Science.gov

Sample records for direct th2 cell

  1. Innate immunological function of TH2 cells in vivo.

    PubMed

    Guo, Liying; Huang, Yuefeng; Chen, Xi; Hu-Li, Jane; Urban, Joseph F; Paul, William E

    2015-10-01

    Type 2 helper T cells (TH2 cells) produce interleukin 13 (IL-13) when stimulated by papain or house dust mite extract (HDM) and induce eosinophilic inflammation. This innate response is dependent on IL-33 but not T cell antigen receptors (TCRs). While type 2 innate lymphoid cells (ILC2 cells) are the dominant innate producers of IL-13 in naive mice, we found here that helminth-infected mice had more TH2 cells compared to uninfected mice, and thes e cells became major mediators of innate type 2 responses. TH2 cells made important contributions to HDM-induced antigen-nonspecific eosinophilic inflammation and protected mice recovering from infection with Ascaris suum against subsequent infection with the phylogenetically distant nematode Nippostrongylus brasiliensis. Our findings reveal a previously unappreciated role for effector TH2 cells during TCR-independent innate-like immune responses.

  2. Human Th2 cells selectively express the orexigenic peptide, pro-melanin-concentrating hormone

    PubMed Central

    Sandig, Hilary; McDonald, Joanne; Gilmour, Jane; Arno, Matthew; Lee, Tak H.; Cousins, David J.

    2007-01-01

    Th1 and Th2 cells represent the two main functional subsets of CD4+ T helper cell, and are defined by their cytokine expression. Human Th1 cells express IFNγ, whilst Th2 cells express IL-4, IL-5, and IL-13. Th1 and Th2 cells have distinct immunological functions, and can drive different immunopathologies. Here, we show that in vitro-differentiated human Th2 cells highly selectively express the gene for pro-melanin-concentrating hormone (PMCH), using real-time RT-PCR, enzyme immunoassay, and Western blot analysis. PMCH encodes the prohormone, promelanin-concentrating hormone (PMCH), which is proteolytically processed to produce several peptides, including the orexigenic hormone melanin-concentrating hormone (MCH). PMCH expression by Th2 cells was activation responsive and increased throughout the 28-day differentiation in parallel with the expression of the Th2 cytokine genes. MCH immunoreactivity was detected in the differentiated Th2 but not Th1 cell culture supernatants after activation, and contained the entire PMCH protein, in addition to several smaller peptides. Human Th1 and Th2 cells were isolated by their expression of IFNγ and CRTH2, respectively, and the ex vivo Th2 cells expressed PMCH upon activation, in contrast to the Th1 cells. Because Th2 cells are central to the pathogenesis of allergic diseases including asthma, expression of PMCH by activated Th2 cells in vivo may directly link allergic inflammation to energy homeostasis and may contribute to the association between asthma and obesity. PMID:17640905

  3. Innate immunological function of TH2 cells in vivo

    USDA-ARS?s Scientific Manuscript database

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  4. Innate Immune Function of TH2 Cells in vivo

    PubMed Central

    Guo, Liying; Huang, Yuefeng; Chen, Xi; Hu-Li, Jane; Urban, Joseph F.; Paul, William E.

    2015-01-01

    Type 2 helper T (TH) cells produce interleukin 13 (IL-13) when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response is dependent on IL-33 but not T cell antigen receptors (TCRs). While type 2 innate lymphoid cells (ILC2s) are the dominant innate producers of IL-13 in naïve animals, we show here that in helminth-infected mice, TH2 cell numbers increased and became major mediators of innate type II responses. TH2 cells made important contributions to HDM-induced antigen–non-specific eosinophilic inflammation and protected mice recovering from Ascaris suum infection against subsequent infection with the phylogenetically distant nematode Nippostrongylus brasiliensis. Our findings reveal a previously unappreciated role of effector TH2 cells during TCR-independent innate-like immune responses. PMID:26322482

  5. Morphine withdrawal contributes to Th cell differentiation by biasing cells toward the Th2 lineage.

    PubMed

    Kelschenbach, Jennifer; Barke, Roderick A; Roy, Sabita

    2005-08-15

    The consequences that drug withdrawal has on immune functioning has only recently been appreciated; however, given the wide variety of use and abuse of opiate analgesics, understanding the decrements to immune function that withdrawal from these drugs causes is of crucial importance. In previous work, we have demonstrated that morphine treatment contributes to immunosuppression by polarizing Th cells toward the Th2 lineage. In the current study, it was hypothesized that morphine withdrawal would result in Th2 differentiation and subsequent immune dysfunction. To address this hypothesis, mice were chronically treated with morphine for 72 h followed by a 24-h withdrawal period. It was determined that 24-h morphine withdrawal resulted in a decrease in IFN-gamma, the Th1 signature cytokine, whereas the Th2 cytokine, IL-4, was increased. In addition, Western blot and EMSA experiments revealed that morphine withdrawal-induced Th2 differentiation was mediated through the classical Th2 transcription factors Stat-6 and GATA-3. In addition, the consequence of morphine withdrawal in the presence of an immune stimulation was also examined by treating mice in vivo with LPS before morphine withdrawal. Following withdrawal, it was found that the Th1-polarizing cytokine IL-12 was significantly decreased, providing further support for the observation that withdrawal results in Th2 differentiation by possibly impacting the generation of an appropriate innate immune response which directs subsequent adaptive Th1/Th2 responses.

  6. Hierarchical IL-5 expression defines a subpopulation of highly differentiated human Th2 cells.

    PubMed

    Upadhyaya, Bhaskar; Yin, Yuzhi; Hill, Brenna J; Douek, Daniel C; Prussin, Calman

    2011-09-15

    Each of the three Th2 cytokine genes, IL-4, IL-5, and IL-13, has different functions. We hypothesized that Th2 heterogeneity could yield Th2 subpopulations with different cytokine expression and effector functions. Using multiple approaches, we demonstrate that human Th2 cells are composed of two major subpopulations: a minority IL-5(+) (IL-5(+), IL-4(+), IL-13(+)) and majority IL-5(-) Th2 (IL-5(-), IL-4(+), IL-13(+)) population. IL-5(+) Th2 cells comprised only 20% of all Th2 cells. Serial rounds of in vitro differentiation initially yielded IL-5(-) Th2, but required multiple rounds of differentiation to generate IL-5(+) Th2 cells. IL-5(+) Th2 cells expressed less CD27 and greater programmed cell death-1 than IL-5(-) Th2 cells, consistent with their being more highly differentiated, Ag-exposed memory cells. IL-5(+) Th2 cells expressed greater IL-4, IL-13, and GATA-3 relative to IL-5(-) Th2 cells. GATA-3 and H3K4me(3) binding to the IL5 promoter (IL5p) was greater in IL-5(+) relative to IL-5(-) Th2 cells, whereas there was no difference in their binding to the IL4p and IL13p. Conversely, H3K27me(3) binding to the IL5p was greater in IL-5(-) Th2 cells. These findings demonstrate Th2 lineage heterogeneity, in which the IL5 gene is regulated in a hierarchical manner relative to other Th2 genes. IL-5(+) Th2 cells are phenotypically distinct and have epigenetic changes consistent with greater IL5p accessibility. Recurrent antigenic exposure preferentially drives the differentiation of IL-5(+) Th2 cells. These results demonstrate that IL-5(+) and IL-5(-) Th2 cells, respectively, represent more and less highly differentiated Th2 cell subpopulations. Such Th2 subpopulations may differentially contribute to Th2-driven pathology.

  7. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Jesse W.; Tjota, Melissa Y.; Clay, Bryan S.; Vander Lugt, Bryan; Bandukwala, Hozefa S.; Hrusch, Cara L.; Decker, Donna C.; Blaine, Kelly M.; Fixsen, Bethany R.; Singh, Harinder; Sciammas, Roger; Sperling, Anne I.

    2013-12-01

    Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation.

  8. Th2 cell hyporesponsiveness during chronic murine schistosomiasis is cell intrinsic and linked to GRAIL expression

    PubMed Central

    Taylor, Justin J.; Krawczyk, Connie M.; Mohrs, Markus; Pearce, Edward J.

    2009-01-01

    Chronic infections are associated with progressively declining T cell function. Infections with helminth parasites, such as Schistosoma mansoni, are often chronic and characterized by the development of strong Th2 responses that peak during the acute stage of infection and then decline despite ongoing infection; this minimizes Th2-dependent immunopathology during the chronic stage of infection. We sought to understand the basis for the decline in Th2 responses in chronic schistosomiasis. Using IL-4 reporter mice (mice that express EGFP as a reporter for Il4 gene expression) to identify Th2 cells, we found that Th2 cell numbers plateaued during acute infection and remained constant thereafter. However, the percentages of Th2 cells proliferating during late infection were strikingly lower than those during acute infection. Th2 cell hyporesponsiveness was evident within 10 d of initiation of the Th2 response and became progressively ingrained thereafter, in response to repeated Ag stimulation. Gene expression analyses implicated the E3-ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) in the hyporesponsive state. Consistent with this, suppression of GRAIL expression using retrovirally delivered siRNA prevented the development of hyporesponsiveness induced by repeated Ag stimulation in vitro or in vivo. Together, these data indicate that the decline in Th2 cell responsiveness during chronic schistosomiasis is the net result of the upregulation of GRAIL expression in response to repeated Ag stimulation. PMID:19258704

  9. Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.

    PubMed

    Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-09-12

    During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.

  10. Both Th1 and Th2 Cells Require P-Selectin Glycoprotein Ligand-1 for Optimal Rolling on Inflamed Endothelium

    PubMed Central

    Mangan, Paul R.; O’Quinn, Darrell; Harrington, Laurie; Bonder, Claudine S.; Kubes, Paul; Kucik, Dennis F.; Bullard, Daniel C.; Weaver, Casey T.

    2005-01-01

    The acquisition of homing receptors that redirect lymphocyte trafficking to nonlymphoid tissues after antigen encounter is a fundamental aspect of effector T-cell development. Although a role for selectins and their ligands has been well characterized for trafficking of Th1 cells to nonlymphoid sites, mechanisms responsible for Th2 trafficking are not well understood. Using a flow chamber system in which the endothelial interactions of two distinct T-cell populations could be examined simultaneously, we directly compared the requirements for Th1 and Th2 cell tethering and rolling. We found that although Th2 cells expressed significantly lower levels of selectin ligands than Th1 cells, activation of the endothelium by Th2-derived factors induced rolling interactions that were comparable for both Th1 and Th2 populations. Further, in the absence of PSGL-1, no other adhesion molecule could effectively compensate for lack of PSGL-1 to mediate rolling of either Th1 or Th2 cells. Thus, both Th1 and Th2 populations express functional PSGL-1-based selectin ligands for tethering and rolling on activated endothelium, and both effector populations can use PSGL-1 as the dominant scaffold for functional selectin ligand expression. PMID:16314478

  11. Different growth factor requirements for human Th2 cells may reflect in vivo induced anergy.

    PubMed Central

    Van Reijsen, F C; Wijburg, O L; Gebhardt, M; Van Ieperen-Van Dijk, A G; Betz, S; Poellabauer, E M; Thepen, T; Bruijnzeel-Koomen, C A; Mudde, G C

    1994-01-01

    We previously reported the isolation of allergen-specific Th2 lines and clones from atopy patch test (APT) sites of atopic dermatitis (AD) patients. Upon stimulation with allergen or anti-CD3+ phorbol myristate acetate (PMA) IL-4 was released with or without IL-5, while no (or extremely low concentrations of) IL-2 and interferon-gamma (IFN-gamma) were detectable. A high IL-4/IFN-gamma ratio facilitates production of allergen-specific IgE, of which high levels are observed in AD patients. Here we show that the above mentioned Th2 cells are notably different from murine Th2 cells. Not IL-4, which is the autocrine acting growth factor for murine Th2 cells, but IL-2 was needed for proliferation of these human APT-derived Th2 lines and clones. Of significance, unless exogenous IL-2 was added, no proliferative response to allergen, presented by Epstein-Barr virus-transformed B (EBV-B) cells, non-T cells or IgE-bearing Langerhans cells (LC), occurred. Lack of proliferation and IL-2 production after full T cell receptor (TCR) triggering is a characteristic first described for in vitro anergized T cells. However, like the clones we describe in this study, anergic T cells may retain production of cytokines other than IL-2. A further resemblance between anergic T cells and the human Th2 clones reported here is that IL-4 can enhance IL-2-driven proliferation, but is not capable of inducing T cell growth by itself. The absence of IL-4-driven proliferation differentiates human Th2 cells from murine Th2 cells. Both produce IL-4 when stimulated in a cognate fashion, but only murine Th2 cells will proliferate. We conclude that the presently reported human Th2 cells are different from murine Th2 cells, in that they need other T cells to produce IL-2 required for their expansion. Moreover, the Th2 cells phenotypically resemble anergic T cells. As yet, however, we have no clue as to whether these features account for the current Th2 cells only or for human Th2 cells in general. We

  12. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia

    PubMed Central

    Saito, S; Sakai, M; Sasaki, Y; Tanebe, K; Tsuda, H; Michimata, T

    1999-01-01

    We calculated the percentage of Th1, Th2, Th0 cells and the Th1:Th2 cell ratio of peripheral blood from normal pregnant subjects and preeclampsia patients using flow cytometry which can analyse both the surface marker, CD4, and intracellular cytokines, interleukin (IL)-4 and interferon (IFN)-γ. In normal pregnancy, the percentage of Th1 cells was significantly lower in the third trimester, and the ratios of Th1:Th2 were significantly lower in the second and third trimester than in nonpregnant subjects. In contrast, the percentage of Th1 cells and the ratios of Th1:Th2 in preeclampsia were significantly higher than in normal third trimester pregnant subjects. The percentage of Th2 cells in preeclampsia was significantly lower than in third trimester of normal pregnancy. Additionally, peripheral blood mononuclear cells from these subjects and patients were cultured with phytohemagglutinin stimulation, and IL-4 and IFN-γ concentrations were determined in the supernatant by enzymed linked immunosorbent assays. The percentage of Th1 and Th2, and the ratios of Th1:Th2 were correlated with cytokine (IFN-γ and IL-4) secretion level. These results demonstrated that Th2 cells were predominant in the second and third trimesters of normal pregnancy, but Th1 cells predominated in preeclamptic patients. PMID:10469061

  13. Lyn Kinase Controls Basophil GATA-3 Transcription Factor Expression and Induction of Th2 Cell Differentiation

    PubMed Central

    Charles, Nicolas; Watford, Wendy T.; Ramos, Haydeé L.; Hellman, Lars; Oettgen, Hans C.; Gomez, Gregorio; Ryan, John J.; O’Shea, John J.; Rivera, Juan

    2009-01-01

    Summary TH1/TH2 balance is key to host defense and its dysregulation has pathophysiological consequences. Basophils are important in TH2 differentiation. However, the factors controlling the onset and extent of basophil-mediated TH2 differentiation are unknown. Here, we demonstrate that Lyn kinase dampens basophil GATA-3 expression and the initiation and extent of TH2 differentiation. Lyn-null mice had a marked basophilia, a constitutive TH2 skewing that was exacerbated upon in vivo challenge of basophils, produced antibodies to a normally inert antigen, and failed to appropriately respond to a TH1 pathogen. The TH2 skewing was dependent on basophils, IgE and IL-4, but was independent of mast cells. Our findings demonstrate that basophil-expressed Lyn kinase exerts regulatory control on TH2 differentiation and function. PMID:19362019

  14. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    USDA-ARS?s Scientific Manuscript database

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  15. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm

    PubMed Central

    Hirahara, Kiyoshi

    2016-01-01

    CD4+ T cells are crucial for directing appropriate immune responses during host defense and for the pathogenesis of inflammatory diseases. In addition to the classical biphasic model of differentiation of T-helper 1 (Th1) and Th2 cells, unexpected increases in the numbers of CD4+ T-cell subsets, including Th17, Th9, T follicular-helper (Tfh) and T-regulatory (Treg) cells, have been recognized. In the present review, we focus on how these various T-helper cell subsets contribute to the pathogenesis of immune-mediated inflammatory diseases. In particular, we focus on multiple sclerosis, psoriasis and asthma as typical model diseases in which multiple T-helper cell subsets have recently been suggested to play a role. We will also discuss various unique sub-populations of T-helper cells that have been identified. First, we will introduce the heterogeneous T-helper cell subsets, which are classified by their simultaneous expression of multiple key transcription factors. We will also introduce different kinds of memory-type Th2 cells, which are involved in the pathogenesis of chronic type-2 immune-related diseases. Finally, we will discuss the molecular mechanisms underlying the generation of the plasticity and heterogeneity of T-helper cell subsets. The latest progress in the study of T-helper cell subsets has forced us to reconsider the etiology of immune-mediated inflammatory diseases beyond the model based on the Th1/Th2 balance. To this end, we propose another model—the pathogenic T-helper population disease-induction model—as a possible mechanism for the induction and/or persistence of immune-mediated inflammatory diseases. PMID:26874355

  16. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection

    PubMed Central

    Pelly, VS; Kannan, Y; Coomes, SM; Entwistle, LJ; Rückerl, D; Seddon, B; MacDonald, AS; McKenzie, A; Wilson, MS

    2017-01-01

    Immunity to many human and murine gastrointestinal helminth parasites requires interleukin-4 (IL-4)-directed type 2 helper (TH2) differentiation of CD4+ T cells to elicit type-2 immunity. Despite a good understanding of the inflammatory cascade elicited following helminth infection, the initial source of IL-4 is unclear. Previous studies using the rat helminth parasite Nippostronglyus brasiliensis, identified an important role for basophil-derived IL-4 for TH2 differentiation. However, basophils are redundant for TH2 differentiation following infection with the natural helminth parasite of mice Heligmosomoides polygyrus, indicating that other sources of IL-4 are required. In this study using H. polygyrus, which is controlled by IL-4-dependent immunity, we identified that group-2 innate lymphoid cells (ILC2s) produced significant amounts of IL-4 and IL-2 following H. polygyrus infection. Leukotriene D4 was sufficient to stimulate IL-4 secretion by ILC2s, and the supernatant from activated ILC2s could potently drive TH2 differentiation in vitro in an IL-4-dependent manner. Furthermore, specific deletion of IL-4 from ILC2s compromised TH2 differentiation in vivo. Overall, this study highlights a previously unrecognized and important role for ILC2-derived IL-4 for TH2 differentiation in a natural TH2-dependent model of human helminthiasis. PMID:26883724

  17. T-cell–intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy

    PubMed Central

    Perez-Lloret, Jimena; Okoye, Isobel S.; Guidi, Riccardo; Kannan, Yashaswini; Coomes, Stephanie M.; Czieso, Stephanie; Mengus, Gabrielle; Davidson, Irwin; Wilson, Mark S.

    2016-01-01

    There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ+CD4+ T-helper 2 (TH2) cells orchestrate the type-2–driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081–E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4gfp+αβ+CD4+ TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell–intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24−/− T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1–regulated signaling. Following this prediction, we found that Trim24−/− T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β–mediated activation in vitro and in vivo, and fail to respond to IL-1β–exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell–intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity. PMID:26787865

  18. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells

    PubMed Central

    Coomes, Stephanie M.; Pelly, Victoria S.; Kannan, Yashaswini; Okoye, Isobel S.; Czieso, Stephanie; Entwistle, Lewis J.; Perez-Lloret, Jimena; Nikolov, Nikolay; Potocnik, Alexandre J.; Biró, Judit; Langhorne, Jean; Wilson, Mark S.

    2015-01-01

    Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1–/– mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells. PMID:26147567

  19. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation.

    PubMed

    Yang, Jun-Qi; Kalim, Khalid W; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun

    2016-01-01

    Mitochondrial metabolism is known to be important for T-cell activation. However, its involvement in effector T-cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T-cell activation and effector cell differentiation and function remains largely unknown. We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for TH2 cell differentiation and TH2-mediated allergic airway inflammation. Conditional RhoA-deficient mice were generated by crossing RhoA(flox/flox) mice with CD2-Cre transgenic mice. Effects of RhoA on TH2 differentiation were evaluated based on in vitro TH2-polarized culture conditions and in vivo in ovalbumin-induced allergic airway inflammation. Cytokine levels were measured by using intracellular staining and ELISA. T-cell metabolism was measured by using the Seahorse XF24 Analyzer and flow cytometry. Disruption of RhoA inhibited T-cell activation and TH2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on TH1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways, such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to TH2 cell differentiation and allergic airway inflammation through regulating IL-4 receptor mRNA expression and TH2-specific signaling events. Finally, inhibition of Rho-associated protein kinase, an immediate downstream effector of RhoA, blocked TH2 differentiation and allergic airway inflammation. RhoA is a key component of the signaling cascades leading to TH2 differentiation and allergic airway inflammation at least in part through control of T-cell metabolism and the Rho-associated protein kinase pathway. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Caerulomycin A inhibits Th2 cell activity: a possible role in the management of asthma

    PubMed Central

    Kujur, Weshely; Gurram, Rama Krishna; Haleem, Nazia; Maurya, Sudeep K.; Agrewala, Javed N.

    2015-01-01

    We have recently demonstrated that Caerulomycin A induces regulatory T cells differentiation by suppressing Th1 cells activity. The role of regulatory T cells is well established in suppressing the function of Th2 cells. Th2 cells are known to inflict the induction of the activation of asthma. Consequently, in the present study, we monitored the influence of Caerulomycin A in inhibiting the activity of Th2 cells and its impact in recuperating asthma symptoms. Interestingly, we observed that Caerulomycin A significantly suppressed the differentiation of Th2 cells, as evidenced by downregulation in the GATA-3 expression. Further, decline in the levels of IL-4, IL-5 and IL-13 cytokines and IgE was noted in the animals suffering from asthma. Furthermore, we noticed substantial suppression in the inflammatory response and number of eosinophils in the lungs. In essence, this study signifies an important therapeutic role of Caerulomycin A in asthma. PMID:26481184

  1. T follicular helper cells differentiate from Th2 cells in response to helminth antigens

    PubMed Central

    Zaretsky, Arielle Glatman; Taylor, Justin J.; King, Irah L.; Marshall, Fraser A.; Mohrs, Markus

    2009-01-01

    The relationship of T follicular helper (TFH) cells to other T helper (Th) subsets is controversial. We find that after helminth infection, or immunization with helminth antigens, reactive lymphoid organs of 4get IL-4/GFP reporter mice contain populations of IL-4/GFP-expressing CD4+ T cells that display the TFH markers CXCR5, PD-1, and ICOS. These TFH cells express the canonical TFH markers BCL6 and IL-21, but also GATA3, the master regulator of Th2 cell differentiation. Consistent with a relationship between Th2 and TFH cells, IL-4 protein production, reported by expression of huCD2 in IL-4 dual reporter (4get/KN2) mice, was a robust marker of TFH cells in LNs responding to helminth antigens. Moreover, the majority of huCD2/IL-4–producing Th cells were found within B cell follicles, consistent with their definition as TFH cells. TFH cell development after immunization failed to occur in mice lacking B cells or CD154. The relationship of TFH cells to the Th2 lineage was confirmed when TFH cells were found to develop from CXCR5− PD-1− IL-4/GFP+ CD4+ T cells after their transfer into naive mice and antigen challenge in vivo. PMID:19380637

  2. Pleural cavity type 2 innate lymphoid cells precede Th2 expansion in murine Litomosoides sigmodontis infection.

    PubMed

    Boyd, Alexis; Killoran, Kristin; Mitre, Edward; Nutman, Thomas B

    2015-12-01

    Recently, a family of innate cells has been identified that respond to IL-25 and IL-33 in murine intestinal helminths. Termed Type 2 innate lymphoid cells (ILC2s) they facilitate the development of Th2 responses responsible for helminth clearance. We evaluated these cells in a tissue-invasive helminth model. Using Litomosides sigmodontis (a strong Th2 polarizing filarial infection) we observed a robust Th2 response in the pleural cavity, where adult worms reside, marked by increased levels of IL-5 and IL-13 in infected mice. In parallel, ILC2s were expanded in the pleural cavity early in the infection, peaking during the pre-patent period. L. sigmodontis also elicits a strong systemic Th2 response, which includes significantly increased levels of IgG1, IgE and IL-5 in the plasma of infected mice. Although ILC2s were expanded locally, they were not expanded in the spleen, blood, or mediastinal lymph nodes in response to L. sigmodontis infection, suggesting that ILC2s function primarily at the site of infection. The increase in ILC2s in the pleural cavity and the expansion in Th2 responses indicates a probable role for these cells in initiating and maintaining the Th2 response and highlights the importance of these cells in helminth infections and their role in Th2 immunity. Published by Elsevier Inc.

