J E.; The Ottawa Hospital Cancer Centre, Ottawa, ON
Purpose: To validate 4D Monte Carlo (MC) simulations of dose delivery by an Elekta Agility linear accelerator to a moving phantom. Methods: Monte Carlo simulations were performed using the 4DdefDOSXYZnrc/EGSnrc user code which samples a new geometry for each incident particle and calculates the dose in a continuously moving anatomy. A Quasar respiratory motion phantom with a lung insert containing a 3 cm diameter tumor was used for dose measurements on an Elekta Agility linac with the phantom in stationary and moving states. Dose to the center of tumor was measured using calibrated EBT3 film and the RADPOS 4D dosimetrymore » system. A VMAT plan covering the tumor was created on the static CT scan of the phantom using Monaco V.5.10.02. A validated BEAMnrc model of our Elekta Agility linac was used for Monte Carlo simulations on stationary and moving anatomies. To compare the planned and delivered doses, linac log files recorded during measurements were used for the simulations. For 4D simulations, deformation vectors that modeled the rigid translation of the lung insert were generated as input to the 4DdefDOSXYZnrc code as well as the phantom motion trace recorded with RADPOS during the measurements. Results: Monte Carlo simulations and film measurements were found to agree within 2mm/2% for 97.7% of points in the film in the static phantom and 95.5% in the moving phantom. Dose values based on film and RADPOS measurements are within 2% of each other and within 2σ of experimental uncertainties with respect to simulations. Conclusion: Our 4D Monte Carlo simulation using the defDOSXYZnrc code accurately calculates dose delivered to a moving anatomy. Future work will focus on more investigation of VMAT delivery on a moving phantom to improve the agreement between simulation and measurements, as well as establishing the accuracy of our method in a deforming anatomy. This work was supported by the Ontario Consortium of Adaptive Interventions in Radiation Oncology (OCAIRO), funded by the Ontario Research Fund Research Excellence program.« less
Calderone, G.J.; Butler, R.F.
1991-01-01
Random tilting of a single paleomagnetic vector produces a distribution of vectors which is not rotationally symmetric about the original vector and therefore not Fisherian. Monte Carlo simulations were performed on two types of vector distributions: 1) distributions of vectors formed by perturbing a single original vector with a Fisher distribution of bedding poles (each defining a tilt correction) and 2) standard Fisher distributions. These simulations demonstrate that inclinations of vectors drawn from both distributions are biased toward shallow inclinations. The Fisher mean direction of the distribution of vectors formed by perturbing a single vector with random undetected tilts is biased toward shallow inclinations, but this bias is insignificant for angular dispersions of bedding poles less than 20??. -from Authors
Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M
2008-01-01
Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Ellis; Derek Gaston; Benoit Forget
In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less
Multiple point statistical simulation using uncertain (soft) conditional data
NASA Astrophysics Data System (ADS)
Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou
2018-05-01
Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.
Prytkova, Vera; Heyden, Matthias; Khago, Domarin; Freites, J Alfredo; Butts, Carter T; Martin, Rachel W; Tobias, Douglas J
2016-08-25
We present a novel multi-conformation Monte Carlo simulation method that enables the modeling of protein-protein interactions and aggregation in crowded protein solutions. This approach is relevant to a molecular-scale description of realistic biological environments, including the cytoplasm and the extracellular matrix, which are characterized by high concentrations of biomolecular solutes (e.g., 300-400 mg/mL for proteins and nucleic acids in the cytoplasm of Escherichia coli). Simulation of such environments necessitates the inclusion of a large number of protein molecules. Therefore, computationally inexpensive methods, such as rigid-body Brownian dynamics (BD) or Monte Carlo simulations, can be particularly useful. However, as we demonstrate herein, the rigid-body representation typically employed in simulations of many-protein systems gives rise to certain artifacts in protein-protein interactions. Our approach allows us to incorporate molecular flexibility in Monte Carlo simulations at low computational cost, thereby eliminating ambiguities arising from structure selection in rigid-body simulations. We benchmark and validate the methodology using simulations of hen egg white lysozyme in solution, a well-studied system for which extensive experimental data, including osmotic second virial coefficients, small-angle scattering structure factors, and multiple structures determined by X-ray and neutron crystallography and solution NMR, as well as rigid-body BD simulation results, are available for comparison.
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Omara, Thomas M.
1990-01-01
A realization of a stochastic atmosphere model for use in simulations is presented. The model provides pressure, density, temperature, and wind velocity as a function of latitude, longitude, and altitude, and is implemented in a three degree of freedom simulation package. This implementation is used in the Monte Carlo simulation of an aeroassisted orbital transfer maneuver and results are compared to those of a more traditional approach.
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations
NASA Astrophysics Data System (ADS)
Freitag, Marc Dewi
2013-02-01
ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).
Data decomposition of Monte Carlo particle transport simulations via tally servers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less
Hypothesis testing of scientific Monte Carlo calculations.
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
Hypothesis testing of scientific Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein
2015-05-01
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.
Deterministic theory of Monte Carlo variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueki, T.; Larsen, E.W.
1996-12-31
The theoretical estimation of variance in Monte Carlo transport simulations, particularly those using variance reduction techniques, is a substantially unsolved problem. In this paper, the authors describe a theory that predicts the variance in a variance reduction method proposed by Dwivedi. Dwivedi`s method combines the exponential transform with angular biasing. The key element of this theory is a new modified transport problem, containing the Monte Carlo weight w as an extra independent variable, which simulates Dwivedi`s Monte Carlo scheme. The (deterministic) solution of this modified transport problem yields an expression for the variance. The authors give computational results that validatemore » this theory.« less
Recommender engine for continuous-time quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Experimental benchmarking of a Monte Carlo dose simulation code for pediatric CT
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; Yoshizumi, Terry; Colsher, James G.; Jones, Robert P.; Frush, Donald P.
