Sample records for direct technology transfer

  1. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  2. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  3. The role of the University Licensing Office in transferring intellectual property to industry

    NASA Technical Reports Server (NTRS)

    Preston, John T.

    1992-01-01

    Universities in the US have a significant impact on business through the transfer of technology. This transfer of technology takes various forms, including faculty communications, faculty consulting activities, and the direct transfer of technology through the licensing of patents, copyrights, and other intellectual property to industry. The topics discussed include the following: background of the MIT Technology Licensing Office (TLO), goals of the MIT TLO, MIT's technology transfer philosophy, and important factors for success in new company formation.

  4. 75 FR 42030 - Amendments to National Emission Standards for Hazardous Air Pollutants: Area Source Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    .... National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions to Address..., or use of energy. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C. 272 note) directs...

  5. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  6. Joining Together for a Common Cause – Interagency Collaboration to Fight disease

    USDA-ARS?s Scientific Manuscript database

    In addition to the economic and technical benefits of technology transfer, there is the human element-how technology development and technology transfer can make a difference in people’s lives. We will share compelling stories of how individuals have directly benefited from technology development an...

  7. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  8. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology... ADMINISTRATION 13 CFR Chapter I RIN 3245-AF84 Small Business Innovation Research Program Policy Directive AGENCY...

  9. FSA future directions: FSA technology activities in FY86

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1985-01-01

    The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.

  10. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  11. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  12. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer

    DTIC Science & Technology

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4076 5c.  PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology

  13. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  14. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  15. The challenge of technology transfer: Buying in without selling out

    PubMed Central

    Pennypacker, H. S.

    1986-01-01

    Highly effective technologies flowing from the discipline of behavior analysis have not been widely adopted, thus threatening the survival of the discipline itself. An analysis of the contingencies underlying successful technology transfer suggests the need for direct, empirical involvement in the marketplace in order to insure that the maximum demonstrable benefits reach the ultimate users. A successful example of this strategy of technology transfer is provided. Three areas of intense national concern—urban violence, illiteracy, and declining industrial productivity—provide immediate opportunities for the technologies of behavior analysis to secure the place of the discipline in the intellectual mosaic of the 21st century. PMID:22478656

  16. A research proposal for investigating the effect of foreign direct investments on technology transfer in the Arabian Gulf (GCC)

    NASA Astrophysics Data System (ADS)

    Tahat, Kaher; Whelan, Susan

    2015-02-01

    In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).

  17. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  18. Sandia National Laboratories: News

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Locations

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Careers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Mission

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Research

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories:

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. Sandia National Laboratories: Feedback

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry

  6. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. Sandia National Laboratories: Sandia Enabled Communications and

    Science.gov Websites

    Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry

  8. NASA spinoffs to public service

    NASA Technical Reports Server (NTRS)

    Ault, L. A.; Cleland, J. G.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.

  9. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Sandia National Laboratories: Search Results

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Sandia National Laboratories: About Sandia: Community Involvement:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Social Media

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Sandia National Laboratories: Visiting Research Scholars

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  15. Sandia National Laboratories: News: Videos

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Sandia National Laboratories: About Sandia

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Sandia National Laboratories: News: Image Gallery

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: Research: Biodefense

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Privacy and Security

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Sandia Digital Media

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Careers: Special Programs

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories: Cooperative Monitoring Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. Sandia National Laboratories: Cooperative Research and Development

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Sandia National Laboratories: Research: Bioscience

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  6. Sandia National Laboratories: Integrated Military Systems

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. The ESA TTP and Recent Spin-off Successes

    NASA Astrophysics Data System (ADS)

    Raitt, D.; Brisson, P.

    2002-01-01

    In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.

  8. Sandia National Laboratories: News: Publications: Environmental Reports

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Sandia National Laboratories: Sandia National Laboratories: News: Events

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Sandia National Laboratories: About Sandia: Environmental Responsibility

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Sandia National Laboratories: About Sandia: Community Involvement

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Sandia National Laboratories: News: Publications: HPC Reports

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Community Involvement: Volunteer Programs

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Sandia National Laboratories: News: Search Sandia Publications

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  15. Sandia National Laboratories: Working with Sandia: Small Business

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Sandia National Laboratories: News: Media Resources: Media Contacts

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: Employee & Retiree Resources: Technical

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Z Pulsed Power Facility

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Advanced Simulation and Computing

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: News: Publications: Annual Report

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories: Employee & Retiree Resources: Remote Access

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. Flexible inorganic light emitting diodes based on semiconductor nanowires

    PubMed Central

    Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.

    2017-01-01

    The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439

  5. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  6. Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. Sandia National Laboratories: Sandia inks pact with Fire and Rescue

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  8. 10 CFR 611.110 - Assignment or transfer of loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Assignment or transfer of loans. 611.110 Section 611.110 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Direct Loan Program § 611.110 Assignment or transfer of loans. (a) The Loan Documents may...

  9. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  10. Space technology: A study of the significance of recognition for innovators of spinoff technologies. 1993 activities/1994, 1995 plans

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.

  11. Human Welfare and Technological Innovation. Open Grants Papers No. 2.

    ERIC Educational Resources Information Center

    Hayashi, Yujiro

    This publication on human welfare and technological innovation contains two sections. The first section examines the objectives and functions of technological innovation while the second section discusses the direction and analysis of technology transfer between Japan and other nations. Subtopics within the first section include: (1)…

  12. Identifying research needs for wheelchair transfers in the built environment.

    PubMed

    Crytzer, Theresa Marie; Cooper, Rory; Jerome, Genevieve; Koontz, Alicia

    2017-02-01

    The purpose of this study is to describe the results of focus groups held during the Independent Wheelchair Transfer (IWT) Workgroup. The aims were to facilitate exchange of ideas on (1) the impact of the built environment on the wheelchair transfer process within the community (i.e. moving from wheelchair to and from other surfaces (e.g. furniture, toilet seat, bath bench, car seat) to participate in daily activities), (2) wheelchair users' needs during transfers in the built environment, and (3) future research directions. Live web-based conferencing using Adobe Connect technology (Clarix Technologies, Inc., Pittsford, NY) was utilized to conduct three focus groups composed of experts in the field of assistive technology. Investigators independently reviewed focus group meeting transcripts and used qualitative methods to identify main themes. Thirty-one experts in assistive technology and related fields participated in focus groups. Nine main themes were found including the effect of transfer skills training, space considerations in the built environment, wheelchair configuration, and the interaction between the built environment, user preferences, and transfer techniques. All groups raised issues about the transfer process in areas of the built environment with limited access, the effect of wheelchair users' transfer techniques, and user preferences during transfers. The area of independent transfers is multi-faceted and several factors require consideration when contemplating environmental changes to improve accessibility for wheelchair users. Obvious opportunity exists for research which could lead to advances in transfer technology, environments, and techniques for wheelchair users. Implications for Rehabilitation Tremendous opportunities for research collaborations in the field of assistive technology: To develop new terminology to describe wheelchair transfers. To improve the design of the built environment for wheelchair users. To investigate wheelchair transfer training techniques.

  13. [Radiation Tolerant Electronics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Research work in the providing radiation tolerant electronics to NASA and the commercial sector is reported herein. There are four major sections to this report: (1) Special purpose VLSI technology section discusses the status of the VLSI projects as well as the new background technologies that have been developed; (2) Lossless data compression results provide the background and direction of new data compression pursued under this grant; (3) Commercial technology transfer presents an itemization of the commercial technology transfer; and (4) Delivery of VLSI to the Government is a solution and progress report that shows how the Government and Government contractors are gaining access to the technology that has been developed by the MRC.

  14. A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology

    NASA Astrophysics Data System (ADS)

    Tu, Hongen; Xu, Yong

    2012-07-01

    This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.

  15. Protecting Defense Technologies: DOD Assessment Needed to Determine Requirement for Critical Technologies List

    DTIC Science & Technology

    2013-01-01

    Service DTSA Defense Technology Security Administration MCTL Militarily Critical Technologies List This is a work of the U.S. government and is not...Respond to MCTL Weaknesses Page 8 GAO-13-157 Protecting Defense Technologies Administration ( DTSA ), military services, and DOD...implementation of technology security policies on international transfers of defense- related goods, services, and technologies; • directed DTSA to

  16. Walking...A Step in the Right Direction!

    MedlinePlus

    ... For Reporters Meetings & Workshops Follow Us Home Health Information Weight Management Walking: A Step in the Right Direction Related ... at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information ... Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...

  17. The Promise of Microbial Technology.

    ERIC Educational Resources Information Center

    El Nawawy, Amin S.

    1982-01-01

    Prospects for microbial technology are discussed including: (1) possible transfer of nitrogen-fixing ability directly from bacteria to plant; (2) increasing food needs met through single-cell proteins and fermentation; (3) microbial production of antibiotics; and (4) increased biogas production. (Author/JN)

  18. University Knowledge/Technology Transfer and Public Decision-Making: Review, Synthesis, and Alternative Models. Rural Development Series No. 11.

    ERIC Educational Resources Information Center

    Sollie, Carlton R.; Howell, Frank M.

    Issues and problems associated with university involvement in public sector activities and the knowledge transfer process are examined. After a brief statement of the state-of-the-art in knowledge transfer, attention is directed to one of the basic issues presented in the literature: the appropriateness and inappropriateness of university…

  19. 15 CFR Appendix to Part 1180 - Sample Funding Agreement Clause for Direct Submission of Products

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commerce and Foreign Trade (Continued) TECHNOLOGY ADMINISTRATION, DEPARTMENT OF COMMERCE TRANSFER BY... INFORMATION SERVICE Pt. 1180, App. Appendix to Part 1180—Sample Funding Agreement Clause for Direct Submission...

  20. Spinoff, 1994

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1994-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. The first section, Aerospace Aims, is an illustrated summary of NASA's major aeronautical and space programs, their goals and directions, their contributions to American scientific and technological growth, and their potential for practical benefit. The second section, Technology Twice Used, is a representative selection of new products and processes adapted from technology originally developed for NASA mainline programs, underlying the broad diversity of spinoff applications and the social/economic benefits they provide. The third section, Technology Transfer, is a description of the mechanisms employed to encourage and facilitate practical application of new technologies developed in the course of NASA activities.

  1. Spinoff 1979

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1979-01-01

    Technology is knowledge, the technical "know-how" employed by a society to produce things that improve the quality of human life. Like other forms of knowledge, it is transferable; once developed, technology can be applied to uses different-and often remote-from the original application. Thus, the technology that NASA has developed in more than two decades of space and aeronautical research constitutes a valuable national resource, a bank of knowledge available for secondary utilization, or "spinoff." NASA mainline programs, by their challenging nature, are particularly demanding of technological advance; meeting their goals has forced extraordinary advancements in virtually every scientific and technological discipline. For that reason, the wealth of aerospace-generated knowledge available for transfer is exceptionally diverse, and much of it is readily applicable to secondary use over a broad spectrum of public needs and conveniences. Through its Congressionally mandated Technology Utilization Program, NASA seeks to promote wider use of this technological resource. The program provides a link between the technology bank and those in either the private or public sectors who might be able to re-use the technology productively. Its aim is to accelerate the transfer process, to bring to the marketplace sooner those spinoffs which might eventually occur in the normal course of events, and to gain thereby more immediate economic benefit in terms of new products and new jobs. The program has been remarkably successful. Since its inception 17 years ago, thousands of spinoff products and processes have emerged. Some of these innovations bring only moderate increments of economic gain or lifestyle improvement, but many others amount to significant public benefits, with economic values often running to millions of dollars. Collectively, spinoffs provide a substantial bonus return on the funds invested in aerospace research. This publication is intended to increase public awareness of the resource that is NASA's technology bank and its potential for further public benefit. It is devoted primarily to the NASA technology transfer process, but in the interests of perspective it also describes related areas of NASA endeavor. Section 1 consists of a resume of NASA's current mainline programs. These programs are producing direct public benefit through direct application of technology; at the same time, they are contributing to indirect benefit-spinoff-by generating new technology which may find secondary application in the future. Section 2 is the focal point of this volume. It contains a representative sampling of spinoff products and processes employed in various avenues of everyday life, and it describes briefly the NASA technology from which these transfers derived. Section 3 details the mechanisms of the technology transfer process, including the means by which NASA seeks to stimulate technology utilization. Also described are NASA's activities in a related area of technology transfer: provision of assistance to agencies interested in exploiting the benefit potential of satellite remote sensing technology.

  2. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.

    PubMed

    Beiter, Thomas; Zimmermann, Martina; Fragasso, Annunziata; Armeanu, Sorin; Lauer, Ulrich M; Bitzer, Michael; Su, Hua; Young, William L; Niess, Andreas M; Simon, Perikles

    2008-01-01

    So far, the abuse of gene transfer technology in sport, so-called gene doping, is undetectable. However, recent studies in somatic gene therapy indicate that long-term presence of transgenic DNA (tDNA) following various gene transfer protocols can be found in DNA isolated from whole blood using conventional PCR protocols. Application of these protocols for the direct detection of gene doping would require almost complete knowledge about the sequence of the genetic information that has been transferred. Here, we develop and describe the novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure that overcomes this difficulty. Apart from the interesting perspectives that this spiPCR procedure offers in the fight against gene doping, this technology could also be of interest in biodistribution and biosafety studies for gene therapeutic applications.

  3. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  4. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.

    PubMed

    Zhang, Xiaheng; MacMillan, David W C

    2017-08-23

    A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of commercially available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technology has been successfully applied to the expedient synthesis of the medicinal agent haloperidol.