  3. Pollen-derived nonallergenic substances enhance Th2-induced IgE production in B cells.

    PubMed

    Oeder, S; Alessandrini, F; Wirz, O F; Braun, A; Wimmer, M; Frank, U; Hauser, M; Durner, J; Ferreira, F; Ernst, D; Mempel, M; Gilles, S; Buters, J T M; Behrendt, H; Traidl-Hoffmann, C; Schmidt-Weber, C; Akdis, M; Gutermuth, J

    2015-11-01

    B cells play a central role in IgE-mediated allergies. In damaged airway epithelium, they are exposed directly to aeroallergens. We aimed to assess whether direct exposure of B cells to pollen constituents affects allergic sensitization. B cells from murine splenocytes and from blood samples of healthy donors were incubated for 8 days under Th2-like conditions with aqueous ragweed pollen extracts (Amb-APE) or its constituents. Secreted total IgM, IgG, and IgE was quantified by ELISA. Additionally, birch, grass, or pine-pollen extracts were tested. The number of viable cells was evaluated by ATP measurements. B-cell proliferation was measured by CFSE staining. IgE class switch was analyzed by quantitation of class switch transcripts. In an OVA/Alum i.p.-sensitization mouse model, Amb-APE was intranasally instilled for 11 consecutive days. Upon Th2 priming of murine B cells, ragweed pollen extract caused a dose-dependent increase in IgE production, while IgG and IgM were not affected. The low-molecular-weight fraction and phytoprostane E1 (PPE1) increased IgE production, while Amb a 1 did not. PPE1 enhanced IgE also in human memory B cells. Under Th1 conditions, Amb-APE did not influence immunoglobulin secretion. The IgE elevation was not ragweed specific. It correlated with proliferation of viable B cells, but not with IgE class switch. In vivo, Amb-APE increased total IgE and showed adjuvant activity in allergic airway inflammation. Aqueous pollen extracts, the protein-free fraction of Amb-APE, and the pollen-contained substance PPE1 specifically enhance IgE production in Th2-primed B cells. Thus, pollen-derived nonallergenic substances might be responsible for B-cell-dependent aggravation of IgE-mediated allergies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. TH2, allergy and group 2 innate lymphoid cells.

    PubMed

    Licona-Limón, Paula; Kim, Lark Kyun; Palm, Noah W; Flavell, Richard A

    2013-06-01

    The initiation of type 2 immune responses by the epithelial cell-derived cytokines IL-25, IL-33 and TSLP has been an area of extensive research in the past decade. Such studies have led to the identification of a new innate lymphoid subset that produces the canonical type 2 cytokines IL-5, IL-9 and IL-13 in response to IL-25 and IL-33. These group 2 or type 2 innate lymphoid cells (ILC2 cells) represent a critical source of type 2 cytokines in vivo and serve an important role in orchestrating the type 2 response to helminths and allergens. Further characterization of ILC2 cell biology will enhance the understanding of type 2 responses and may identify new treatments for asthma, allergies and parasitic infections. Interactions between ILC2 cells and the adaptive immune system, as well as examination of potential roles for ILC2 cells in the maintenance of homeostasis, promise to be particularly fruitful areas of future research.

  5. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis1

    PubMed Central

    Harakal, Jessica; Rival, Claudia; Qiao, Hui; Tung, Kenneth S.

    2016-01-01

    Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6 DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient Treg cell depletion results in long-lasting AIG associated with both H+K+ATPase and intrinsic factor autoantibody responses. Although functional Treg cells emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg cell-mediated suppression. While previous studies have implicated dysregulated Th1 responses in AIG pathogenesis, eosinophils have been detected in gastric biopsies from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach draining lymph nodes. Additionally, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IRF4+PD-L2+ dendritic cells and ILT3+ rebounded Treg cells were detected after transient Treg cell depletion. Collectively, these data suggest that Treg cells maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in autoimmune gastritis. PMID:27259856

  6. Th2 differentiation is unaffected by Jagged2 expression on Dendritic Cells1

    PubMed Central

    Krawczyk, Connie M.; Sun, Jie; Pearce, Edward J.

    2010-01-01

    Expression of the Jagged Notch ligands by Dendritic Cells (DCs) has been suggested to play a role in instructing Th2 responses. Supporting this hypothesis, we found that Jagged2 but not Jagged1 expression, correlates with the ability of DCs to induce Th2 responses. Jagged2 expression is upregulated in response to the helminth antigen SEA, which conditions DCs to induce Th2 responses, and is markedly downregulated following exposure to Toll-like receptor (TLR) agonists, which generally promote Th1 responses. Conversely, Jagged1 expression is markedly induced by TLR ligation. Despite these correlations, suppression of expression of Jagged2 using retrovirally-delivered siRNA failed to affect the ability of DCs to induce Th2 cell differentiation either in vitro or in vivo. Moreover, retrovirally-induced expression of Jagged2 did not enhance the ability of DCs to induce Th2 cell responses. Our data indicate that Jagged2 expression by DCs is not sufficient or required for Th2 cell differentiation. PMID:18523256

  7. Diterpenes inhibit IL-12 production by DC and enhance Th2 cells polarization.

    PubMed

    Takei, Masao; Umeyama, Akemi; Arihara, Shigenobu

    2007-04-13

    Sugiol and 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (Secoferruginol) are diterpenes isolated from the heartwood of Cryptomeria japonica and are pharmacologically active substances. Dendritic cells (DC) have a key influence on the differentiation of naïve T cells into Th1 or Th2 effector cells. We demonstrate that Sugiol and Secoferruginol activate human DC as documented by phenotypic and functional maturation and altered cytokine production. Human monocytes were exposed to Sugiol or Secoferruginol alone, or in combination with LPS and thereafter co-cultured with naïve T cells. The expression levels of CD83 on Sugiol-primed DC were enhanced. Sugiol dose-dependently inhibited IL-12p70 production by LPS-primed DC and to a lesser extent, the production of the proinflammatory cytokines. Naïve T cells co-cultured with Sugiol-primed DC, turned into typical Th2 which produced large quantities of IL-4 and released small amounts of IFN-gamma and reduced Th1 cell polarizing capacity. Sugiol-primed DC induced the development of Th2 cells via the enhanced expression of OX40L and augmented the Th2 cell polarizing capacity of DC via the inhibition of IL-12p70. Similar results were obtained with Secoferruginol. These results suggest that some diterpenes modulate human DC function in a fashion that favors Th2 cell polarization and might have implication in autoimmune diseases.

  8. CD30 antigen: not a physiological marker for TH2 cells but an important costimulator molecule in the regulation of the balance between TH1/TH2 response.

    PubMed

    Pellegrini, Patrizia; Berghella, Anna Maria; Contasta, Ida; Adorno, Domenico

    2003-01-01

    Understanding the physiological role of CD30 would be an important step forward in transplants because CD30+ T cells can be induced by alloantigens even in the presence of immunosuppressives such as cyclosporine (Csa) and hence can act as regulatory cells in allograft. The results of functional studies on purified T CD30+ cell populations led us to hypothesize that the CD30 costimulator molecule is not a specific marker for TH2 cells in normal conditions, as has been suggested, but rather a marker for an important immunoregulatory subpopulation that regulates the balance between TH1 and TH2 (TH1/TH2) type response. To substantiate this hypothesis we studied the TH1/TH2 cytokine network in peripheral whole blood cultures stimulate with M44 CD30 ligand (CD30L), an agonistic monoclonal antibody (mAb). Four types of whole blood culture were used: the first had been stimulated with anti-CD3 mAb which generates a CD30 cytokine profile similar to alloreactive stimulation; the second with anti-CD3 mAb+M81 (an anti-CD30L mAb) to inhibit CD30/CD30L interaction; the third with anti-CD3+anti-interleukin (IL)4 mAbs to counteract IL4 activity and the fourth with anti-CD3+anti-interferon (IFN)gamma mAbs to counteract IFNgamma activity. Network interactions between soluble CD30 (sCD30, a maker of CD30 expression), sBcl2 (a marker of cell survival) and TH1/TH2 cytokines (IFNgamma, IL2, IL12p70, IL12p40, IL4, IL5 and IL10) were then studied in the supernatants obtained. Our results confirm the hypothesis above by showing that CD30 signals trigger functional mechanisms responsible for changes in levels of production of several important TH1 and TH2 cytokines involved in the regulation of the physiological balance between TH1/TH2 functions. The CD30-stimulated network, in fact, induces IFNgamma production linked to TH1 activity (-->TH1) which is subsequently integrated by IL4 production linked to TH2 activity (-->TH2). This production appears to be regulated, respectively, by IL12p40

  9. Eotaxins and CCR3 interaction regulates the Th2 environment of cutaneous T-cell lymphoma.

    PubMed

    Miyagaki, Tomomitsu; Sugaya, Makoto; Fujita, Hideki; Ohmatsu, Hanako; Kakinuma, Takashi; Kadono, Takafumi; Tamaki, Kunihiko; Sato, Shinichi

    2010-09-01

    CC chemokine receptor 3 (CCR3), the sole receptor for eotaxins, is expressed on eosinophils and T helper type 2 (Th2) cells. In Hodgkin's disease, eotaxin-1 secreted by fibroblasts collects Th2 cells and eosinophils within the tissue. Similarly, many Th2 cells infiltrate the lesional skin of cutaneous T-cell lymphoma (CTCL). In this study, we investigated the role of eotaxins in the development of the Th2 environment of CTCL. We revealed that fibroblasts from lesional skin of CTCL expressed higher amounts of eotaxin-3 messenger RNA (mRNA) compared with those from normal skin. Lesional skin of CTCL at advanced stages contained significantly higher levels of eotaxin-3 and CCR3 mRNA, compared with early stages of CTCL. IL-4 mRNA was expressed in some cases at advanced stages. Immunohistochemistry revealed that keratinocytes, endothelial cells, and dermal fibroblasts in lesional skin of CTCL showed a stronger expression of eotaxin-3 than did normal skin. CCR3(+) lymphocytes and IL-4 expression were observed in some cases of advanced CTCL. Furthermore, both serum eotaxin-3 and eotaxin-1 levels of CTCL patients at advanced stages were significantly higher than those of healthy individuals. The concentrations of these chemokines correlated with serum soluble IL-2 receptor levels. These results suggest that interaction of eotaxins and CCR3 regulates the Th2-dominant tumor environment, which is closely related to the development of CTCL.

  10. Thimerosal induces TH2 responses via influencing cytokine secretion by human dendritic cells.

    PubMed

    Agrawal, Anshu; Kaushal, Poonam; Agrawal, Sudhanshu; Gollapudi, Sastry; Gupta, Sudhir

    2007-02-01

    Thimerosal is an organic mercury compound that is used as a preservative in vaccines and pharmaceutical products. Recent studies have shown a TH2-skewing effect of mercury, although the underlying mechanisms have not been identified. In this study, we investigated whether thimerosal can exercise a TH2-promoting effect through modulation of functions of dendritic cells (DC). Thimerosal, in a concentration-dependent manner, inhibited the secretion of LPS-induced proinflammatory cytokines TNF-alpha, IL-6, and IL-12p70 from human monocyte-derived DC. However, the secretion of IL-10 from DC was not affected. These thimerosal-exposed DC induced increased TH2 (IL-5 and IL-13) and decreased TH1 (IFN-gamma) cytokine secretion from the T cells in the absence of additional thimerosal added to the coculture. Thimerosal exposure of DC led to the depletion of intracellular glutathione (GSH), and addition of exogenous GSH to DC abolished the TH2-promoting effect of thimerosal-treated DC, restoring secretion of TNF-alpha, IL-6, and IL-12p70 by DC and IFN-gamma secretion by T cells. These data suggest that modulation of TH2 responses by mercury and thimerosal, in particular, is through depletion of GSH in DC.

  11. Scopoletin attenuates allergy by inhibiting Th2 cytokines production in EL-4 T cells.

    PubMed

    Cheng, An-Sheng; Cheng, Yu-Hsiang; Chang, Tsu-Liang

    2012-08-01

    Scopoletin is an antioxidant found in certain weedy plants. It exerts anti-inflammatory, anti-allergic, and anti-diabetic activities. It remains unknown whether scopoletin regulates T helper (Th) cells, including Th 1 and Th 2 cells. We found that scopoletin significantly inhibited phorbol myristate acetate (PMA)/ionomycin-induced interleukin-4 (IL-4), IL-5, and IL-10 production in EL-4 T cells. In addition, scopoletin significantly enhanced the inhibitory action of PMA/ionomycin on interferon-γ (IFN-γ) expression. In EL-4 T cells, PMA/ionomycin treatment markedly increased the expression of nuclear factor of activated T cells (NFAT) and GATA-3; in contrast, scopoletin significantly down-regulated expressions of these transcription factors. Furthermore, this downregulation depended on protein kinase C (PKC) attenuation. This leads us to suggest that the anti-allergic properties of scopoletin might be mediated by the downregulation of cytokine expression in Th 2 cells.

  12. Th2 cells are essential for modulation of vascular repair by allogeneic endothelial cells

    PubMed Central

    Methe, Heiko; Nanasato, Mamoru; Spognardi, Anna-Maria; Groothuis, Adam; Edelman, Elazer R.

    2009-01-01

    Background Endothelial cells (EC) embedded within three-dimensional matrices (MEEC) when placed in the vascular adventitia control lumenal inflammation and intimal hyperplasia. Matrix-embedding alters endothelial immunogenicity in vitro. T helper (Th) driven host immunity is a major impediment for of allogeneic grafts. We therefore aimed to identify if modulation of T helper balance would affect immune compatibility and endothelial regulation of vascular repair in vivo. Methods Pigs (n=4/group) underwent balloon injury of both carotid arteries and were left alone (group 1) or received perivascular implants of porcine MEEC (group 2), a 12 days course of cyclosporine A (CsA) (group 3), or a combination of MEEC and CsA (group 4). Host immune reactivity (EC-specific antibodies, activation of splenocytes) was analyzed after 28 and 90 days in 2 pigs/group respectively. Results MEEC treatment alone induced formation of EC-specific IgG1-antibodies (41±6 mean fluorescence intensity (MFI)) and differentiation of host splenocytes into Th2, but not Th1, cytokine-producing cells (IL-4: 242±102, IL-10: 273±114 number of spots). Concomitant CsA-therapy reduced the frequency of IgG1-antibodies (25±2 MFI; p<0.02) and Th2-cytokine producing splenocytes upon MEEC treatment (IL-4: 157±19, IL-10: 124±26 number of spots; p< 0.05). MEEC significantly inhibited luminal occlusion 28 and 90 days after balloon injury compared to untreated controls (12±7 vs. 68±14%; p<0.001) but to a lesser extent in the face of immunomodulation with concomitant CsA-treatment (34±13%; p<0.02 vs. group 2). Conclusions MEEC do not induce a significant Th1-driven immune response expected from alloimplants, but do enhance differentiation of splenocytes into Th2-cytokine producing cells. Reduction in this Th2 response reduces the vasoregulatory effects of allogeneic EC after injury. PMID:20036161

  13. The expanding universe of T-cell subsets: Th1, Th2 and more.

    PubMed

    Mosmann, T R; Sad, S

    1996-03-01

    Since their discovery nearly ten years ago, T helper 1 (Th1) and Th2 subsets have been implicated in the regulation of many immune responses. In this article, Tim Mosmann and Subash Sad discuss the increasing number of T-cell subsets defined by cytokine patterns; the differentiation pathways of CD4+ and CD8+ T cells; the contribution of other cell types to these patterns; and the cytokine interactions during infection and pregnancy.

  14. Betamethasone, but Not Tacrolimus, Suppresses the Development of Th2 Cells Mediated by Langerhans Cell-Like Dendritic Cells.

    PubMed

    Matsui, Katsuhiko; Tamai, Saki; Ikeda, Reiko

    2016-01-01

    It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of the immune milieu towards a T helper type 1 (Th1) or T helper type 2 (Th2) response. In this study, we investigated the effects of tacrolimus and betamethasone, each used as topical applications in atopic dermatitis (AD), on Th2 cell development mediated by LCs. LC-like dendritic cells (LDCs) were generated from mouse bone marrow cells and used as substitutes for LCs. Mice were primed with ovalbumin (OVA) peptide-pulsed LDCs, which had been treated with tacrolimus or betamethasone, via the hind footpad. After 5 d, the cytokine response in the popliteal lymph nodes was investigated by enzyme-linked immunosorbent assay. The expression of cell surface molecules on LDCs was investigated via reverse transcriptase polymerase chain reaction. Administration of OVA peptide-pulsed LDCs, which had been treated with betamethasone, inhibited Th2 cell development, as represented by the down-regulation of interleukin-4 production, and also inhibited Th1 cell development, represented by the down-regulation of interferon-γ production. However, tacrolimus-treated LDCs did not induce such inhibition of the development of Th1 and Th2 cells. The inhibition of Th1 and Th2 cell development was associated with the suppression of CD40 and T-cell immunoglobulin, and mucin domain-containing protein (TIM)-4 expression, respectively, in LDCs. These results suggest that the topical application of betamethasone to skin lesions of patients with AD acts on epidermal LCs, and may inhibit the development of Th2 cells, thus being of benefit for the control of AD.

  15. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths.

    PubMed

    Pelly, Victoria S; Coomes, Stephanie M; Kannan, Yashaswini; Gialitakis, Manolis; Entwistle, Lewis J; Perez-Lloret, Jimena; Czieso, Stephanie; Okoye, Isobel S; Rückerl, Dominik; Allen, Judith E; Brombacher, Frank; Wilson, Mark S

    2017-06-05

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4(+)Foxp3(+) regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex-T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3(+) cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus Through selective deletion of Il4ra on Foxp3(+) cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell-mediated suppression. © 2017 Pelly et al.

  16. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths

    PubMed Central

    Coomes, Stephanie M.; Kannan, Yashaswini; Entwistle, Lewis J.; Perez-Lloret, Jimena; Czieso, Stephanie

    2017-01-01

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression. PMID:28507062

  17. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells.

    PubMed Central

    Rincón, M; Flavell, R A

    1997-01-01

    Transcriptional factors of the NFAT family play an important role in regulating the expression of several cytokine genes during the immune response, such as the genes for interleukin 2 (IL-2) and IL-4, among others. Upon antigen stimulation, precursor CD4+ T helper (pTh) cells proliferate and differentiate into two populations of effector cells (eTh1 and eTh2), each one expressing a specific pattern of cytokines that distinguishes them from their precursors. eTh2 cells are the major source of IL-4, while gamma interferon is produced by eTh1 cells. Here we have used reporter transgenic mice to show that DNA binding and transcriptional activities of NFAT are transiently induced during the differentiation of pTh cells into either eTh1 or eTh2 cells to mediate the expression of IL-2 as a common growth factor in both pathways. However, although NFAT DNA binding is similarly induced in both eTh1 and eTh2 cells upon antigen stimulation, only the NFAT complexes present in eTh2 cells are able to mediate high-level transcription, and relatively little NFAT transcriptional activity was induced in eTh1 cells. In contrast to activated pTh cells, neither eTh1 nor eTh2 cells produced significant IL-2 upon stimulation, but the high levels of NFAT transcriptional activities directly correlate with the IL-4 production induced in response to antigen stimulation in eTh2 cells. These data suggest that activated NFAT is involved in the effector function of eTh2 cells and that the failure of eTh1 cells to produce IL-4 in response to an antigen is due, at least partially, to a failure to induce high-level transcription of the IL-4 gene by NFAT. Regulation of NFAT could be therefore a critical element in the polarization to eTh1 or eTh2. PMID:9032280

  18. Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells

    PubMed Central

    Kondo, Taisuke; Shichita, Takashi; Morita, Rimpei; Ichinose, Hiroshi

    2015-01-01

    Regulatory T (T reg) cells are central mediators of immune suppression. As such, T reg cells are characterized by a distinct pattern of gene expression, which includes up-regulation of immunosuppressive genes and silencing of inflammatory cytokine genes. Although an increasing number of transcription factors that regulate T reg cells have been identified, the mechanisms by which the T reg cell–specific transcriptional program is maintained and executed remain largely unknown. The Nr4a family of nuclear orphan receptors, which we recently identified as essential for the development of T reg cells, is highly expressed in mature T reg cells as well, suggesting that Nr4a factors play important roles even beyond T reg cell development. Here, we showed that deletion of Nr4a genes specifically in T reg cells caused fatal systemic immunopathology. Nr4a-deficient T reg cells exhibited global alteration of the expression of genes which specify the T reg cell lineage, including reduction of Foxp3 and Ikzf4. Furthermore, Nr4a deficiency abrogated T reg cell suppressive activities and accelerated conversion to cells with Th2 and follicular helper T (Tfh) effector-like characteristics, with heightened expression of Th2 and Tfh cytokine genes. These findings demonstrate that Nr4a factors play crucial roles in mature T reg cells by directly controlling a genetic program indispensable for T reg cell maintenance and function. PMID:26304965

  19. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells.

    PubMed

    Chen, Jyh-Yih; Lin, Wei-Ju; Lin, Tai-Lang

    2009-09-01

    As part of a continuing search for potential anticancer drug candidates from antimicrobial peptides of marine organisms, tilapia (Oreochromis mossambicus) hepcidin TH2-3 was evaluated in several tumor cell lines. The results indicated that TH2-3, a synthetic 20-mer antimicrobial peptide, specifically inhibited human fibrosarcoma cell (HT1080 cell line) proliferation and migration. The way in which TH2-3 inhibited HT1080 cell growth was then studied. TH2-3 inhibited HT1080 cell growth in a concentration-dependent manner according to an MTT analysis, which was confirmed by a soft-agar assay and AO/EtBr staining. Scanning electron microscopy revealed that TH2-3 caused lethal membrane disruption in HT1080 cancer cells, and a wound healing assay supported that TH2-3 decreased the migration of HT1080 cells. In addition, c-Jun mRNA expression was downregulated after treatment with TH2-3 for 48-96 h compared to the untreated group. These findings suggest a mechanism of cytotoxic action of TH2-3 and indicate that TH2-3 may be a promising chemotherapeutic agent against human fibrosarcoma cells.

  20. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  1. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control.

    PubMed

    Schwartz, Christian; Khan, Adnan R; Floudas, Achilleas; Saunders, Sean P; Hams, Emily; Rodewald, Hans-Reimer; McKenzie, Andrew N J; Fallon, Padraic G

    2017-09-04

    Group 2 innate lymphoid cells (ILC2s) are important effector cells driving the initiation of type 2 immune responses leading to adaptive T helper 2 (Th2) immunity. Here we show that ILC2s dynamically express the checkpoint inhibitor molecule PD-L1 during type 2 pulmonary responses. Surprisingly, PD-L1:PD-1 interaction between ILC2s and CD4(+) T cells did not inhibit the T cell response, but PD-L1-expressing ILC2s stimulated increased expression of GATA3 and production of IL-13 by Th2 cells both in vitro and in vivo. Conditional deletion of PD-L1 on ILC2s impaired early Th2 polarization and cytokine production, leading to delayed worm expulsion during infection with the gastrointestinal helminth Nippostrongylus brasiliensis Our results identify a novel PD-L1-controlled mechanism for type 2 polarization, with ILC2s mediating an innate checkpoint to control adaptive T helper responses, which has important implications for the treatment of type 2 inflammation. © 2017 Schwartz et al.

  2. Increased B Cell ADAM10 in Allergic Patients and Th2 Prone Mice

    PubMed Central

    Cooley, Lauren Folgosa; Martin, Rebecca K.; Zellner, Hannah B.; Irani, Anne-Marie; Uram-Tuculescu, Cora; El Shikh, Mohey Eldin; Conrad, Daniel H.