2007-03-01
In recent years, there has been a desire to reduce CT radiation dose to children because of their susceptibility and prolonged risk for cancer induction. Concerns arise, however, as to the impact of dose reduction on image quality and thus potentially on diagnostic accuracy. To study the dose and image quality relationship, we are developing a simulation code to calculate organ dose in pediatric CT patients. To benchmark this code, a cylindrical phantom was built to represent a pediatric torso, which allows measurements of dose distributions from its center to its periphery. Dose distributions for axial CT scans were measured on a 64-slice multidetector CT (MDCT) scanner (GE Healthcare, Chalfont St. Giles, UK). The same measurements were simulated using a Monte Carlo code (PENELOPE, Universitat de Barcelona) with the applicable CT geometry including bowtie filter. The deviations between simulated and measured dose values were generally within 5%. To our knowledge, this work is one of the first attempts to compare measured radial dose distributions on a cylindrical phantom with Monte Carlo simulated results. It provides a simple and effective method for benchmarking organ dose simulation codes and demonstrates the potential of Monte Carlo simulation for investigating the relationship between dose and image quality for pediatric CT patients.
Satake, S; Park, J-K; Sugama, H; Kanno, R
2011-07-29
Neoclassical toroidal viscosities (NTVs) in tokamaks are investigated using a δf Monte Carlo simulation, and are successfully verified with a combined analytic theory over a wide range of collisionality. A Monte Carlo simulation has been required in the study of NTV since the complexities in guiding-center orbits of particles and their collisions cannot be fully investigated by any means of analytic theories alone. Results yielded the details of the complex NTV dependency on particle precessions and collisions, which were predicted roughly in a combined analytic theory. Both numerical and analytic methods can be utilized and extended based on these successful verifications.
Duggan, Dennis M
2004-12-01
Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pengfei; Wang, Qiang, E-mail: q.wang@colostate.edu
2014-01-28
Using fast lattice Monte Carlo (FLMC) simulations [Q. Wang, Soft Matter 5, 4564 (2009)] and the corresponding lattice self-consistent field (LSCF) calculations, we studied a model system of grafted homopolymers, in both the brush and mushroom regimes, in an explicit solvent compressed by an impenetrable surface. Direct comparisons between FLMC and LSCF results, both of which are based on the same Hamiltonian (thus without any parameter-fitting between them), unambiguously and quantitatively reveal the fluctuations/correlations neglected by the latter. We studied both the structure (including the canonical-ensemble averages of the height and the mean-square end-to-end distances of grafted polymers) and thermodynamicsmore » (including the ensemble-averaged reduced energy density and the related internal energy per chain, the differences in the Helmholtz free energy and entropy per chain from the uncompressed state, and the pressure due to compression) of the system. In particular, we generalized the method for calculating pressure in lattice Monte Carlo simulations proposed by Dickman [J. Chem. Phys. 87, 2246 (1987)], and combined it with the Wang-Landau–Optimized Ensemble sampling [S. Trebst, D. A. Huse, and M. Troyer, Phys. Rev. E 70, 046701 (2004)] to efficiently and accurately calculate the free energy difference and the pressure due to compression. While we mainly examined the effects of the degree of compression, the distance between the nearest-neighbor grafting points, the reduced number of chains grafted at each grafting point, and the system fluctuations/correlations in an athermal solvent, the θ-solvent is also considered in some cases.« less
A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses
Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria
2013-01-01
Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is therefore an excellent tool for multi-scale simulations. PMID:23894367
Testing of Error-Correcting Sparse Permutation Channel Codes
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill, V.; Orlov, Sergei S.
2008-01-01
A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.
Collisional Decoherence in Trapped-Atom Interferometers that use Nondegenerate Sources
2009-01-22
a magneto - optical trap . The trap is switched off and the atomic cloud begins to fall due to gravity. At the time t=0, the cloud is illuminated with...model is used to find the optimal operating conditions of the interferometer and direct Monte-Carlo simulation of the interferometer is used to...A major difficulty with all trapped -atom interferometers that use optical pulses is that the residual potential along the guide causes
Can direct electron detectors outperform phosphor-CCD systems for TEM?
NASA Astrophysics Data System (ADS)
Moldovan, G.; Li, X.; Kirkland, A.
2008-08-01
A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Schiavon, Nick; de Palmas, Anna; Bulla, Claudio; Piga, Giampaolo; Brunetti, Antonio
2016-09-01
A spectrometric protocol combining Energy Dispersive X-Ray Fluorescence Spectrometry with Monte Carlo simulations of experimental spectra using the XRMC code package has been applied for the first time to characterize the elemental composition of a series of famous Iron Age small scale archaeological bronze replicas of ships (known as the ;Navicelle;) from the Nuragic civilization in Sardinia, Italy. The proposed protocol is a useful, nondestructive and fast analytical tool for Cultural Heritage sample. In Monte Carlo simulations, each sample was modeled as a multilayered object composed by two or three layers depending on the sample: when all present, the three layers are the original bronze substrate, the surface corrosion patina and an outermost protective layer (Paraloid) applied during past restorations. Monte Carlo simulations were able to account for the presence of the patina/corrosion layer as well as the presence of the Paraloid protective layer. It also accounted for the roughness effect commonly found at the surface of corroded metal archaeological artifacts. In this respect, the Monte Carlo simulation approach adopted here was, to the best of our knowledge, unique and enabled to determine the bronze alloy composition together with the thickness of the surface layers without the need for previously removing the surface patinas, a process potentially threatening preservation of precious archaeological/artistic artifacts for future generations.
A Monte Carlo simulation study of associated liquid crystals
NASA Astrophysics Data System (ADS)
Berardi, R.; Fehervari, M.; Zannoni, C.
We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.
Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials
Xu, Haixuan; Beland, Laurent K.; Stoller, Roger E.; ...