  5. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    DTIC Science & Technology

    2014-06-01

    layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element

  6. The FY 1983 Department of Defense Program for Research, Development, and Acquisition

    DTIC Science & Technology

    1982-03-02

    TRANSFER Arms transfers and technology sharing play an increasingly vital role in international relations and the U.S. has major security interests in such...Funding---------------IV-6 6. Government/Industry Relations -----------------------IV-7 C. CONCLUSIONS ------------------------------------------- IV-8 V... INTERNATIONAL ACTIVITIES------------------------------------ V-1 A. INTRODUCTION ------------------------------------------ V-1 B. DIRECTIONS AND

  7. Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.

    PubMed

    Felice, Alfons K G; Sygmund, Christoph; Harreither, Wolfgang; Kittl, Roman; Gorton, Lo; Ludwig, Roland

    2013-05-01

    Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors. © 2013 Diabetes Technology Society.

  8. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  9. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  10. Commercial users panel

    NASA Technical Reports Server (NTRS)

    Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.

    1987-01-01

    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.

  11. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  12. Assessing the effectiveness of technology transfer from U.S. government R&D laboratories: impact of market orientation

    NASA Astrophysics Data System (ADS)

    Bozeman, Barry; Coker, Karen

    1992-05-01

    This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-31

    In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts.more » The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.« less

  14. Neuroeducational Research in the Design and Use of a Learning Technology

    ERIC Educational Resources Information Center

    Howard-Jones, Paul; Holmes, Wayne; Demetriou, Skevi; Jones, Carol; Tanimoto, Eriko; Morgan, Owen; Perkins, David; Davies, Neil

    2015-01-01

    Many have warned against a direct "brain scan to lesson plan" approach when attempting to transfer insights from neuroscience to the classroom. Similarly, in the effective design and implementation of learning technology, a judicious interrelation of insights associated with diverse theoretical perspectives (e.g., neuroscientific,…

  15. Digital teleprotection units; A technology overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Madge, R.

    1992-10-01

    Over the past several years, there have been major technological advances in the area of fibre optics links and digital communication systems. This opens the possibility for digital teleprotection systems which are both faster and more reliable than current analogue ones. This paper presents a description of a generic Digital Teleprotection Unit (DTU) followed by a discussion on the technical characteristics of current commercial systems. A comparison is made between DTUs and their analogue counterparts in the area of transfer trip delay. Finally, a direct transfer trip system utilizing redundant DTUs is proposed.

  16. The Academic I-BEST: A Model for Precollege Student Success in College Transfer Programs

    ERIC Educational Resources Information Center

    Emory, Doug; Raymond, Linda; Lee, Karen; Twohy, Sean

    2016-01-01

    Beginning in 2011, Lake Washington Institute of Technology initiated an I-BEST (Integrated Basic Education and Skills Training) program designed to allow upper-level basic education students to directly enter academic courses required by college transfer degrees. This program, the Academic I-BEST, represents one of the earliest examples of the…

  17. Aza-heterocyclic Receptors for Direct Electron Transfer Hemoglobin Biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Kashyap, D. M. Nikhila; Hebbar, Suraj; Swetha, R.; Prasad, Sujay; Kamala, T.; Srikanta, S. S.; Krishnaswamy, P. R.; Bhat, Navakanta

    2017-02-01

    Direct Electron Transfer biosensors, facilitating direct communication between the biomolecule of interest and electrode surface, are preferable compared to enzymatic and mediator based sensors. Although hemoglobin (Hb) contains four redox active iron centres, direct detection is not possible due to inaccessibility of iron centres and formation of dimers, blocking electron transfer. Through the coordination of iron with aza-heterocyclic receptors - pyridine and imidazole - we report a cost effective, highly sensitive and simple electrochemical Hb sensor using cyclic voltammetry and chronoamperometry. The receptor can be either in the form of liquid micro-droplet mixed with blood or dry chemistry embedded in paper membrane on top of screen printed carbon electrodes. We demonstrate excellent linearity and robustness against interference using clinical samples. A truly point of care technology is demonstrated by integrating disposable test strips with handheld reader, enabling finger prick to result in less than a minute.

  18. Analysis of Web Site Activity and Technology Transfer Accomplishments

    Treesearch

    Daniel L. Schmoldt; Matthew F. Winn; Philip A. Araman

    1997-01-01

    Government research activities are coming under increased scrutiny to justify their research direction, and to validate research project existence. One way to justify research is to pay closer attention to research clientele, their needs and their willingness and ability to adopt new technologies. Because many research products are informational rather than tangible,...

  19. Impacts of foreign direct investment on efficiency in Swedish manufacturing.

    PubMed

    Svedin, Dick; Stage, Jesper

    2016-01-01

    A number of studies have found that foreign direct investment (FDI) can have positive impacts on productivity. However, while FDI has clearly positive impacts on technology transfers, its effects on resource use within firms is less clear and, in principle, efficiency losses might offset some of the productivity gains associated with improved technologies. In this paper, we study the impacts of FDI on efficiency in Swedish manufacturing. We find that foreign ownership has positive impacts on efficiency, supporting the earlier findings on productivity.

  20. SPINOFF 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    For the past 42 years, NASA has made special efforts to ensure the widest possible dissemination of its research and technology developments. We share the wealth of technology developed for our missions with the nation's industries to contribute to US economic strength and quality of life. For the past 27 years, this publication has provided you with over 1,200 examples of products and services developed as a direct result of commercial partnerships between NASA and the business community. Examples have covered products from fire retardant materials and air pollution monitors to non-invasive cardiac monitors and sensors for environmental control. In the Technology Transfer and Outreach section of Spinoff 2000, we highlight the activities of our Ames Research Center's Commercial Technology Office (CTO). Their efforts to facilitate and support technology commercialization are representative of the CTO at each field center. Increased activities to accelerate the dissemination of technologies, speed up the process of patent licensing, quicken the release of software for beta testing, support and manage incubators, and hasten the collaboration with commercial and academic organizations will continue to maximize the earliest potential commercial utilization of NASA's new inventions and technologies. Spinoff 2000 is organized into three sections: (1) Aerospace and Development highlights major research and development efforts currently carried out at the 10 NASA field centers; (2) Commercial Benefits-Spinoffs describes commercially available products and services resulting from the transfer of NASA technology; and (3) Technology Transfer and Outreach features this year's center spotlight, NASA's Ames Research Center, and its commercialization efforts, as well as the mechanisms in place nationwide to assist US industry in obtaining, transferring, and applying NASA technology, expertise, and assistance.

  1. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can reach their maximum effectiveness.

  2. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  3. Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria.

    PubMed

    Bradley, Robert W; Bombelli, Paolo; Rowden, Stephen J L; Howe, Christopher J

    2012-12-01

    A large variety of new energy-generating technologies are being developed in an effort to reduce global dependence on fossil fuels, and to reduce the carbon footprint of energy generation. The term 'biological photovoltaic system' encompasses a broad range of technologies which all employ biological material that can harness light energy to split water, and then transfer the resulting electrons to an anode for power generation or electrosynthesis. The use of whole cyanobacterial cells is a good compromise between the requirements of the biological material to be simply organized and transfer electrons efficiently to the anode, and also to be robust and able to self-assemble and self-repair. The principle that photosynthetic bacteria can generate and transfer electrons directly or indirectly to an anode has been demonstrated by a number of groups, although the power output obtained from these devices is too low for biological photovoltaic devices to be useful outside the laboratory. Understanding how photosynthetically generated electrons are transferred through and out of the organism is key to improving power output, and investigations on this aspect of the technology are the main focus of the present review.

  4. Cell-printing and transfer technology applications for bone defects in mice.

    PubMed

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  5. The technology improvement and development of the new design-engineering principles of pilot bore directional drilling

    NASA Astrophysics Data System (ADS)

    Shadrina, A.; Saruev, L.; Vasenin, S.

    2016-09-01

    This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented.

  6. Construction and direct electrochemistry of orientation controlled laccase electrode.

    PubMed

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  8. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  9. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  10. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer

    PubMed Central

    Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088

  11. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer.

    PubMed

    Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.

  12. Commercial applications of new photovoltaic technologies

    NASA Technical Reports Server (NTRS)

    Mcconnell, R.

    1991-01-01

    The National Renewable Energy Laboratory (NREL) has directed and managed photovoltaic (PV) research and development (R&D) activities for the Department of Energy for more than 13 years. The NREL budget for these activities is almost $33 million for FY 1991. With the world's increasing concern for the environment and the United States' renewed apprehension over secure and adequate energy supplies, the use of semiconducting materials for the direct conversion of sunlight to electricity - photovoltaics - is an excellent example of government-supported high technology ready for further development by U.S. companies. Some new PV technologies and their research progress, some commercial applications of PV, and NREL's technology transfer activities for helping U.S. industry in its efforts to bring new products or services to the marketplace are described.

  13. Uses of ceramics in microelectronics: A survey

    NASA Technical Reports Server (NTRS)

    Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.

    1971-01-01

    The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.

  14. Enhancing Readiness Through Environmental Quality Technology

    DTIC Science & Technology

    1996-05-01

    mercury . Up coming technologies for heavy metal soil contamination include phytoremediation and electrokinetics. Plants have also been shown to uptake... phytoremediation could be that process. Many plants have been found that have a nitroreductase enzyme. These plants can degrade explosive contaminants. This... phytoremediation in a wetland environment for explosive contaminated groundwater. But, this could be transferred directly to soils if proven successful

  15. 77 FR 43662 - Notice of Open Meetings To Prepare and Release 2012 Annual Report to Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... ``regarding the national security implications and impact of the bilateral trade and economic relationship... and its 5-year plan, technology transfers, and outsourcing. China's activities directly affecting U.S...

  16. 77 FR 53965 - Notice of Open Meetings To Prepare and Release 2012 Annual Report to Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... national security implications and impact of the bilateral trade and economic relationship between the... and its 5-year plan, technology transfers, and outsourcing. China's activities directly affecting U.S...

  17. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  18. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  19. Skylab medical technology utilization

    NASA Technical Reports Server (NTRS)

    Stonesifer, J. C.

    1974-01-01

    To perform the extensive medical experimentation on man in a long-term, zero-g environment, new medical measuring and monitoring equipment had to be developed, new techniques in training and operations were required, and new methods of collecting and analyzing the great amounts of medical data were developed. Examples of technology transfers to the public sector resulted from the development of new equipment, methods, techniques, and data. This paper describes several of the examples that stemmed directly from Skylab technology.

  20. Technology Transfer Issues and a New Technology Transfer Model

    ERIC Educational Resources Information Center

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  1. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  2. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  3. Technology transfer: federal legislation that helps businesses and universities

    NASA Astrophysics Data System (ADS)

    Oaks, Bill G.

    1992-05-01

    In 1980, Congress enacted the Stevenson-Wydler Technology Innovation Act to encourage federal laboratories to `spin off' their technology to industry, universities, and state and local governments. The law reflected Congressional concern for the economic well-being of the nation and the need for the United States to maintain its technological superiority. Almost half the nation's research is conducted in federal laboratories. Other legislation, the Small Business Innovation Development Act of 1982 and the National Cooperative Research Act of 1984, was followed by the Technology Transfer Act of 1986 that strengthened and consolidated policy concerning the technology transfer responsibilities of the federal labs. The law allows the labs to directly license their patents and permits the issuance of exclusive licenses. It allows the labs to enter into cooperative research and development agreements with industry, universities, and state and local governments. It institutionalized the Federal Laboratory consortium which, to that point in time, had been a formal but largely unrecognized body. Under the provisions of the law, the United States Air Force Rome Laboratory located in Rome, New York, as the Air Force lead laboratory in photonics research entered into an agreement with the Governor of the State of New York to collaborate in photonics research and development. Subsequent to that agreement, the state established the not-for-profit New York State Photonics Development Corporation in Rome to facilitate business access to Rome Laboratory's photonics research facilities and technologies. Rome Laboratory's photonics research and development program is described in this paper. The Technology Transfer Act of 1986 is summarized, and the roles and missions of the New York State Photonics Development Corporation is explained.

  4. Spinoff 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In 1958, a Congressional Mandate directed the National Aeronautics and Space Agency to ensure for the widest possible dissemination of its research and development results. Thus, the Scientific and Technical Information (STI) Program was born. While this program addressed mostly the timely dissemination of information to NASA, NASA contractors, other government agencies, and the public, technologies were identified that were clearly transferable and applicable to industry for additional use in the development of commercial products and services. Such considerations spun off the Technology Utilization Program. The very successful program went through several name changes and is today called the NASA Commercial Technology Program. The changes that have occurred over time are not only name changes, but program changes that have dramatically altered the philosophy, mission, and goal of the program. It has been identified that a more intense and proactive outreach effort within the program is necessary in order to make the newest and latest technologies available to industry now-at the time the technology is actually developed. The NASA Commercial Technology Network (NCTN), its interaction with industry at all levels through a large network of organizations and offices, is contributing to the success of small, medium, and large U.S. businesses to remain globally competitive. At the same time, new products and services derived from the transfer and application of NASA technology benefit everyone. This publication includes the following: Aerospace research and development - NASA headquarters and centers. Technology transfer and commercialization. Commercial benefits - spinoffs.NASA success and education. NASA commercial technology network.

  5. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  6. Using bibliographic databases in technology transfer

    NASA Technical Reports Server (NTRS)

    Huffman, G. David

    1987-01-01

    When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.