    2015-01-01

    ADAM10, as the sheddase of the low affinity IgE receptor (CD23), promotes IgE production and thus is a unique target for attenuating allergic disease. Herein, we describe that B cell levels of ADAM10, specifically, are increased in allergic patients and Th2 prone WT mouse strains (Balb/c and A/J). While T cell help augments ADAM10 expression, Balb WT B cells exhibit increased ADAM10 in the naïve state and even more dramatically increased ADAM10 after anti-CD40/IL4 stimulation compared C57 (Th1 prone) WT B cells. Furthermore, ADAM17 and TNF are reduced in allergic patients and Th2 prone mouse strains (Balb/c and A/J) compared to Th1 prone controls. To further understand this regulation, ADAM17 and TNF were studied in C57Bl/6 and Balb/c mice deficient in ADAM10. C57-ADAM10B-/- were more adept at increasing ADAM17 levels and thus TNF cleavage resulting in excess follicular TNF levels and abnormal secondary lymphoid tissue architecture not noted in Balb-ADAM10B-/-. Moreover, the level of B cell ADAM10 as well as Th context is critical for determining IgE production potential. Using a murine house dust mite airway hypersensitivity model, we describe that high B cell ADAM10 level in a Th2 context (Balb/c WT) is optimal for disease induction including bronchoconstriction, goblet cell metaplasia, mucus, inflammatory cellular infiltration, and IgE production. Balb/c mice deficient in B cell ADAM10 have attenuated lung and airway symptoms compared to Balb WT and are actually most similar to C57 WT (Th1 prone). C57-ADAM10B-/- have even further reduced symptomology. Taken together, it is critical to consider both innate B cell levels of ADAM10 and ADAM17 as well as Th context when determining host susceptibility to allergic disease. High B cell ADAM10 and low ADAM17 levels would help diagnostically in predicting Th2 disease susceptibility; and, we provide support for the use ADAM10 inhibitors in treating Th2 disease. PMID:25933166

  3. TH2 cells and their cytokines regulate formation and function of lymphatic vessels.

    PubMed

    Shin, Kihyuk; Kataru, Raghu P; Park, Hyeung Ju; Kwon, Bo-In; Kim, Tae Woo; Hong, Young Kwon; Lee, Seung-Hyo

    2015-02-04

    Lymphatic vessels (LVs) are critical for immune surveillance and involved in the pathogenesis of diverse diseases. LV density is increased during inflammation; however, little is known about how the resolution of LVs is controlled in different inflammatory conditions. Here we show the negative effects of T helper type 2 (TH2) cells and their cytokines on LV formation. IL-4 and IL-13 downregulate essential transcription factors of lymphatic endothelial cells (LECs) and inhibit tube formation. Co-culture of LECs with TH2 cells also inhibits tube formation, but this effect is fully reversed by interleukin (IL)-4 and/or IL-13 neutralization. Furthermore, the in vivo blockade of IL-4 and/or IL-13 in an asthma model not only increases the density but also enhances the function of lung LVs. These results demonstrate an anti-lymphangiogenic function of TH2 cells and their cytokines, suggesting a potential usefulness of IL-4 and/or IL-13 antagonist as therapeutic agents for allergic asthma through expanding LV mediated-enhanced antigen clearance from the inflammatory sites.

  4. Plasmacytoid dendritic cells prevent cigarette smoke and Chlamydophila pneumoniae-induced Th2 inflammatory responses.

    PubMed

    Sorrentino, Rosalinda; Gray, Pearl; Chen, Shuang; Shimada, Kenichi; Crother, Timothy R; Arditi, Moshe

    2010-10-01

    Smoking promotes the development of allergic asthma and pneumonia. Chlamydophila pneumoniae lung infection is associated with an increased risk for asthma, inducing an immune response regulated by dendritic cells (DCs). This study sought to determine whether exposure to cigarette smoke modulates the functional activity of CD11c-positive DCs in the lung, with and without concomitant C. pneumoniae infection. Bone marrow-derived DCs (BMDCs) were exposed in vitro to cigarette smoke extract (CSE) and/or live C. pneumoniae (Cpn), and then adoptively transferred intratracheally into wild-type mice. Although CSE plus Cpn appeared to exert an additive effect on the production of Th2 cytokines in vitro, we did not see this effect in vivo. However, the adoptive transfer of DCs pulsed with both CSE and C. pneumoniae into the lungs of naive mice led to an influx of plasmacytoid DCs (pDCs) that suppressed the Th2 skewing ability of the transferred BMDCs. The depletion of pDCs by antibody restored the Th2 skewing ability of the BMDCs. The expression of indoleamine-2,3-dioxygenase in the lung was reduced after the depletion of pDCs, and blocking IFN-α in vitro prevented the ability of pDCs to inhibit the Th2 responses induced by myeloid DCs (mDCs), suggesting their potential involvement in the mechanism of altered polarization. In conclusion, exposure to cigarette smoke skews C. pneumoniae-induced mDCs responses toward a Th2 bias in the lung, which is prevented by pDCs. We propose that pDCs may play a major role in the immunosuppressive lung environment in smokers with C. pneumoniae infection.

  5. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    PubMed Central

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  6. T-cell clones in human trichinellosis: Evidence for a mixed Th1/Th2 response.

    PubMed

    Della Bella, C; Benagiano, M; De Gennaro, M; Gomez-Morales, M A; Ludovisi, A; D'Elios, S; Luchi, S; Pozio, E; D'Elios, M M; Bruschi, F

    2017-03-01

    In humans, studies on the cellular immune response against Trichinella are scarce. Aim of this study was to characterize the cytokine profile of T cells specific for Trichinella britovi in trichinellosis patients. Peripheral blood mononuclear cells (PBMC) were obtained from five patients involved in a trichinellosis outbreak caused by T. britovi, which occurred in 2013 in Tuscany (Italy). All the patients resulted positive for Trichinella-specific IgG, IgE and presented eosinophilia. T cells were investigated for their proliferation to excretory/secretory antigens from Trichinella spiralis muscle larvae (TsES) and for their cytokine profile. A total of 284 CD4+ and 42 CD8+ T-cell clones were obtained from the TsES-specific T-cell lines from PBMC. All T-cell clones proliferated in response to mitogen. Of the 284 CD4+ T-cell clones generated from TsES-specific T-cell lines, 135 (47%) proliferated significantly to TsES; 26% CD8+ T-cell clones showed proliferation to TsES. In the series of the 135 TsES-specific CD4+ clones, 51% expressed a Th2 profile, 30% a Th0 and 19% Th1. In the series of the 11 TsES-specific CD8+ T-cell clones, 18% were Tc2, 45% Tc0 and 36% Tc1. In human trichinellosis, the cellular immune response is, during the chronic phase, mixed Th1/Th2.

  7. A Unique Dermal Dendritic Cell Subset That Skews the Immune Response toward Th2

    PubMed Central

    Hashimoto, Shin-ichi; Nagai, Shigenori; Hattori, Masahira; Irimura, Tatsuro

    2013-01-01

    Dendritic cell (DC) subsets in the skin and draining lymph nodes (LNs) are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b) was found distinct from migratory Langerhans cells (LCs) or CD103+ dermal DCs (dDCs). Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2+ dDCs than in CD103+ dDCs. Transfer of MGL2+ dDCs but not CD103+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2+ dDCs, are complementary to those of CD103+ dDCs and skew the immune response toward a Th2-type response. PMID:24039898

  8. Traditional Korean medicine (SCRT) modulate Th1/Th2 specific cytokine production in mice CD4+ T cell.

    PubMed

    Ko, Eunjung; Rho, Samwoong; Lee, Eui-Joon; Seo, Young-Ho; Cho, Chongwoon; Lee, Yongwon; Min, Byung-Il; Shin, Min-Kyu; Hong, Moo-Chang; Bae, Hyunsu

    2004-05-01

    Traditional Korea medicine, So-Cheong-Ryong-Tang (SCRT) also called as Xiao-qing-long-tang or Sho-seiru-to, contains eight species of medicinal plants and has been used for treating allergic diseases, such as allergic rhinitis and asthma, for hundreds of years in Asian countries. CD4+ T cells were highly purified by using magnetic bead from splenocytes of BALB/c mice. SCRT treatment slightly decreased the expression of cell surface protein CD69 on CD4+ T cell in the flow cytometry analysis. In RT-PCR analysis, SCRT increases the expression of IL-2 and IL2R-alpha mRNA, and decreases the expression of IL-4 mRNA, which is an important cytokine of Th2 cell development. On the other hand, SCRT treatment increases IFN-gamma expression, which is one of the key cytokines for Th1 cell development. Present study implies that SCRT can correct Th2 dominant condition directly affecting to the CD4+ T cell without significantly depressing general T cell activities. These results also suggest that the effect on CD4+ T cell may be the one of key pharmacological effect point for treating IgE medicated allergic asthma by SCRT.

  9. CD4 T-Cell Subsets in Malaria: TH1/TH2 Revisited

    PubMed Central

    Perez-Mazliah, Damian; Langhorne, Jean

    2015-01-01

    CD4+ T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+ T-cells and CD4+ T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+ T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4+ Th2 cells during infection. We review the interpretations of CD4+ T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells. PMID:25628621

  10. Regulation of T Cell Receptor Signaling by DENND1B in TH2 Cells and Allergic Disease.

    PubMed

    Yang, Chiao-Wen; Hojer, Caroline D; Zhou, Meijuan; Wu, Xiumin; Wuster, Arthur; Lee, Wyne P; Yaspan, Brian L; Chan, Andrew C

    2016-01-14

    The DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge. Dennd1b(-/-) TH2, but not other TH cells, exhibit delayed receptor-induced T cell receptor (TCR) downmodulation, enhanced TCR signaling, and increased production of effector cytokines. As DENND1B interacts with AP-2 and Rab35, TH2 cells deficient in AP-2 or Rab35 also exhibit enhanced TCR-mediated effector functions. Moreover, human TH2 cells carrying asthma-associated DENND1B variants express less DENND1B and phenocopy Dennd1b(-/-) TH2 cells. These results provide a molecular basis for how DENND1B, a previously unrecognized regulator of TCR downmodulation in TH2 cells, contributes to asthma pathogenesis and how DENN-domain-containing proteins may contribute to other human disorders.

  11. Prolonged Activation of Invariant Natural Killer T Cells and TH2-Skewed Immunity in Stroke Patients.

    PubMed

    Wong, Connie H Y; Jenne, Craig N; Tam, Patrick P; Léger, Caroline; Venegas, Andres; Ryckborst, Karla; Hill, Michael D; Kubes, Paul

    2017-01-01

    Infection is highly prevalent and contribute significantly to mortality of stroke patients. In addition to the well described robust systemic lymphocytopenia and skewed T helper 2 (TH2)-immunity after stroke, emerging experimental evidence demonstrate that the development of infection poststroke is attributed by the activation of invariant natural killer T (iNKT) cells. In this prospective study, we examined the levels of a broad spectrum of inflammatory mediators, the activation status of iNKT cell in the blood of patients with various degree of stroke severity, and investigate whether these parameters differ in patients who later develop poststroke infections. We obtained blood from stroke patients and matching controls to perform flow cytometry and multiplex measurement of inflammatory mediators. Our data suggest a pronounced activation of iNKT cells in stroke patients as compared with matched Healthy and Hospital control patients. The magnitude of iNKT activation is positively correlated with the severity of stroke, supporting the hypothesis that iNKT cells may contribute in the modulation of the host immune response after stroke-associated brain injury. In addition, stroke severity is closely correlated with decreased TH1/TH2 ratio, increased production of interleukin (IL)-10, with infected stroke patients showing exacerbated production of IL-10. Stroke triggers a robust and sustained shift in systemic immunity in patients, including specific lymphopenia, robust activation of iNKT cells, systemic production of IL-10, and a prolonged TH2-skewed immunity, all are potential contributors to severe immune suppression seen in patients after stroke. Future studies with large sample size will provide potential causality relationship insights.

  12. Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics

    PubMed Central

    Sutcliffe, A; Kaur, D; Page, S; Woodman, L; Armour, C L; Baraket, M; Bradding, P; Hughes, J M; Brightling, C E

    2006-01-01

    Background Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines. Methods Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined. Results Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant. Conclusion Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma. PMID:16601090

  13. Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism.

    PubMed

    Foley, Jason E; Jung, Unsu; Miera, Angel; Borenstein, Todd; Mariotti, Jacopo; Eckhaus, Michael; Bierer, Barbara E; Fowler, Daniel H

    2005-11-01

    Rapamycin (sirolimus) inhibits graft-vs-host disease (GVHD) and polarizes T cells toward Th2 cytokine secretion after allogeneic bone marrow transplantation (BMT). Therefore, we reasoned that ex vivo rapamycin might enhance the generation of donor Th2 cells capable of preventing GVHD after fully MHC-disparate murine BMT. Using anti-CD3 and anti-CD28 costimulation, CD4+ Th2 cell expansion was preserved partially in high-dose rapamycin (10 microM; Th2.rapa cells). Th2.rapa cells secreted IL-4 yet had reduced IL-5, IL-10, and IL-13 secretion relative to control Th2 cells. BMT cohorts receiving wild-type (WT) Th2.rapa cells, but not Th2.rapa cells generated from IL-4-deficient (knockout) donors, had marked Th2 skewing post-BMT and greatly reduced donor anti-host T cell alloreactivity. Histologic studies demonstrated that Th2.rapa cell recipients had near complete abrogation of skin, liver, and gut GVHD. Overall survival in recipients of WT Th2.rapa cells, but not IL-4 knockout Th2.rapa cells, was constrained due to marked attenuation of an allogeneic graft-vs-tumor (GVT) effect against host-type breast cancer cells. Delay in Th2.rapa cell administration until day 4, 7, or 14 post-BMT enhanced GVT effects, moderated GVHD, and improved overall survival. Therefore, ex vivo rapamycin generates enhanced donor Th2 cells for attempts to balance GVHD and GVT effects.

  14. Lipooligosaccharide from Bordetella pertussis induces mature human monocyte-derived dendritic cells and drives a Th2 biased response.

    PubMed

    Fedele, Giorgio; Celestino, Ignacio; Spensieri, Fabiana; Frasca, Loredana; Nasso, Maria; Watanabe, Mineo; Remoli, Maria Elena; Coccia, Eliana Marina; Altieri, Fabio; Ausiello, Clara Maria

    2007-06-01

    Bordetella pertussis has a distinctive cell wall lipooligosaccharide (LOS) that is released from the bacterium during bacterial division and killing. LOS directly participates in host-bacterial interactions, in particular influencing the dendritic cells' (DC) immune regulatory ability. We analyze LOS mediated toll-like receptor (TLR) activation and dissect the role played by LOS on human monocyte-derived (MD)DC functions and polarization of the host T cell response. LOS activates TLR4-dependent signaling and induces mature MDDC able to secrete IL-10. LOS-matured MDDC enhance allogeneic presentation and skew T helper (Th) cell polarization towards a Th2 phenotype. LOS protects MDDC from undergoing apoptosis, prolonging their longevity and their functions. Compared to Escherichia coli lipopolysaccharide (LPS), the classical DC maturation stimulus, LOS was a less efficient inducer of TLR4 signaling, MDDC maturation, IL-10 secretion and allogeneic T cell proliferation and it was not able to induce IL-12p70 production in MDDC. However, the MDDC apoptosis protection exerted by LOS and LPS were comparable. In conclusion, LOS treated MDDC are able to perform antigen presentation in a context that promotes licensing of Th2 effectors. Considering these properties, the use of LOS in the formulation of acellular pertussis vaccines to potentiate protective and adjuvant capacity should be taken into consideration.

  15. Th2 skewing by activation of Nrf2 in CD4+ T cells1

    PubMed Central

    Rockwell, Cheryl E.; Zhang, Mingcai; Fields, Patrick E.; Klaassen, Curtis D.

    2012-01-01

    Nuclear factor erythroid 2 related factor 2 (Nrf2) is a transcription factor that mediates the upregulation of a battery of cytoprotective genes in response to cell stress. Recent studies have shown that Nrf2 also modulates immune responses and exhibits anti-inflammatory activity. In this report, we demonstrate that a common food preservative, tBHQ, can activate Nrf2 in T cells, as evidenced by Nrf2 binding to the antioxidant response element (ARE) and the subsequent upregulation of Nrf2 target genes. The activation of Nrf2 suppresses IFNγ production, while inducing the production of the Th2 cytokines, IL-4, IL-5, and IL-13. Nrf2 activation also suppresses T-bet DNA binding and promotes GATA-3 DNA binding. Collectively, the present studies suggest that Nrf2 activation skews CD4+ T cells toward Th2 differentiation and thus represents a novel regulatory mechanism in CD4+ T cells. Further studies will be needed to determine whether the commercial use of Nrf2 activators as food preservatives promotes food allergies in humans. PMID:22250088

  16. T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice.

    PubMed

    Pakala, S V; Kurrer, M O; Katz, J D

    1997-07-21

    Autoimmune diabetes is caused by the CD4(+), T helper 1 (Th1) cell-mediated apoptosis of insulin-producing beta cells. We have previously shown that Th2 T cells bearing the same T cell receptor (TCR) as the diabetogenic Th1 T cells invade islets in neonatal nonobese diabetic (NOD) mice but fail to cause disease. Moreover, when mixed in excess and cotransferred with Th1 T cells, Th2 T cells could not protect NOD neonates from Th1-mediated diabetes. We have now found, to our great surprise, the same Th2 T cells that produced a harmless insulitis in neonatal NOD mice produced intense and generalized pancreatitis and insulitis associated with islet cell necrosis, abscess formation, and subsequent diabetes when transferred into immunocompromised NOD.scid mice. These lesions resembled allergic inflamation and contained a large eosinophilic infiltrate. Moreover, the Th2-mediated destruction of islet cells was mediated by local interleukin-10 (IL-10) production but not by IL-4. These findings indicate that under certain conditions Th2 T cells may not produce a benign or protective insulitis but rather acute pathology and disease. Additionally, these results lead us to question the feasibility of Th2-based therapy in type I diabetes, especially in immunosuppressed recipients of islet cell transplants.

  17. Effect of Th1/Th2 cytokine administration on proinflammatory SKOV-3 cell activation

    PubMed Central

    Sikora, Justyna; Kondera-Anasz, Zdzisława; Mickiewicz, Patrycja; Mickiewicz, Adam

    2015-01-01

    Introduction Interleukin(IL)-1β, IL-6 and IL-12 might associate with inflammatory processes in a tumor progression and create a specific microenvironment for tumor growth. The aim of the study was to assess whether the Th1 and Th2 type cytokines, such as IL-2 and IL-10, affect ovarian carcinoma continuous cell line (SKOV-3) pro-inflammatory activation. Material and methods SKOV-3 ovarian cells and peripheral blood mononuclear cells (PBMCs) were stimulated by IL-2 and IL-10. Additionally, SKOV-3 ovarian cells and PBMCs were co-cultured together. Proinflammatory activation of cancer cells was evaluated by measurement of IL-1β and IL-6 levels in culture fluid after 72 h of incubation. Results SKOV-3 cells and PBMCs secreted IL-1β and IL-6. After stimulation by IL-2 and IL-10, secretion of studied parameters was changed in a dose-dependent manner. The addition of a higher IL-2 level gave rise to an increase of IL-1β, IL-6 and IL-12 secretion in SKOV-3 cells. Stimulation by IL-10 increased only IL-1β secretion in SKOV-3 cells. However, IL-6 secretion decreased after stimulation with 25 ng/ml IL-10. Activatory effects of IL-2 and inhibitory effects of IL-10 in co-culture of SKOV-3 and PBMCs were observed. Conclusions Our results suggested that Th1/Th2 type of cytokines might influence pro-inflammatory activation of SKOV-3 ovarian cells. Co-cultures of SKOV-3 and PBMCs showed significant changes in cross-talk between cancer and immune cells. PMID:27904527

  18. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction

    PubMed Central

    Hessel, Edith M.; Chu, Mabel; Lizcano, Jennifer O.; Chang, Bonnie; Herman, Nancy; Kell, Sariah A.; Wills-Karp, Marsha; Coffman, Robert L.

    2005-01-01

    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways. PMID:16314434

  19. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction.

    PubMed

    Hessel, Edith M; Chu, Mabel; Lizcano, Jennifer O; Chang, Bonnie; Herman, Nancy; Kell, Sariah A; Wills-Karp, Marsha; Coffman, Robert L

    2005-12-05

    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)-mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c(+ )APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E-dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways.

  20. Th1 and Th2 cytokine profiles in sickle cell disease.

    PubMed

    Raghupathy, R; Haider, M Z; Azizieh, F; Abdelsalam, R; D'Souza, T M; Adekile, A D

    2000-01-01

    We have investigated the levels of Th1 (IL-2 and IFN-gamma) and Th2 (IL-4) cytokines in the plasma and supernatants following peripheral blood mononuclear cell culture and mitogen stimulation in a group of 39 patients with sickle cell disease (SCD) made up of 29 SS, 8 Sbeta-thal and 2 Hb SD in steady state. Five SS patients were studied during 7 episodes of vaso-occlusive crisis. Twenty-four control (3 Hb AS and 21 Hb AA) were also studied; 10 were acutely ill while 14 were healthy at the time of the study. The plasma levels of IL-2 and IFN-gamma were similar in the patients and the controls. However, plasma IL-4 was significantly higher among the steady-state SS patients than in the controls. While there was no significant difference in cytokine levels following mitogen stimulation in the different groups, plasma IL-2 to IL-4 and IFN-gamma to IL-4 ratios were significantly lower among the steady-state SS patients, indicating a possible Th2 bias in our sickle cell patients and suggesting a possible mechanism to explain the predisposition of SCD patients to bacterial infections. However, SS patients with good splenic function showed a relative Th1 bias, which may be an additional explanation for the protection against bacterial infections in such patients.

  1. Th2-polarized CD4+ T cells and macrophages limit efficacy of radiation therapy

    PubMed Central

    Shiao, Stephen L.; Ruffell, Brian; DeNardo, David G.; Faddegon, Bruce A.; Park, Catherine C.; Coussens, Lisa M.

    2015-01-01

    Radiation therapy (RT) and chemotherapy (CTX) following surgery are mainstays of treatment for breast cancer (BC). While multiple studies have recently revealed the significance of immune cells as mediators of CTX response in BC, less is known regarding roles for leukocytes as mediating outcomes following RT. To address this, we utilized a syngeneic orthotopic murine model of mammary carcinogenesis to investigate if response to RT could be improved when select immune cells or immune-based pathways in the mammary microenvironment were inhibited. Treatment of mammary tumor-bearing mice with either a neutralizing monoclonal antibody (mAb) to colony-stimulating factor-1 (CSF-1) or a small molecule inhibitor of the CSF-1 receptor kinase (i.e., PLX3397), resulting in efficient macrophage depletion, significantly delayed tumor regrowth following RT. Delayed tumor growth in this setting was associated with increased presence of CD8+ T cells, and reduced presence of CD4+ T cells, the main source of the Th2 cytokine interleukin (IL)4 in mammary tumors. Selective depletion of CD4+ T cells or neutralization of IL4 in combination with RT, phenocopied results following macrophage depletion, whereas depletion of CD8+ T cells abrogated improved response to RT following these therapies. Analogously, therapeutic neutralization of IL4 or IL13, or IL4 receptor alpha deficiency, in combination with the CTX paclitaxel resulted in slowed primary mammary tumor growth by CD8+ T cell-dependent mechanisms. These findings indicate that clinical responses to cytotoxic therapy in general can be improved by neutralizing dominant Th2-based programs driving protumorigenic and immune suppressive pathways in mammary (breast) tumors to improve outcomes. PMID:25716473

  2. Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon

    PubMed Central

    Mayer, Johannes U.; Demiri, Mimoza; Agace, William W.; MacDonald, Andrew S.; Svensson-Frej, Marcus; Milling, Simon W.

    2017-01-01

    T-helper 2 (Th2) cell responses defend against parasites. Although dendritic cells (DCs) are vital for the induction of T-cell responses, the DC subpopulations that induce Th2 cells in the intestine are unidentified. Here we show that intestinal Th2 responses against Trichuris muris worms and Schistosoma mansoni eggs do not develop in mice with IRF-4-deficient DCs (IRF-4f/f CD11c-cre). Adoptive transfer of conventional DCs, in particular CD11b-expressing DCs from the intestine, is sufficient to prime S. mansoni-specific Th2 responses. Surprisingly, transferred IRF-4-deficient DCs also effectively prime S. mansoni-specific Th2 responses. Egg antigens do not induce the expression of IRF-4-related genes. Instead, IRF-4f/f CD11c-cre mice have fewer CD11b+ migrating DCs and fewer DCs carrying parasite antigens to the lymph nodes. Furthermore, CD11b+CD103+ DCs induce Th2 responses in the small intestine, whereas CD11b+CD103− DCs perform this role in the colon, revealing a specific functional heterogeneity among intestinal DCs in inducing Th2 responses. PMID:28598427

  3. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    PubMed Central

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  4. Ascaris lumbricoides pseudocoelomic body fluid induces a partially activated dendritic cell phenotype with Th2 promoting ability in vivo.

    PubMed

    Dowling, David J; Noone, Cariosa M; Adams, Paul N; Vukman, Krisztina V; Molloy, Sile F; Forde, Jessica; Asaolu, Samuel; O'Neill, Sandra M

    2011-02-01

    Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.