2015-01-29
The recent development of on-the-fly atomistic kinetic Monte Carlo methods has led to an increased amount attention on the methods and their corresponding capabilities and applications. In this review, the framework and current status of Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) are discussed. SEAKMC particularly focuses on defect interaction and evolution with atomistic details without assuming potential defect migration/interaction mechanisms and energies. The strength and limitation of using an active volume, the key concept introduced in SEAKMC, are discussed. Potential criteria for characterizing an active volume are discussed and the influence of active volume size on saddle point energies ismore » illustrated. A procedure starting with a small active volume followed by larger active volumes was found to possess higher efficiency. Applications of SEAKMC, ranging from point defect diffusion, to complex interstitial cluster evolution, to helium interaction with tungsten surfaces, are summarized. A comparison of SEAKMC with molecular dynamics and conventional object kinetic Monte Carlo is demonstrated. Overall, SEAKMC is found to be complimentary to conventional molecular dynamics, especially when the harmonic approximation of transition state theory is accurate. However it is capable of reaching longer time scales than molecular dynamics and it can be used to systematically increase the accuracy of other methods such as object kinetic Monte Carlo. Furthermore, the challenges and potential development directions are also outlined.« less
NASA Astrophysics Data System (ADS)
Clarke, Peter; Varghese, Philip; Goldstein, David
2018-01-01
A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.
Malataras, G; Kappas, C; Lovelock, D M; Mohan, R
1997-01-01
This article presents a comparison between two implementations of an EGS4 Monte Carlo simulation of a radiation therapy machine. The first implementation was run on a high performance RISC workstation, and the second was run on an inexpensive PC. The simulation was performed using the MCRAD user code. The photon energy spectra, as measured at a plane transverse to the beam direction and containing the isocenter, were compared. The photons were also binned radially in order to compare the variation of the spectra with radius. With 500,000 photons recorded in each of the two simulations, the running times were 48 h and 116 h for the workstation and the PC, respectively. No significant statistical differences between the two implementations were found.
Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M
2004-07-01
Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments. This allows the definition of tolerances for quality assurance and the design of quality assurance procedures.
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Play It Again: Teaching Statistics with Monte Carlo Simulation
ERIC Educational Resources Information Center
Sigal, Matthew J.; Chalmers, R. Philip
2016-01-01
Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…
Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
Chow, James C L; Leung, Michael K K
2008-06-01
The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.
Off-diagonal expansion quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes
NASA Astrophysics Data System (ADS)
André, T.; Morini, F.; Karamitros, M.; Delorme, R.; Le Loirec, C.; Campos, L.; Champion, C.; Groetz, J.-E.; Fromm, M.; Bordage, M.-C.; Perrot, Y.; Barberet, Ph.; Bernal, M. A.; Brown, J. M. C.; Deleuze, M. S.; Francis, Z.; Ivanchenko, V.; Mascialino, B.; Zacharatou, C.; Bardiès, M.; Incerti, S.
2014-01-01
Monte Carlo simulations of S-values have been carried out with the Geant4-DNA extension of the Geant4 toolkit. The S-values have been simulated for monoenergetic electrons with energies ranging from 0.1 keV up to 20 keV, in liquid water spheres (for four radii, chosen between 10 nm and 1 μm), and for electrons emitted by five isotopes of iodine (131, 132, 133, 134 and 135), in liquid water spheres of varying radius (from 15 μm up to 250 μm). The results have been compared to those obtained from other Monte Carlo codes and from other published data. The use of the Kolmogorov-Smirnov test has allowed confirming the statistical compatibility of all simulation results.
Monte Carlo method for photon heating using temperature-dependent optical properties.
Slade, Adam Broadbent; Aguilar, Guillermo
2015-02-01
The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.
2015-01-01
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.
Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A
2015-02-21
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.
A comparison of Monte-Carlo simulations using RESTRAX and McSTAS with experiment on IN14
NASA Astrophysics Data System (ADS)
Wildes, A. R.; S̆aroun, J.; Farhi, E.; Anderson, I.; Høghøj, P.; Brochier, A.
2000-03-01
Monte-Carlo simulations of a focusing supermirror guide after the monochromator on the IN14 cold neutron three-axis spectrometer, I.L.L. were carried out using the instrument simulation programs RESTRAX and McSTAS. The simulations were compared to experiment to check their accuracy. Comparisons of the flux ratios over both a 100 and a 1600 mm 2 area at the sample position compare well, and there is a very close agreement between simulation and experiment for the energy spread of the incident beam.
Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis
NASA Technical Reports Server (NTRS)
Hanson, J. M.; Beard, B. B.
2010-01-01
This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.
Monte Carlo Simulations of Radiative and Neutrino Transport under Astrophysical Conditions
NASA Astrophysics Data System (ADS)
Krivosheyev, Yu. M.; Bisnovatyi-Kogan, G. S.
2018-05-01
Monte Carlo simulations are utilized to model radiative and neutrino transfer in astrophysics. An algorithm that can be used to study radiative transport in astrophysical plasma based on simulations of photon trajectories in a medium is described. Formation of the hard X-ray spectrum of the Galactic microquasar SS 433 is considered in detail as an example. Specific requirements for applying such simulations to neutrino transport in a densemedium and algorithmic differences compared to its application to photon transport are discussed.
DQE simulation of a-Se x-ray detectors using ARTEMIS
NASA Astrophysics Data System (ADS)
Fang, Yuan; Badano, Aldo
2016-03-01
Detective Quantum Efficiency (DQE) is one of the most important image quality metrics for evaluating the spatial resolution performance of flat-panel x-ray detectors. In this work, we simulate the DQE of amorphous selenium (a-Se) xray detectors with a detailed Monte Carlo transport code (ARTEMIS) for modeling semiconductor-based direct x-ray detectors. The transport of electron-hole pairs is achieved with a spatiotemporal model that accounts for recombination and trapping of carriers and Coulombic effects of space charge and external applied electric field. A range of x-ray energies has been simulated from 10 to 100 keV. The DQE results can be used to study the spatial resolution characteristics of detectors at different energies.