  7. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  8. Treatment of Spent Argentine Ion Exchange Resin Using Vitrification - Results of FY01 Testing at the Savannah River Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.L.

    2002-08-14

    Under the Science and Technology Implementing Arrangement for Cooperation on Radioactive and Mixed Waste Management (JCCRM), the Department of Energy (DOE) is helping to transfer waste treatment technology to international atomic energy commissions. In 1996, as part of the JCCRM, DOE established a collaborative research agreement with Argentina's Comision Nacional de Energia Atomica (CNEA). A primary mission of the CNEA is to direct waste management activities for Argentina's nuclear industry.

  9. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  10. Viral and Synthetic RNA Vector Technologies and Applications

    PubMed Central

    Schott, Juliane W; Morgan, Michael; Galla, Melanie; Schambach, Axel

    2016-01-01

    Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy. PMID:27377044

  11. 78 FR 3906 - Prospective Grant of a Co-Exclusive License: Adenovirus-Based Controls and Calibrators for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... contemplated license should be directed to: Uri Reichman, Ph.D., M.B.A, Office of Technology Transfer, National... calibrators and controls for molecular diagnostics (e.g. real time PCR tests). The prospective co-exclusive...

  12. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less

  13. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised ofmore » American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.« less

  14. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    PubMed

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    PubMed

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  16. Space Industrialization: Manufacturing and Construction Activities. Part 2.

    ERIC Educational Resources Information Center

    Story, Charles H.

    1983-01-01

    Discusses how space industrialization will provide direct benefits for our nation and will transfer technology to the many diverse areas of human activity. Examples are the development of the Space Shuttle, the Space Studies Institute, and the LS Society (advocates for colonizing space). (NRJ)

  17. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    PubMed

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  19. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.

    PubMed

    Lee, Inyoung; Loew, Noya; Tsugawa, Wakako; Lin, Chi-En; Probst, David; La Belle, Jeffrey T; Sode, Koji

    2018-06-01

    Continuous glucose monitoring (CGM) is a vital technology for diabetes patients by providing tight glycemic control. Currently, many commercially available CGM sensors use glucose oxidase (GOD) as sensor element, but this enzyme is not able to transfer electrons directly to the electrode without oxygen or an electronic mediator. We previously reported a mutated FAD dependent glucose dehydrogenase complex (FADGDH) capable of direct electron transfer (DET) via an electron transfer subunit without involving oxygen or a mediator. In this study, we investigated the electrochemical response of DET by controlling the immobilization of DET-FADGDH using 3 types of self-assembled monolayers (SAMs) with varying lengths. With the employment of DET-FADGDH and SAM, high current densities were achieved without being affected by interfering substances such as acetaminophen and ascorbic acid. Additionally, the current generated from DET-FADGDH electrodes decreased with increasing length of SAM, suggesting that the DET ability can be affected by the distance between the enzyme and the electrode. These results indicate the feasibility of controlling the immobilization state of the enzymes on the electrode surface. Copyright © 2017. Published by Elsevier B.V.

  20. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  1. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  2. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  3. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  4. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  5. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  6. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    PubMed

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  7. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  8. Innovative technology transfer of nondestructive evaluation research

    Treesearch

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  9. Medically related activities of application team program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Application team methodology identifies and specifies problems in technology transfer programs to biomedical areas through direct contact with users of aerospace technology. The availability of reengineering sources increases impact of the program on the medical community and results in broad scale application of some bioinstrumentation systems. Examples are given that include devices adapted to the rehabilitation of neuromuscular disorders, power sources for artificial organs, and automated monitoring and detection equipment in clinical medicine.

  10. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities

    PubMed Central

    Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.

    2016-01-01

    Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter we aim to highlight the origins, development and evolution of PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups. PMID:27573270

  11. Weapons to widgets: Organic systems and public policy for tech transfer

    NASA Technical Reports Server (NTRS)

    Cargo, Russell A.

    1994-01-01

    Large cuts in defense spending cause serious repercussions throughout the American economy. One means to counter the negative effects of defense reductions is to redirect federal dollars to temporarily prop up defense industries and, over the longer-term, stimulate growth of new nondefense industries. The creation of non-defense products and industries by channeling ideas from public laboratories into the private sector manufacturing facilities, known as technology transfer, is being undertaken in a massive program that has high visibility, large amounts of money, and broad federal agency involvement. How effectively federal money can be directed toward stimulating the creation of non-defense products will define the strength of the economy, (i.e., tax base, employment level, trade balance, capital investments, etc.), over the next decade. Key functions of the tech transfer process are technology and market assessment, capital formation, manufacturing feasibility, sales and distribution, and business organization creation. Those, however, are not functions typically associated with the federal government. Is the government prepared to provide leadership in those areas? This paper suggests organic systems theory as a means to structure the public sector's actions to provide leadership in functional areas normally outside their scope of expertise. By applying new ideas in organization theory, can we design government action to efficiently and effectively transfer technologies?

  12. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  13. Transfer of computer software technology through workshops: The case of fish bioenergetics modeling

    USGS Publications Warehouse

    Johnson, B.L.

    1992-01-01

    A three-part program is proposed to promote the availability and use of computer software packages to fishery managers and researchers. The approach consists of journal articles that announce new technologies, technical reports that serve as user's guides, and hands-on workshops that provide direct instruction to new users. Workshops, which allow experienced users to directly instruct novices in software operation and application are important, but often neglected. The author's experience with organizing and conducting bioenergetics modeling workshops suggests the optimal workshop would take 2 days, have 10-15 participants, one computer for every two users, and one instructor for every 5-6 people.

  14. Whether Foreign Military Sales or Direct Commercial Sales: A Case Study of the UK E-3 AWACS

    DTIC Science & Technology

    1990-09-01

    arrangements available include coproduction, licensed production, subcontractor production, overseas investment, technology transfer, and countertrade ...commercial arrangement between the U.S. manufacturer and a foreign entity. Countertrade - Purchase of goods and services from the buyer country as a

  15. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

    DTIC Science & Technology

    2014-10-13

    harvestingelectrical power directly from waste and renewable biomass and thus represent a promising technology for sustainable energy production.1−5 Central...cell membrane (Figure 3e), serving as a porous semiconducting “ shell ” to facilitate the charge transport at bacteria/electrode or bacteria/bacteria

  16. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  17. Space Technology: A study of the significance of recognition for innovators of spinoff technologies. A case study on the impact of the space technology hall of fame award

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report represents the preliminary effort in studying the significance of recognition for innovators of spinoff technologies. The purpose of this initial year's effort in this area was to gather preliminary data and define the direction for the remainder of the research. This report focuses on the most recent recipients of the Hall of Fame Award, the developers of liquid-cooled garments. Liquid-cooled garments technology and its spinoffs were used as a case study to define and explore the factors involved in technology transfer and to consider the possible incentives in developing commercial applications including the Hall of Fame Award. Through interviews, views of award recipients were obtained on factors encouraging spinoffs as well as impediments to spinoffs. The researchers observed complex inter-relationships among the significant entities (government, individuals, large and small business), the importance of people, the importance of resource availability, and the significance of intrinsic motivation; drew preliminary conclusions pertaining to the direct and indirect influence of recognition like the Hall of Fame Award; and planned the direction for next year's follow-on research.

  18. Crew Transfer Options for Servicing of Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2012-01-01

    In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.

  19. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  20. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  1. The Issue of Research Graduate Employability in Australia: An Analysis of the Policy Framing (1999-2013)

    ERIC Educational Resources Information Center

    Molla, Tebeje; Cuthbert, Denise

    2015-01-01

    The prevalent knowledge economy discourse has direct implications for higher education policies and practices. It is expected that the higher education sector supports national economic competitiveness mainly through promoting scientific research, supporting technological transfer and innovation, and producing "knowledge workers" such as…

  2. United States Air Force Computer-Aided Acquisition & Logistics Support (CALS): CAD/CAM/CAE Current and Future Environment (1988 - 1998). Version 3.0

    DOT National Transportation Integrated Search

    1988-11-01

    The diffusion and adoption of new technologies across national, sectoral, and : organizational boundaries has been a topic of considerable research. While the : exact transfer mechanism remains a matter of hypothesis, it seems clear that the : direct...

  3. University Technology Transfer: In Tough Economic Times

    ERIC Educational Resources Information Center

    Powers, Joshua B.; Campbell, Eric G.

    2009-01-01

    In 1907, Frederick Cottrell, professor of chemistry at the University of California-Berkeley and father of the modern academic patent, worried that if universities became too directly involved in patenting and licensing operations, their thirst for profits could lead to the erosion of the openness necessary for academic science to flourish. For…

  4. Framework of Quality Assurance of TEL Integration into an Educational Organization

    ERIC Educational Resources Information Center

    Volungeviciene, Airina; Tereseviciene, Margarita; Tait, Alan

    2014-01-01

    This research paper addresses the issues of integration of technology enhanced learning (TEL) into an educational organization. Good practice experience cannot be directly transferred to new organisations due to different contextual conditions. The TEL integration depends significantly upon a very rapid development of services and information…

  5. DG's New Year's presentation

    ScienceCinema

    Heuer, R.-D.

    2018-05-22

    CERN general staff meeting. Looking back at key messages: Highest priority: LHC physics in 2009; Increase diversity of the scientific program; Prepare for future projects; Establish open and direct communication; Prepare CERN towards a global laboratory; Increase consolidation efforts; Financial situation--tight; Knowledge and technology transfer--proactive; Contract policy and internal mobility--lessons learned.

  6. Aerothermodynamics and Turbulence

    DTIC Science & Technology

    2013-03-08

    Surface Heat Transfer and Detailed Flow Structure Fuel Injection in a Scramjet Combustor Reduced Uncertainty in Complex Flows Addressing... hypersonic flight data to capture shock interaction unsteadiness National Hypersonic Foundational Research Plan Joint Technology Office... Hypersonics Basic Science Roadmap Assessment of SOA and Future Research Directions Ongoing Basic Research for Understanding and Controlling Noise

  7. 76 FR 11764 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    .... Patent No. 7,048,854: Apparatus for the removal of heavy metals from acidic wastewater and chemical... inventions cited should be directed to Andrew Drucker, Naval Facilities Engineering Service Center, Code EV12... INFORMATION CONTACT: Andrew Drucker supporting the Head of Technology Transfer Office, Naval Facilities...

  8. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... awards and commercializing their research. As a result, these benchmarks will only apply to those Phase I... Research and Development Enhancement Act of 1992 (SBRDEA), Public Law 102-564 (codified at 15 U.S.C. 638... business concerns (SBCs) and Research Institutions through Federally-funded research or research and...

  9. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE PAGES

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; ...

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s -1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away frommore » the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  10. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.

  11. Spinoff 2001: Special Millennium Feature

    NASA Technical Reports Server (NTRS)

    2001-01-01

    For the past 43 years, NASA has devoted its facilities, labor force, and expertise to sharing the abundance of technology developments used for its missions with the nation's industries. These countless technologies have not only successfully contributed to the growth of the U.S. economy, but also to the quality of life on Earth. For the past 25 years, NASA's Spinoff publication has brought attention to thousands of technologies, products, and services that were developed as a direct result of commercial partnerships between NASA and the private business sector. Many of these exciting technologies included advances in ceramics, computer technology, fiber optics, and remote sensing. New and ongoing research at the NASA field centers covers a full spectrum of technologies that will provide numerous advantages for the future, many of which have made significant strides in the commercial market. The NASA Commercial Technology Network plays a large role in transferring this progress. By applying NASA technologies such as data communication, aircraft de-icing technologies, and innovative materials to everyday functions, American consumers and the national economy benefit. Moving forward into the new millennium, these new technologies will further advance our country's position as the world leader in scientific and technical innovation. These cutting-edge innovations represent the investment of the U.S. citizen in the Space Program. Some of these technologies are highlighted in Spinoff 2001, an example of NASA's commitment to technology transfer and commercialization assistance. This year's issue spotlights the commercial technology efforts of NASA's John F. Kennedy Space Center. Kennedy's extensive network of commercial technology opportunities has enabled them to become a leader in technology transfer outreach. This kind of leadership is exemplified through Kennedy's recent partnership with the State of Florida, working toward the development of the Space Experiment Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.

  12. Foundations of low-temperature plasma enhanced materials synthesis and etching

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  13. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  14. Modelling of Technological Solutions to 4th Generation DH Systems

    NASA Astrophysics Data System (ADS)

    Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija

    2017-11-01

    Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.

  15. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.

  16. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s -1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away frommore » the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  18. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  19. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  20. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  1. Optimized plasma etch window of block copolymers and neutral brush layers for enhanced direct self-assembly pattern transfer into a hardmask layer

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.

  2. A Chebyshev Collocation Method for Moving Boundaries, Heat Transfer, and Convection During Directional Solidification

    NASA Technical Reports Server (NTRS)

    Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.

    1994-01-01

    Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.

  3. Fluidized combustion of coal. [to limit SO2 and NOx emissions

    NASA Technical Reports Server (NTRS)

    Pope, M.

    1978-01-01

    A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.

  4. Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.

    ERIC Educational Resources Information Center

    Clinch, Richard

    This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…

  5. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    ERIC Educational Resources Information Center

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  6. Air-ground information transfer in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Lozito, Sandra

    1989-01-01

    This paper reviews NASA's Aviation Safety Reporting System incident data for a two-year period in order to identify the frequency of air-ground information transfer errors and the factors associated with their occurrence. Of the more than 14,000 primary reports received during the 1985 and 1986 reporting period, one out of four reports concerned problems of information transfer between aircraft and ATC. Approximately half of these errors were associated directly or indirectly with aircraft deviations from assigned heading or altitude. The majority of incidents cited some human-system problem such as workload, cockpit distractions, etc., as the primary contributing factor. Improvements in air-ground information transfer using existing and future (e.g., data link) technology are proposed centering on the development and application of user-centered information management principles.