  5. Skin-homing Th2/Th22 cells in papuloerythroderma of Ofuji.

    PubMed

    Teraki, Yuichi; Inoue, Yumiko

    2014-01-01

    Papuloerythroderma of Ofuji (PEO) appears to be a T cell-mediated skin disease; however, the pathogenesis of PEO remains unclear. We report two cases of PEO and examine cytokine production and expression of skin-homing receptors in circulating T cells in the patients. The percentages of interleukin 4 (IL-4)-, IL-13- and IL-22-producing CD4+ and CD8+ T cells were markedly higher in the circulation of patients with PEO than in those of healthy subjects. The expression of both cutaneous lymphocyte antigen (CLA) and CC chemokine receptor 4 (CCR4) were significantly upregulated in the circulating CD4+ and CD8+ T cells. Moreover, serum levels of thymus and activation-regulated chemokine (TARC), a chemoattractant for CCR4, were increased. The number of IL-4-, IL-13- and IL-22-producing T cells, expression of CLA and CCR4 by T cells, and serum TARC levels significantly decreased after complete remission of PEO. These results suggest that skin-homing Th2/Th22 cells may play a role in the pathogenesis of PEO. © 2014 S. Karger AG, Basel

  6. The retinoic acid receptor-α modulators ATRA and Ro415253 reciprocally regulate human IL-5+ Th2 cell proliferation and cytokine expression

    PubMed Central

    2013-01-01

    Background Th2 cytokine responses are enhanced by all trans retinoic acid (ATRA), the bioavailable form of vitamin A. Retinoic acid receptor alpha (RARα) is the high affinity receptor for ATRA that mediates these pro-Th2 effects. We have previously characterized two major human Th2 subpopulations: IL-5- Th2 (IL-5-, IL-4+, IL-13+) and IL-5+ Th2 cells (IL-5+, IL-4+, IL-13+), which represent less and more highly differentiated Th2 cells, respectively. We hypothesized that the pro-Th2 effects of ATRA may differentially affect these Th2 subpopulations. Methods Specific cytokine producing Th2 subpopulations were identified using intracellular cytokine staining. Proliferation was measured using the Cell Trace Violet proliferation tracking dye. Apoptotic cells were identified using either annexin-V or active caspase 3 staining. Th2 gene expression was measured using quantitative polymerase chain reaction. Results ATRA increased the output of Th2 cells from house dust mite allergen (HDM) specific short-term cell lines, and this enhancement was limited to the IL-5+ Th2 subpopulation. Conversely, the RARα antagonist Ro415253 decreased Th2 cell output from these cultures, and this effect was again limited to the IL-5+ Th2 subpopulation. ATRA and Ro415253 respectively augmented and inhibited Th2 cell proliferation, and this affect was more pronounced for the IL-5+ vs. IL-5- Th2 subpopulation. ATRA and Ro415253 respectively augmented and inhibited the expression of IL5 in a significant manner, which was not found for IL4 or IL13. Conclusions We report that the reciprocal regulation of Th2 cytokine expression and proliferation by RARα modulators are largely limited to modulation of IL-5 gene expression and to proliferation of the highly differentiated IL-5+ Th2 subpopulation. These results suggest that RARα antagonism is a potential means to therapeutically target allergic inflammation. Trial registration Clinicaltrials.gov identifier: NCT01212016 PMID:24314292

  7. [Glycoprotein D (5-23) specific Th2-T-cell line induces HSV-1 keratitis].

    PubMed

    Heiligenhaus, A; Jayaraman, S; Soukiasian, S; Dorf, M; Foster, C S

    1995-08-01

    BALB/c inbred Igh-1-disparate mice exhibit different susceptibility to the development of HSV-1 stromal keratitis (HSK), which may be due to the differential immune regulation. CD4+ T lymphocytes may be critical for the disease induction. A T-cell line (CD4+, T-cell receptor V beta 8+, interleukin-4+) specific for the N-terminal amino acids 5-23 of glycoprotein D from HSV-1 [gD(5-23)] was established from HSK susceptible C.AL-20 mice. HSK-resistant C.B-17 mice, and HSK-susceptible BALB/c mice were injected intraperitoneally with cells (5 x 10(5)/mouse) alone or combined with HSV-1 corneal inoculation (10(5) PFU, KOS strain). Control groups were injected with HSV-antigen-unrelated cells (PPD specific), or were only HSV-1 infected. Migration of the adoptively transferred gD(5-23) Th2 cells was analyzed by histology, by immunohistochemistry and by cell membrane labelling (PKH26). The transfer of gD(5-23) cells accelerated the disease onset (day 2, compared to day 7 without cells). The transfer of gD(5-23) cells increased the incidence of HSK (BALB/c 100%, C.B-17 20%) compared to mice that were only infected with HSV-1 (BALB/c 75%, C.B-17 0%). Keratitis was more severe in mice injected with gD(5-23) cells. In contrast, the transfer of PPD-specific cells did not influence the disease patterns. Mice injected with gD(5-23) cells and not inoculated with HSV-1 did not develop keratitis. The results suggest that CD4+ MHC class II, V beta 8+, IL-4 expressing T-cells (T helper 2) may be important for the induction of HSK.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin.

    PubMed

    Biedermann, Tilo; Röcken, Martin; Carballido, José M

    2004-01-01

    Since the first description of the subpopulations of TH1 and TH2 cells, insights into the development and control of these cells as two polarized and physiologically balanced subsets have been generated. In particular, implications of the TH1-TH2 concept for TH cell-mediated skin disorders have been discovered. This article will review the basic factors that control the development of TH1 and TH2 cells, such as the cytokines IL-12 and IL-4 and transcription factors, the possible role of costimulatory molecules, and specialized dendritic cell populations. These regulatory mechanisms will be discussed in the context of polarized TH1 or TH2 skin disorders such as psoriasis and atopic dermatitis. Also presented are the principles that govern how chemokines and chemokine receptors recruit TH1 and TH2 cells to inflammatory sites and how they amplify these polarized TH cell responses. All of these concepts, including a novel role for IL-4-inducing TH1 responses, can contribute to the design of better therapeutic strategies to modulate TH cell-mediated immune responses.

  9. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    PubMed

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of TH2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive TH2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3(+/nlslacZ) (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα)(fl/fl)IL7R(Cre) (ILC2-deficient), and recombination-activating gene (Rag) 2(-/-) mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and TH2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and TH2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and TH2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2(-/-) mice. These data indicate that dysregulation of ILC2s and TH2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American Academy of

  10. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

    PubMed Central

    Kabat, Agnieszka M; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. DOI: http://dx.doi.org/10.7554/eLife.12444.001 PMID:26910010

  11. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients.

    PubMed

    Pochard, Pierre; Gosset, Philippe; Grangette, Corinne; Andre, Claude; Tonnel, André-Bernard; Pestel, Joël; Mercenier, Annick

    2002-10-01

    Among factors potentially involved in the increased prevalence of allergic diseases, modification of the intestinal bacteria flora or lack of bacterial stimulation during childhood has been proposed. Lactic acid bacteria (LAB) present in fermented foods or belonging to the natural intestinal microflora were shown to exert beneficial effects on human health. Recent reports have indicated their capacity to reduce allergic symptoms. The purpose of this investigation was to determine the effect of LAB on the production of type 2 cytokines, which characterize allergic diseases. PBMCs from patients allergic to house dust mite versus those from healthy donors were stimulated for 48 hours with the related Dermatophagoides pteronyssinus allergen or with a staphylococcal superantigen. The effect of LAB preincubation was assessed by measuring the type 2 cytokine production by means of specific ELISA. The tested gram-positive LAB were shown to inhibit the secretion of T(H)2 cytokines (IL-4 and IL-5). This effect was dose dependent and was observed irrespective of the LAB strain used. No significant inhibition was induced by the control, gram-negative Escherichia coli TG1. Interestingly, LAB reduced the T(H)2 cytokine production from allergic PBMCs specifically restimulated with the related allergen. The inhibition mechanism was shown to be dependent on antigen-presenting cells (ie, monocytes) and on the involvement of IL-12 and IFN-gamma. The tested LAB strains were demonstrated to exhibit an anti-T(H)2 activity, and thus different strains of this family might be useful in the prevention of allergic diseases.

  12. Myeloid dendritic cells stimulated by thymic stromal lymphopoietin promote Th2 immune responses and the pathogenesis of oral lichen planus

    PubMed Central

    Hayashida, Jun-Nosuke; Maehara, Takashi; Ishiguro, Noriko; Kubota, Keigo; Furukawa, Sachiko; Ohta, Miho; Sakamoto, Mizuki; Tanaka, Akihiko; Nakamura, Seiji

    2017-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease characterized by subepithelial T-cell infiltration. Recent studies reported that specific T helper (Th) subsets, especially Th2 cells, are involved in the pathogenesis of OLP. Thymic stromal lymphopoietin (TSLP) is mainly secreted by epithelial cells and potently activates myeloid dendritic cells (mDCs) to induce Th2-mediated inflammation. Here, we investigated the expression of TSLP and related molecules in OLP. Buccal mucosa specimens from patients with OLP, hyperkeratosis, and ulcer were analyzed by immunohistochemistry for expression of TSLP, its receptor (TSLPR), and inflammatory cells. TSLP was detected in/around the epithelium of patients with OLP and hyperkeratosis, whereas TSLPR, CD11c (mDC), and GATA3 (Th2) were strongly expressed in the subepithelial layer only in OLP patients. Double immunofluorescence staining showed that TSLPR expression mainly co-localized with CD11c. Moreover, the number of CD11c- and GATA-3 positive cells was correlated in OLP patients. In lesions selectively extracted by laser microdissection, the mRNA expression of Th2 (IL-4, MDC, TARC, GATA3)- and Th17 (IL-17, RORγt)-related molecules in OLP patients was significantly higher than in other groups. These results suggest that CD11c+ mDCs expressing TSLPR contribute to aberrant Th2 immune responses and the pathogenesis of OLP via TSLP stimulation. PMID:28278185

  13. Blood myeloid and lymphoid dendritic cells reflect Th1/Th2 balance in sarcoidosis and extrinsic allergic alveolitis.

    PubMed

    Buczkowski, Jarosław; Krawczyk, Paweł; Chocholska, Sylwia; Tabarkiewicz, Jacek; Kieszko, Robert; Michnar, Marek; Milanowski, Janusz; Roliński, Jacek

    2003-01-01

    Dendritic cells play a specific regulatory role in the immune system. In this paper, the significance of myeloid and lymphoid dendritic cells in sarcoidosis and extrinsic allergic alveolitis (EAA) was evaluated. Myeloid dendritic cells are connected with Th1 type of immunological response, whereas lymphoid ones--with Th2 type. The latest findings indicate that both diseases are characterized by serious disturbances of Th1/Th2 response to Th1 dominance. Our studies seem to confirm these suggestions. In the peripheral blood of patients with sarcoidosis as well as with EAA, myeloid dendritic cells outnumbered lymphoid ones.

  14. Mast cells have no impact on cutaneous leishmaniasis severity and related Th2 differentiation in resistant and susceptible mice.

    PubMed

    Paul, Christoph; Wolff, Svenja; Zapf, Thea; Raifer, Hartmann; Feyerabend, Thorsten B; Bollig, Nadine; Camara, Bärbel; Trier, Claudia; Schleicher, Ulrike; Rodewald, Hans-Reimer; Lohoff, Michael

    2016-01-01

    The genus leishmania comprises different protozoan parasites which are causative agents of muco-cutaneous and systemic, potentially lethal diseases. After infection with the species Leishmania major, resistant mice expand Th1 cells which stimulate macrophages for Leishmania destruction. In contrast, susceptible mice generate Th2 cells which deactivate macrophages, leading to systemic spread of the pathogens. Th-cell differentiation is determined within the first days, and Th2 cell differentiation requires IL-4, whereby the initial IL-4 source is often unknown. Mast cells are potential sources of IL-4, and hence their role in murine leishmaniasis has previously been studied in mast cell-deficient Kit mutant mice, although these mice display immunological phenotypes beyond mast cell deficiency. We therefore readdressed this question by infecting Kit-independent mast cell-deficient mice that are Th1 (C57BL/6 Cpa(Cre) ) or Th2 (BALB/c Cpa(Cre) ) prone with L. major. Using different parasite doses and intra- or subcutaneous infection routes, the results demonstrate no role of mast cells on lesion size development, parasite load, immune cell phenotypes expanding in draining lymph nodes, and cytokine production during murine cutaneous leishmaniasis. Thus, other cell types such as ILCs or T cells have to be considered as primary source of Th2-driving IL-4.

  15. Protein kinase Cθ controls type 2 innate lymphoid cell and TH2 responses to house dust mite allergen.

    PubMed

    Madouri, Fahima; Chenuet, Pauline; Beuraud, Chloé; Fauconnier, Louis; Marchiol, Tiffany; Rouxel, Nathalie; Ledru, Aurélie; Gallerand, Margaux; Lombardi, Vincent; Mascarell, Laurent; Marquant, Quentin; Apetoh, Lionel; Erard, François; Le Bert, Marc; Trovero, Fabrice; Quesniaux, Valérie F J; Ryffel, Bernhard; Togbe, Dieudonnée

    2017-05-01

    Protein kinase C (PKC) θ, a serine/threonine kinase, is involved in TH2 cell activation and proliferation. Type 2 innate lymphoid cells (ILC2s) resemble TH2 cells and produce the TH2 cytokines IL-5 and IL-13 but lack antigen-specific receptors. The mechanism by which PKC-θ drives innate immune cells to instruct TH2 responses in patients with allergic lung inflammation remains unknown. We hypothesized that PKC-θ contributes to ILC2 activation and might be necessary for ILC2s to instruct the TH2 response. PRKCQ gene expression was assessed in innate lymphoid cell subsets purified from human PBMCs and mouse lung ILC2s. ILC2 activation and eosinophil recruitment, TH2-related cytokine and chemokine production, lung histopathology, interferon regulatory factor 4 (IRF4) mRNA expression, and nuclear factor of activated T cells (NFAT1) protein expression were determined. Adoptive transfer of ILC2s from wild-type mice was performed in wild-type and PKC-θ-deficient (PKC-θ(-/-)) mice. Here we report that PKC-θ is expressed in both human and mouse ILC2s. Mice lacking PKC-θ had reduced ILC2 numbers, TH2 cell numbers and activation, airway hyperresponsiveness, and expression of the transcription factors IRF4 and NFAT1. Importantly, adoptive transfer of ILC2s restored eosinophil influx and IL-4, IL-5 and IL-13 production in lung tissue, as well as TH2 cell activation. The pharmacologic PKC-θ inhibitor (Compound 20) administered during allergen challenge reduced ILC2 numbers and activation, as well as airway inflammation and IRF4 and NFAT1 expression. Therefore our findings identify PKC-θ as a critical factor for ILC2 activation that contributes to TH2 cell differentiation, which is associated with IRF4 and NFAT1 expression in allergic lung inflammation. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. STAT4-mediated transcriptional repression of the IL5 gene in human memory Th2 cells.

    PubMed

    Gonzales-van Horn, Sarah R; Estrada, Leonardo D; van Oers, Nicolai S C; Farrar, J David

    2016-06-01

    Type I interferon (IFN-α/β) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/β-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/β signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/β-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/β signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells.

  17. Th2-Associated Alternative Kupffer Cell Activation Promotes Liver Fibrosis without Inducing Local Inflammation

    PubMed Central

    López-Navarrete, Giuliana; Ramos-Martínez, Espiridión; Suárez-Álvarez, Karina; Aguirre-García, Jesús; Ledezma-Soto, Yadira; León-Cabrera, Sonia; Gudiño-Zayas, Marco; Guzmán, Carolina; Gutiérrez-Reyes, Gabriela; Hernández-Ruíz, Joselín; Camacho-Arroyo, Ignacio; Robles-Díaz, Guillermo; Kershenobich, David; Terrazas, Luis I.; Escobedo, Galileo

    2011-01-01

    Cirrhosis is the final outcome of liver fibrosis. Kupffer cell-mediated hepatic inflammation is considered to aggravate liver injury and fibrosis. Alternatively-activated macrophages are able to control chronic inflammatory events and trigger wound healing processes. Nevertheless, the role of alternative Kupffer cell activation in liver harm is largely unclear. Thus, we evaluated the participation of alternatively-activated Kupffer cells during liver inflammation and fibrosis in the murine model of carbon tetrachloride-induced hepatic damage. To stimulate alternative activation in Kupffer cells, 20 Taenia crassiceps (Tc) larvae were inoculated into BALBc/AnN female mice. Six weeks post-inoculation, carbon tetrachloride or olive oil were orally administered to Tc-inoculated and non-inoculated mice twice per week during other six weeks. The initial exposure of animals to T. crassiceps resulted in high serum concentrations of IL-4 accompanied by a significant increase in the hepatic mRNA levels of Ym-1, with no alteration in iNOS expression. In response to carbon tetrachloride, recruitment of inflammatory cell populations into the hepatic parenchyma was 5-fold higher in non-inoculated animals than Tc-inoculated mice. In contrast, carbon tetrachloride-induced liver fibrosis was significantly less in non-inoculated animals than in the Tc-inoculated group. The latter showed elevated IL-4 serum levels and low IFN-γ concentrations during the whole experiment, associated with hepatic expression of IL-4, TGF-β, desmin and α-sma, as well as increased mRNA levels of Arg-1, Ym-1, FIZZ-1 and MMR in Kupffer cells. These results suggest that alternative Kupffer cell activation is favored in a Th2 microenvironment, whereby such liver resident macrophages could exhibit a dichotomic role during chronic hepatic damage, being involved in attenuation of the inflammatory response but at the same time exacerbation of liver fibrosis. PMID:22110380

  18. Chronic cat allergen exposure induces a TH2 cell-dependent IgG4 response related to low sensitization.

    PubMed

    Renand, Amedee; Archila, Luis D; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J; Thomas, Wayne R; Kwok, William W

    2015-12-01

    In human subjects, allergen tolerance has been observed after high-dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T-cell response that leads to IgG4 induction during chronic allergen exposure remains poorly understood. We sought to evaluate the relationship between cat allergen-specific T-cell frequency, cat allergen-specific IgE and IgG4 titers, and clinical status in adults with cat allergy with and without cat ownership and the cellular mechanism by which IgG4 is produced. Fel d 1-, Fel d 4-, Fel d 7-, and Fel d 8-specific T-cell responses were characterized by CD154 expression after antigen stimulation. In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4)-specific TH2 (sTH2) cells correlates with higher IgE levels and is linked to asthma. Paradoxically, we observed that subjects with cat allergy and chronic cat exposure maintain a high frequency of sTH2 cells, which correlates with higher IgG4 levels and low sensitization. B cells from allergic, but not nonallergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones and Fel d 1 peptide or the Fel d 1 recombinant protein. These experiments suggest that (1) allergen-experienced B cells with the capacity to produce IgG4 are present in allergic subjects and (2) cat allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  19. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25.

    PubMed

    Kaiko, Gerard E; Phipps, Simon; Angkasekwinai, Pornpimon; Dong, Chen; Foster, Paul S

    2010-10-15

    Severe respiratory syncytial virus (RSV) infection has long been associated with an increased risk for the development of childhood asthma and exacerbations of this disorder. Despite much research into the induction of Th2 responses by allergens and helminths, the factors associated with viral infection that predispose to Th2-regulated asthma remain unknown. Recently, clinical studies have shown reduced numbers of NK cells in infants suffering from a severe RSV infection. Here we demonstrate that NK cell deficiency during primary RSV infection of BALB/c mice results in the suppression of IFN-γ production and the development of an RSV-specific Th2 response and subsequent allergic lung disease. The outgrowth of the Th2 responses was dependent on airway epithelial cell-derived IL-25, which induced the upregulation of the notch ligand Jagged1 on dendritic cells. This study identifies a novel pathway underlying viral-driven Th2 responses that may have functional relevance to viral-associated asthma.

  20. Behavior of  Visceral Leishmania donovani in an Experimentally Induced T Helper Cell 2 (Th2)-Associated Response Model

    PubMed Central

    Murray, Henry W.; Hariprashad, June; Coffman, Robert L.

    1997-01-01

    Although implicated in the clinical expression of human visceral leishmaniasis, a disease-exacerbating T helper cell 2 (Th2)-associated immune response involving interleukin-4 (IL-4) and/ or IL-10 is not readily detectable in experimental visceral infection. To overcome this obstacle to analyzing visceral Leishmania donovani in this relevant immunopathogenetic environment, we sought a model in which a Th2 response induces noncuring infection. Four initial approaches were tested primarily in BALB/c mice which control intracellular L. donovani via an IL-12– and interferon-γ (IFN-γ)–dependent Th1 mechanism: (a) modifying the cytokine milieu when the parasite is first encountered (treatment with exogenous IL-4 or anti–IL-12), (b) providing sustained endogenous exposure to a Th2 cytokine (infection of IL-4 transgenic mice), (c) increasing the parasite challenge inoculum, and (d) injecting heat-killed L. major promastigotes (HKLMP) to induce a cross-reactive Th2 response to live L. donovani. Only the last approach generated a functional Th2-type response that induced disease exacerbation accompanied by inhibition of tissue granuloma assembly. In HKLMP-primed BALB/c mice, prophylaxis with anti–IL-4, anti–IL-10, or exogenous IL-12 (but not IFN-γ) readily restored resistance. In primed mice with established visceral infection, treatment with either IL-12 or IFN-γ also successfully induced antileishmanial activity. The results in this model (a) suggest that rather than acting alone, IL-4 and IL-10 may act in concert to prevent acquisition of resistance to L. donovani, (b) reemphasize the capacity of IL-12 to reverse early Th2-related effects, and (c) demonstrate that Th1 cytokines (IL-12, IFN-γ) have therapeutic action in an established systemic infection despite the presence of a disease-exacerbating Th2-type response. PMID:9120392

  1. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function.

    PubMed

    van der Vlugt, L E; Obieglo, K; Ozir-Fazalalikhan, A; Sparwasser, T; Haeberlein, S; Smits, H H

    2017-04-04

    Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.

  2. Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells.

    PubMed

    Katawa, Gnatoulma; Layland, Laura E; Debrah, Alex Y; von Horn, Charlotte; Batsa, Linda; Kwarteng, Alexander; Arriens, Sandra; W Taylor, David; Specht, Sabine; Hoerauf, Achim; Adjobimey, Tomabu

    2015-01-01

    Clinical manifestations in onchocerciasis range from generalized onchocerciasis (GEO) to the rare but severe hyperreactive (HO)/sowda form. Since disease pathogenesis is associated with host inflammatory reactions, we investigated whether Th17 responses could be related to aggravated pathology in HO. Using flow cytometry, filarial-specific cytokine responses and PCR arrays, we compared the immune cell profiles, including Th subsets, in individuals presenting the two polar forms of infection and endemic normals (EN). In addition to elevated frequencies of memory CD4+ T cells, individuals with HO showed accentuated Th17 and Th2 profiles but decreased CD4+CD25hiFoxp3+ regulatory T cells. These profiles included increased IL-17A+, IL-4+, RORC2+ and GATA3+CD4+ T cell populations. Flow cytometry data was further confirmed using a PCR array since Th17-related genes (IL-17 family members, IL-6, IL-1β and IL-22) and Th2-related (IL-4, IL-13, STAT6) genes were all significantly up-regulated in HO individuals. In addition, stronger Onchocerca volvulus-specific Th2 responses, especially IL-13, were observed in vitro in hyperreactive individuals when compared to GEO or EN groups. This study provides initial evidence that elevated frequencies of Th17 and Th2 cells form part of the immune network instigating the development of severe onchocerciasis.

  3. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease.

    PubMed

    Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S

    1997-07-21

    Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.

  4. Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-α.

    PubMed

    Chai, Ok Hee; Han, Eui-Hyeog; Lee, Hern-Ku; Song, Chang Ho

    2011-01-31

    Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.

  5. TLR ligands of ryegrass pollen microbial contaminants enhance Th1 and Th2 responses and decrease induction of Foxp3(hi) regulatory T cells.

    PubMed

    Mittag, Diana; Varese, Nirupama; Scholzen, Anja; Mansell, Ashley; Barker, Gillian; Rice, Gregory; Rolland, Jennifer M; O'Hehir, Robyn E

    2013-03-01

    Microbial contamination of grass pollens could affect sensitization, subsequent allergic response, and efficacy of allergen-specific immunotherapy. We investigated whether bacterial immunomodulatory substances can direct PBMC responses of allergic and nonatopic subjects against ryegrass pollen (RGP) toward Th1, Th2, or regulatory T (Treg) cells. Aqueous extracts of RGP with high or low LPS were fractionated into large and small molecular weight (MW) components by diafiltration. CFSE-labeled PBMCs from allergic and nonatopic subjects were stimulated with RGP extracts (RGPEs) and analyzed for cytokine secretion and T-cell responses. High LPS RGPE increased IFN-γ(+) Th1 and IL-4(+) Th2 effector cell induction and consistently decreased CD4(+) Foxp3(hi) Treg-cell induction. IL-10-producing T-cell frequency was unaltered, but IL-10 secretion was increased by high LPS RGPE. RGPE-stimulation of TLR-transfected cell lines revealed that high LPS pollen also contained a TLR2-ligand, and both batches a TLR9-ligand. Beta-1,3-glucans were detected in large and small MW fractions and were also T-cell stimulatory. In conclusion, coexposure to allergen and proinflammatory microbial stimuli does not convert an established Th2- into a Th1-response. Instead, proinflammatory responses are exacerbated and Foxp3(hi) Treg-cell induction is decreased. These findings show that adjuvants for specific immunotherapy should enhance Treg cells rather than target immune deviation from Th2 to Th1. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets.