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.
2018-05-01
Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.
Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator
NASA Technical Reports Server (NTRS)
Wasilewski, A.; Krys, E.
1985-01-01
Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.
Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M
2012-09-01
The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakabe, D; Ohno, T; Araki, F
Purpose: The purpose of this study was to evaluate the combined organ dose of digital subtraction angiography (DSA) and computed tomography (CT) using a Monte Carlo (MC) simulation on the abdominal intervention. Methods: The organ doses for DSA and CT were obtained with MC simulation and actual measurements using fluorescent-glass dosimeters at 7 abdominal portions in an Alderson-Rando phantom. DSA was performed from three directions: posterior anterior (PA), right anterior oblique (RAO), and left anterior oblique (LAO). The organ dose with MC simulation was compared with actual radiation dose measurements. Calculations for the MC simulation were carried out with themore » GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. Finally, the combined organ dose for DSA and CT was calculated from the MC simulation using the X-ray conditions of a patient with a diagnosis of hepatocellular carcinoma. Results: For DSA from the PA direction, the organ doses for the actual measurements and MC simulation were 2.2 and 2.4 mGy/100 mAs at the liver, respectively, and 3.0 and 3.1 mGy/100 mAs at the spinal cord, while for CT, the organ doses were 15.2 and 15.1 mGy/100 mAs at the liver, and 14.6 and 13.5 mGy/100 mAs at the spinal cord. The maximum difference in organ dose between the actual measurements and the MC simulation was 11.0% of the spleen at PA, 8.2% of the spinal cord at RAO, and 6.1% of left kidney at LAO with DSA and 9.3% of the stomach with CT. The combined organ dose (4 DSAs and 6 CT scans) with the use of actual patient conditions was found to be 197.4 mGy for the liver and 205.1 mGy for the spinal cord. Conclusion: Our method makes it possible to accurately assess the organ dose to patients for abdominal intervention with combined DSA and CT.« less
NASA Astrophysics Data System (ADS)
Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc
2012-06-01
This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm
Salvat-Pujol, F; Werner, W S M
2013-01-01
The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766
NASA Astrophysics Data System (ADS)
Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.
2017-11-01
In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.
Drakaki, E; Makropoulou, M; Serafetinides, A A
2008-07-01
In dermatology, the in vivo spectral fluorescence measurements of human skin can serve as a valuable supplement to standard non-invasive techniques for diagnosing various skin diseases. However, quantitative analysis of the fluorescence spectra is complicated by the fact that skin is a complex multi-layered and inhomogeneous organ, with varied optical properties and biophysical characteristics. In this work, we recorded, in vitro, the laser-induced fluorescence emission signals of healthy porcine skin, one of the animals, which is considered as one of the most common models for investigations related to medical diagnostics of human cutaneous tissues. Differences were observed in the form and intensity of the fluorescence signal of the porcine skin, which can be attributed to the different concentrations of the native fluorophores and the variable physical and biological conditions of the skin tissue. As the light transport in the tissue target is directly influencing the absorption and the fluorescence emission signals, we performed Monte Carlo simulation of the light distribution in a five-layer model of human skin tissue, with a pulsed ultraviolet laser beam.
Monte-Carlo simulations of the clean and disordered contact process in three space dimensions
NASA Astrophysics Data System (ADS)
Vojta, Thomas
2013-03-01
The absorbing-state transition in the three-dimensional contact process with and without quenched randomness is investigated by means of Monte-Carlo simulations. In the clean case, a reweighting technique is combined with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder, our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical methods, and we relate them to a general classification of phase transitions in disordered systems based on the rare region dimensionality. This work has been supported in part by the NSF under grants no. DMR-0906566 and DMR-1205803.
NASA Astrophysics Data System (ADS)
Dabiri, Mohammad Taghi; Sadough, Seyed Mohammad Sajad
2018-04-01
In the free-space optical (FSO) links, atmospheric turbulence lead to scintillation in the received signal. Due to its ease of implementation, intensity modulation with direct detection (IM/DD) based on ON-OFF keying (OOK) is a popular signaling scheme in these systems. Over turbulence channel, to detect OOK symbols in a blind way, i.e., without sending pilot symbols, an expectation-maximization (EM)-based detection method was recently proposed in the literature related to free-space optical (FSO) communication. However, the performance of EM-based detection methods severely depends on the length of the observation interval (Ls). To choose the optimum values of Ls at target bit error rates (BER)s of FSO communications which are commonly lower than 10-9, Monte-Carlo simulations would be very cumbersome and require a very long processing time. To facilitate performance evaluation, in this letter we derive the analytic expressions for BER and outage probability. Numerical results validate the accuracy of our derived analytic expressions. Our results may serve to evaluate the optimum value for Ls without resorting to time-consuming Monte-Carlo simulations.
Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K
2013-04-22
A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.
Valence bond and von Neumann entanglement entropy in Heisenberg ladders.
Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G
2009-09-11
We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.
N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere
NASA Astrophysics Data System (ADS)
Kurihara, J.; Iwagami, N.; Oyama, K.-I.
2013-11-01
The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.
A Fast Monte Carlo Simulation for the International Linear Collider Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, D.; /Georgia Tech
2005-12-15
The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less
NASA Astrophysics Data System (ADS)
Hidayat, Iki; Sutopo; Pratama, Heru Berian
2017-12-01
The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.
Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A
The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.
NASA Astrophysics Data System (ADS)
Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin
2017-07-01
The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.