  7. Artillery ammunition marking tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, B.S.; Lewis, J.C.

    1995-04-01

    This report describes the testing results of two approaches being considered for marking ink artillery ammunition with machine-readable data symbols. The first approach used ink-jet printing directly onto projectiles, and the second approach employed thermal-transfer printing onto self-adhesive labels that are subsequently applied automatically to projectiles. The objectives of this evaluation for each marking technology were to (1) determine typical system performance characteristics using the best commercially available equipment and (2) identify any special requirements necessary for handling ammunition when these technologies are employed.

  8. Incorporating engine health monitoring capability into the SSME Block II controller

    NASA Astrophysics Data System (ADS)

    Clarke, James W.; Copa, Roderick J.

    An account is given of the architecture of the SSME's Block II controller's architecture, its incorporation of smart input electronics (SIE), and the potential benefits of this technology in SSME health-monitoring capabilities. SIE allows the Block II controller to conduct its control functions while simultaneously furnishing the computational capabilities and sensor input interface for any newly defined health-monitoring functions. It is expected that the SIE technology may be directly transferred to any follow-on engine design.

  9. A regional technology transfer program. [North Carolina Industrial Applications Center for the Southeast

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The proliferation of online searching capabilities among its industrial clients, changes in marketing staff and direction, use of Dun and Bradstreet marketing service files, growth of the Annual Service Package program, and services delivered to clients at the NASA funded North Carolina Science and Technology Research Center are described. The library search service was reactivated and enlarged, and a survey was conducted on the NC/STRC Technical Bulletin's effectiveness. Several quotations from clients assess the overall value of the Center's services.

  10. Innovative site remediation technology: Thermal desorption. Volume 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.C.

    1993-11-01

    The monograph on thermal desorption is one of a series of eight on innovative site and waste remediation technologies that are the culmination of a multiorganization effort involving more than 100 experts over a two-year period. The thermal desorption processes addressed in this monograph use heat, either direct or indirect, ex situ, as the principal means to physically separate and transfer contaminants from soils, sediments, sludges, filter cakes, or other media. Thermal desorption is part of a treatment train; some pre- and postprocessing is necessary.

  11. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    PubMed

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes in the manufacturing process and vaccine formulation, to start directly with phase 1 clinical trials.

  12. 78 FR 72020 - Drawbridge Operation Regulation; Passaic River, Kearney and Newark, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use... Proposed Rulemaking Sec. Section Symbol U.S.C. United States Code A. Regulatory History and Information On... rulemaking. The Coast Guard received no comments from the Small Business Administration on this rule. The...

  13. 78 FR 63145 - Approval and Promulgation of State Implementation Plans; Hawaii; Infrastructure Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... comment includes Confidential Business Information (CBI) or other information whose disclosure is... normal business hours with the contact listed directly below. FOR FURTHER INFORMATION CONTACT: Dawn...

  14. Space transfer concepts and analyses for exploration missions, phase 4

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    Earlier studies carried out under this contract covered a wide range of lunar and Mars transportation options, and lunar rove concepts and technology needs. The current report discusses the activities conducted under Technical Directives 16 and 17. Mars transportation was addressed as well as a review and update of architectures and propulsion systems.

  15. 76 FR 45585 - Establishment of the Advisory Committee to the Deputy Director for Intramural Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Research and include (1) the Office of Intramural Training and Education; (2) the Office of Animal Care and... Technology Transfer; and (6) any other program located in the Office of Intramural Research. Advice provided... well as recommendations for future directions, the overall design, content, development and/or delivery...

  16. Novel Thermal Powered Technology for UUV Persistent Surveillance

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2006-01-01

    Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.

  17. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  18. Federal Technology Transfer Act Success Stories

    EPA Pesticide Factsheets

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  19. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  20. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  1. An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1996-01-01

    A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.

  2. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  3. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  4. Optimizing Outcome in the University-Industry Technology Transfer Projects

    NASA Astrophysics Data System (ADS)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in University- Firm Technology Transfer process?

  5. Technology transfer: Half-way houses. No. 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview andmore » also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.« less

  6. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  7. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  8. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  9. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  10. Three CCR accomplishments receive Excellence in Technology Transfer Awards | Center for Cancer Research

    Cancer.gov

    The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…

  11. TTC Fellowship Program | NCI Technology Transfer Center | TTC

    Cancer.gov

    The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.

  12. The Change Book: A Blueprint for Technology Transfer.

    ERIC Educational Resources Information Center

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  13. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  14. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  15. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  16. Powering microbes with electricity: direct electron transfer from electrodes to microbes.

    PubMed

    Lovley, Derek R

    2011-02-01

    The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. An analysis of microsystems development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  18. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  19. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  1. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    PubMed Central

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s−1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening. PMID:25615864

  2. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  3. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  4. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  5. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  6. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  7. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  8. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  9. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  10. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  11. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  12. Potential technology transfers of research on low-temperature carbon monoxide-oxygen recombination catalysts

    NASA Technical Reports Server (NTRS)

    Poziomek, Edward J.

    1990-01-01

    Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.

  13. Turbulence convective heat transfer for cooling the photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Arianmehr, Iman

    Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.

  14. Spinoff 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In accordance with congressional mandates cited in the National Aeronautics and Space Act of 1958 and the Technology Utilization Act of 1962, NASA was directed to encourage greater use of the Agency's knowledge by providing a link between the NASA research community and those who might use the research for commercial or industrial products. For more than 40 years, NASA has nurtured partnerships with the private sector to facilitate the transfer of NASA-developed technologies. The benefits of these partnerships have reached throughout the economy and around the globe, as the resulting commercial products contributed to the development of services and technologies in the fields of health and medicine, transportation, public safety, consumer goods, environmental resources, computer technology, and industry. Since 1976, NASA Spinoff has profiled more than 1,500 of the most compelling of these technologies, annually highlighting the best and brightest of partnerships and innovations. Building on this dynamic history, NASA partnerships with the private sector continue to seek avenues by which technological achievements and innovations gleaned among the stars can be brought down to benefit our lives on Earth. NASA Spinoff highlights the Agency's most significant research and development activities and the successful transfer of NASA technology, showcasing the cutting-edge research being done by the Nation's top technologies and the practical benefits that come back down to Earth in the form of tangible products that make our lives better.

  15. 77 FR 37326 - Safety Zone; Grand Hotel 125th Anniversary Fireworks Celebration, Mackinaw Island, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use... Rulemaking A. Regulatory History and Information The Coast Guard is issuing this temporary final rule without.... Assistance for Small Entities Under section 213(a) of the Small Business Regulatory Enforcement Fairness Act...

  16. Laser communication experiments between Sota and Meo optical ground station

    NASA Astrophysics Data System (ADS)

    Artaud, G.,; Issler, J.-L.; Védrenne, N.; Robert, C.; Petit, C.; Samain, E.; Phung, D.-H.; Maurice, N.; Toyoshima, M.; Kolev, D.

    2017-09-01

    Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.

  17. Academic Innovation in the Commercial Domain: Case Studies of Successful Transfers of University-Developed Technologies.

    ERIC Educational Resources Information Center

    Powers, Joshua B.

    In recent years, considerable attention has been directed toward higher educations role as a driver of economic reform. Yet, surprisingly little is known about the processes and mechanisms by which academic innovations are successfully commercialized. The specific question is, what factors explain why some licensed innovations become bona fide…

  18. Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer.

    PubMed

    Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo

    2013-06-01

    Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.

  19. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  20. Variable Delay Multi-Pulse Train for Fast Chemical Exchange Saturation Transfer and Relayed-Nuclear Overhauser Enhancement MRI

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.

    2013-01-01

    Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483

  1. 15 CFR 740.15 - Aircraft and vessels (AVS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transfer of technology. No technology is transferred to a national of a destination in Country Group E:1... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a...

  2. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  3. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  4. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  5. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  6. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  7. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  8. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  9. Tech Transfer News. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new technologies to market, as well as the positive impact KSC technology transfer can have on the local economy. We see even more evidence of this in the efforts by several other organizations to develop programs that provide aspiring entrepreneurs with the opportunity and training needed to identify the commercial potential of specific NASA technologies and develop business plans to exploit that potential. Several initiatives include Florida Startup Quest, CareerSource Brevard Energy Launch, Rollins College Entrepreneurial Scholar of Distinction Program, and a new effort led by the University of Central Florida Office of Research and Commercialization to stimulate new business growth in Florida based on NASA technologies. The KSC Technology Transfer Office has stepped up to support each of these programs and is providing them with the NASA technologies they need to help move the economy forward.

  10. Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness

    NASA Astrophysics Data System (ADS)

    Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.

    2014-04-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  11. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  12. Project for the analysis of technology transfer

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.

    1971-01-01

    The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.

  13. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  14. The human element in technology transfer

    NASA Technical Reports Server (NTRS)

    Peake, H. J.

    1978-01-01

    A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.

  15. Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive.

    PubMed

    Huang, Yin; Zheng, Ning; Cheng, Zhiqiang; Chen, Ying; Lu, Bingwei; Xie, Tao; Feng, Xue

    2016-12-28

    Flexible and stretchable electronics offer a wide range of unprecedented opportunities beyond conventional rigid electronics. Despite their vast promise, a significant bottleneck lies in the availability of a transfer printing technique to manufacture such devices in a highly controllable and scalable manner. Current technologies usually rely on manual stick-and-place and do not offer feasible mechanisms for precise and quantitative process control, especially when scalability is taken into account. Here, we demonstrate a spatioselective and programmable transfer strategy to print electronic microelements onto a soft substrate. The method takes advantage of automated direct laser writing to trigger localized heating of a micropatterned shape memory polymer adhesive stamp, allowing highly controlled and spatioselective switching of the interfacial adhesion. This, coupled to the proper tuning of the stamp properties, enables printing with perfect yield. The wide range adhesion switchability further allows printing of hybrid electronic elements, which is otherwise challenging given the complex interfacial manipulation involved. Our temperature-controlled transfer printing technique shows its critical importance and obvious advantages in the potential scale-up of device manufacturing. Our strategy opens a route to manufacturing flexible electronics with exceptional versatility and potential scalability.

  16. Technology transfer: the key to fusion commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.

  17. Geysers advanced direct contact condenser research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  19. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  20. Development of the oil-water monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.

    1990-04-02

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded It has application in the verification of oil volumes andmore » concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. The device has been patented, and initial feasibility experiments have been conducted. The present research is directed toward developing and demonstrating a bench model prototype of the oil-water monitor, complete with the computer software and automated microwave equipment and electronics which will demonstrate the performance of the invention, for implementation in full-scale fielded systems. 3 figs.« less

  1. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  2. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  3. EPA Reports to Congress on Technology Transfer

    EPA Pesticide Factsheets

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  4. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    NASA Technical Reports Server (NTRS)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  5. Clinical peptidomic analysis by a one-step direct transfer technology: its potential utility for monitoring of pathophysiological status in female reproductive system disorders.

    PubMed

    Araki, Yoshihiko; Nonaka, Daisuke; Hamamura, Kensuke; Yanagida, Mitsuaki; Ishikawa, Hitoshi; Banzai, Michio; Maruyama, Mayuko; Endo, Shuichiro; Tajima, Atsushi; Lee, Lyang-Ja; Nojima, Michio; Takamori, Kenji; Yoshida, Koyo; Takeda, Satoru; Tanaka, Kenji

    2013-10-01

    To date, numerous studies have searched for candidate molecules or clinical examination methods as potential biomarkers for monitoring intractable diseases, such as carcinomas. Evidence accumulated over the past decade shows that many proteolytic peptides appear in human humoral fluids, including peripheral blood, in association with an individual's health condition. Although an analysis of the whole peptide (the 'peptidome') using mass spectrometry is thought to be one of the most powerful and promising experimental approaches, it has failed to identify biomarkers in the clinical blood samples, presumably due to the methodological limitations. In general, commonly used techniques for proteomic analysis of blood require the removal of large amounts of serum/plasma proteins prior to mass spectrometry analysis, and this step seems to have resulted in the overlooking of important biomarkers during the analytical process. Here, we provide a brief overview of a new quantitative peptidomic analysis by a one-step direct transfer technology without depletion of major blood proteins. Using this technology, we herein report experimental data on serum peptidomic analysis for patients with pregnancy-induced hypertension as a clinical model. In addition, we refer to the potential utility of this approach for the monitoring of pathophysiological status in female reproductive system disorders in general. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  6. Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods.

    PubMed

    Gallagher, Rosa I; Blakely, Steven R; Liotta, Lance A; Espina, Virginia

    2012-01-01

    Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the Arcturus(XT) laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.

  7. Study of Federal technology transfer activities in areas of interest to NASA Office of Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.

  8. Fuel Reforming Technologies (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment  To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy

  9. Enhancing Human Responses to Climate Change Risks through Simulated Flooding Experiences

    NASA Astrophysics Data System (ADS)

    Zaalberg, Ruud; Midden, Cees

    Delta areas are threatened by global climate change. The general aims of our research were (1) to increase our understanding of climate and flood risk perceptions and the factors that influence these judgments, and (2) to seek for interventions that can contribute to a realistic assessment by laypersons of long-term flooding risks. We argue that awareness of one's own vulnerability to future flooding and insights into the effectiveness of coping strategies is driven by direct flooding experiences. In the current research multimodal sensory stimulation by means of interactive 3D technology is used to simulate direct flooding experiences at the experiential or sensory level, thereby going beyond traditional persuasion attempts using fear-evoking images. Our results suggest that future communication efforts should not only use these new technologies to transfer knowledge about effective coping strategies and flooding risks, but should especially be directed towards residents living in flood prone areas, but who lack direct flooding experiences as their guiding principle.