    PubMed

    Czarnowicki, Tali; Esaki, Hitokazu; Gonzalez, Juana; Malajian, Dana; Shemer, Avner; Noda, Shinji; Talasila, Sreya; Berry, Adam; Gray, Jayla; Becker, Lauren; Estrada, Yeriel; Xu, Hui; Zheng, Xiuzhong; Suárez-Fariñas, Mayte; Krueger, James G; Paller, Amy S; Guttman-Yassky, Emma

    2015-10-01

    Identifying differences and similarities between cutaneous lymphocyte antigen (CLA)(+) polarized T-cell subsets in children versus adults with atopic dermatitis (AD) is critical for directing new treatments toward children. We sought to compare activation markers and frequencies of skin-homing (CLA(+)) versus systemic (CLA(-)) "polar" CD4 and CD8 T-cell subsets in patients with early pediatric AD, adults with AD, and control subjects. Flow cytometry was used to measure CD69/inducible costimulator/HLA-DR frequency in memory cell subsets, as well as IFN-γ, IL-13, IL-9, IL-17, and IL-22 cytokines, defining TH1/cytotoxic T (TC) 1, TH2/TC2, TH9/TC9, TH17/TC17, and TH22/TC22 populations in CD4 and CD8 cells, respectively. We compared peripheral blood from 19 children less than 5 years old and 42 adults with well-characterized moderate-to-severe AD, as well as age-matched control subjects (17 children and 25 adults). Selective inducible costimulator activation (P < .001) was seen in children. CLA(+) TH2 T cells were markedly expanded in both children and adults with AD compared with those in control subjects, but decreases in CLA(+) TH1 T-cell numbers were greater in children with AD (17% vs 7.4%, P = .007). Unlike in adults, no imbalances were detected in CLA(-) T cells from pediatric patients with AD nor were there altered frequencies of TH22 T cells within the CLA(+) or CLA(-) compartments. Adults with AD had increased frequencies of IL-22-producing CD4 and CD8 T cells within the skin-homing population, compared with controls (9.5% vs 4.5% and 8.6% vs 2.4%, respectively; P < .001), as well as increased HLA-DR activation (P < .01). These data suggest that TH2 activation within skin-homing T cells might drive AD in children and that reduced counterregulation by TH1 T cells might contribute to excess TH2 activation. TH22 "spreading" of AD is not seen in young children and might be influenced by immune development, disease chronicity, or recurrent skin infections

  7. Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants.

    PubMed

    Xiang, Lianbin; Rehm, Kristina E; Marshall, Gailen D

    2014-08-01

    Physical stressors, such as strenuous exercise, can have numerous effects on the human body including the immune system. The aim of this study was to evaluate the gene expression profile of Th1/Th2 cytokines and related transcription factor genes in order to investigate possible immune imbalances before and after a marathon. Blood samples were collected from 16 normal volunteers 24-48 h before and one week after completing a marathon race. Gene expression of Th1 and Th2 related cytokines from human peripheral blood mononuclear cells (PBMC) was analyzed using Human Th1-Th2-Th3 RT(2) Profiler PCR Array and qRT-PCR that measured the transcript levels of 84 genes related to T cell activation. We found that PBMC express a characteristic Th2-like gene profile one week post-marathon compared to pre-marathon. The majority of genes up-regulated one week post-marathon such as IL-4, GATA3, and CCR4 were Th2 associated. For Th1-related genes, CXCR3 and IRF1 were up-regulated one week post-marathon. There was a trend of down-regulation of two Th1 related genes, T-bet and STAT1. Th3-related gene expression patterns did not change in the study. The ratios of both IFN-γ/IL-4 and T-bet/GATA3 gene expressions were significantly lower one week after marathon. These findings suggest that a Th1/Th2 immune imbalance persisted at least 1 week after completion of a marathon which offers a mechanistic rationale for the increased risk of upper respiratory tract infections often reported after strenuous exercise.

  8. IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells.

    PubMed

    Hongjia, Li; Caiqing, Zhang; Degan, Lu; Fen, Liu; Chao, Wang; Jinxiang, Wu; Liang, Dong

    2014-08-01

    Allergic asthma occurs as a consequence of inappropriate immunologic inflammation to allergens and characterized by Th2 adaptive immune response. Recent studies indicated that interleukin (IL)-25, a member of the IL-17 cytokine family, had been implicated in inducing Th2 cell-dependent inflammation in airway epithelium and IL-25-deficient mice exhibit impaired Th2 immunity responses; however, how these cytokines influence innate immune responses remains poorly understood. In this study, we used ovalbumin (OVA) sensitization and challenge to induce the murine asthmatic model and confirmed by histological analysis of lung tissues and serum levels of total and OVA-specific immunoglobulin (Ig)-E. The expression of IL-25 was detected by quantitative real-time PCR and immunohistochemistry, respectively, and the dendritic cells (DCs) activation was detected by levels of CD80 and CD86 in bronchoalveolar lavage fluid (BALF) by flow cytometry. The mice sensitized and challenged with OVA showed high expression of IL-25 in both mRNA and protein levels in lungs. We detected the expression of CD80 and CD86 in BALF was also increased. A tight correlation between IL-25 mRNA and other Th2 cells producing cytokines such as IL-4, IL-5, and IL-13 in BALF was identified. Furthermore, when the asthmatic mice were treated with inhaled corticosteroids, the inflammatory cells infiltration and the inflammatory cytokines secretion were significantly decreased. In this study, we show that IL-25 promoted the accumulation of co-stimulatory molecules of CD80 and CD86 on DCs and then induced the differentiation of prime naive CD4(+) T cells to become proinflammatory Th2 cells and promoted Th2 cytokine responses in OVA-induced airway inflammation. The ability of IL-25 to promote the activation and differentiation of DCs population was identified as a link between the IL-17 cytokine family and the innate immune response and suggested a previously unrecognized innate immune pathway that promotes Th2

  9. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells

    PubMed Central

    Cook, Peter C.; Owen, Heather; Deaton, Aimée M.; Borger, Jessica G.; Brown, Sheila L.; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H.; Lundie, Rachel J.; Marley, Angela K.; Morrison, Vicky L.; Phythian-Adams, Alexander T.; Wachter, Elisabeth; Webb, Lauren M.; Sutherland, Tara E.; Thomas, Graham D.; Grainger, John R.; Selfridge, Jim; McKenzie, Andrew N. J.; Allen, Judith E.; Fagerholm, Susanna C.; Maizels, Rick M.; Ivens, Alasdair C.; Bird, Adrian; MacDonald, Andrew S.

    2015-01-01

    Dendritic cells (DCs) direct CD4+ T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4+ T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation. PMID:25908537

  10. Characterization of candidate anti-allergic probiotic strains in a model of th2-skewed human peripheral blood mononuclear cells.

    PubMed

    Holvoet, Sébastien; Zuercher, Adrian W; Julien-Javaux, Françoise; Perrot, Marie; Mercenier, Annick

    2013-01-01

    Pre-clinical and clinical studies have evaluated the efficacy of probiotics in allergy. However, predictive in vitro systems for rational strain selection are still missing. We developed a novel in vitro screening system for the characterization of probiotics with anti-allergic potential. In this model, human peripheral blood mononuclear cells (PBMC) from healthy donors (n = 68) were skewed towards a Th2 cytokine phenotype by culture with IL-4 and anti-CD40, to resemble cells from allergic donors. Th2-skewed cells were then co-cultured with probiotics; a total of 35 strains were tested. Levels of IFN-γ, IL-10, IL-5 and 7 additional cytokines in culture supernatants were determined by ELISA or multiplex assay. Gene expression was assessed by real-time PCR. For validation, splenocytes from ovalbumin-primed mice and PBMC from grass-allergic donors were restimulated with respective antigen and co-cultured with probiotics, and cytokine profiles were correlated. Culture with IL-4 and anti-CD40 antibody induced secretion of IL-5 from PBMC, indicative of induction of a Th2 phenotype. Cytokine profiles induced by probiotics were strain specific even though species- and genus-specific clustering was observed for many strains by principal component analysis. This was paralleled by mRNA levels of the corresponding genes such as increased Tbet and reduced GATA-3 gene expression. Cytokine profiles induced by probiotics in PBMC stimulated with IL-4 and anti-CD40 correlated with those obtained from allergen-stimulated murine splenocytes or human PBMC from grass-allergic donors. Cytokine profiling of probiotic strains with IL-4-/anti-CD40-stimulated PBMC allowed to determine the effect of probiotics on Th2-skewed cells and thus to classify probiotic strains with anti-allergic potential. Copyright © 2013 S. Karger AG, Basel.

  11. B cells play key roles in th2-type airway immune responses in mice exposed to natural airborne allergens.

    PubMed

    Drake, Li Yin; Iijima, Koji; Hara, Kenichiro; Kobayashi, Takao; Kephart, Gail M; Kita, Hirohito

    2015-01-01

    Humans are frequently exposed to various airborne allergens. In addition to producing antibodies, B cells participate in immune responses via various mechanisms. The roles of B cells in allergic airway inflammation and asthma have been controversial. We examined the functional importance of B cells in a mouse model of asthma, in which mice were exposed repeatedly to common airborne allergens. Naïve wild-type BALB/c mice or B cell-deficient JH-/- mice were exposed intranasally to a cocktail of allergen extracts, including Alternaria, Aspergillus, and house dust mite, every other day for two weeks. Ovalbumin was included in the cocktail to monitor the T cell immune response. Airway inflammation, lung pathology, and airway reactivity were analyzed. The airway exposure of naïve wild type mice to airborne allergens induced robust eosinophilic airway inflammation, increased the levels of Th2 cytokines and chemokines in the lung, and increased the reactivity to inhaled methacholine. These pathological changes and immune responses were attenuated in B cell-deficient JH-/- mice. The allergen-induced expansion of CD4+ T cells was impaired in the lungs and draining lymph nodes of JH-/- mice. Furthermore, lymphocytes from JH-/- mice failed to produce Th2 cytokines in response to ovalbumin re-stimulation in vitro. Our results suggest that B cells are required for the optimal development of Th2-type immune responses and airway inflammation when exposed to common airborne allergens. The therapeutic targeting of B cells may be beneficial to treat asthma in certain patients.

  12. Ribavirin exerts differential effects on functions of Cd4+ Th1, Th2, and regulatory T cell clones in hepatitis C.

    PubMed

    Langhans, Bettina; Nischalke, Hans Dieter; Arndt, Simone; Braunschweiger, Ingrid; Nattermann, Jacob; Sauerbruch, Tilman; Spengler, Ulrich

    2012-01-01

    Ribavirin improves outcomes of therapy in chronic hepatitis C but its mode of action has still remained unclear. Since ribavirin has been proposed to modulate the host's T cell responses, we studied its direct effects on CD4(+) T cell clones with diverse functional polarization which had been generated from patients with chronic hepatitis C. We analysed in vitro proliferation ([(3)H] thymidine uptake) and cytokine responses (IL-10, IFN-gamma) at varying concentrations of ribavirin (0-10 µg/ml) in 8, 9 and 7 CD4(+) TH1, TH2 and regulatory T cell (Treg) clones, respectively. In co-culture experiments, we further determined effects of ribarivin on inhibition of TH1 and TH2 effector cells by Treg clones. All clones had been generated from peripheral blood of patients with chronic hepatitis C in the presence of HCV core protein. Ribavirin enhanced proliferation of T effector cells and increased production of IFN-gamma in TH1 clones, but had only little effect on IL-10 secretion in TH2 clones. However, ribavirin markedly inhibited IL-10 release in Treg clones in a dose dependent fashion. These Treg clones suppressed proliferation of T effector clones by their IL-10 secretion, and in co-culture assays ribavirin reversed Treg-mediated suppression of T effector cells. Our in vitro data suggest that--in addition to its immunostimulatory effects on TH1 cells--ribavirin can inhibit functions of HCV-specific Tregs and thus reverses Treg-mediated suppression of T effector cells in chronic hepatitis C.

  13. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells.

    PubMed

    Moro, Kazuyo; Yamada, Taketo; Tanabe, Masanobu; Takeuchi, Tsutomu; Ikawa, Tomokatsu; Kawamoto, Hiroshi; Furusawa, Jun-Ichi; Ohtani, Masashi; Fujii, Hideki; Koyasu, Shigeo

    2010-01-28

    Innate immune responses are important in combating various microbes during the early phases of infection. Natural killer (NK) cells are innate lymphocytes that, unlike T and B lymphocytes, do not express antigen receptors but rapidly exhibit cytotoxic activities against virus-infected cells and produce various cytokines. Here we report a new type of innate lymphocyte present in a novel lymphoid structure associated with adipose tissues in the peritoneal cavity. These cells do not express lineage (Lin) markers but do express c-Kit, Sca-1 (also known as Ly6a), IL7R and IL33R. Similar lymphoid clusters were found in both human and mouse mesentery and we term this tissue 'FALC' (fat-associated lymphoid cluster). FALC Lin(-)c-Kit(+)Sca-1(+) cells are distinct from lymphoid progenitors and lymphoid tissue inducer cells. These cells proliferate in response to IL2 and produce large amounts of T(H)2 cytokines such as IL5, IL6 and IL13. IL5 and IL6 regulate B-cell antibody production and self-renewal of B1 cells. Indeed, FALC Lin(-)c-Kit(+)Sca-1(+) cells support the self-renewal of B1 cells and enhance IgA production. IL5 and IL13 mediate allergic inflammation and protection against helminth infection. After helminth infection and in response to IL33, FALC Lin(-)c-Kit(+)Sca-1(+) cells produce large amounts of IL13, which leads to goblet cell hyperplasia-a critical step for helminth expulsion. In mice devoid of FALC Lin(-)c-Kit(+)Sca-1(+) cells, such goblet cell hyperplasia was not induced. Thus, FALC Lin(-)c-Kit(+)Sca-1(+) cells are T(H)2-type innate lymphocytes, and we propose that these cells be called 'natural helper cells'.

  14. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation.

    PubMed

    Singh, Shashi P; Gundavarapu, Sravanthi; Peña-Philippides, Juan C; Rir-Sima-ah, Jules; Mishra, Neerad C; Wilder, Julie A; Langley, Raymond J; Smith, Kevin R; Sopori, Mohan L

    2011-11-01

    Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved. To identify the effects of prenatal and/or early postnatal SS on allergic asthma, BALB/c dams and their offspring were exposed gestationally and/or 8-10 wk postbirth to filtered air or SS. Prenatal, but not postnatal, SS strongly increased methacholine and allergen (Aspergillus)-induced airway resistance, Th2 cytokine levels, and atopy and activated the Th2-polarizing pathway GATA3/Lck/ERK1/2/STAT6. Either prenatal and/or early postnatal SS downregulated the Th1-specific transcription factor T-bet and, surprisingly, despite high levels of IL-4/IL-13, dramatically blocked the allergen-induced mucous cell metaplasia, airway mucus formation, and the expression of mucus-related genes/proteins: Muc5ac, γ-aminobutyric acid A receptors, and SAM pointed domain-containing Ets-like factor. Given that SS/nicotine exposure of normal adult mice promotes mucus formation, the results suggested that fetal and neonatal lung are highly sensitive to cigarette smoke. Thus, although the gestational SS promotes Th2 polarization/allergic asthma, it may also impair and/or delay the development of fetal and neonatal lung, affecting mucociliary clearance and Th1 responses. Together, this may explain the increased susceptibility of children from smoking parents to allergic asthma and childhood respiratory infections.

  15. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells.

    PubMed

    Xue, Luzheng; Salimi, Maryam; Panse, Isabel; Mjösberg, Jenny M; McKenzie, Andrew N J; Spits, Hergen; Klenerman, Paul; Ogg, Graham

    2014-04-01

    Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D₂ (PGD₂), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. We sought to determine the role of PGD₂ and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. The effects of PGD₂, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD₂ under physiologic conditions were evaluated by using the supernatant from activated mast cells. PGD₂ binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD₂ on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. PGD₂ is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  16. Intranasal administration of Schistosoma mansoni adult worm antigen in combination with cholera toxin induces a Th2 cell response.

    PubMed

    Akhiani, A A; Nilsson, L A; Ouchterlony, O

    1997-04-01

    Mice immunized with soluble adult worm antigen (SWAP) in combination with cholera toxin (CT) displayed significantly larger numbers of IgG1, IgM and IgA secreting cells in the spleen and in the lungs as compared to mice which had received SWAP only. The ratio of SWAP-specific IgG1 to IgG2a antibody-secreting spleen cells was also significantly higher in the SWAP-CT group. Analysis of cytokine responses revealed that SWAP-stimulated spleen and lung cells from the SWAP-CT group produced lower levels of IFN-gamma but higher levels of IL-4 and IL-5 as compared to cells from the SWAP group. These findings indicate that intranasal administration of SWAP-CT induces a Th2 cell response in the spleen and in the lungs. Our findings also suggest that CT was responsible for induction of this Th2 cell response, since intranasal administration of SWAP alone induced a Th1 type response in the spleen and in the lungs.

  17. Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice.

    PubMed

    Durant, Lydia R; Makris, Spyridon; Voorburg, Cornelia Maaike; Loebbermann, Jens; Johansson, Cecilia; Openshaw, Peter J M

    2013-10-01

    During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3(DTR) mice (which allow specific conditional depletion of Foxp3(+) T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4(+) and CD8(+) T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4(+) T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease.

  18. Regulatory T Cells Prevent Th2 Immune Responses and Pulmonary Eosinophilia during Respiratory Syncytial Virus Infection in Mice

    PubMed Central

    Durant, Lydia R.; Makris, Spyridon; Voorburg, Cornelia Maaike; Loebbermann, Jens

    2013-01-01

    During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3DTR mice (which allow specific conditional depletion of Foxp3+ T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4+ and CD8+ T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4+ T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease. PMID:23926350

  19. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    SciTech Connect

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  20. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice

    PubMed Central

    LI, JIAN-GUO; DU, YU-MO; YAN, ZHI-DONG; YAN, JIA; ZHUANSUN, YONG-XUN; CHEN, RUI; ZHANG, WEI; FENG, SU-LING; RAN, PI-XIN

    2016-01-01

    Dendritic cells (DCs) are associated with the activation and differentiation of T helper (Th) cells. Cluster of differentiation (CD)80 and CD86, the co-stimulatory molecules highly expressed in DCs, have are prominent in promoting the differentiation of Th cells toward Th2 cells. However, little is known about the effect of CD80 and CD86 knockdown on Th1/Th2 cytokine production in mature DCs (mDCs). The aim of the present study was to investigate whether small-interfering RNA (siRNA) could suppress the surface expression of CD80 and CD86 in mDCs. The effects of CD80 and CD86 knockdown in mDCs on Th1/Th2 cytokine expression were examined using an asthmatic murine model. DCs were isolated, separated and cultured in vitro. Flow cytometry was used to examine the expression of CD11c, CD80 and CD86 on the DCs. The DCs were transfected with CD80- and CD86-specific siRNA, while non-siRNA and negative siRNA controls were also designed. Then, the mRNA and protein expression levels of CD80 and CD86 were determined by reverse transcription-quantitative polymerase chain reaction and flow cytometry, respectively. The levels of interferon (IFN)-γ and interleukin (IL)-4 produced by T cells co-cultured with mDCs were measured by enzyme-linked immunosorbent assay. Substantial downregulation of CD80 and CD86 mRNA and protein levels were observed in the mDCs following transfection with siRNA. The level of IFN-γ produced by T cells co-cultured with mDCs was significantly increased in the siRNA group, while IL-4 production was significantly decreased. These results show that specific targeting of CD80 and CD86 with siRNA is able to suppress CD80/CD86 expression and consequently regulate Th1/Th2 cytokine levels by increasing IFN-γ production and decreasing IL-4 levels in an asthmatic murine model. PMID:26998006

  1. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord.

    PubMed

    Hu, Jian-Guo; Shi, Ling-Ling; Chen, Yue-Juan; Xie, Xiu-Mei; Zhang, Nan; Zhu, An-You; Jiang, Zheng-Song; Feng, Yi-Fan; Zhang, Chen; Xi, Jin; Lü, He-Zuo

    2016-03-01

    Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair.

  2. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  3. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus.

    PubMed

    Piccinni, M-P; Lombardelli, L; Logiodice, F; Tesi, D; Kullolli, O; Biagiotti, R; Giudizi, Mg; Romagnani, S; Maggi, E; Ficarra, G

    2014-03-01

    The role of Th17 cells and associated cytokines was investigated in oral lichen planus. 14 consecutive patients with oral lichen planus were investigated. For biological studies, tissues were taken from reticular or erosive lesions and from normal oral mucosa (controls) of the same patient. mRNA expression for IL-17F, IL-17A, MCP-1, IL-13, IL-2, IL-10, IL-1β, RANTES, IL-4, IL-12B, IL-8, IFN-γ, TNF-α, IL-1α, IL-18, TGF-β1, IL-23R, IL-7, IL-15, IL-6, MIG, IP-10, LTB, VEGF, IL-5, IL-27, IL-23A, GAPDH, PPIB, Foxp3, GATA3, and RORC was measured using the QuantiGene 2.0. Results showed that Th17-type and Th0-type molecules' mRNAs, when compared with results obtained from tissue controls, were increased in biopsies of erosive lesions, whereas Th2-type molecules' mRNAs were increased in reticular lesions. When the CD4+ T-cell clones, derived from oral lichen planus tissues and tissue controls, were analyzed, a higher prevalence of Th17 (confirmed by an increased CD161 expression) and Th0 CD4+ T clones was found in erosive lesions, whereas a prevalence of Th2 clones was observed in reticular lesions. Our data suggest that Th17, Th0, and Th2 cells, respectively, may have a role in the pathogenesis of erosive and reticular oral lichen planus. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    SciTech Connect

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A. . E-mail: lawrencd@wadsworth.org

    2007-07-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) {+-} PbCl{sub 2}. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS {+-} Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-{alpha} levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway.

  5. Lead effects on development and function of bone marrow-derived dendritic cells promotes Th2 immune responses

    PubMed Central

    Gao, Donghong; Mondal, Tapan K.; Lawrence, David A.

    2009-01-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl2. At day-10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day-10 non-adherent BM-DCs were harvested and re-cultured with mGM-CSF + LPS ± Pb for 2 days. The day-10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell- mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway. PMID:17512567

  6. T helper cell IL-4 drives intestinal Th2 priming to oral peanut antigen, under the control of OX40L and independent of innate-like lymphocytes.

    PubMed

    Chu, D K; Mohammed-Ali, Z; Jiménez-Saiz, R; Walker, T D; Goncharova, S; Llop-Guevara, A; Kong, J; Gordon, M E; Barra, N G; Gillgrass, A E; Van Seggelen, H; Khan, W I; Ashkar, A A; Bramson, J L; Humbles, A A; Kolbeck, R; Waserman, S; Jordana, M

    2014-11-01

    Intestinal T helper type 2 (Th2) immunity in food allergy results in IgG1 and IgE production, and antigen re-exposure elicits responses such as anaphylaxis and eosinophilic inflammation. Although interleukin-4 (IL-4) is critically required for allergic sensitization, the source and control of IL-4 during the initiation of Th2 immunity in vivo remains unclear. Non-intestinal and non-food allergy systems have suggested that natural killer-like T (NKT) or γδ T-cell innate lymphocytes can supply the IL-4 required to induce Th2 polarization. Group 2 innate lymphoid cells (ILCs) are a novel IL-4-competent population, but their contribution to initiating adaptive Th2 immunity is unclear. There are also reports of IL-4-independent Th2 responses. Here, we show that IL-4-dependent peanut allergic Th2 responses are completely intact in NKT-deficient, γδ T-deficient or ILC-deficient mice, including antigen-specific IgG1/IgE production, anaphylaxis, and cytokine production. Instead, IL-4 solely from CD4(+) Th cells induces full Th2 immunity. Further, CD4(+) Th cell production of IL-4 in vivo is dependent on OX40L, a costimulatory molecule on dendritic cells (DCs) required for intestinal allergic priming. However, both Th2 cells and ILCs orchestrated IL-13-dependent eosinophilic inflammation. Thus, intestinal Th2 priming is initiated by an autocrine/paracrine acting CD4(+) Th cell-intrinsic IL-4 program that is controlled by DC OX40L, and not by NKT, γδ T, or ILC cells.