Theoretical Grounds for the Propagation of Uncertainties in Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Saracco, Paolo; Pia, Maria Grazia; Batic, Matej
2014-04-01
We introduce a theoretical framework for the calculation of uncertainties affecting observables produced by Monte Carlo particle transport, which derive from uncertainties in physical parameters input into simulation. The theoretical developments are complemented by a heuristic application, which illustrates the method of calculation in a streamlined simulation environment.
Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water
ERIC Educational Resources Information Center
Gergely, John Robert
2009-01-01
Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…
Estimating Uncertainty in N2O Emissions from US Cropland Soils
USDA-ARS?s Scientific Manuscript database
A Monte Carlo analysis was combined with an empirically-based approach to quantify uncertainties in soil N2O emissions from US croplands estimated with the DAYCENT simulation model. Only a subset of croplands was simulated in the Monte Carlo analysis which was used to infer uncertainties across the ...
Testing the Intervention Effect in Single-Case Experiments: A Monte Carlo Simulation Study
ERIC Educational Resources Information Center
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick
2017-01-01
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Teaching Markov Chain Monte Carlo: Revealing the Basic Ideas behind the Algorithm
ERIC Educational Resources Information Center
Stewart, Wayne; Stewart, Sepideh
2014-01-01
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Monte Carlo simulation models of breeding-population advancement.
J.N. King; G.R. Johnson
1993-01-01
Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...
Drusano, G. L.; Preston, S. L.; Gotfried, M. H.; Danziger, L. H.; Rodvold, K. A.
2002-01-01
Levofloxacin was administered orally to steady state to volunteers randomly in doses of 500 and 750 mg. Plasma and epithelial lining fluid (ELF) samples were obtained at 4, 12, and 24 h after the final dose. All data were comodeled in a population pharmacokinetic analysis employing BigNPEM. Penetration was evaluated from the population mean parameter vector values and from the results of a 1,000-subject Monte Carlo simulation. Evaluation from the population mean values demonstrated a penetration ratio (ELF/plasma) of 1.16. The Monte Carlo simulation provided a measure of dispersion, demonstrating a mean ratio of 3.18, with a median of 1.43 and a 95% confidence interval of 0.14 to 19.1. Population analysis with Monte Carlo simulation provides the best and least-biased estimate of penetration. It also demonstrates clearly that we can expect differences in penetration between patients. This analysis did not deal with inflammation, as it was performed in volunteers. The influence of lung pathology on penetration needs to be examined. PMID:11796385
Geant4 hadronic physics for space radiation environment.
Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L
2012-01-01
To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.
Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang
Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
Light fluence dosimetry in lung-simulating cavities
NASA Astrophysics Data System (ADS)
Zhu, Timothy C.; Kim, Michele M.; Padawer, Jonah; Dimofte, Andreea; Potasek, Mary; Beeson, Karl; Parilov, Evgueni
2018-02-01
Accurate light dosimery is critical to ensure consistent outcome for pleural photodynamic therapy (pPDT). Ellipsoid shaped cavities with different sizes surrounded by turbid medium are used to simulate the intracavity lung geometry. An isotropic light source is introduced and surrounded by turbid media. Direct measurements of light fluence rate were compared to Monte Carlo simulated values on the surface of the cavities for various optical properties. The primary component of the light was determined by measurements performed in air in the same geometry. The scattered component was found by submerging the air-filled cavity in scattering media (Intralipid) and absorbent media (ink). The light source was located centrally with the azimuthal angle, but placed in two locations (vertically centered and 2 cm below the center) for measurements. Light fluence rate was measured using isotropic detectors placed at various angles on the ellipsoid surface. The measurements and simulations show that the scattered dose is uniform along the surface of the intracavity ellipsoid geometries in turbid media. One can express the light fluence rate empirically as φ =4S/As*Rd/(1- Rd), where Rd is the diffuse reflectance, As is the surface area, and S is the source power. The measurements agree with this empirical formula to within an uncertainty of 10% for the range of optical properties studied. GPU voxel-based Monte-Carlo simulation is performed to compare with measured results. This empirical formula can be applied to arbitrary geometries, such as the pleural or intraperitoneal cavity.
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
Highlights of Transient Plume Impingement Model Validation and Applications
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.
Computational Fluid Dynamics for Atmospheric Entry
2009-09-01
equations. This method is a parallelizable variant of the Gauss - Seidel line-relaxation method of MacCormack (Ref. 33, 35), and is at the core of the...G.V. Candler, “The Solution of the Navier-Stokes Equations Gauss - Seidel Line Relaxation,” Computers and Fluids, Vol. 17, No. 1, 1989, pp. 135-150. 35... solution differs by 5% from the results obtained using the direct simulation Monte Carlo method . 3 Some authors advocate the use of higher-order continuum
Multimodel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay Originating NASA
NASA Technical Reports Server (NTRS)
Korner, Stephan; Ahmad, Nashat N.; Holzapfel, Frank; VanValkenburg, Randal L.
2017-01-01
Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.
2008-01-17
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18 . NUMBER OF PAGES 261 19a. NAME OF RESPONSIBLE PERSON a...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 This material...Sciences Meeting and Exhibit. Several DSMC [13, 58] and CFD [ 18 , 28, 43] solutions were submitted. Later, others compared CFD and DSMC solutions to these
Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey John
The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.
Viveros-Méndez, Perla X; Gil-Villegas, Alejandro; Aranda Espinoza, Said
2017-12-21
The phase behavior of hard spherocylinders (HSCs) confined in cylindrical cavities is studied using Monte Carlo simulations in the canonical ensemble. Results are presented for different values of the particles' aspect ratio l/σ, where l and σ are the length and diameter of the cylinder and hemispherical caps, respectively. Finite cavities with periodic boundary conditions along the principal axis of the cavities have been considered, where the cavity's principal axis is along the z-direction. We first focus our study in the structure induced by varying the degree of confinement, determining the HSC phase diagram for aspect ratios l/σ = 3, 5, 7, and 9, at a fixed packing fraction η = 0.071. By compressing the cavities along the radial direction, the isotropic phase becomes stable before the nematic phase as the length of the cavities is increased, resulting in a second-order transition. The occurrence of phase transitions has also been determined by varying η for constant values of the cavity's length L. Systems with low aspect ratios, l/σ = 3, 5, 7, and 9, exhibit first-order transitions with chiral, paranematic, and isotropic phases, whereas for larger HSCs, l/σ = 50, 70, and 100, the transitions are second order with paranematic, nematic, and isotropic phases, in contrast with the behavior of non-confined systems, with first-order transitions for isotropic, nematic, smectic-A, and solid phases.