  10. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    PubMed

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  11. AAC technology transfer: an AAC-RERC report.

    PubMed

    Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B

    2009-03-01

    Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.

  12. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  13. Retrovirus-based vectors for transient and permanent cell modification.

    PubMed

    Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel

    2015-10-01

    Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  15. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    ERIC Educational Resources Information Center

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  16. Search Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  17. Available Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  18. Australian University Technology Transfer Managers: Backgrounds, Work Roles, Specialist Skills and Perceptions

    ERIC Educational Resources Information Center

    Harman, Grant; Stone, Christopher

    2006-01-01

    Technology transfer managers are a new group of specialist professionals engaged in facilitating transfer of university research discoveries and inventions to business firms and other research users. With relatively high academic qualifications and enjoying higher salaries than many other comparable university staff, technology transfer managers…

  19. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  20. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.

  1. Antennas and Electromagnetics Instrumentation for Research and Education

    DTIC Science & Technology

    2016-06-01

    Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support

  2. Blended Learning Environments in Arab Universities: Probing Current Status and Projecting Future Directions

    ERIC Educational Resources Information Center

    AlFuqaha, Isam Najib

    2013-01-01

    This paper is a review of blended learning as a catalyst of optimizing the achievement of learning objectives. Blended learning forms an attempt to apply the right learning technologies to match the right personal learning styles to transfer the right skills to the right persons at the right times. The paper is about rethinking the teaching and…

  3. Forest Service Nurseries: 100 years of ecosystem restoration

    Treesearch

    R. Kasten Dumroese; Thomas D. Landis; James P. Barnett; Frank Burch

    2005-01-01

    The USDA Forest Service broke ground on its first nursery in 1902 and since then its nurseries have adapted to many changes in scope and direction: from fire restoration to conservation, to reforestation, and back to restoration. In addition to providing a reliable source of native plant material, they have also been a source of research and technology transfer in...

  4. CFD in design - A government perspective

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Gross, Anthony R.

    1989-01-01

    Some of the research programs involving the use of CFD in the aerodynamic design process at government laboratories around the United States are presented. Technology transfer issues and future directions in the discipline or CFD are addressed. The major challengers in the aerosciences as well as other disciplines that will require high-performance computing resources such as massively parallel computers are examined.

  5. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  6. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  7. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  8. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  9. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  10. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  11. System design of ELITE power processing unit

    NASA Astrophysics Data System (ADS)

    Caldwell, David J.

    The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.

  12. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    DTIC Science & Technology

    2017-06-01

    other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary

  13. Construction and direct electrochemistry of orientation controlled laccase electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhang, Jiwei; Huang, Xirong, E-mail: xrhuang@sdu.edu.cn

    2014-03-28

    Highlights: • A recombinant laccase with Cys-6×His tag at the N or C terminus was generated. • Orientation controlled laccase electrodes were constructed via self assembly. • The electrochemical behavior of laccase electrodes was orientation dependent. • The C terminus tagged laccase was better for bioelectrocatalytic reduction of O{sub 2}. - Abstract: A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, usingmore » genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O{sub 2} reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells.« less

  14. University Technology Transfer Information Processing from the Attention Based View

    ERIC Educational Resources Information Center

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  15. Effetive methods in educating extension agents and farmers on conservation farming technology

    USDA-ARS?s Scientific Manuscript database

    Adoption of new technologies requires transfer of information from developers to end users. Efficiency of the transfer process influences the rate of adoption and ultimate impact of the technology. Various channels are used to transfer technology from researchers to farmers. Two commonly used ones ...

  16. Technology Transfer through Training: Emerging Roles for the University.

    ERIC Educational Resources Information Center

    Bergsma, Harold M.

    The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…

  17. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    PubMed

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. KSC-2013-3575

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Lewis Parrish, senior Technology Transfer specialist for Qinetiq at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  19. What Is Technology Transfer? | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  20. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  1. ASRDI oxygen technology survey. Volume 3: Heat transfer and fluid dynamics. Abstracts of selected technical reports and publications

    NASA Technical Reports Server (NTRS)

    Schmidt, A. F. (Editor)

    1972-01-01

    Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.

  2. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  3. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  4. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    PubMed

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted.

  5. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation

    PubMed Central

    Paisner, Kathryn; Vanderford, Nathan L.

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted. PMID:29721313

  6. 48 CFR 970.5227-11 - Patent rights-management and operating contracts, for-profit contractor, non-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and operating contracts, for-profit contractor, non-technology transfer. 970.5227-11 Section 970.5227...-technology transfer. Insert the following clause in solicitations and contracts in accordance with 970.2703-1(b)(4): Patent Rights—Management and Operating Contracts, for-Profit Contractor, Non-Technology...

  7. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rights in data-technology... for Management and Operating Contracts 970.5227-2 Rights in data-technology transfer. As prescribed in 48 CFR 970.2704-3(b), insert the following clause: Rights in Data—Technology Transfer (DEC 2000) (a...

  8. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  9. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    DOT National Transportation Integrated Search

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  10. On transferring the grid technology to the biomedical community.

    PubMed

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  11. Risk Management in Biologics Technology Transfer.

    PubMed

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  12. Transfer research and impact studies program

    NASA Technical Reports Server (NTRS)

    Freeman, J. E. (Editor)

    1975-01-01

    Methods developed for stimulating interest in the transfer of NASA-originated technology are described. These include: new information packaging concepts; technology transfer via people transfer; information management systems; data bank operations; and professional communication activities.

  13. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  14. Investigation of enablers of knowledge transfer in the medical industry.

    PubMed

    Tuan, Han-Wen

    2008-01-01

    This paper presents a research model for investigating the relationship between organisational enablers and the Knowledge Transfer (KT) Performance (KTP) in the medical industry. The enablers include leadership, organisational culture, Information Technology (IT) and individual performance measurement, and KTP is determined by individual capability, organisational capability and product/service innovation. This paper chose professional medical personnel as the research subject to determine whether or not these enablers affect KT. The findings show that only leadership directly affects the KTP, with IT also impacting both organisational capability and product/service innovation. The implications of these findings are discussed based on interviews with experts and practitioners.

  15. Advanced Satellite-Based Frequency Transfer at the 10-16 Level.

    PubMed

    Fujieda, Miho; Yang, Sung-Hoon; Gotoh, Tadahiro; Hwang, Sang-Wook; Hachisu, Hidekazu; Kim, Huidong; Lee, Young Kyu; Tabuchi, Ryo; Ido, Tetsuya; Lee, Won-Kyu; Heo, Myoung-Sun; Park, Chang Yong; Yu, Dai-Hyuk; Petit, Gerard

    2018-06-01

    Advanced satellite-based frequency transfers by two-way carrier-phase (TWCP) and integer precise point positioning have been performed between the National Institute of Information and Communications Technology and Korea Research Institute of Standards and Science. We confirm that the disagreement between them is less than at an averaging time of several days. In addition, an overseas frequency ratio measurement of Sr and Yb optical lattice clocks was directly performed by TWCP. We achieved an uncertainty at the mid-10 -16 level after a total measurement time of 12 h. The frequency ratio was consistent with the recently reported values within the uncertainty.

  16. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  17. Benefits briefing notebook: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Resource information on the transfer of aerospace technology to other sectors of the U.S. economy is presented. The contents of this notebook are divided into three sections: (1) benefit cases, (2) transfer overview, and (3) indexes. Transfer examples relevant to each subject area are presented. Pertinent transfer data are given. The Transfer Overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented.

  18. Spinoff, 1992

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1992-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  19. Spinoff 1993

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1993-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  20. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less

  1. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  2. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    ERIC Educational Resources Information Center

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  3. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  4. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  5. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  6. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  7. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  8. The Shipbuilding Technology Transfer Program, Program Summary Report

    DTIC Science & Technology

    1981-08-31

    Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed...Information for this study was derived from source documentation sup- plied by IHI, information obtained directly from IHI consulting person - nel

  9. Japan-USSR Trade, Technology Transfer, Implications for U.S.

    DTIC Science & Technology

    1988-06-01

    8217. Creation of new "horizontal" ministries38 would heal many of the current system’s afflictions. The 35William T. Lee and Richard F. Starr, Soviet Military...machine tools, robots , new industrial materials, and biotechnology. 77 The implications of these two events in 1986 are that the USSR and Japan are...125 D. NEW DIRECTIONS ..................................... 130 E. JOINT VENTURES AVENUES

  10. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  11. [Conceptual foundations of creation of branch database of technology and intellectual property rights owned by scientific institutions, organizations, higher medical educational institutions and enterprises of healthcare sphere of Ukraine].

    PubMed

    Horban', A Ie

    2013-09-01

    The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.

  12. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2017-12-13

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  13. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  14. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...

  15. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  16. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  17. Summary Report on Federal Laboratory Technology Transfer: FY 2003 Activity Metrics and Outcomes. 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act

    DTIC Science & Technology

    2004-12-01

    Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension

  18. Training Technology Transfer Act of 1984. Hearing before the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2561. Entitled the "Training Technology Transfer Act of 1984."

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This is a congressional hearing on the Training Technology Transfer Act of 1984, which would establish a mechanism for transferring the Federal Government's investment in computer programming for training systems to those organizations and groups that can use such technology in training the civilian work force. Focus is on refining this bill,…

  19. Development of template and mask replication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-09-01

    The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.

  20. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system.

    PubMed

    Baoutina, A; Coldham, T; Bains, G S; Emslie, K R

    2010-08-01

    As clinical gene therapy has progressed toward realizing its potential, concern over misuse of the technology to enhance performance in athletes is growing. Although 'gene doping' is banned by the World Anti-Doping Agency, its detection remains a major challenge. In this study, we developed a methodology for direct detection of the transferred genetic material and evaluated its feasibility for gene doping detection in blood samples from athletes. Using erythropoietin (EPO) as a model gene and a simple in vitro system, we developed real-time PCR assays that target sequences within the transgene complementary DNA corresponding to exon/exon junctions. As these junctions are absent in the endogenous gene due to their interruption by introns, the approach allows detection of trace amounts of a transgene in a large background of the endogenous gene. Two developed assays and one commercial gene expression assay for EPO were validated. On the basis of ability of these assays to selectively amplify transgenic DNA and analysis of literature on testing of gene transfer in preclinical and clinical gene therapy, it is concluded that the developed approach would potentially be suitable to detect gene doping through gene transfer by analysis of small volumes of blood using regular out-of-competition testing.

  1. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.

  2. Commercial non-aerospace technology transfer program for the 2000s: Strategic analysis and implementation

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.

  3. Biomedical applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Castles, T. R.

    1971-01-01

    Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.

  4. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operatorsmore » and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.« less

  5. Long-term fiscal implications of subsidizing in-vitro fertilization in Sweden: a lifetime tax perspective.

    PubMed

    Svensson, Anders; Connolly, Mark; Gallo, Federico; Hägglund, Leif

    2008-11-01

    In Sweden approximately 3% of annual births are conceived using assisted reproductive technologies (ART). In light of increasing use of ART in Sweden we estimate the lifetime future tax revenues of a child conceived by in-vitro fertilization (IVF) to establish whether public subsidy of IVF represents sound fiscal policy. A modified generational accounting model was developed to calculate the net present value (NPV) of average investment costs required to achieve an IVF-conceived child. The model simulates direct lifetime financial interactions between the child and the Swedish government. Within the model we assume average direct financial transfers are made to the individual (eg, child allowance, education, health care, pension, etc). In return, the individual transfers resources to the government through taxation based on anticipated average earnings. The difference between direct transfers and gross taxes paid equals the net-tax contribution. Individual tax contributions were held constant in the model. Based on average life-expectancy an individual born in 2005 will pay an undiscounted 32.5 million SEK in taxes to the Swedish government and receive 20.9 million SEK in direct financial transfers over their lifetime. When these figures are discounted and IVF costs are included in the analysis we obtain a lifetime NPV of 254,000 SEK with a break-even point at age 41 (the age of achieving a positive NPV) for an individual conceived through IVF. Based on results presented here we conclude that State-funded IVF in Sweden does not negatively impact the long run fiscal budget. Conversely, over an average lifetime an IVF offspring returns a positive net value to the State.

  6. Laser Capture Microdissection for Protein and NanoString RNA analysis

    PubMed Central

    Golubeva, Yelena; Salcedo, Rosalba; Mueller, Claudius; Liotta, Lance A.; Espina, Virginia

    2013-01-01

    Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly, or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are a) visualization of cells via light microscopy, b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810nm), while in the cutting mode the laser is ultraviolet (355nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes laser capture microdissection using an ArcturusXT instrument for protein LCM sample analysis, and using a mmi CellCut Plus® instrument for RNA analysis via NanoString technology. PMID:23027006

  7. Partnering Events | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  8. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  9. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  10. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  11. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  12. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  13. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  14. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    PubMed

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.

  15. Conceptual and empirical themes regarding the design of technology transfer programs : a review of wood utilization research in the United States

    Treesearch

    Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt

    2011-01-01

    Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...

  16. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  17. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  18. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  19. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  20. Teacher Candidate Technology Integration: For Student Learning or Instruction?