  7. Th17 and treg cells innovate the TH1/TH2 concept and allergy research.

    PubMed

    Schmidt-Weber, C B

    2008-01-01

    Allergic reactions are caused by harmless allergens, which are recognized by the specific immune system. Allergen-specific T cells are assumed to play a key role in the sensitization phase and in immunological memory. Current immunological concepts suggest that asymptomatic T-cell memory cells also exist, tagging the allergen as harmless and preventing an inappropriate response and thus allergic symptoms. Proinflammatory T cells mediate allergic inflammation by exceeding the induction of IgE and competing with other T-cell subsets. Therefore, molecular mechanisms leading to pro- or anti-inflammatory T-cell memory cells appear as the key mechanism in allergy.

  8. Nuclear factor of activated T cells regulates the expression of interleukin-4 in Th2 cells in an all-or-none fashion.

    PubMed

    Köck, Juliana; Kreher, Stephan; Lehmann, Katrin; Riedel, René; Bardua, Markus; Lischke, Timo; Jargosch, Manja; Haftmann, Claudia; Bendfeldt, Hanna; Hatam, Farahnaz; Mashreghi, Mir-Farzin; Baumgrass, Ria; Radbruch, Andreas; Chang, Hyun-Dong

    2014-09-26

    Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens.

  9. Nuclear Factor of Activated T Cells Regulates the Expression of Interleukin-4 in Th2 Cells in an All-or-none Fashion*

    PubMed Central

    Köck, Juliana; Kreher, Stephan; Lehmann, Katrin; Riedel, René; Bardua, Markus; Lischke, Timo; Jargosch, Manja; Haftmann, Claudia; Bendfeldt, Hanna; Hatam, Farahnaz; Mashreghi, Mir-Farzin; Baumgrass, Ria; Radbruch, Andreas; Chang, Hyun-Dong

    2014-01-01

    Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens. PMID:25037220

  10. [Immunomodulation of Uncaria tomentosa over dendritic cells, il-12 and profile TH1/TH2/TH17 in breast cancer].

    PubMed

    Núñez, César; Lozada-Requena, Iván; Ysmodes, Tíndara; Zegarra, Daniel; Saldaña, Fatima; Aguilar, José

    2015-10-01

    Objetives. This study aimed to research the in vitro immunomodulatory effects of an Uncaria tomentosa hydroalcoholic extract standardized (5.03%, pentacyclic oxindole alkaloids) (UT-POA) on the immunophenotype of dendritic cells (DC) subsets, Th1, Th2, Th17 and IL-12 cytokines from patients with stage II breast cancer (BCII) and healthy women (H). Blood of 11 H and 7 BCII was obtained, PBMC were isolated and cultured for 2h with/without various concentrations of UT-POA and stimulated or not with LPS for 24h. PBMC were labeled with specific antibodies for DC and in the supernatant we measured Th1/Th2/Th17 cytokines, both by flow cytometry. Furthermore IL-12 was measured by ELISA. UT-POA did not alter DC or accessory molecules expression in BCII. However, H exhibited a decrease in the percentage of mDC (myeloid DC) and an increase in HLA-DR and CD86 expression at 1000 μg/mL. IL-12 secretion was modified only in the H group, increasing p70 subunit and decreasing p40 subunit. UT-POA increased Th1 (IFN-γ and IL-2), Th2 (IL-4) and Th17 (IL-17) secretion in both groups. UT-POA increased the production of cytokines related with anti-tumoral response at concentrations of 500-1000 μg/mL. This positive effect should be evaluated not only systemically but also in the tumor microenvironment in further studies. UT-POA may be a useful phytochemical in chemoprevention and in the alternative use in cancer therapies.

  11. A novel small compound SH-2251 suppresses Th2 cell-dependent airway inflammation through selective modulation of chromatin status at the Il5 gene locus.

    PubMed

    Suzuki, Junpei; Kuwahara, Makoto; Tofukuji, Soichi; Imamura, Masashi; Kato, Fuminori; Nakayama, Toshinori; Ohara, Osamu; Yamashita, Masakatsu

    2013-01-01

    IL-5 is a key cytokine that plays an important role in the development of pathological conditions in allergic inflammation. Identifying strategies to inhibit IL-5 production is important in order to establish new therapies for treating allergic inflammation. We found that SH-2251, a novel thioamide-related small compound, selectively inhibits the differentiation of IL-5-producing Th2 cells. SH-2251 inhibited the induction of active histone marks at the Il5 gene locus during Th2 cell differentiation. The recruitment of RNA polymerase II, and following expression of the Th2 cell-specific intergenic transcripts around the Il5 gene locus was also inhibited. Furthermore, Th2 cell-dependent airway inflammation in mice was suppressed by the oral administration of SH-2251. Gfi1, a transcriptional repressor, was identified as a downstream target molecule of SH-2251 using a DNA microarray analysis. The Gfi1 expression dramatically decreased in SH-2251-treated Th2 cells, and the SH-2251-mediated inhibition of IL-5-producing Th2 cell differentiation was restored by transduction of Gfi1. Therefore, our study unearthed SH-2251 as a novel therapeutic candidate for allergic inflammation that selectively inhibits active histone marks at the Il5 gene locus.

  12. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    PubMed Central

    González-Polo, Rosa A.; Soler, Germán; Fuentes, José M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity measurement as well as nitric oxide determination to discover whether two specific genes were expressed by cytokine-stimulated dendritic cells. The experiment served as the basis for discussing the importance of differential gene expression inside the eukaryotic cell and the importance of cytokines in the immune system. PMID:17012221

  13. TH1/TH2 cytokines: an easy model to study gene expression in immune cells.

    PubMed

    Morán, José M; González-Polo, Rosa A; Soler, Germán; Fuentes, José M

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity measurement as well as nitric oxide determination to discover whether two specific genes were expressed by cytokine-stimulated dendritic cells. The experiment served as the basis for discussing the importance of differential gene expression inside the eukaryotic cell and the importance of cytokines in the immune system.

  14. Th1 and Th2 cell involvement in immune response to Salmonella typhimurium porins.

    PubMed Central

    Galdiero, M; De Martino, L; Marcatili, A; Nuzzo, I; Vitiello, M; Cipollaro de l'Ero, G

    1998-01-01

    In understanding the regulation of the specific immune response to Salmonella typhimurium, the role of a surface major component (porins) was studied. In this study we demonstrate that purified porins are able to induce a different response to that induced by the porins present on the S. typhimurium cell surface. Porin-treated or orally infected mice show anti-porin antibodies with bactericidal activity. The complete adoptive transfer of resistance to S. typhimurium is achieved only using splenic T cells from survivor mice after experimental infection. After stimulation with specific antigen in vitro CD4+ cells from porin-immunized mice released large amounts of interleukin-4 (IL-4), at a time when CD4+ cells from S. typhimurium-infected mice predominantly secreted interferon-gamma (IFN-gamma). Limiting dilution analysis showed that infection resulted in a higher precursor frequency of IFN-gamma-producing CD4+ T cells and a lower precursor frequency of IL-4-producing CD4+ T cells, while immunization with porins resulted in a higher precursor frequency of IL-4-producing cells and a low frequency of IFN-gamma-producing cells. Analysis of polymerase chain reaction-amplified cDNA from the spleens of infected mice revealed that IFN-gamma, IL-2 and IL-12 p40 mRNA were found 5 days after in vitro challenge and increased after 15 days; IL-10 expression was barely present after both 5 and 15 days, while IL-4 mRNA expression was not detected. In immunized mice, the IL-4 mRNA expression increased after 15 days, IFN-gamma mRNA expression disappeared entirely after 15 days, while IL-2, IL-10 and IL-12 mRNA remained relatively unchanged. Images Figure 1 Figure 8 PMID:9708180

  15. Th1, Th2 and Th17 Effector T Cell-Induced Autoimmune Gastritis Differs in Pathological Pattern and in Susceptibility to Suppression by Regulatory T Cells

    PubMed Central

    Stummvoll, Georg H.; DiPaolo, Richard J.; Huter, Eva N.; Davidson, Todd S.; Glass, Deborah; Ward, Jerrold M.; Shevach, Ethan M.

    2008-01-01

    Th cells can be subdivided into IFNγ-secreting Th1, IL-4/IL-5 secreting Th2, and IL-17 secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H/K ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, moderately suppress Th2 cells, but could only suppress Th17 induced disease at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in man. PMID:18641328

  16. Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells.

    PubMed

    Stummvoll, Georg H; DiPaolo, Richard J; Huter, Eva N; Davidson, Todd S; Glass, Deborah; Ward, Jerrold M; Shevach, Ethan M

    2008-08-01

    Th cells can be subdivided into IFN-gamma-secreting Th1, IL-4/IL-5-secreting Th2, and IL-17-secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H(+)K(+)-ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, could moderately suppress Th2 cells, but could suppress Th17-induced disease only at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in humans.

  17. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    NASA Astrophysics Data System (ADS)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening

  18. Burn Wound gammadelta T-Cells Support a Th2 and Th17 Immune Response

    DTIC Science & Technology

    2014-02-01

    disorder (rheumatoid arthritis), psoriasis , and graft vs host disease.24–27 Gamma-δ T-cells are functionally specialized and are involved in...Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis . Cytokine 2013;61:704–12. 26. Greenblatt MB, Vrbanac V, Vbranac V, et al...Meglio P, Perera GK, et al. Identification of a novel proinflammatory human skin-homing V?9Vd2 T cell subset with a potential role in psoriasis . J

  19. The Runx1 Transcription Factor Inhibits the Differentiation of Naive CD4+ T Cells into the Th2 Lineage by Repressing GATA3 Expression

    PubMed Central

    Komine, Okiru; Hayashi, Keitaro; Natsume, Waka; Watanabe, Toshio; Seki, Youichi; Seki, Noriyasu; Yagi, Ryoji; Sukzuki, Wataru; Tamauchi, Hidekazu; Hozumi, Katsuto; Habu, Sonoko; Kubo, Masato; Satake, Masanobu

    2003-01-01

    Differentiation of naive CD4+ T cells into helper T (Th) cells is controlled by a combination of several transcriptional factors. In this study, we examined the functional role of the Runx1 transcription factor in Th cell differentiation. Naive T cells from transgenic mice expressing a dominant interfering form of Runx1 exhibited enhanced interleukin 4 production and efficient Th2 differentiation. In contrast, transduction of Runx1 into wild-type T cells caused a complete attenuation of Th2 differentiation and was accompanied by the cessation of GATA3 expression. Furthermore, endogenous expression of Runx1 in naive T cells declined after T cell receptor stimulation, at the same time that expression of GATA3 increased. We conclude that Runx1 plays a novel role as a negative regulator of GATA3 expression, thereby inhibiting the Th2 cell differentiation. PMID:12835475

  20. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    ERIC Educational Resources Information Center

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  1. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    ERIC Educational Resources Information Center

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  2. Dysregulated Cytokine Expression by CD4+ T cells from Post-Septic Mice Modulates both Th1 and Th2-Mediated Granulomatous Lung Inflammation

    PubMed Central

    Carson, William F.; Ito, Toshihiro; Schaller, Matthew; Cavassani, Karen A.; Chensue, Stephen W.; Kunkel, Steven L.

    2011-01-01

    Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative) and TH2-(Schistosoma mansoni egg antigen) driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of TH2 cytokines in TH1 inflammation, and increased production of TH1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression. PMID:21655295

  3. Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity.

    PubMed

    Okoye, Isobel S; Czieso, Stephanie; Ktistaki, Eleni; Roderick, Kathleen; Coomes, Stephanie M; Pelly, Victoria S; Kannan, Yashaswini; Perez-Lloret, Jimena; Zhao, Jimmy L; Baltimore, David; Langhorne, Jean; Wilson, Mark S

    2014-07-29

    Allergic diseases, orchestrated by hyperactive CD4(+) Th2 cells, are some of the most common global chronic diseases. Therapeutic intervention relies upon broad-scale corticosteroids with indiscriminate impact. To identify targets in pathogenic Th2 cells, we took a comprehensive approach to identify the microRNA (miRNA) and mRNA transcriptome of highly purified cytokine-expressing Th1, Th2, Th9, Th17, and Treg cells both generated in vitro and isolated ex vivo from allergy, infection, and autoimmune disease models. We report here that distinct regulatory miRNA networks operate to regulate Th2 cells in house dust mite-allergic or helminth-infected animals and in vitro Th2 cells, which are distinguishable from other T cells. We validated several miRNA (miR) candidates (miR-15a, miR-20b, miR-146a, miR-155, and miR-200c), which targeted a suite of dynamically regulated genes in Th2 cells. Through in-depth studies using miR-155(-/-) or miR-146a(-/-) T cells, we identified that T-cell-intrinsic miR-155 was required for type-2 immunity, in part through regulation of S1pr1, whereas T-cell-intrinsic miR-146a was required to prevent overt Th1/Th17 skewing. These data identify miR-155, but not miR-146a, as a potential therapeutic target to alleviate Th2-medited inflammation and allergy.

  4. Alteration of leucine aminopeptidase from Streptomyces septatus TH-2 to phenylalanine aminopeptidase by site-directed mutagenesis.

    PubMed

    Arima, Jiro; Uesugi, Yoshiko; Iwabuchi, Masaki; Hatanaka, Tadashi

    2005-11-01

    To tailor leucine aminopeptidase from Streptomyces septatus TH-2 (SSAP) to become a convenient biocatalyst, we are interested in Phe221 of SSAP, which is thought to interact with the side chain of the N-terminal residue of the substrate. By using saturation mutagenesis, the feasibility of altering the performance of SSAP was evaluated. The hydrolytic activities of 19 mutants were investigated using aminoacyl p-nitroanilide (pNA) derivatives as substrates. Replacement of Phe221 resulted in changes in the activities of all the mutants. Three of these mutants, F221G, F221A, and F221S, specifically hydrolyzed L-Phe-pNA, and F221I SSAP exhibited hydrolytic activity with L-Leu-pNA exceeding that of the wild type. Although the hydrolytic activities with peptide substrates decreased, the hydrolytic activities with amide and methyl ester substrates were proportional to the changes in the hydrolytic activities with pNA derivatives. Furthermore, based on a comparative kinetic study, the mechanism underlying the alteration in the preference of SSAP from leucine to phenylalanine is discussed.

  5. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2.

    PubMed

    Schuligoi, Rufina; Sedej, Miriam; Waldhoer, Maria; Vukoja, Anela; Sturm, Eva M; Lippe, Irmgard T; Peskar, Bernhard A; Heinemann, Akos

    2009-01-01

    The major mast cell product PGD2 is released during the allergic response and stimulates the chemotaxis of eosinophils, basophils, and Th2-type T lymphocytes. The chemoattractant receptor homologous molecule of Th2 cells (CRTH2) has been shown to mediate the chemotactic effect of PGD2. PGH2 is the common precursor of all PGs and is produced by several cells that express cyclooxygenases. In this study, we show that PGH2 selectively stimulates human peripheral blood eosinophils and basophils but not neutrophils, and this effect is prevented by the CRTH2 receptor antagonist (+)-3-[[(4-fluorophenyl)sulfonyl] methyl amino]-1,2,3,4-tetrahydro-9H-carbazole-9-acetic acid (Cay10471) but not by the hematopoietic PGD synthase inhibitor 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine (HQL79). In chemotaxis assays, eosinophils showed a pronounced migratory response toward PGH2, but eosinophil degranulation was inhibited by PGH2. Moreover, collagen-induced platelet aggregation was inhibited by PGH2 in platelet-rich plasma, which was abrogated in the presence of the D-type prostanoid (DP) receptor antagonist 3-[(2-cyclohexyl-2-hydroxyethyl)amino]-2,5-dioxo-1-(phenylmethyl)-4-imidazolidine-heptanoic acid (BWA868c). Each of these effects of PGH2 was enhanced in the presence of plasma and/or albumin. In eosinophils, PGH2-induced calcium ion (Ca2+) flux was subject to homologous desensitization with PGD2. Human embryo kidney (HEK)293 cells transfected with human CRTH2 or DP likewise responded with Ca2+ flux, and untransfected HEK293 cells showed no response. These data indicate that PGH2 causes activation of the PGD2 receptors CRTH2 and DP via a dual mechanism: by interacting directly with the receptors and/or by giving rise to PGD2 after catalytic conversion by plasma proteins.

  6. Changes in peripheral blood Th1 and Th2 cells in rat liver transplantation under different immune statuses.

    PubMed

    Yang, Z-L; Cheng, K; Sun, H G; Zou, W W; Wu, M M

    2013-12-19

    In this study, early expressions of peripheral blood Th1 and Th2 cells were documented following rat liver transplantation and related to immune status. Rats were divided into 3 groups: group A (control): syngeneic transplantation (Brown Norway (BN) → BN); group B: allogeneic transplantation + cyclosporine A (CsA); group C: allogeneic transplantation (Lewis → BN). Flow cytometry was used to analyze peripheral blood CD4(+)CD45RC percentage on days 1, 3, 5, 7, and 14 following transplantation, and were compared to graft rejection pathological grades and receptor survival times. The average survival of groups A and B exceeded 100 days, which was significantly longer than that of group C (3.56 ± 34.3 days). With the exception of the first day, rejection grades were significantly higher in groups C and B compared to group A, and group C rejection grades were significantly higher than those of group B. Three days after transplantation, the CD4(+)CD45RC(+) to CD4(+)CD45RC(-) ratio of group C was significantly higher than that of groups A and B. In group B, the CD4(+)CD45RC(+) to CD4(+)CD45RC(-) ratio was negatively correlated to the rejection grade (r = -0.565, P < 0.01), whereas this relationship was positive in group C (r = 0.745, P < 0.01). In conclusion, peripheral blood Th1 was highly expressed during rejection in rat liver grafts. Peripheral blood Th2 tended to increase early under rejection inhibition with CsA, and its high expression level may correlate with long-term acceptance or tolerance of transplanted livers.

  7. Neuromedin U elicits cytokine release in murine Th2-type T cell clone D10.G4.1.

    PubMed

    Johnson, Eric N; Appelbaum, Edward R; Carpenter, Donald C; Cox, Richard F; Disa, Jyoti; Foley, James J; Ghosh, Sujoy K; Naselsky, Diane P; Pullen, Mark A; Sarau, Henry M; Scheff, Samuel R; Steplewski, Klaudia M; Zaks-Zilberman, Meirav; Aiyar, Nambi

    2004-12-15

    Neuromedin U (NmU), originally isolated from porcine spinal cord and later from other species, is a novel peptide that potently contracts smooth muscle. NmU interacts with two G protein-coupled receptors designated as NmU-1R and NmU-2R. This study demonstrates a potential proinflammatory role for NmU. In a mouse Th2 cell line (D10.G4.1), a single class of high affinity saturable binding sites for (125)I-labeled NmU (K(D) 364 pM and B(max) 1114 fmol/mg protein) was identified, and mRNA encoding NmU-1R, but not NmU-2R, was present. Competition binding analysis revealed equipotent, high affinity binding of NmU isopeptides to membranes prepared from D10.G4.1 cells. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular Ca(2+) concentration (EC(50) 4.8 nM for human NmU). In addition, NmU also significantly increased the synthesis and release of cytokines including IL-4, IL-5, IL-6, IL-10, and IL-13. Studies using pharmacological inhibitors indicated that maximal NmU-evoked cytokine release required functional phospholipase C, calcineurin, MEK, and PI3K pathways. These data suggest a role for NmU in inflammation by stimulating cytokine production by T cells.

  8. Th1/Th2/Th17 cells imbalance in patients with asthma with and without psychological symptoms.

    PubMed

    Zhu, Min; Liang, Zongan; Wang, Ting; Chen, Renzhi; Wang, Gang; Ji, Yulin

    2016-01-01

    The prevalence of psychological symptoms such as anxiety and depression among patients with asthma is high. Both asthma and psychological symptoms are characterized by immune inflammation in which CD4+ T cells play a role. To investigate whether T-helper (Th) 1, Th2, and Th17 cells imbalance exists in patients with asthma and with and in patients without psychological symptoms. The messenger RNA (mRNA) expression of T-box 21 (T-bet), GATA binding protein 3 (GATA-3), and RAR-related orphan receptor C (RORC) in peripheral CD4+ T cells of 20 patients with asthma and with psychological symptoms, 30 patients with asthma and without psychological symptoms, and 30 healthy subjects were detected by real-time polymerase chain reaction. A Luminex-based approach quantified the levels of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin (IL) 4, and IL-17A cytokines in serum. The mRNA expressions of T-bet, GATA-3 and RORC were significantly different among the three groups. Significant elevations of the expressions of T-bet, GATA-3, and RORC mRNA were found in patients with asthma and with psychological symptoms than in healthy subjects, along with the higher levels of IFN-γ, TNF-α, and IL-17A. Increased expressions of T-bet mRNA were found in patients with asthma and with psychological symptoms but not in those without psychological symptoms. However, the ratio of T-bet to GATA-3 was in balance in patients with asthma and with psychological symptoms. Analysis of our data revealed Th1 and Th2 cells activated in balance in the peripheral blood of patients with asthma and with psychological symptoms, along with activated Th17 cells. This finding provided an improved understanding of the immune-inflammation responses in patients with asthma and with psychological symptoms, and offered information for new targeted therapy to patients with asthma and with psychological symptoms.

  9. Expansion of blood IgG4+ Bcells, Th2 and Tregulatory cells in IgG4-related disease.

    PubMed

    Heeringa, Jorn J; Karim, A Faiz; van Laar, Jan A M; Verdijk, Robert M; Paridaens, Dion; van Hagen, P Martin; van Zelm, Menno C

    2017-08-19

    IgG4-related disease (IgG4-RD) is a systemic fibro-inflammatory condition affecting various organs and has a diverse clinical presentation. Fibrosis and accumulation of IgG4+ plasma cells in tissue are hallmarks of the disease and IgG4-RD is associated with elevated IgG4 serum levels. However, disease pathogenesis is still unclear and these cellular and molecular parameters are neither sensitive nor specific for diagnosis of IgG4-RD. We here sought to develop a flowcytometric gating strategy to reliably identify blood IgG4+ B-cells to study their cellular and molecular characteristics and investigate their contribution in disease pathogenesis. Sixteen patients with histologically confirmed IgG4-RD, 11 patients with sarcoidosis and 30 healthy individuals were included for 11-color flowcytometric analysis of peripheral blood for IgG4-expressing B cells and T-helper (Th) subsets. In addition, detailed analysis of activation markers and chemokine receptors was performed on IgG4-expressing B cells and IgG4 transcripts were analyzed for somatic hypermutations. Cellular and molecular analyses revealed increased numbers of blood IgG4+ memory B-cells in patients with IgG4-RD. These cells showed reduced expression of CD27 and CXCR5 and increased signs of antibody maturation. Furthermore, IgG4-RD patients, but not patients with sarcoidosis, had increased numbers of circulating plasma blasts and CD21(low) B-cells, as well as Th2 and regulatory T-cells, indicating of a common disease pathogenesis in IgG4-RD. These results provide new insights into the dysregulated IgG4 response in patients with IgG4-RD. A specific "peripheral lymphocyte signature" observed in patients with IgG4-RD, could support diagnosis and treatment monitoring. Copyright © 2017. Published by Elsevier Inc.

  10. Local expansion of allergen-specific CD30+Th2-type gamma delta T cells in bronchial asthma.

    PubMed Central

    Spinozzi, F.; Agea, E.; Bistoni, O.; Forenza, N.; Monaco, A.; Falini, B.; Bassotti, G.; De Benedictis, F.; Grignani, F.; Bertotto, A.