2016-04-01
noise, and energy relaxation for doped zinc-oxide and structured ZnO transistor materials with a 2-D electron gas (2DEG) channel subjected to a strong...function on the time delay. Closed symbols represent the Monte Carlo data with hot-phonon effect at different electron gas density: 1•1017 cm-3...Monte Carlo simulation is performed for electron gas density of 1•1018 cm-3. Figure 18. Monte Carlo simulation of density-dependent hot-electron energy
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Singh, H; Islam, M
2014-06-01
Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less
NASA Astrophysics Data System (ADS)
Randrianalisoa, Jaona; Haussener, Sophia; Baillis, Dominique; Lipiński, Wojciech
2017-11-01
Radiative heat transfer is analyzed in participating media consisting of long cylindrical fibers with a diameter in the limit of geometrical optics. The absorption and scattering coefficients and the scattering phase function of the medium are determined based on the discrete-level medium geometry and optical properties of individual fibers. The fibers are assumed to be randomly oriented and positioned inside the medium. Two approaches are employed: a volume-averaged two-intensity approach referred to as multi-RTE approach and a homogenized single-intensity approach referred to as the single-RTE approach. Both approaches require effective properties, determined using direct Monte Carlo ray tracing techniques. The macroscopic radiative transfer equations (for single intensity or two volume-averaged intensities) with the corresponding effective properties are solved using Monte Carlo techniques and allow for the determination of the radiative flux distribution as well as overall transmittance and reflectance of the medium. The results are compared against predictions by the direct Monte Carlo simulation on the exact morphology. The effects of fiber volume fraction and optical properties on the effective radiative properties and the overall slab radiative characteristics are investigated. The single-RTE approach gives accurate predictions for high porosity fibrous media (porosity about 95%). The multi-RTE approach is recommended for isotropic fibrous media with porosity in the range of 79-95%.
LLNL Mercury Project Trinity Open Science Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, Patrick; Dawson, Shawn; McKinley, Scott
2016-04-20
The Mercury Monte Carlo particle transport code developed at Lawrence Livermore National Laboratory (LLNL) is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. As a result, a question arises as to the level of convergence of the calculations with Monte Carlo simulation particle count. In the Trinity Open Science calculations, one main focus was to investigate convergence of the relevant simulation quantities with Monte Carlo particle count to assess the current simulation methodology. Both for this application space but also of more general applicability, wemore » also investigated the impact of code algorithms on parallel scaling on the Trinity machine as well as the utilization of the Trinity DataWarp burst buffer technology in Mercury via the LLNL Scalable Checkpoint/Restart (SCR) library.« less
2016-12-01
KS and AD Statistical Power via Monte Carlo Simulation Statistical power is the probability of correctly rejecting the null hypothesis when the...Select a caveat DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Determining the Statistical Power...real-world data to test the accuracy of the simulation. Statistical comparison of these metrics can be necessary when making such a determination
Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.
Sheppard, C W.
1969-03-01
A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.
NASA Astrophysics Data System (ADS)
Koepferl, Christine M.; Robitaille, Thomas P.
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied tomore » compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.« less
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.
Status of the Simbol-X Background Simulation Activities
NASA Astrophysics Data System (ADS)
Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.
2009-05-01
The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.
Estimation variance bounds of importance sampling simulations in digital communication systems
NASA Technical Reports Server (NTRS)
Lu, D.; Yao, K.
1991-01-01
In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.
Diagnosing Undersampling Biases in Monte Carlo Eigenvalue and Flux Tally Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M.; Rearden, Bradley T.; Marshall, William J.
2017-02-08
Here, this study focuses on understanding the phenomena in Monte Carlo simulations known as undersampling, in which Monte Carlo tally estimates may not encounter a sufficient number of particles during each generation to obtain unbiased tally estimates. Steady-state Monte Carlo simulations were performed using the KENO Monte Carlo tools within the SCALE code system for models of several burnup credit applications with varying degrees of spatial and isotopic complexities, and the incidence and impact of undersampling on eigenvalue and flux estimates were examined. Using an inadequate number of particle histories in each generation was found to produce a maximum bias of ~100 pcm in eigenvalue estimates and biases that exceeded 10% in fuel pin flux tally estimates. Having quantified the potential magnitude of undersampling biases in eigenvalue and flux tally estimates in these systems, this study then investigated whether Markov Chain Monte Carlo convergence metrics could be integrated into Monte Carlo simulations to predict the onset and magnitude of undersampling biases. Five potential metrics for identifying undersampling biases were implemented in the SCALE code system and evaluated for their ability to predict undersampling biases by comparing the test metric scores with the observed undersampling biases. Finally, of the five convergence metrics that were investigated, three (the Heidelberger-Welch relative half-width, the Gelman-Rubin more » $$\\hat{R}_c$$ diagnostic, and tally entropy) showed the potential to accurately predict the behavior of undersampling biases in the responses examined.« less
Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...
2016-06-10
Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less
New approach in direct-simulation of gas mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren
1991-01-01
Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.
Use of Fluka to Create Dose Calculations
NASA Technical Reports Server (NTRS)
Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John
2012-01-01
Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.
Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
NASA Astrophysics Data System (ADS)
Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.
2018-04-01
While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.