    ERIC Educational Resources Information Center

    Clark, Cynthia; Zhang, Shaoan; Strudler, Neal

    2015-01-01

    Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…

  1. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  2. Proceedings: international conference on transfer of forest science knowledge and technology.

    Treesearch

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  3. Performance Technology Program (PTP-S 2). Volume 9: Evaluation of reentry vehicle nosetip transition and heat transfer in the AEDC hyperballistics track G

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.

    1981-01-01

    Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.

  4. Systematic technology transfer from biology to engineering.

    PubMed

    Vincent, Julian F V; Mann, Darrell L

    2002-02-15

    Solutions to problems move only very slowly between different disciplines. Transfer can be greatly speeded up with suitable abstraction and classification of problems. Russian researchers working on the TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch) method for inventive problem solving have identified systematic means of transferring knowledge between different scientific and engineering disciplines. With over 1500 person years of effort behind it, TRIZ represents the biggest study of human creativity ever conducted, whose aim has been to establish a system into which all known solutions can be placed, classified in terms of function. At present, the functional classification structure covers nearly 3 000 000 of the world's successful patents and large proportions of the known physical, chemical and mathematical knowledge-base. Additional tools are the identification of factors which prevent the attainment of new technology, leading directly to a system of inventive principles which will resolve the impasse, a series of evolutionary trends of development, and to a system of methods for effecting change in a system (Su-fields). As yet, the database contains little biological knowledge despite early recognition by the instigator of TRIZ (Genrich Altshuller) that one day it should. This is illustrated by natural systems evolved for thermal stability and the maintenance of cleanliness.

  5. Impact of Implementation of Direct Cash Transfer Program 2008/2009 on Household Consumption in Central Java Province

    NASA Astrophysics Data System (ADS)

    Subanti, S.; Hakim, A. R.; Hakim, I. M.

    2017-04-01

    This study aims to see the impact of direct cash transfer program for 2008/2009 on household consumption of food, nonfood, education, and health in Central Java Province. The study is expected to provide important findings for the improvement of a similar program in the future. This study findings that (1) the increasing in food and non-food consumption for direct cash transfer recipients than non direct cash transfer recipients; (2) the impact of households expenditure on education for direct cash transfer recipients is higher than non direct cash transfer recipients; (3) the impact of households expenditure on health for direct cash transfer recipients is lower than non direct cash transfer recipients. This study recommended that (1) implementation of direct cash transfer program 2008/2009 must be managed to be better because this program can defend household welfare. It shows from several indicators of well-being such as consumption spending, education, and health; (2) data targets for poor households (very poor, poor, nearly poor) must be updated.

  6. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    .... National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and... information claimed to be confidential business information (CBI) or other information whose disclosure is... That Significantly Affect Energy Supply, Distribution, or Use I. National Technology Transfer and...

  7. Technology Transfer Educational Curriculum Plan for the State of Colorado.

    ERIC Educational Resources Information Center

    Dakin, Karl J.

    A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…

  8. Technology Transfer: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Sovel, M. Terry

    This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…

  9. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  10. Societal and economic valuation of technology-transfer deals

    NASA Astrophysics Data System (ADS)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  11. Program of operation for the National Water Data Ex. (NAWDEX)

    USGS Publications Warehouse

    Edwards, M.D.

    1985-01-01

    The National Water Data Exchange (NAWDEX) has been established as a nationwide program directed at improving access to water and water-related data and disseminating information about the availability of these data throughout the entire water-resources community. NAWDEX is composed of a confederation of water-oriented organizations working together to facilitate the exchange of data and to improve the technology of data handling and transfer. This program of operation is directed at providing guidelines to assure that all member organizations participate equally and that a climate of cooperation and open communication be established among participating members.

  12. Using 100G Network Technology in Support of Petascale Science

    NASA Technical Reports Server (NTRS)

    Gary, James P.

    2011-01-01

    NASA in collaboration with a number of partners conducted a set of individual experiments and demonstrations during SC 10 that collectively were titled "Using 100G Network Technology in Support of Petascale Science". The partners included the iCAIR, Internet2, LAC, MAX, National LambdaRail (NLR), NOAA and SCinet Research Sandbox (SRS) as well as the vendors Ciena, Cisco, ColorChip, cPacket, Extreme Networks, Fusion-io, HP and Panduit who most generously allowed some of their leading edge 40G/100G optical transport, Ethernet switch and Internet Protocol router equipment and file server technologies to be involved. The experiments and demonstrations featured different vendor-provided 40G/100G network technology solutions for full-duplex 40G and 100G LAN data flows across SRS-deployed single-node fiber-pairs among the Exhibit Booths of NASA, the National Center for Data lining, NOAA and the SCinet Network Operations Center, as well as between the NASA Exhibit Booth in New Orleans and the Starlight Communications Exchange facility in Chicago across special SC 10- only 80- and 100-Gbps wide area network links provisioned respectively by the NLR and Internet2, then on to GSFC across a 40-Gbps link. provisioned by the Mid-Atlantic Crossroads. The networks and vendor equipment were load-stressed by sets of NASA/GSFC High End Computer Network Team-built, relatively inexpensive, net-test-workstations that are capable of demonstrating greater than 100Gbps uni-directional nuttcp-enabled memory-to-memory data transfers, greater than 80-Gbps aggregate--bidirectional memory-to-memory data transfers, and near 40-Gbps uni-directional disk-to-disk file copying. This paper will summarize the background context, key accomplishments and some significances of these experiments and demonstrations.

  13. Optical techniques for determination of normal shock position in supersonic flows for aerospace applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1990-01-01

    Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.

  14. The Role of USDA, Land-Grant Universities and Other Agencies in Assisting Rural America--Research, Education and Technology Transfer. Experiences of the 1890 Land Grant Universities and Tuskegee Institute.

    ERIC Educational Resources Information Center

    Williams, Thomas T., Ed.

    The Professional Agricultural Workers Conference (PAWC) provides a forum for participants to articulate strategies to improve the quality of life for rural people. The PAWC is designed to provide a forum for people involved with university programs to exchange ideas and information; encourage development of action-oriented activities directed at…

  15. The Diffusion of Military Technologies to Foreign Nations: Arms Transfers Can Preserve the Defense Technological and Industrial Base

    DTIC Science & Technology

    1995-06-01

    required, the Defense Technology Security Administration ( DTSA ) will make a determination on whether or not advanced technologies are being risked by the...sale or transfer of that product. DTSA has this role whether it is a commercial or government-to-government transfer. The Joint Chiefs of Staff also...Office of Defense Relations Security Assistance DSAA Defense Security Assistance Agency DTIB Defense Technological and Industrial Base DTSA Defense

  16. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  17. Technological aspects of hospital communication challenges: an observational study.

    PubMed

    Popovici, Ilinca; Morita, Plinio P; Doran, Diane; Lapinsky, Stephen; Morra, Dante; Shier, Ashleigh; Wu, Robert; Cafazzo, Joseph A

    2015-06-01

    To gain insights into how technological communication tools impact effective communication among clinicians, which is critical for patient safety. This multi-site observational study analyzes inter-clinician communication and interaction with information technology, with a focus on the critical process of patient transfer from the Emergency Department to General Internal Medicine. Mount Sinai Hospital, Sunnybrook Health Sciences Centre and Toronto General Hospital. At least five ED and general internal medicine nurses and physicians directly involved in patient transfers were observed on separate occasions at each institution. N/A. N/A. The study provides insight into clinician workflow, evaluates current hospital communication systems and identifies key issues affecting communication: interruptions, issues with numeric pagers, lack of integrated communication tools, lack of awareness of consultation status, inefficiencies related to the paper chart, unintuitive user interfaces, mixed use of electronic and paper systems and lack of up-to-date contact information. It also identifies design trade-offs to be negotiated: synchronous communication vs. reducing interruptions, notification of patient status vs. reducing interruptions and speed vs. quality of handovers. The issues listed should be considered in the design of new technology for hospital communications. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  18. Spinoff, 1991

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1991-01-01

    This is an instrument of the Technology Utilization Program and is designed to heighten awareness of the technology available for transfer and its potential for public benefit. NASA's mainline programs, whose objectives require development of new technology and therefore expand the bank of technology available for transfer in future years, are summarized. Focus is on the representative sampling of spinoffs (spinoff, in this context, means products and processes developed as secondary applications of existing NASA technology) that resulted from NASA's mainline programs. The various mechanisms NASA employs to stimulate technology transfer are described and contact sources are listed in the appendix for further information about the Technology Utilization Program.

  19. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  20. Tech Transfer News. Volume 9, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E. (Compiler)

    2017-01-01

    Kennedy Tech Transfer News is the magazine of the Technology Transfer Office at NASA's Kennedy Space Center, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy Space Center about actively participating in achieving NASA's technology transfer and partnership goals.

  1. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.

  2. Simple transfer calibration method for a Cimel Sun-Moon photometer: calculating lunar calibration coefficients from Sun calibration constants.

    PubMed

    Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane

    2016-09-20

    The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.

  3. Assessment of research and technology transfer needs for wood-frame housing

    Treesearch

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  4. Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…

  5. Love and Hate in University Technology Transfer: Examining Faculty and Staff Conflicts and Ethical Issues

    ERIC Educational Resources Information Center

    Hamilton, Clovia; Schumann, David

    2016-01-01

    With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…

  6. A southern region conference on technology transfer and extension

    Treesearch

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  7. Applications of aerospace technology in industry. A technology transfer profile: Cryogenics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.

  8. Argonne National Laboratory technology transfer report, FY 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    In 1985 Argonne established the Technology Transfer Center (TTC). As of the end of FY 1987, the TTC has a staff equivalent to four full-time professionals, two secretaries, and two student aides; FY 1987 ORTA funding was $220K. A network of technology transfer representatives provides windows into and out of Argonne's technical divisions on technology transfer matters. The TTC works very closely with the ARCH Develoment Corporation, a not-for-profit corporation set up to commercialize selected Argonne and University of Chicago patents. The goal of the Technology Transfer Center at Argonne is to transfer technology developed at Argonne to the domesticmore » private sector by whatever means is most effective. The strategies by which this is accomplished are numerous and the TTC is, in effect, conducting a number of experiments to determine the most effective strategies. These include cooperative RandD agreements, work-for-others contracts, subcontracting to industry, formation of joint ventures via ARCH, residencies by industry staff at Argonne and vice versa, patent licensing and, of course, conferences, workshops and visits by industry and to industry.« less

  9. Technology Transfer Program (TTP). Quality Assurance System. Volume 2. Appendices

    DTIC Science & Technology

    1980-03-03

    LSCo Report No. - 2X23-5.1-4-I TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY...4-1 TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY ASSURANCE VOLUME 2 APPENDICES...prepared by: Livingston Shipbuilding Company Orange, Texas March 3, 1980 APPENDIX A ACCURACY CONTROL SYSTEM . IIII MARINE TECHNOLOGY. INC. HP-121

  10. Computers and terminals as an aid to international technology transfer

    NASA Technical Reports Server (NTRS)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  11. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  12. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    PubMed

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  14. Establishing effective working relations with a potential user community - NASA Lewis Research Center experience

    NASA Technical Reports Server (NTRS)

    Foster, P.

    1977-01-01

    The NASA Lewis Research Center has held a series of six major and unique technology utilization conferences which were major milestones in planned structured efforts to establish effective working relationships with specific technology user communities. These efforts were unique in that the activities undertaken prior to the conference were extensive, and effectively laid the groundwork for productive technology transfer following, and as a direct result of, the conferences. The effort leading to the conference was in each case tailored to the characteristics of the potential user community, however, the common factors comprise a basic framework applicable to similar endeavors. The process is essentially a planned sequence of steps that constitute a technical market survey and a marketing program for the development of beneficial applications of aerospace technology beyond the aerospace field.

  15. Testimony to the House Science Space and Technology Committee.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, Michael Kenton; Tannenbaum, Benn

    Chairman Smith, Ranking Member Johnson, and distinguished members of the Committee on Science, Space, and Technology, I thank you for the opportunity to testify today on the role of science, engineering, and research at Sandia National Laboratories, one of the nation’s premiere national labs and the nation’s largest Federally Funded Research and Development Center (FFRDC) laboratory. I am Dr. Susan Seestrom, Sandia’s Associate Laboratories Director for Advanced Science & Technology (AST) and Chief Research Officer (CRO). As CRO I am responsible for research strategy, Laboratory Directed Research & Development (LDRD), partnerships strategy, and technology transfer. As director and line managermore » for AST I manage capabilities and mission delivery across a variety of the physical and mathematical sciences and engineering disciplines, such as pulsed power, radiation effects, major environmental testing, high performance computing, and modeling and simulation.« less

  16. Invention-driven marketing

    NASA Technical Reports Server (NTRS)

    Carlson, William E.

    1994-01-01

    Suppose you have just created a revolutionary bicycle suspension which allows a bike to be ridden over rough terrain at 60 miles per hour. In addition, suppose that you are deeply concerned about the plight of hungry children. Which should you do: be sure all hungry children have bicycles; transfer the technology for your new suspension to bicycle manufacturers worldwide; or start a company to supply premium sports bicycle based on your patented technology, and donate the profits to a charity which feeds hungry children? Woven through this somewhat trivial example is the paradox of technology transfer - the supplier (owner) may want to transfer technology; but to succeed, he or she must reformulate the problem as a user need for which there is a new and better solution. Successful technology transfer is little more than good marketing applied to an existing invention, process, or capability. You must identify who needs the technology, why they need it, why the new technology is better than alternatives, how much the customers are willing and able to pay for these benefits, and how to distribute products based on the technology tc the target customers. In market-driven development, the term 'technology transfer' is rarely used. The developers focus on studying user needs and designing solution They may have technology needs, but they don't have technology in search of a use.