    1995-01-01

    BACKGROUND: T lymphocytes infiltrating airways during the allergic immune response play a fundamental role in recruiting other specialized cells, such as eosinophils, by secreting interleukin 5 (IL-5), and promoting local and systemic IgE synthesis by producing IL-4. Whether these presumed allergen-specific T cells are of mucosal or systemic origin is still a matter of conjecture. MATERIALS AND METHODS: Immunophenotype, IL-4 production, and in vitro proliferative response to specific or unrelated allergens were analyzed in the bronchoalveolar lavage (BAL) fluid lymphocyte suspensions obtained from untreated patients with allergic asthma. Healthy subjects and patients affected by pulmonary sarcoidosis, a granulomatous lung disease characterized by infiltrating Th1 CD4+ lymphocytes, served as controls. RESULTS: The proportions of gamma delta T lymphocytes, mostly CD4+ or CD4- (-)CD8-, was higher in asthmatic subjects than in controls (p < 0.05). Most BAL gamma delta CD4+ lymphocytes of asthmatic patients displayed the T cell receptor (TCR)-gamma delta V delta 1 chain. While CD30 antigen coexpression on the surface of BAL alpha beta(+) T lymphocytes was low (ranging from 5 to 12%), about half of pulmonary gamma delta T cells coexpressed it. These cells produced IL-4 and negligible amounts of interferon-gamma (IFN gamma), and proliferated in vitro in response to purified specific but not unrelated allergens. In contrast, control or sarcoidosis gamma delta T cells never displayed the CD30 surface molecule or produced significant quantities of IL-4. CONCLUSIONS: These findings not only confirm our previous hypothesis that the allergen-specific Th2-type lymphocytes found in the lungs of asthmatic patients are gamma delta T cells belonging to airway mucosal immunocytes, but also strongly support the notion that asthma is a local rather than a systemic disease. PMID:8612204

  11. Chronic cat-allergen exposure induces a TH2 cell-dependent IgG4 response related to low-sensitization

    PubMed Central

    Renand, Amedee; Archila, Luis D.; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J.; Thomas, Wayne R.; Kwok, William W.

    2015-01-01

    Background In human subjects, allergen-tolerance has been observed after high dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T cell response that leads to the induction of IgG4 during chronic allergen exposure remains poorly understood. Objective To evaluate the relationship between cat allergen-specific T cell frequency, cat allergen-specific IgE and IgG4 titers and clinical status in cat allergic adults with and without cat ownership and the cellular mechanism by which IgG4 is produced. Methods Fel d 1, Fel d 4, Fel d 7 and Fel d 8- specific T cell responses were characterized by CD154 expression after antigen stimulation. Results In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4) specific TH2 cells (sTH2 cells) correlates with IgE level and is linked to asthma. Paradoxically, we observed that cat allergic subjects with chronic cat exposure maintain high frequency of sTH2 cells, which correlates with IgG4 level and low-sensitization. B cells from allergic, but not from non-allergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones, and Fel d 1 peptide or the Fel d 1 recombinant protein. Conclusion These experiments suggest that 1) allergen-experienced B cells with capacity to produce IgG4 are present in allergic subjects; and 2) cat-allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus, IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. PMID:26371841

  12. Selective suppression of Th2 cell-mediated lung eosinophilic inflammation by anti-major facilitator super family domain containing 10 monoclonal antibody.

    PubMed

    Nishimura, Tomoe; Saeki, Mayumi; Motoi, Yuji; Kitamura, Noriko; Mori, Akio; Kaminuma, Osamu; Hiroi, Takachika

    2014-05-01

    The eosinophil is deeply associated with the pathogenesis of bronchial asthma and other allergic diseases. We recently identified a novel eosinophil-specific cell surface molecule, major facilitator super family domain containing 10 (Mfsd10). A monoclonal antibody (mAb) against Mfsd10 (M2) showed selective binding and neutralizing activities for eosinophils. However, the relative potency of the blockage of Mfsd10 and other eosinophil-specific molecules for the treatment of allergic diseases has not been evaluated. Therefore, in this study, the effects of M2 and an anti-Siglec-F mAb on antigen-immunized and antigen-specific Th2 cell-transferred murine eosinophilic inflammation models were comparatively investigated. Ovalbumin (OVA)-specific Th2 cells were differentiated from naïve CD4+ T cells of DO11.10/RAG-2-/- mice in vitro and cytokine producing activity of the Th2 cells was examined. OVA-immunized and Th2 cell-transferred BALB/c mice were treated with M2 or anti-Siglec-F and challenged with OVA. Then the number of inflammatory cells and the concentration of IL-5 in the bronchoalveolar lavage fluid (BALF) were determined. Antigen-specific Th2 cells produced large amounts of IL-4, IL-5 and IL-13 but not IL-17A or IFN-γ. Administration of M2 significantly suppressed antigen-induced lung eosinophil infiltration both in OVA-immunized and Th2 cell-transferred mice. The potency as well as selectivity of M2 for down-regulating eosinophils was quite similar to that of anti-Siglec-F. Both mAbs did not affect antigen-induced IL-5 production in the lungs. Mfsd10 as well as Siglec-F could be an effective target to treat eosinophil-related disorders including bronchial asthma.

  13. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure.

    PubMed

    Pentakota, Satya Krishna; Sandhya, Sankaran; P Sikarwar, Arun; Chandra, Nagasuma; Satyanarayana Rao, Manchanahalli R

    2014-12-05

    Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.

  14. Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization

    PubMed Central

    Yang, Meixiang; Liu, Yanguo; Ren, Guangwen; Shao, Qianqian; Gao, Wenjuan; Sun, Jintang; Wang, Huayang; Ji, Chunyan; Li, Xingang; Zhang, Yun; Qu, Xun

    2015-01-01

    A low partial oxygen pressure (hypoxia) occurs in many pathological environments, such as solid tumors and inflammatory lesions. Understanding the cellular response to hypoxic stress has broad implications for human diseases. As we previously reported, hypoxia significantly altered dendritic cells (DCs) to a DC2 phenotype and promoted a Th2 polarization of naïve T cells with increased IL-4 production. However, the underlying mechanisms still remain largely unknown. In this study, we found the over-expression of surface CD44 in DCs was involved in this process via ligand binding. Further investigation showed hypoxia could reduce the surface expression of membrane type 1 metalloprotease (MT1-MMP) via down-regulating the kinesin-like protein KIF2A, which subsequently alleviated the shedding of CD44 from DCs. Moreover, KIF2A expression was found negatively regulated by HIF-1α in hypoxic microenvironment. These results suggest a previously uncharacterized mechanism by which hypoxia regulates the function of DCs via KIF2A/MT1-MMP/CD44 axis, providing critical information to understand the immune response under hypoxia. PMID:26323509

  15. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity.

    PubMed

    Heijink, Irene H; Kies, P Marcel; Kauffman, Henk F; Postma, Dirkje S; van Oosterhout, Antoon J M; Vellenga, Edo

    2007-06-15

    Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.

  16. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis.

    PubMed Central

    Hernández-Pando, R; Orozcoe, H; Sampieri, A; Pavón, L; Velasquillo, C; Larriva-Sahd, J; Alcocer, J M; Madrid, M V

    1996-01-01

    T-helper 1 (Th1) Th2 kinetics were studied by immunohistochemistry and molecular biology techniques (reverse transcriptase polymerase chain reaction. RT PCR, Southern-blot) during the course of pulmonary tuberculosis induced in BALB/c mice by the intratracheal instillation of the live and virulent strain H-37Rv. The histopathological study clearly showed two phases of the disease. The first one was an acute phase which was characterized by inflammatory infiltrate in the alveolar capillary interstitium, blood vessel and bronchial wall with formation of granulomas. In this acute phase which lasted from 1 to 28 days, a clear predominance of Th1 cells was observed, manifested by a high percentage of interleukin-2 (IL-2) positive cells in the inflammatory infiltrate and granulomas demonstrated by immunohistology, as well as a gradual increment of interferon-gamma (INF-gamma) m-RNA. This was followed by a chronic or advanced phase characterized by pneumonia, focal necrosis and fibrosis, with a Th0 balance due to an equivalent proportion of IL-2 and IL-4 positive cells in the lung lesions, that coincided with the highest level of INF-gamma and IL-4 mRNA. The cytofluorometric analysis of bronchial lavage cells, showed a predominance of CD4 T cells during the acute phase and CD8 T lymphocytes in the chronic phase, gamma-delta T lymphocytes showed two peaks, at the beginning (3 days) and at the end (4 months) of the infection. These results suggest that T-lymphocyte subset kinetics and the pattern of cytokines produced in the lung during tuberculosis infection changed over time and correlate with the type and magnitude of tissue injury. Images Figure 1 Figure 3 Figure 5 PMID:8911136

  17. Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both?

    PubMed

    Domingues, Alexandre; Sartori, Alexandrina; Golim, Marjorie Assis; Valente, Ligia Maria Marino; da Rosa, Larissa Camargo; Ishikawa, Larissa Lumi Watanabe; Siani, Antonio Carlos; Viero, Rosa Marlene

    2011-09-01

    Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes. C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and β-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis. Treating the animals with 50-400mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented β-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5. The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Resting Respiratory Tract Dendritic Cells Preferentially Stimulate T Helper Cell Type 2 (Th2) Responses and Require Obligatory Cytokine Signals for Induction of  Th1 Immunity

    PubMed Central

    Stumbles, Philip A.; Thomas, Jennifer A.; Pimm, Carolyn L.; Lee, Peter T.; Venaille, Thierry J.; Proksch, Stephen; Holt, Patrick G.

    1998-01-01

    Consistent with their role in host defense, mature dendritic cells (DCs) from central lymphoid organs preferentially prime for T helper cell type 1 (Th1)-polarized immunity. However, the “default” T helper response at mucosal surfaces demonstrates Th2 polarity, which is reflected in the cytokine profiles of activated T cells from mucosal lymph nodes. This study on rat respiratory tract DCs (RTDCs) provides an explanation for this paradox. We demonstrate that freshly isolated RTDCs are functionally immature as defined in vitro, being surface major histocompatibility complex (MHC) II lo, endocytosishi, and mixed lymphocyte reactionlo, and these cells produce mRNA encoding interleukin (IL)-10. After ovalbumin (OVA)-pulsing and adoptive transfer, freshly isolated RTDCs preferentially stimulated Th2-dependent OVA-specific immunoglobulin (Ig)G1 responses, and antigen-stimulated splenocytes from recipient animals produced IL-4 in vitro. However, preculture with granulocyte/macrophage colony stimulating factor increased their in vivo IgG priming capacity by 2–3 logs, inducing production of both Th1- and Th2-dependent IgG subclasses and high levels of IFN-γ by antigen-stimulated splenocytes. Associated phenotypic changes included upregulation of surface MHC II and B7 expression and IL-12 p35 mRNA, and downregulation of endocytosis, MHC II processing– associated genes, and IL-10 mRNA expression. Full expression of IL-12 p40 required additional signals, such as tumor necrosis factor α or CD40 ligand. These results suggest that the observed Th2 polarity of the resting mucosal immune system may be an inherent property of the resident DC population, and furthermore that mobilization of Th1 immunity relies absolutely on the provision of appropriate microenvironmental costimuli. PMID:9841916

  19. Suppression of allergic reactions by dehulled adlay in association with the balance of TH1/TH2 cell responses.

    PubMed

    Hsu, Hsin-Yi; Lin, Bi-Fong; Lin, Jin-Yuarn; Kuo, Ching-Chuan; Chiang, Wenchang

    2003-06-18

    Dehulled adlay is known as a natural Chinese medicine having antiallergic activity, although its mechanism remains unclear. This study examined the effects of dehulled adlay on antigen-specific antibody and cytokine production. Mice were immunized three times with ovalbumin (OVA) in alum adjuvant. It was found that oral administration of dehulled adlay in mice suppressed the production of IgE against OVA antigen. Serum anti-OVA IgG(2a) antibody levels were significantly increased in mice after oral administration of dehulled adlay. Furthermore, the production of IL-2 by OVA-stimulated splenocytes was augmented in dehulled adlay-fed mice. Although dehulled adlay had no effect on the serum anti-OVA IgG(1) antibody levels, it had a great capacity to reduce IL-5 secretion by means of OVA-stimulated splenocytes. Hydrothermal processes, including steaming and extrusion cooking, did not change the capacity of dehulled adlay to suppress IgE production. Three fractions of dehulled alday, including methanolic extract, warm water extract, and residue, were obtained. The methanolic extract exhibited the greatest capacity to reduce anti-OVA IgE production. These results suggest that dehulled adlay has a modulating ability to shift the balance from Th2 to Th1 dominance in the T cell mediated immune system and may be beneficial for the treatment of allergic disorders.

  20. Coincident diabetes mellitus modulates Th1-, Th2-, and Th17-cell responses in latent tuberculosis in an IL-10- and TGF-β-dependent manner.

    PubMed

    Kumar, Nathella Pavan; Moideen, Kadar; George, Parakkal Jovvian; Dolla, Chandrakumar; Kumaran, Paul; Babu, Subash

    2016-02-01

    Type 2 diabetes mellitus (DM) is a risk factor for the development of active tuberculosis (TB), although its role in the TB-induced responses in latent TB (LTB) is not well understood. Since Th1, Th2, and Th17 responses are important in immunity to LTB, we postulated that coincident DM could alter the function of these CD4(+) T-cell subsets. To this end, we examined mycobacteria-induced immune responses in the whole blood of individuals with LTB-DM and compared them with responses of individuals without DM (LTB-NDM). T-cell responses from LTB-DM are characterized by diminished frequencies of mono- and dual-functional CD4(+) Th1, Th2, and Th17 cells at baseline and following stimulation with mycobacterial antigens-purified protein derivative, early secreted antigen-6, and culture filtrate protein-10. This modulation was at least partially dependent on IL-10 and TGF-β, since neutralization of either cytokine resulted in significantly increased frequencies of Th1 and Th2 cells but not Th17 cells in LTB-DM but not LTB individuals. LTB-DM is therefore characterized by diminished frequencies of Th1, Th2, and Th17 cells, indicating that DM alters the immune response in latent TB leading to a suboptimal induction of protective CD4(+) T-cell responses, thereby providing a potential mechanism for increased susceptibility to active disease.

  1. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients.

    PubMed

    Takeuchi, Masaru; Sato, Tomohito; Tanaka, Atsushi; Muraoka, Tadashi; Taguchi, Manzo; Sakurai, Yutaka; Karasawa, Yoko; Ito, Masataka

    2015-01-01

    Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR) by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th) cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes) with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM), 26 patients with idiopathic macular hole (MH), and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR.

  2. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    PubMed Central

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  3. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Gr1+ IL-4 producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses.¶

    PubMed Central

    McKee, Amy; MacLeod, Megan; White, Janice; Crawford, Frances; Kappler, John; Marrack, Philippa

    2010-01-01

    Alum is used as a vaccine adjuvant and induces Th2 responses and Th2-driven antibody isotype production against co-injected antigens. Alum also promotes the appearance in the spleen of Gr1+, IL-4+ innate cells that, via IL-4 production, induce MHC II mediated signaling in B cells. To investigate whether these Gr1+ cells accumulate in the spleen in response to other Th2 inducing stimuli and to understand some of their functions, the effects of injection of alum and eggs from the helminth, Schistosoma mansoni, were compared. Like alum, schistosome eggs induced the appearance of Gr1+IL-4+ cells in spleen and promoted MHC II-mediated signaling in B cells. Unlike alum, however, schistosome eggs did not promote CD4 T cell responses against co-injected antigens, suggesting that the effects of alum or schistosome eggs on splenic B cells cannot by themselves explain the T cell adjuvant properties of alum. Accordingly, depletion of IL-4 or Gr1+ cells in alum injected mice had no effect on the ability of alum to improve expansion of primary CD4 T cells. However, Gr1+ cells and IL-4 played some role in the effects of alum, since depletion of either resulted in antibody responses to antigen that included not only the normal Th2-driven isotypes, like IgG1, but also a Th1-driven isotype, IgG2c. These data suggest that alum affects the immune response in at least two ways, one, independent of Gr1+ cells and IL-4, that promotes CD4 T cell proliferation and another, via Gr1+IL-4+ cells that participate in the polarization of the response. PMID:18343889

  5. Upregulation of Tim-3 on CD4(+) T cells is associated with Th1/Th2 imbalance in patients with allergic asthma.

    PubMed

    Tang, Fei; Wang, Fukun; An, Liyun; Wang, Xianling

    2015-01-01

    T cell Ig and mucin domain-containing molecule-3 (Tim-3) is a negative regulator preferentially expressed on Th1 cells. Allergic asthma is a clinical syndrome well characterized by Th1/Th2 imbalance. To investigate the role of Tim-3 in the pathogenesis of asthma and its relationship with Th1/Th2 imbalance, a total of 40 patients with allergic asthma and 40 healthy controls were enrolled. Expression of Tim-3 and Th1/Th2 imbalance as well as the relationship between them was analyzed by flow cytometry and real-time PCR. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro and anti-Tim-3 was used to block Tim-3 signaling; Th1/Th2 cytokines in the culture supernatant were detected by enzyme linked immunosorbent assay (ELISA). CD4(+) T cells and B cells were sorted and co-cultured in vitro, and anti-Tim-3 was used to block Tim-3 signaling; Total IgG/IgE in the culture supernatant was detected by ELISA. The mRNA level of T-bet and IFN-γ were significantly decreased in allergic asthma patients, while GATA-3 and IL-4 were significantly increased. Expression of Tim-3 on CD4(+) T cells was much higher in allergic asthma patients and it was negatively correlated with T-bet/GATA-3 ratio or IFN-γ/IL-4 ratio. Blocking of Tim-3 significantly increased Th1 cytokines (TNF-α and IFN-γ) and decreased Th2 cytokines (IL-4, IL-5, IL-13) in the culture supernatant of PBMCs. Blocking of Tim-3 dramatically reduced the production of IgG and IgE in the co-culture supernatant of CD4(+) T cells and B cells. In conclusion, Tim-3 was up-regulated in allergic asthma patients and related with the Th1/Th2 imbalance. Blocking of Tim-3 may be of therapeutic benefit by enhancing the Th1 cytokines response, down-regulating the Th2 cytokines response, and reducing IgG/IgE production.

  6. Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-γ activity in dendritic cells.

    PubMed

    Legutko, Agnieszka; Marichal, Thomas; Fiévez, Laurence; Bedoret, Denis; Mayer, Alice; de Vries, Hilda; Klotz, Luisa; Drion, Pierre-Vincent; Heirman, Carlo; Cataldo, Didier; Louis, Renaud; Thielemans, Kris; Andris, Fabienne; Leo, Oberdan; Lekeux, Pierre; Desmet, Christophe J; Bureau, Fabrice

    2011-11-01

    Sirtuins are a unique class of NAD(+)-dependent deacetylases that regulate diverse biological functions such as aging, metabolism, and stress resistance. Recently, it has been shown that sirtuins may have anti-inflammatory activities by inhibiting proinflammatory transcription factors such as NF-κB. In contrast, we report in this study that pharmacological inhibition of sirtuins dampens adaptive Th2 responses and subsequent allergic inflammation by interfering with lung dendritic cell (DC) function in a mouse model of airway allergy. Using genetic engineering, we demonstrate that sirtuin 1 represses the activity of the nuclear receptor peroxisome proliferator-activated receptor-γ in DCs, thereby favoring their maturation toward a pro-Th2 phenotype. This study reveals a previously unappreciated function of sirtuin 1 in the regulation of DC function and Th2 responses, thus shedding new light on our current knowledge on the regulation of inflammatory processes by sirtuins.

  7. CD4+ Th17 Cells Discriminate Clinical Types and Constitute a Third Subset of Non Th1, Non Th2 T Cells in Human Leprosy

    PubMed Central

    Saini, Chaman; Ramesh, V.; Nath, Indira

    2013-01-01

    Background Patients with localized tuberculoid and generalized lepromatous leprosy show respectively Th1 and Th2 cytokine profile. Additionally, other patients in both types of leprosy also show a non discriminating Th0 cytokine profile with both interferon-γ and IL-4. The present study investigated the role of Th17 cells which appear to be a distinct subtype of Th subtypes in 19 tuberculoid and 18 lepromatous leprosy patients. Five healthy subjects with long term exposure to infection and 4 skin biopsies from healthy subjects undergoing cosmetic surgery were used as controls. Methodology/Principle Findings An array of Th17 related primers for cytokines, chemokines and transcription factors was used in real time reverse transcribed PCR to evaluate gene expression, ELISA for cytokine secretion in the supernatants of antigen stimulated PBMC cultures and flow cytometry for establishing the phenotype of the IL-17, IL-21 producing cells. Conclusions/Significance IL-17 isoforms showed significantly higher expression and release in supernatants of antigen stimulated PBMC cultures and dermal lesions of healthy contacts and tuberculoid leprosy as compared to lepromatous leprosy (p<0.003). This was further confirmed by Th17 associated transcription factor RORC, cytokines IL-21, IL-22, and IL-23, chemokines MMP13, CCL20, CCL22. Of interest was the association of IL-23R and not IL-6R with IL-17+ cells. The Th17 cells were CD4+ CCR6+ confirming their effector cell lineage. Polarized Th1 cytokines were seen in 3/7 tuberculoid and Th2 cytokines in 5/10 lepromatous leprosy patients. Of importance was the higher association of Th17 pathway factors with the non-polarized Th0 types as compared to the polarized Th1 and Th2 (p<0.01). Our study draws attention to a third type of effector Th cell that may play a role in leprosy. PMID:23936569

  8. SB-273005, an antagonist of αvβ3 integrin, reduces the production of Th2 cells and cytokine IL-10 in pregnant mice.

    PubMed

    Wang, Shaojuan; Yang, Jing; Wang, Chongyang; Yang, Qing; Zhou, Xiaoli

    2014-06-01

    Pregnancy is associated with complex immunoreactions. In the present study, the effect of SB-273005, an antagonist of αvβ3 integrin, on the alterations of T helper (Th) cells and their derived cytokines that occur during pregnancy was investigated in mice. Five non-pregnant mice were used as a negative control. Mice were impregnated by co-housing females and males at a ratio of 2:1 overnight and pregnancy was confirmed by the appearance of vaginal plugs the following morning. Day 1 (D1) pregnant mice were randomly divided into two groups (n=20) and were administered either dimethylsulfoxide (mock treatment) or SB-273005 (3 mg/kg) by gavage at D3, D4 and D5. At D8, the levels of Th1 and Th2 cells and interleukin (IL)-2 and IL-10 in the spleen and peripheral blood were determined using flow cytometry and enzyme-linked immunosorbent assay. Pregnancy significantly increased the ratio of Th2:Th1 cells in the spleen compared with that in non-pregnant mice (P<0.01). However, this increase was significantly reduced by SB-273005 (P<0.001). Furthermore, whilst pregnancy decreased Th1 cell-produced IL-2 levels and increased Th2 cell-derived IL-10 levels, SB-273005 reversed both processes (P<0.05 for IL-2; P<0.01 for IL-10). The results from the present study demonstrated that pregnancy induces changes in the spleen, including a reduction of IL-2 and an increase in IL-10 production by Th1 and Th2 cells, respectively, as well as an upregulation of the Th2:Th1 ratio in the spleen. These immunological changes are reversed by SB-273005, indicating an important role for αvβ3 integrin in mediating these immunological alterations.

  9. Effect of vitamin D supplementation during pregnancy on the Th1/Th2 cell balance of rat offspring.

    PubMed

    Chen, Wen-Jia; Hou, Xue-Jing; Yang, Shu-Fen; Yin, Xin-Hua; Ren, Lihong

    2014-05-01

    Vitamin D has important functions in the immune system, and it may suppress the proliferation of T helper (Th) cells and modulate their cytokine production. In this study, we aimed to investigate the effects of maternal supplementation with different doses of vitamin D on the allergy status of the offspring. We gave pregnant female rats a low dose (48000IU/kg, equal to 800IU/d in human) and a high dose (240000IU/kg,equal to 4000IU/d in human) of vitamin D3 intramuscular injection on gestation day (GD)17, and we used an enzyme-linked immunosorbent assay (ELISA) to determine the levels of immune responsive cytokines including IL-4, IgE, and interferon gamma (IFN-gamma) in the offspring. On postnatal day (PND) 21, plasma IL-4 levels were elevated by 10.43% (p < 0.01) in the offspring from the high dose vitamin D3 group compared with the control group. And offspring plasma IL-4 levels in the low dose group decreased by 7.27% (p < 0.05) compared with the control dose group. We found that the offspring of mothers given a low dose of vitamin D3 had a 6.17% (p < 0.01) decrease in their plasma IgE levels compared to control animals, but the high dose of vitamin D3 showed no effect. The serum 25(OH)D3 levels were negatively correlated with the IL-4 (r = -0.561, p < 0.01) and IgE (r = -0.421, p < 0.05) levels of the offspring from the low dose group. In the lung tissues of the offspring of the high dose group, we observed thickening of the alveolar septa and more inflammatory cells compared with the control group and low dose group. Thickened alveolar septa were also found in the lung tissues of the offspring from the control group. We conclude that high dose vitamin D3 maternal supplementation during pregnancy induced an imbalance of Th1 and Th2 cells in their offspring resulting allergic and inflammatory response.

  10. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy.