Calvet, Xavier; Gené, Emili; ÀngelRuíz, Miquel; Figuerola, Ariadna; Villoria, Albert; Cucala, Mercedes; Mearin, Fermín; Delgado, Salvadora; Calleja, Jose Luis
2016-01-01
Ferric Carboxymaltose (FCM), Iron Sucrose (IS) and Oral Iron (OI) are alternative treatments for preoperative anaemia. To compare the cost implications, using a cost-minimization analysis, of three alternatives: FCM vs. IS vs. OI for treating iron-deficient anaemia before surgery in patients with colon cancer. Data from 282 patients with colorectal cancer and anaemia were obtained from a previous study. One hundred and eleven received FCS, 16 IS and 155 OI. Costs of intravenous iron drugs were obtained from the Spanish Regulatory Agency. Direct and indirect costs were obtained from the analytical accounting unit of the Hospital. In the base case mean costs per patient were calculated. Sensitivity analysis and probabilistic Monte Carlo simulation were performed. Total costs per patient were 1827® in the FCM group, 2312® in the IS group and 2101® in the OI group. Cost savings per patient for FCM treatment were 485® compared to IS and 274® compared to OI. A Monte Carlo simulation favoured the use of FCM in 84.7% and 84.4% of simulations when compared to IS and OI, respectively. FCM infusion before surgery reduced costs in patients with colon cancer and iron-deficiency anaemia when compared with OI and IS.
Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.
The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup duemore » to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. Lastly, when the execution times for events are allowed to vary, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration.« less
Limits on the Efficiency of Event-Based Algorithms for Monte Carlo Neutron Transport
Romano, Paul K.; Siegel, Andrew R.
2017-07-01
The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup duemore » to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. Lastly, when the execution times for events are allowed to vary, the vector speedup is also limited by differences in execution time for events being carried out in a single event-iteration.« less
NASA Astrophysics Data System (ADS)
Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.
2017-01-01
Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.
Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali
2018-07-01
The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion. An EBC system typically includes a bond coat located between the EBC and the component surface. Bond coat materials are generally chosen for properties other than low oxygen diffusivity, but low oxygen diffusivity is nevertheless a desirable characteristic, as the bond coat could provide some additional component protection, particularly in the case where cracks in the coating system provide a direct path from the environment to the bond coat interface. We have therefore performed similar kMC simulations of oxygen diffusion in this material.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo
2017-03-01
We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Liborio I., E-mail: liborio78@gmail.com
A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Montemore » Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.« less
Radiance and polarization of multiple scattered light from haze and clouds.
Kattawar, G W; Plass, G N
1968-08-01
The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.
NASA Astrophysics Data System (ADS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
NASA Astrophysics Data System (ADS)
van Loon, E. G. C. P.; Schüler, M.; Katsnelson, M. I.; Wehling, T. O.
2016-10-01
We investigate the Peierls-Feynman-Bogoliubov variational principle to map Hubbard models with nonlocal interactions to effective models with only local interactions. We study the renormalization of the local interaction induced by nearest-neighbor interaction and assess the quality of the effective Hubbard models in reproducing observables of the corresponding extended Hubbard models. We compare the renormalization of the local interactions as obtained from numerically exact determinant quantum Monte Carlo to approximate but more generally applicable calculations using dual boson, dynamical mean field theory, and the random phase approximation. These more approximate approaches are crucial for any application with real materials in mind. Furthermore, we use the dual boson method to calculate observables of the extended Hubbard models directly and benchmark these against determinant quantum Monte Carlo simulations of the effective Hubbard model.
Su, Peiran; Eri, Qitai; Wang, Qiang
2014-04-10
Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.
A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory
ERIC Educational Resources Information Center
Anger, C. D.; Prescott, J. R.
1970-01-01
Describes a dry- lab" experiment for the college freshman laboratory, in which the essential features of Browian motion are given principles, using the Monte Carlo technique. Calculations principles, using the Monte Carlo technique. Calculations are carried out by a computation sheme based on computer language. Bibliography. (LC)
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Carl C.; Forget, Benoit; Smith, Kord S.
Most high performance computing systems being deployed currently and envisioned for the future are based on making use of heavy parallelism across many computational nodes and many concurrent cores. These types of heavily parallel systems often have relatively little memory per core but large amounts of computing capability. This places a significant constraint on how data storage is handled in many Monte Carlo codes. This is made even more significant in fully coupled multiphysics simulations, which requires simulations of many physical phenomena be carried out concurrently on individual processing nodes, which further reduces the amount of memory available for storagemore » of Monte Carlo data. As such, there has been a move towards on-the-fly nuclear data generation to reduce memory requirements associated with interpolation between pre-generated large nuclear data tables for a selection of system temperatures. Methods have been previously developed and implemented in MIT’s OpenMC Monte Carlo code for both the resolved resonance regime and the unresolved resonance regime, but are currently absent for the thermal energy regime. While there are many components involved in generating a thermal neutron scattering cross section on-the-fly, this work will focus on a proposed method for determining the energy and direction of a neutron after a thermal incoherent inelastic scattering event. This work proposes a rejection sampling based method using the thermal scattering kernel to determine the correct outgoing energy and angle. The goal of this project is to be able to treat the full S (a, ß) kernel for graphite, to assist in high fidelity simulations of the TREAT reactor at Idaho National Laboratory. The method is, however, sufficiently general to be applicable in other thermal scattering materials, and can be initially validated with the continuous analytic free gas model.« less
NASA Astrophysics Data System (ADS)
Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru
2016-07-01
In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marous, L; Muryn, J; Liptak, C
2016-06-15
Purpose: Monte Carlo simulation is a frequently used technique for assessing patient dose in CT. The accuracy of a Monte Carlo program is often validated using the standard CT dose index (CTDI) phantoms by comparing simulated and measured CTDI{sub 100}. To achieve good agreement, many input parameters in the simulation (e.g., energy spectrum and effective beam width) need to be determined. However, not all the parameters have equal importance. Our aim was to assess the relative importance of the various factors that influence the accuracy of simulated CTDI{sub 100}. Methods: A Monte Carlo program previously validated for a clinical CTmore » system was used to simulate CTDI{sub 100}. For the standard CTDI phantoms (32 and 16 cm in diameter), CTDI{sub 100} values from central and four peripheral locations at 70 and 120 kVp were first simulated using a set of reference input parameter values (treated as the truth). To emulate the situation in which the input parameter values used by the researcher may deviate from the truth, additional simulations were performed in which intentional errors were introduced into the input parameters, the effects of which on simulated CTDI{sub 100} were analyzed. Results: At 38.4-mm collimation, errors in effective beam width up to 5.0 mm showed negligible effects on simulated CTDI{sub 100} (<1.0%). Likewise, errors in acrylic density of up to 0.01 g/cm{sup 3} resulted in small CTDI{sub 100} errors (<2.5%). In contrast, errors in spectral HVL produced more significant effects: slight deviations (±0.2 mm Al) produced errors up to 4.4%, whereas more extreme deviations (±1.4 mm Al) produced errors as high as 25.9%. Lastly, ignoring the CT table introduced errors up to 13.9%. Conclusion: Monte Carlo simulated CTDI{sub 100} is insensitive to errors in effective beam width and acrylic density. However, they are sensitive to errors in spectral HVL. To obtain accurate results, the CT table should not be ignored. This work was supported by a Faculty Research and Development Award from Cleveland State University.« less
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-09-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.