  17. Transfer in motion perceptual learning depends on the difficulty of the training task.

    PubMed

    Wang, Xiaoxiao; Zhou, Yifeng; Liu, Zili

    2013-06-07

    One hypothesis in visual perceptual learning is that the amount of transfer depends on the difficulty of the training and transfer tasks (Ahissar & Hochstein, 1997; Liu, 1995, 1999). Jeter, Dosher, Petrov, and Lu (2009), using an orientation discrimination task, challenged this hypothesis by arguing that the amount of transfer depends only on the transfer task but not on the training task. Here we show in a motion direction discrimination task that the amount of transfer indeed depends on the difficulty of the training task. Specifically, participants were first trained with either 4° or 8° direction discrimination along one average direction. Their transfer performance was then tested along an average direction 90° away from the trained direction. A variety of transfer measures consistently demonstrated that transfer performance depended on whether the participants were trained on 4° or 8° directional difference. The results contradicted the prediction that transfer was independent of the training task difficulty.

  18. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  19. Social issues and implications of remote sensing applications: Paradigms of technology transfer

    NASA Technical Reports Server (NTRS)

    Hoos, I. R.

    1980-01-01

    The transfer of technology from one federal agency to another was observed in the case of the move of LANDSAT to NOAA. An array of unanticipated consequences was found that have important impacts on both the process and outcome of the transfer. When the process was studied from viewpoint of the ultimate recipient, a set of expectations and perceptions were found that figure more in a final assessment than do the attributes of the technology being transfered. The question of how to link a technology with a community of potential users was studed in detail.

  20. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.

    PubMed

    Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P

    2016-08-01

    A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.

  1. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    PubMed

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  3. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Brown, J. N.; Rouse, D. J.; Ruddle, J. C.; Scearce, R. W.

    1978-01-01

    A bipolar, donor-recipient model of medical technology transfer is introduced to provide a basis for the team's methodology. That methodology is designed (1) to identify medical problems and NASA technology that in combination constitute opportunities for successful medical products, (2) to obtain the early participation of industry in the transfer proces, and (3) to obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial technology transfers and five institutional technology transfers were completed in 1977. A new, commercially available teaching manikin system uses NASA-developed concepts and techniques for effective visual presentation of information and data. Drugs shipped by the National Cancer Institute to locations throughout the world are maintained at low temperatures in shipping containers that incorporate recommendations made by NASA.

  4. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  5. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Martinek, Janna G

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles andmore » s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.« less

  6. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the researcher and recipient relationship, specific to technology transfer. In this research, the evaluation criteria of several research organizations were assessed to understand the extent to which the success attributes that were identified in literature were considered when reviewing research proposals. While some of the organizations included a few of the success attributes, none of the organizations considered all of the attributes. In addition, none of the organizations quantified the value of the success attributes. The effectiveness of the model relies extensively on expert judgments to complete the model validation and quantification. Subject matter experts ranging from senior executives with extensive experience in technology transfer to principal research investigators from national labs, universities, utilities, and non-profit research organizations were used to ensure a comprehensive and cross-functional validation and quantification of the decision model. The quantified model was validated using a case study involving demand response (DR) technology proposals in the Pacific Northwest. The DR technologies were selected based on their potential to solve some of the region's most prevalent issues. In addition, several sensitivity scenarios were developed to test the model's response to extreme case scenarios, impact of perturbations in expert responses, and if it can be applied to other than demand response technologies. In other words, is the model technology agnostic? In addition, the flexibility of the model to be used as a tool for communicating which success attributes in a research proposal are deficient and need strengthening and how improvements would increase the overall technology transfer score were assessed. The low scoring success attributes in the case study proposals (e.g. project meetings, etc.) were clearly identified as the areas to be improved for increasing the technology transfer score. As a communication tool, the model could help a research organization identify areas they could bolster to improve their overall technology transfer score. Similarly, the technology recipient could use the results to identify areas that need to be reinforced, as the research is ongoing. The research objective is to develop a decision model resulting in a technology transfer score that can be used to assess the technology transfer potential of a research proposal. The technology transfer score can be used by an organization in the development of a research portfolio. An organization's growth, in a highly competitive global market, hinges on superior R&D performance and the ability to apply the results. The energy sector is no different. While there is sufficient research being done to address the issues facing the utility industry, the rate at which technologies are adopted is lagging. The technology transfer score has the potential to increase the success of crossing the chasm to successful application by helping an organization make informed and deliberate decisions about their research portfolio.

  7. 76 FR 35806 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ..., or Use I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions To... action under Executive Order 12866. I. National Technology Transfer Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act (NTTAA) of 1995 (Pub. L. 104-113, section 12(d), 15 U.S.C...

  8. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2013-04-01 2013-04-01 false What are the requirements for research, development, and...

  9. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2010-04-01 2010-04-01 false What are the requirements for research, development, and...

  10. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2014-04-01 2014-04-01 false What are the requirements for research, development, and...

  11. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2012-04-01 2012-04-01 false What are the requirements for research, development, and...

  12. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2011-04-01 2011-04-01 false What are the requirements for research, development, and...

  13. Measuring the Impact of University Technology Transfer: A Guide to Methodologies, Data Needs, and Sources

    ERIC Educational Resources Information Center

    Lowe, Robert A.; Quick, Suzanne K.

    2005-01-01

    This paper discusses measures that capture the impact of university technology transfer activities on a university?s local and regional economies (economic impact). Such assessments are of increasing interest to policy makers, researchers and technology transfer professionals, yet there have been few published discussions of the merits of various…

  14. Technology Transfer as an Entrepreneurial Practice in Higher Education. CELCEE Digest No. 98-9.

    ERIC Educational Resources Information Center

    Faris, Shannon K.

    This digest examines some of the literature on technology transfer in the context of higher education, noting that the practice of capitalizing on academic research for commercial purposes has the potential to generate financial resources for the participating institutions of higher education. Several examples of technology transfer are cited,…

  15. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    ERIC Educational Resources Information Center

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  16. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    ERIC Educational Resources Information Center

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  17. Report of a Planning Conference for Solar Technology Information Transfer. Austin, Texas, 12-13 June 1979).

    ERIC Educational Resources Information Center

    Southwestern Library Association, Stillwater, OK.

    Charged with the responsibility of determining the best way to plan for solar technology information transfer within the state of Texas, participants in the Planning Conference for Solar Technology Information Transfer met to discuss the many ongoing activities related to energy information dissemination, to analyze the resources available in…

  18. Summary of the National Technology Transfer and Advancement Act

    EPA Pesticide Factsheets

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  19. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  20. Technology transfer and Rockwell International

    NASA Technical Reports Server (NTRS)

    Gernand, Joseph

    1992-01-01

    Two technology partnership models are presented for consideration. The first model posits a government buyer of technology, and the second model posits that the customer is the consumer of the technology. These two models are concerned with methods of and impediments to technology transfer and information dissemination in government/contractor relationships.

  1. Sandia National Laboratories: Working with Sandia

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  2. Sandia National Laboratories: News: Economic Impact

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  3. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  4. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  5. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this work is a synthetic jet, shown schematically in Fig. 3. The jet is produced using a small, sealed cavity with a sharp-edged orifice on one side and a vibrating diaphragm on the opposite side. The jet is formed when fluid is alternately sucked into and then expelled from the cavity by the motion of the diaphragm. This alternating motion means that there is no net mass addition to the system. Thus, there is no need for input piping or complex fluidic packaging.

  6. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  7. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  8. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs.

  9. JPRS Report, Science and Technology: Europe, German Aerospace Industry Competitiveness.

    DTIC Science & Technology

    1991-05-31

    construction , in which the German aerospace industry is involved (Alpha Jet, Tornado, Jaeger 90), are not directly transferable, since they deal with...INTA 1,500 100 Japan NASDA 938 749 U.S. NASA 23,0003 7,653 1. Planned after completion of construction phase (cun mately 100) 2. Annual average...for five-year construction phase 3. Excluding contractors rently approxi- Source: DLR, DASA III.5 Fiscal Aspects, Subsidies Taxes and duties affect

  10. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  11. Transfer of technology for production of rabies vaccine: Memorandum from a WHO Meeting*

    PubMed Central

    1985-01-01

    The important challenge of prevention and control of rabies in the world will require international efforts to increase the availability and use of high quality cell-culture rabies vaccines for use in man and animals. An important aspect of activities to ensure such availability is transfer of technologies to developing countries for production of these vaccines. This article, which is based on the report of a WHO Consultation, outlines the technical options for vaccine production. The principles and economic aspects of technology transfer are considered, and a WHO assistance programme is outlined. It is concluded that technology transfer should be mediated through a framework of national institutes, expert panels, WHO collaborating centres, production and control laboratories, and other relevant institutions. On this basis, recommendations are made concerning the mechanisms of technology transfer for production of cell-culture rabies vaccines. PMID:3878738

  12. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Top Current

  13. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments /Technology Transfer Technology Partnerships Economic Impact Facebook Twitter YouTube Flickr RSS Working with

  14. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  15. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  16. Technology transfer for women entrepreneurs: issues for consideration.

    PubMed

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  17. 76 FR 2860 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... action under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113 (15 U.S.C... of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272) do...

  18. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  19. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science,

  20. Technological inductive power transfer systems

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  1. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    PubMed

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  2. Federal Technology Transfer Act (FTTA)

    EPA Pesticide Factsheets

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  3. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  4. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    PubMed

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  5. Technology utilization office data base analysis and design

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen A.

    1993-01-01

    NASA Headquarters is placing a high priority on the transfer of NASA and NASA contractor developed technologies and expertise to the private sector and to other federal, state and local government organizations. The ultimate objective of these efforts is positive economic impact, an improved quality of life, and a more competitive U.S. posture in international markets. The Technology Utilization Office (TUO) currently serves seven states with its technology transfer efforts. Since 1989, the TUO has handled over one-thousand formal requests for NASA related technologies assistance. The technology transfer process requires promoting public awareness of NASA related soliciting requests for assistance, matching technologies to specific needs, assuring appropriate technology transfer, and monitoring and evaluating the process. Each of these activities have one very important aspect in common: the success of each is dissemination of appropriate high quality information. The purpose of the research was to establish the requirements and develop a preliminary design for a database system to increase the effectiveness and efficiency of the TUO's technology transfer function. The research was conducted following the traditional systems development life cycle methodology and was supported through the use of modern structured analysis techniques. The next section will describe the research and findings as conducted under the life cycle approach.

  6. Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications

    DOT National Transportation Integrated Search

    2014-08-01

    This research report provides a status review of emerging and existing Wireless Power Transfer (WPT) technologies applicable to electric bus (EB) and rail transit. The WPT technology options discussed, especially Inductive Power Transfer (IPT), enabl...

  7. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  8. 14 CFR § 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  9. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  10. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  11. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  12. Low-Cost Radiator for Fission Power Thermal Control

    NASA Technical Reports Server (NTRS)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  13. Spinoff, 1990

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1990-01-01

    This publication is intended to foster the aim of the NASA Technology Utilization Program by heightening awareness of the NASA technology available for transfer and its potential for benefits realized by secondary applications. Spinoff 1990 is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Utilization Program.

  14. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  15. The role of technology in critical care nursing.

    PubMed

    Crocker, Cheryl; Timmons, Stephen

    2009-01-01

    This paper is a report of a study to identify the meaning for critical care nurses of technology related to weaning from mechanical ventilation and to explore how that technology was used in practice. The literature concerned with the development of critical care (intensive care and high dependency units) focuses mainly on innovative medical technology. Although this use of technology in critical care is portrayed as new, it actually represents a transfer of technology from operating theatres. An ethnographic study was conducted and data were collected on one critical care unit in a large teaching hospital over a 6-month period in 2004. The methods included participant observation, interviews and the collection of field notes. The overall theme 'The nursing-technology relation' was identified. This comprised three sub-themes: definition of technology, technology transferred and technology transformed. Novice nurses took a task-focussed approach to weaning, treating it as a 'medical' technology transferred to them from doctors. Expert nurses used technology differently and saw its potential to become a 'nursing technology'. Nurses need to examine how they can adapt and to 'reconfigure' technology so that it can be transformed into a nursing technology. Those technologies that do not fit with nursing may have no place there. Rather than simply extending and expanding their roles through technology transfer, nurses should transform those technologies that preserve the essence of nursing and can contribute to a positive outcome for patients.

  16. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Jones, D.W.; Kolb, J.O.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and thatmore » these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.« less

  17. Ultrafast direct electron transfer at organic semiconductor and metal interfaces.

    PubMed

    Xiang, Bo; Li, Yingmin; Pham, C Huy; Paesani, Francesco; Xiong, Wei

    2017-11-01

    The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.

  18. Preface

    NASA Astrophysics Data System (ADS)

    Jakovics, A.

    2007-06-01

    The International Scientific Colloquium "Modelling for Material Processing" took place last year on June 8-9. It was the fourth time the colloquium was organized. The first colloquium took place in 1999. All colloquia were organized by the University of Latvia together with Leibniz University of Hannover (Germany) that signifies a long-term tradition (since 1988) of scientific cooperation between researchers of these two universities in the field of electrothermal process modelling. During the last colloquium scientific reports in the field of mathematical modelling in industrial electromagnetic applications for different materials (liquid metals, semiconductor technology, porous materials, melting of oxides and inductive heating) were presented. 70 researchers from 10 countries attended the colloquium. The contributions included about 30 oral presentations and 12 posters. The most illustrative presentations (oral and poster) in the field of MHD were selected for publication in a special issue of the international journal "Magnetohydrodynamics". Traditionally, many reports of the colloquium discuss the problems of MHD methods and devices applied to the metallurgical technologies and processes of semiconductor crystal growth. The new results illustrate the influence of combined electromagnetic fields on the hydrodynamics and heat/mass transfer in melts. The presented reports demonstrate that the models for simulation of turbulent liquid metal flows in melting furnaces, crystallization of alloys and single crystal growth in electromagnetic fields have become much more complex. The adequate description of occurring physical phenomena and the use of high performance computer and clusters allow to reduce the number of experiments in industrial facilities. The use of software and computers for modelling technological and environmental processes has a very long history at the University of Latvia. The first modelling activities in the field of industrial MHD applications had led to the establishment of the chair of Electrodynamics and Continuum Mechanics in 1970, the first head of which was professor Juris Mikelsons. In the early 90's, when all research institutions in our country underwent dramatic changes, not all research directions and institutions managed to adapt successfully to the new conditions. Fortunately, the people who were involved in computer modelling of physical processes were among the most successful. First, the existing and newly established contacts in Western Europe were used actively to reorient the applied researches in the directions actively studied at the universities and companies, which were the partners of the University of Latvia. As a result, research groups involved in these activities successfully joined the international effort related to the application of computer models to industrial processes, and the scientific laboratory for Mathematical Modelling of Environmental and Technological Processes was founded in 1994. The second direction of modelling development was related to the application of computer-based models for the environmental and technological processes (e.g., sediment transport in harbours, heat transfer in building constructions) that were important for the companies and state institutions in Latvia. Currently, the field of engineering physics, the core of which is the computer modelling of technological and environmental processes, is one of the largest and most successfully developing parts of researches and educational programs at the Department of Physics of the University of Latvia with very good perspectives in the future for the development of new technologies and knowledge transfer.

  19. KSC-2013-3578

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Carol Craig, founder and CEO of Craig Technologies, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  20. Impact of swine reproductive technologies on pig and global food production.

    PubMed

    Knox, Robert V

    2014-01-01

    Reproductive technologies have dramatically changed the way pigs are raised for pork production in developed and developing countries. This has involved such areas as pigs produced/sow, more consistent pig flow to market, pig growth rate and feed efficiency, carcass yield and quality, labor efficiency, and pig health. Some reproductive technologies are in widespread use for commercial pork operations [Riesenbeck, Reprod Domest Anim 46:1-3, 2011] while others are in limited use in specific segments of the industry [Knox, Reprod Domest Anim 46:4-6, 2011]. Significant changes in the efficiency of pork production have occurred as a direct result of the use of reproductive technologies that were intended to improve the transfer of genes important for food production [Gerrits et al., Theriogenology 63:283-299, 2005]. While some technologies focused on the efficiency of gene transfer, others addressed fertility and labor issues. Among livestock species, pig reproductive efficiency appears to have achieved exceptionally high rates of performance (PigCHAMP 2011) [Benchmark 2011, Ames, IA, 12-16]. From the maternal side, this includes pigs born per litter, farrowing rate, as well as litters per sow per year. On the male side, boar fertility, sperm production, and sows served per sire have improved as well [Knox et al., Theriogenology, 70:1202-1208, 2008]. These shifts in the efficiency of swine fertility have resulted in the modern pig as one of the most efficient livestock species for global food production. These reproductive changes have predominantly occurred in developed countries, but data suggests transfer and adoption of these in developing countries as well (FAO STAT 2009; FAS 2006) [World pig meat production: food and agriculture organization of the United Nations, 2009; FAS, 2006) Worldwide Pork Production, 2006]. Technological advancements in swine reproduction have had profound effects on industry structure, production, efficiency, quality, and profitability. In all cases, the adoption of these technologies has aided in the creation of a sustainable supply of safe and affordable pork for consumers around the world [den Hartog, Adv Pork Prod 15:17-24, 2004].

  1. Seeing the Forest and the Trees: Western Forestry Systems and Soviet Engineers, 1955-1964.

    PubMed

    Kochetkova, Elena

    This article examines the transfer of technology from Finnish enterprises to Soviet industry during the USSR's period of technological modernization between 1955 and 1964. It centers on the forestry sector, which was a particular focus of modernization programs and a key area for the transfer of foreign techniques and expertise. The aim of the article is to investigate the role of trips made by Soviet specialists to foreign (primarily Finnish) enterprises in order to illustrate the nontechnological influences that occurred during the transfer of technologies across the cold war border. To do so, the article is divided into two parts: the first presents a general analysis of technology transfer from a micro-level perspective, while the second investigates the cultural influences behind technological transfer in the Soviet-Finnish case. This study contends that although the Soviet government expected its specialists to import advanced foreign technical experience, they brought not only the technologies and expertise needed for modernizing the industry, but also a changed view on Soviet workplace management and everyday practices.

  2. The Role of Empirical Evidence for Transferring a New Technology to Industry

    NASA Astrophysics Data System (ADS)

    Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe

    Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.

  3. Trade Offsets in Foreign Military Sales -- the F/A-18 Program: A Case Study

    DTIC Science & Technology

    1987-12-01

    other activities under direct commercial arrangement between the U.S. manufacturer and a foreign entity. • Countertrade -- Countertrade involves the...and Countertrade Transactions on U.S. Industries. Concurrent with the ITC’s investigation, Congress enacted the Defense Production Act Amendments of...butnot yet specified - 1 3 - 81 Total 373 1,990 263 707 1,430 Indirect: Foreign investment - - - 5 32 Technology transfer - - 5 6 1 Countertrade 14 302 73

  4. Big data: survey, technologies, opportunities, and challenges.

    PubMed

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Ali, Waleed Kamaleldin Mahmoud; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

  5. Big Data: Survey, Technologies, Opportunities, and Challenges

    PubMed Central

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Mahmoud Ali, Waleed Kamaleldin; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  6. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Rusnak, J. J.; Staskin, E. R.

    1972-01-01

    The progress made in achieving TRIS research objectives during the first six months of 1972 is reviewed. The Tech Brief-Technical Support Package Program and technology transfer profiles are presented along with summaries of technology transfer in nondestructive testing, and visual display systems.

  7. Tools and technologies for expert systems: A human factors perspective

    NASA Technical Reports Server (NTRS)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  8. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  9. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    PubMed

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. NASA technology transfer network communications and information system: TUNS user survey

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Applied Expertise surveyed the users of the deployed Technology Utilization Network System (TUNS) and surveyed prospective new users in order to gather background information for developing the Concept Document of the system that will upgrade and replace TUNS. Survey participants broadly agree that automated mechanisms for acquiring, managing, and disseminating new technology and spinoff benefits information can and should play an important role in meeting NASA technology utilization goals. However, TUNS does not meet this need for most users. The survey describes a number of systematic improvements that will make it easier to use the technology transfer mechanism, and thus expedite the collection and dissemination of technology information. The survey identified 26 suggestions for enhancing the technology transfer system and related processes.

  11. The process for technology transfer in Baltimore

    NASA Technical Reports Server (NTRS)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  12. An Overview of Electric Propulsion Activities at NASA

    NASA Technical Reports Server (NTRS)

    Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.

    2004-01-01

    This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.

  13. 7 CFR 1940.962 - Authority to transfer direct loan amounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... list. (2) Amounts transferred on a National basis. The amount of direct loan funds transferred in a FY... 7 Agriculture 13 2013-01-01 2013-01-01 false Authority to transfer direct loan amounts. 1940.962... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  14. 7 CFR 1940.962 - Authority to transfer direct loan amounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... list. (2) Amounts transferred on a National basis. The amount of direct loan funds transferred in a FY... 7 Agriculture 13 2011-01-01 2009-01-01 true Authority to transfer direct loan amounts. 1940.962... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  15. 7 CFR 1940.962 - Authority to transfer direct loan amounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... list. (2) Amounts transferred on a National basis. The amount of direct loan funds transferred in a FY... 7 Agriculture 13 2014-01-01 2013-01-01 true Authority to transfer direct loan amounts. 1940.962... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  16. 7 CFR 1940.962 - Authority to transfer direct loan amounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... list. (2) Amounts transferred on a National basis. The amount of direct loan funds transferred in a FY... 7 Agriculture 13 2012-01-01 2012-01-01 false Authority to transfer direct loan amounts. 1940.962... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  17. 7 CFR 1940.962 - Authority to transfer direct loan amounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... list. (2) Amounts transferred on a National basis. The amount of direct loan funds transferred in a FY... 7 Agriculture 13 2010-01-01 2009-01-01 true Authority to transfer direct loan amounts. 1940.962... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  18. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliott, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this paper, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry, and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  19. A brief overview of NASA Langley's research program in formal methods

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  20. Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Eric G.; Pinheiro da Silva, Paulo; Kleese van Dam, Kerstin

    2013-06-03

    Despite the methodical and painstaking efforts made by scientists to record their scientific findings and protocols, a knowledge gap problem continues to persist today between producers of scientific results and consumers because technology is performing the exchange of data as opposed to scientists making direct contact. Provenance is a means to formalize how this knowledge is transferred. However, for it to be meaningful to scientists, the provenance research community needs continued contributions from the scientific community to extend and leverage provenance-based vocabularies and technology from the provenance community. Going forward the provenance community must also be vigilant to meet scalabilitymore » needs of data intensive science« less

  1. KSC-2013-3572

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Mike Lester, Research and Technology Partnership manager at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  2. KSC-2013-3573

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Joni Richards, Technology Infusion specialist at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  3. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  4. Increasing clinical presence of mobile communication technology: avoiding the pitfalls.

    PubMed

    Visvanathan, Akila; Gibb, Alan P; Brady, Richard R W

    2011-10-01

    Mobile communication technologies are employed in many diverse areas of healthcare delivery to provide improved quality and efficiency of communication and facilitate increased rapidity of data or information transfer. Mobile phones enable healthcare professionals to possess a portable platform from which to provide many healthcare-related applications and are a popular means to directly communicate with colleagues and patients. As involvement of mobile communication technology in healthcare delivery continues to rapidly expand, there are also important considerations of relevance to patient safety and security as a result. Here, we review the previous evidence of reported clinical risks associated with mobile communication technology, such as electromagnetic interference, confidentiality and data security, distraction/noise, infection control, and cross contamination. In conclusion, although mobile phones provide much putative potential improvement to healthcare delivery, further evaluation and research are required to both inform and protect health professionals and users of such technology in the healthcare environment and provide the evidence base to support the provision of clear and comprehensive guidelines.

  5. Recent developments of artificial intelligence in drying of fresh food: A review.

    PubMed

    Sun, Qing; Zhang, Min; Mujumdar, Arun S

    2018-03-01

    Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.

  6. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control

    NASA Astrophysics Data System (ADS)

    Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.

    2016-08-01

    Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and othermore » outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.« less

  8. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  9. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  10. NASA Intellectual Property Negotiation Practices and their Relationship to Quantitative Measures of Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1997-01-01

    In the current political climate NASA must be able to show reliable measures demonstrating successful technology transfer. The currently available quantitative data of intellectual property technology transfer efforts portray a less than successful performance. In this paper, the use of only quantitative values for measurement of technology transfer is shown to undervalue the effort. In addition, NASA's current policy in negotiating intellectual property rights results in undervalued royalty rates. NASA has maintained that it's position of providing public good precludes it from negotiating fair market value for its technology and instead has negotiated for reasonable cost in order to recover processing fees. This measurement issue is examined and recommendations made which include a new policy regarding the intellectual property rights negotiation, and two measures to supplement the intellectual property measures.

  11. 31 CFR 357.22 - Transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND BILLS HELD IN LEGACY TREASURY DIRECT Legacy Treasury Direct Book-Entry Securities System (Legacy...-entry system, and TreasuryDirect ®. A security may also be transferred between accounts in Legacy... system. A transfer of a security from Legacy Treasury Direct to the commercial book-entry system is...

  12. KSC-2013-3577

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Percy Luney of Space Florida discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  13. TECHNOLOGY TRANSFER ENVIRONMENTAL REGULATIONS AND TECHNOLOGY : CONTROL OF PATHOGENS IN MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...

  14. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    PubMed

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAchran, G.E.

    The author first addresses the impediments to successful technology transfer, e.g., tax programs, planning horizons, and capital availability. He emphasizes that written information emanating from universities and national laboratories, in and of itself, is usually insufficient to insure technology transfer. He notes that most information is transferred through informal channels and, most effectively, through personal contacts. Noting that Monsanto was a founding member and remains active in they Council on Chemical Research and Technology Transfer Conferences, Inc., he cites examples of their activities in the past 15 years. While geographic proximity is an important factor, usually, Monsanto's 5-year program withmore » Oxford Univ., UK, is funded at approximately $2 million; Monsanto scientists are located at Oxford to facilitate the work and bring the technology back home. 7 references« less

  16. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER

    PubMed Central

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F.; Sanberg, Paul R.

    2014-01-01

    Academic technology transfer in its current form began with the passage of the Bayh–Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh–Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1. PMID:25061505

  17. Formal methods technology transfer: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, David

    1992-01-01

    IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned.

  18. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    PubMed

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  19. Technology Transfer: A Third World Perspective.

    ERIC Educational Resources Information Center

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  20. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

Top