APS undulator and wiggler sources: Monte-Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.L.; Lai, B.; Viccaro, P.J.
1992-02-01
Standard insertion devices will be provided to each sector by the Advanced Photon Source. It is important to define the radiation characteristics of these general purpose devices. In this document,results of Monte-Carlo simulation are presented. These results, based on the SHADOW program, include the APS Undulator A (UA), Wiggler A (WA), and Wiggler B (WB).
Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.
2006-01-01
The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
NASA Astrophysics Data System (ADS)
Eddowes, M. H.; Mills, T. N.; Delpy, D. T.
1995-05-01
A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.
Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces
NASA Astrophysics Data System (ADS)
Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz
2018-03-01
In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.
NASA Astrophysics Data System (ADS)
Allaf, M. Athari; Shahriari, M.; Sohrabpour, M.
2004-04-01
A new method using Monte Carlo source simulation of interference reactions in neutron activation analysis experiments has been developed. The neutron spectrum at the sample location has been simulated using the Monte Carlo code MCNP and the contributions of different elements to produce a specified gamma line have been determined. The produced response matrix has been used to measure peak areas and the sample masses of the elements of interest. A number of benchmark experiments have been performed and the calculated results verified against known values. The good agreement obtained between the calculated and known values suggests that this technique may be useful for the elimination of interference reactions in neutron activation analysis.
Force field development with GOMC, a fast new Monte Carlo molecular simulation code
NASA Astrophysics Data System (ADS)
Mick, Jason Richard
In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable of reproducing pure fluid behavior and binary mixture behavior to a high degree of accuracy.
NASA Astrophysics Data System (ADS)
Žukovič, M.; Borovský, M.; Bobák, A.
2018-05-01
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.
NASA Astrophysics Data System (ADS)
Nicollin, Florence; Gibert, Dominique; Lesparre, Nolwenn; Nussbaum, Christophe
2010-04-01
Electrical resistivity measurements were performed to characterize the anisotropy of electrical resistivity of the excavation damaged zone (EDZ) at the end-face of a gallery in the Opalinus clay of the Mont Terri Underground Rock Laboratory (URL). The data were acquired with a combination of square arrays in 18 zones on the gallery's face and in two series of four boreholes perpendicular to the face. Each data set is independently inverted using simulated annealing to recover the resistivity tensor. Both the stability and the non-uniqueness of the inverse problem are discussed with synthetic examples. The inversion of the data shows that the face is split in two domains separated by a tectonic fracture, with different resistivity values but with a common orientation. The direction of the maximum resistivity is found perpendicular to the bedding plane, and the direction of minimum resistivity is contained in the face's plane. These results show that the geo-electrical structure of the EDZ is controlled by a combination of effects due to tectonics, stratigraphy, and recent fracturing produced by the excavation of the gallery.
Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?
Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend
2011-10-11
In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.
Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients
NASA Astrophysics Data System (ADS)
Grassberger, C.; Lomax, Anthony; Paganetti, H.
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.
Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients
Grassberger, C; Lomax, Tony; Paganetti, H
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (<0.6MeV for 230MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079
Using Monte Carlo Simulation to Prioritize Key Maritime Environmental Impacts of Port Infrastructure
NASA Astrophysics Data System (ADS)
Perez Lespier, L. M.; Long, S.; Shoberg, T.
2016-12-01
This study creates a Monte Carlo simulation model to prioritize key indicators of environmental impacts resulting from maritime port infrastructure. Data inputs are derived from LandSat imagery, government databases, and industry reports to create the simulation. Results are validated using subject matter experts and compared with those returned from time-series regression to determine goodness of fit. The Port of Prince Rupert, Canada is used as the location for the study.
Antihydrogen from positronium impact with cold antiprotons: a Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Cassidy, D. B.; Merrison, J. P.; Charlton, M.; Mitroy, J.; Ryzhikh, G.
1999-04-01
A Monte Carlo simulation of the reaction to form antihydrogen by positronium impact upon antiprotons has been undertaken. Total and differential cross sections have been utilized as inputs to the simulation which models the conditions foreseen in planned antihydrogen formation experiments using positrons and antiprotons held in Penning traps. Thus, predictions of antihydrogen production rates, angular distributions and the variation of the mean antihydrogen temperature as a function of incident positronium kinetic energy have been produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED
2010-07-20
The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less