    PubMed

    Lee, Jee-Boong; Chen, Chun-Yu; Liu, Bo; Mugge, Luke; Angkasekwinai, Pornpimon; Facchinetti, Valeria; Dong, Chen; Liu, Yong-Jun; Rothenberg, Marc E; Hogan, Simon P; Finkelman, Fred D; Wang, Yui-Hsi

    2016-04-01

    Food-mediated allergic reactions have emerged as a major health problem. The underlying mechanisms that promote uncontrolled type 2 immune responses to dietary allergens in the gastrointestinal tract remain elusive. We investigated whether altering IL-25 signaling enhances or attenuates allergic responses to food allergens. Mice of an IL-25 transgenic mouse line (iIL-25Tg mice), which constitutively overexpress intestinal IL-25, and Il17rb(-/-) mice, in which Il17rb gene expression is disrupted, were sensitized and gavage fed with ovalbumin (OVA). We assessed symptomatic characteristics of experimental food allergy, including incidence of diarrhea, incidence of hypothermia, intestinal TH2 immune response, and serum OVA-specific IgE and mast cell protease 1 production. Rapid induction of Il25 expression in the intestinal epithelium preceded onset of the anaphylactic response to ingested OVA antigen. iIL-25Tg mice were more prone and Il17rb(-/-) mice were more resistant to experimental food allergy. Resident intestinal type 2 innate lymphoid cells (ILC2s) were identified as the major producers of IL-5 and IL-13 in response to IL-25. Reconstituting irradiated wild-type mice with Rora(-/-) or Il17rb(-/-) bone marrow resulted in a deficiency or dysfunction of the ILC2 compartment, respectively, and resistance to experimental food allergy. Repeated intragastric antigen challenge induced a significant increase in numbers of CD4(+) TH2 cells, which enhance IL-25-stimulated IL-13 production by ILC2s ex vivo and in vivo. Finally, reconstituted IL-13-deficient ILC2s had reduced capability to promote allergic inflammation, resulting in increased resistance to experimental food allergy. IL-25 and CD4(+) TH2 cells induced by ingested antigens enhance ILC2-derived IL-13 production, thereby promoting IgE-mediated experimental food allergy. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Antigen-pulsed bone marrow derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine mycoplasma pneumonia1

    PubMed Central

    Dobbs, Nicole A.; Zhou, Xia; Pulse, Mark; Hodge, Lisa M.; Schoeb, Trenton R.; Simecka, Jerry W.

    2014-01-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, while Th2 responses contribute to immunopathology. The purpose of these studies was to evaluate the capacity of cytokine differentiated dendritic cells (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma antigen-pulsed bone marrow derived dendritic cells (BMDC) could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with antigen-pulsed DCs resulted enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with antigen-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with antigen-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either antigen-pulsed BMDCs or pulmonary DCs were shown to be IL13+ Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DC most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination. PMID:24973442

  12. Cyclosporine A enhances Th2 bias at the maternal-fetal interface in early human pregnancy with aid of the interaction between maternal and fetal cells.

    PubMed

    Piao, Hai-Lan; Wang, Song-Cun; Tao, Yu; Zhu, Rui; Sun, Chan; Fu, Qiang; Du, Mei-Rong; Li, Da-Jin

    2012-01-01

    Our previous study has demonstrated that cyclosporine A (CsA) administration in vivo induces Th2 bias at the maternal-fetal interface, leading to improved murine pregnancy outcomes. Here, we investigated how CsA treatment in vitro induced Th2 bias at the human maternal-fetal interface in early pregnancy. The cell co-culture in vitro in different combination of component cells at the maternal-fetal interface was established to investigate the regulation of CsA on cytokine production from the interaction of these cells. It was found that interferon (IFN)-γ was produced only by decidual immune cells (DICs), and not by trophoblasts or decidual stromal cells (DSCs); all these cells secreted interleukin (IL)-4, IL-10, and tumor necrosis factor (TNF)-α. Treatment with CsA completely blocked IFN-γ production in DICs and inhibited TNF-α production in all examined cells. CsA increased IL-10 and IL-4 production in trophoblasts co-cultured with DSCs and DICs although CsA treatment did not affect IL-10 or IL-4 production in any of the cells when cultured alone. These results suggest that CsA promotes Th2 bias at the maternal-fetal interface by increasing Th2-type cytokine production in trophoblasts with the aid of DSCs and DICs, while inhibiting Th1-type cytokine production in DICs and TNF-α production in all investigated cells. Our study might be useful in clinical therapeutics for spontaneous pregnancy wastage and other pregnancy complications.

  13. An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment.

    PubMed

    Halim, Leena; Romano, Marco; McGregor, Reuben; Correa, Isabel; Pavlidis, Polychronis; Grageda, Nathali; Hoong, Sec-Julie; Yuksel, Muhammed; Jassem, Wayel; Hannen, Rosalind F; Ong, Mark; Mckinney, Olivia; Hayee, Bu'Hussain; Karagiannis, Sophia N; Powell, Nicholas; Lechler, Robert I; Nova-Lamperti, Estefania; Lombardi, Giovanna

    2017-07-18

    Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance, but they can also play a detrimental role by preventing antitumor responses. Here, we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution, focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently, Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall, our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival, higher migratory capacity, and selective T-effector suppressive ability. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Trichinella spiralis antigens prime mixed Th1/Th2 response but do not induce de novo generation of Foxp3+ T cells in vitro

    PubMed Central

    ILIC, N; WORTHINGTON, J J; GRUDEN-MOVSESIJAN, A; TRAVIS, M A; SOFRONIC-MILOSAVLJEVIC, L; GRENCIS, R K

    2011-01-01

    Summary Many parasitic helminth infections induce Th2-type immune responses and engage the regulatory network. In this study, we specifically investigated the influence of antigens derived from different life stages of the helminth Trichinella spiralis on the polarization of naive CD4+ T cells by dendritic cells. Results obtained from C57BL/6 mice showed that T. spiralis derived antigens have the capacity to induce bone marrow-derived dendritic cells to acquire an incompletely mature phenotype that promotes a significant proliferation of naive CD4+ T cells and a mixed Th1/Th2 cytokine profile with the predominance of Th2 cytokines. Increased production of IL-4, IL-9, IL-10 and IL-13 accompanied increased IFN-γ. Furthermore, dendritic cells pulsed with T. spiralis antigens did not induce an increase in the population of Foxp3+ T regulatory cells. Although other helminth antigens have demonstrated the capacity to induce de novo generation of Foxp3+ T regulatory cells, here our in vitro studies provide no evidence that T. spiralis antigens have this capacity. PMID:21793858

  15. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma.

    PubMed

    Fowler, D H; Gress, R E

    2000-07-01

    Allogeneic stem cell transplantation (SCT) represents a curative treatment option for patients with leukemia and lymphoma. T lymphocytes contained in the allograft mediate a graft-versus-leukemia (GVL) effect and prevent graft rejection; however, T cells also initiate graft-versus-host disease (GVHD). Identification of T cell populations which mediate a GVL effect and prevent rejection with reduced GVHD will likely improve transplantation outcome. T cells exist in four functionally-defined populations, the CD4+, Th1/Th2 and CD8+, Tc1/Tc2 subsets. Th1-type CD4 cells primarily secrete type I cytokines (IL-2 and IFN-gamma), whereas Th2 cells secrete type II cytokines (IL-4, IL-5, and IL-10). Similarly, the CD8+ Tc1 and Tc2 cells differentially secrete the type I and type II cytokines, respectively. In addition to cytokine secretion, Tc1 and Tc2 populations mediate cytolytic effects, with Tc1 cells utilizing both perforin- and fas-based killing pathways, whereas Tc2 cells primarily utilize perforin-mediated cytolysis. In murine transplantation models of graft rejection, GVHD, and GVL effects, we have evaluated such functional T cell subsets for their ability to differentially mediate and regulate transplantation responses. These studies demonstrate that donor Th2 cells do not initiate acute GVHD, and can regulate the GVHD mediated by unmanipulated donor T cells without impairing alloengraftment. Additional experiments have shown that allospecific donor Tc2 cells result in reduced GVHD, and mediate a significant GVL effect. Thirdly, we have demonstrated that non-host reactive Tc2 cells with veto-like activity can potently abrogate marrow rejection independent of GVHD. Together, these results demonstrate that functionally-defined donor Th2 and Tc2 populations play an important role in the regulation of GVHD, the prevention of graft rejection, and the mediation of GVL effects, and suggest that utilization of Th2 and Tc2 cells in clinical allogeneic SCT may have potential

  16. Lung Type 2 innate lymphoid cells express CysLT1R that regulates Th2 cytokine production

    PubMed Central

    Doherty, Taylor A.; Khorram, Naseem; Lund, Sean; Mehta, Amit Kumar; Croft, Michael; Broide, David H.

    2013-01-01

    Background Cysteinyl leukotrienes contribute to asthma pathogenesis, in part through CysLT1 receptor (CysLT1R). Recently discovered lineage-negative type 2 innate lymphoid cells (ILC2) potently produce IL-5 and IL-13. Objectives We hypothesized that lung ILC2 may be activated by leukotrienes through CysLT1R. Methods ILC2 (Thy 1.2+ lineage-negative lymphocytes) and CysLT1R were detected in the lungs of WT, STAT6−/−, and RAG2−/− mice by flow cytometry. Levels of Th2 cytokines were measured in purified lung ILC2 stimulated with leukotriene D4 (LTD4) in the presence or absence of the CysLT1R antagonist montelukast. Calcium influx was measured by Fluo-4 intensity. Intranasal LTD4 and LTE4 were administered to naive mice and levels of ILC2 IL-5 production determined. Finally, LTD4 was co-administered with Alternaria repetitively to RAG2−/− mice (have ILC2) and IL-7R−/− mice (lack ILC2) and total ILC2 numbers, proliferation (Ki-67+) and BAL eosinophils measured. Results CysLT1R was expressed on lung ILC2 from WT, RAG2−/−, and STAT6−/−naïve and Alternaria-challenged mice. In vitro, LTD4 induced ILC2 to rapidly generate high levels of IL-5 and IL-13 within six hours of stimulation. Interestingly, LTD4, but not IL-33, induced high levels of IL-4 by ILC2. LTD4 administered in-vivo rapidly induced ILC2 IL-5 production that was significantly reduced by montelukast pre-treatment. Finally, LTD4 potentiated Alternaria-induced eosinophilia as well as ILC2 accumulation and proliferation. Conclusions We present novel data that CysLT1R is expressed on ILC2 and LTD4 potently induces CysLT1R-dependent ILC2 production of IL-4, IL-5, and IL-13. Additionally, LTD4 potentiates Alternaria-induced eosinophilia and ILC2 proliferation and accumulation. PMID:23688412

  17. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy.

    PubMed

    Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Choi, Dae Woon; Kwon, Da-Ae; Bae, Min-Jung; Sung, Ki-Seung; Shon, Dong-Hwa

    2015-12-04

    Turmeric (Curcuma longa) has traditionally been used to treat pain, fever, allergic and inflammatory diseases such as bronchitis, arthritis, and dermatitis. In particular, turmeric and its active component, curcumin, were effective in ameliorating immune disorders including allergies. However, the effects of turmeric and curcumin have not yet been tested on food allergies. Mice were immunized with intraperitoneal ovalbumin (OVA) and alum. The mice were orally challenged with 50mg OVA, and treated with turmeric extract (100mg/kg), curcumin (3mg/kg or 30 mg/kg) for 16 days. Food allergy symptoms including decreased rectal temperature, diarrhea, and anaphylaxis were evaluated. In addition, cytokines, immunoglobulins, and mouse mast cell protease-1 (mMCP-1) were evaluated using ELISA. Turmeric significantly attenuated food allergy symptoms (decreased rectal temperature and anaphylactic response) induced by OVA, but curcumin showed weak improvement. Turmeric also inhibited IgE, IgG1, and mMCP-1 levels increased by OVA. Turmeric reduced type 2 helper cell (Th2)-related cytokines and enhanced a Th1-related cytokine. Turmeric ameliorated OVA-induced food allergy by maintaining Th1/Th2 balance. Furthermore, turmeric was confirmed anti-allergic effect through promoting Th1 responses on Th2-dominant immune responses in immunized mice. Turmeric significantly ameliorated food allergic symptoms in a mouse model of food allergy. The turmeric as an anti-allergic agent showed immune regulatory effects through maintaining Th1/Th2 immune balance, whereas curcumin appeared immune suppressive effects. Therefore, we suggest that administration of turmeric including various components may be useful to ameliorate Th2-mediated allergic disorders such as food allergy, atopic dermatitis, and asthma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Study of Th1/Th2 balance in peripheral blood mononuclear cells of patients with alopecia areata.

    PubMed

    Sadeghi, Soha; Sanati, Mohammad Hossein; Taghizadeh, Morteza; Mansouri, Parvine; Jadali, Zohreh

    2015-09-01

    Alopecia areata represents an autoimmune pathological process driven primarily by cellular aberrations contained within the immune system, which activates various humoral and cellular elements of the immune response. The aim of this study was to determine the mRNA expression levels of T-bet and GATA-3 as potential inducers of T helper (Th)1 and Th2 differentiation, respectively, as well as Th1(IFN-γ) and Th2(IL-4) cytokine mRNA expression in patients with alopecia areata. Using real-time reverse transcriptase PCR (RT-PCR), the relative amounts of T-bet, GATA-3, IFN-γ, and IL-4 mRNA transcripts were determined in PBMCs from 20 Iranian patients with alopecia areata and compared with those of 20 healthy control subjects. In comparison with the normal group, T-bet and IFN-γ mRNA expression levels were significantly up-regulated in the alopecia areata patients, while GATA-3 and IL-4 mRNA expression levels were down-regulated. Notably, positive correlation (P < 0.05) was found between IFN-γ and T-bet levels in patients and controls. In addition, significant positive correlations existed between GATA-3 and IL-4 (P < 0.05). These results indicate that a Th1/Th2 imbalance exists in alopecia areata, and it may be implicated in the pathogenesis of disease.

  19. TH1/TH2 cytokines in the central nervous system.

    PubMed

    Sredni-Kenigsbuch, Dvora

    2002-06-01

    For the past 20 years it has become increasingly evident that cytokines play an important role in both the normal development of the brain, acting as neurotrophic factors, and in brain injuries. Although cytokines and their receptors are synthesized and expressed in the brain (normally at low levels), increased cytokine production levels are now associated with various neurological disorders. T lymphocytes are the cells responsible for coordinating the immune response and a major source of cytokines. Different cytokines induce different subsets of T cells or have different effects on proliferation within a particular subset. Recent studies suggest that the immune response is in fact regulated by the balance between Th1 and Th2 cytokines. These two pathways are often mutually exclusive, the one resulting in protection and the other in progression of disease. Various studies describe the function and production of proinflammatory cytokines in the central nervous system (CNS) and their role in health and disease. Inflammation is upregulated following activation of Th1 cells, whereas Th2 cells may play a significant role in downregulating Th1 proinflammatory responses in those instances in which there is overproduction of Th2 cytokines. Although both Th1 and Th2 cytokines may influence CNS functioning, most studies have so far dealt with proinflammatory cytokines, probably because they directly affect CNS cells and are thought to be implicated in CNS pathology. It is of interest that endogenous glucocorticoids also control Th1-Th2 balance, favoring Th2 cell development. This review presents the evidence that cytokines have important functions in the CNS, both during development and as a part of brain pathology. In particular, the author highlighted recent work that supports a major role for the so-called inflammatory cytokines, Th1, and the anti-inflammatory Th2 cytokines.

  20. Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4+ T cell responses through TLR4 ligation

    PubMed Central

    Brummelman, Jolanda; Raeven, René H. M.; Helm, Kina; Pennings, Jeroen L. A.; Metz, Bernard; van Eden, Willem; van Els, Cécile A. C. M.; Han, Wanda G. H.

    2016-01-01

    Current acellular pertussis (aP) vaccines promote a T helper 2 (Th2)-dominated response, while Th1/Th17 cells are protective. As our previous study showed, after adding a non-toxic TLR4 ligand, LpxL1, to the aP vaccine in mice, the Bordetella pertussis-specific Th2 response is decreased and Th1/Th17 responses are increased as measured at the cytokine protein level. However, how this shift in Th response by LpxL1 addition is regulated at the gene expression level remains unclear. Transcriptomics analysis was performed on purified CD4+ T cells of control and vaccinated mice after in vitro restimulation with aP vaccine antigens. Multiple key factors in Th differentiation, including transcription factors, cytokines, and receptors, were identified within the differentially expressed genes. Upregulation of Th2- and downregulation of follicular helper T cell-associated genes were found in the CD4+ T cells of both aP- and aP+LpxL1-vaccinated mice. Genes exclusively upregulated in CD4+ T cells of aP+LpxL1-vaccinated mice included Th1 and Th17 signature cytokine genes Ifng and Il17a respectively. Overall, our study indicates that after addition of LpxL1 to the aP vaccine the Th2 component is not downregulated at the gene expression level. Rather an increase in expression of Th1- and Th17-associated genes caused the shift in Th subset outcome. PMID:27118638

  1. Expression of Th1, Th2, lymphocyte trafficking and activation markers on CD4+ T-cells of Hymenoptera allergic subjects and after venom immunotherapy.

    PubMed

    Cabrera, Carmen M; Urra, José M; Alfaya, Teresa; Roca, Federico De La; Feo-Brito, Francisco

    2014-11-01

    Systemic reactions to Hymenoptera stings can be fatal and represent a reduction in the quality of life. The immune mechanisms involved in venom allergic subjects are barely known. Nevertheless, a shift towards a Th1-type response with an increase in IFNγ levels has been observed after venom immunotherapy (VIT). There is currently no information available about the expression of markers on CD4+ T-cells or their involvement in venom allergy, nor following VIT. For this, we have studied the expression of Th1 and Th2-cell markers, homing receptors and activation markers on CD4+ T-cells of subjects who presented systemic allergic reactions, mainly to Polistes dominulus, and after receiving a 4-month conventional VIT protocol. The markers studied were: CD26 (Th1), CD30 (Th2), CXCR4, CXCR3 (Th1), CCR4 (Th2), CD154 (CD40L), CD152 (CTLA-A), and ICOS. We also determined the IL-4 (Th2) and IFNγ (Th1) intracellular cytokine levels in T-cells and carried out a basophil activation test (BAT). Comparing venom allergic subjects with non-allergic healthy controls, we have found up-regulation of CD26, CXCR4, CXCR3, CD154 and ICOS. Conversely, a down-regulation of CD30, CD154 and CD152 occurred upon immune intervention, whereas the remaining markers were not affected. Equally, VIT has been shown to be effective, as evidenced by the decrease of basophil degranulation and increase of IFNγ levels in T-cells after the fourth month of treatment. These new findings highlight the possible application of these surface molecules as markers to distinguish between symptomatic and asymptomatic subjects sensitized to Hymenoptera venom, as well as revealing information about the immune changes associated with VIT.

  2. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  3. D-type prostanoid receptor enhances the signaling of chemoattractant receptor-homologous molecule expressed on T(H)2 cells.

    PubMed

    Sedej, Miriam; Schröder, Ralf; Bell, Kathrin; Platzer, Wolfgang; Vukoja, Anela; Kostenis, Evi; Heinemann, Akos; Waldhoer, Maria

    2012-02-01

    Prostaglandin (PG) D(2) is substantially involved in allergic responses and signals through the 7 transmembrane-spanning/G protein-coupled receptors, chemoattractant receptor-homologous molecule expressed on T(H)2 cells (CRTH2), and D-type prostanoid (DP) receptor. Although the proinflammatory function of CRTH2 is well recognized and CRTH2 is hence considered an important emerging pharmacotherapeutic target, the role of the DP receptor in mediating the biological effects of PGD(2) in patients with allergic inflammation has remained unclear. The cross-talk of CRTH2 and DP receptors was investigated by using both a recombinant HEK293 cell model and human eosinophils in Ca(2+) mobilization assays, coimmunoprecipitation, Western blotting, radioligand binding, and immunofluorescence. We show that CRTH2 and DP receptors modulate one another's signaling properties and form CRTH2/DP heteromers without altering their ligand-binding capacities. We find that the DP receptor amplifies the CRTH2-induced Ca(2+) release from intracellular stores and coincidentally forfeits its own signaling potency. Moreover, desensitization or pharmacologic blockade of the DP receptor hinders CRTH2-mediated signal transduction. However, CRTH2 internalization occurs independently of the DP receptor. In cells that express both receptors, pharmacologic blockade of Gα(q/11) proteins abolishes the Ca(2+) response to both CRTH2 and DP agonists, whereas inhibition of Gα(i) proteins selectively attenuates the CRTH2-mediated response but not the DP signal. Our data demonstrate the capacity of DP receptors to amplify the biological response to CRTH2 activation. Therefore the CRTH2/DP heteromer might not only represent a functional signaling unit for PGD(2) but also a potential target for the development of heteromer-directed therapies to treat allergic diseases. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. T Cell Polarization toward TH2/TFH2 and TH17/TFH17 in Patients with IgG4-Related Disease

    PubMed Central

    Grados, Aurélie; Ebbo, Mikael; Piperoglou, Christelle; Groh, Matthieu; Regent, Alexis; Samson, Maxime; Terrier, Benjamin; Loundou, Anderson; Morel, Nathalie; Audia, Sylvain; Maurier, François; Graveleau, Julie; Hamidou, Mohamed; Forestier, Amandine; Palat, Sylvain; Bernit, Emmanuelle; Bonotte, Bernard; Farnarier, Catherine; Harlé, Jean-Robert; Costedoat-Chalumeau, Nathalie; Vély, Frédéric; Schleinitz, Nicolas

    2017-01-01

    IgG4-related disease (IgG4-RD) is a fibro-inflammatory disorder involving virtually every organ with a risk of organ dysfunction. Despite recent studies regarding B cell and T cell compartments, the disease’s pathophysiology remains poorly understood. We examined and characterized subsets of circulating lymphocytes in untreated patients with active IgG4-RD. Twenty-eight consecutive patients with biopsy-proven IgG4-RD were included in a prospective, multicentric study. Lymphocytes’ subsets were analyzed by flow cytometry, with analysis of TH1/TH2/TH17, TFH cells, and cytokine release by peripheral blood mononuclear cells. Results were compared to healthy controls and to patients with primary Sjögren’s syndrome. Patients with IgG4-RD showed an increase of circulating T regulatory, TH2, TH17, and CD4+CXCR5+PD1+ TFH cell subsets. Accordingly, increased levels of IL-10 and IL-4 were measured in IgG-RD patients. TFH increase was characterized by the specific expansion of TFH2 (CCR6−CXCR3−), and to a lesser extent of TFH17 (CCR6+CXCR3−) cells. Interestingly, CD4+CXCR5+PD1+ TFH cells normalized under treatment. IgG4-RD is characterized by a shift of circulating T cells toward a TH2/TFH2 and TH17/TFH17 polarization. This immunological imbalance might be implicated in the disease’s pathophysiology. Treatment regimens targeting such T cells warrant further evaluation. PMID:28348556

  5. IL-25/IL-33–responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa

    PubMed Central

    Lam, Emily P.S.; Kariyawasam, Harsha H.; Rana, Batika M.J.; Durham, Stephen R.; McKenzie, Andrew N.J.; Powell, Nicholas; Orban, Nara; Lennartz-Walker, Melissa; Hopkins, Claire; Ying, Sun; Rimmer, Joanne; Lund, Valerie J.; Cousins, David J.; Till, Stephen J.

    2016-01-01

    Background Chronic rhinosinusitis with nasal polyposis (CRSwNP) in Western countries is characterized by eosinophilia, IgE production, and TH2 cytokine expression. Type 2 innate lymphoid cells from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33, although the relevance of this axis to local mucosal T-cell responses is unknown. Objective We sought to investigate the role of the IL-25/IL-33 axis in local mucosal T-cell responses in patients with CRSwNP. Methods Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsy specimens and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T-cell surface phenotype/intracellular cytokines were assessed by means of flow cytometry. T-cell receptor variable β-chain analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. Results IL-25 receptor (IL-17RB)–expressing TH2 effector cells were identified in nasal polyp tissue but not the healthy nasal mucosa or periphery. IL-17RB+CD4+ polyp–derived TH2 cells coexpressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB+CD4+ T cells, several identical T-cell receptor variable β-chain complementarity-determining region 3 sequences were identified in different subjects, suggesting clonal expansion driven by a common antigen. Abundant IL-17–producing T cells were observed in both healthy nasal mucosal and polyp populations, with TH17-related genes the most overexpressed compared with peripheral blood T cells. Conclusion IL-25 and IL-33 can interact locally with IL-17RB+ST2+ polyp T cells to augment TH2 responses in patients with CRSwNP. A local TH17 response might be important in healthy nasal mucosal immune homeostasis. PMID:26684290

  6. Sublingual administration of Lactobacillus paracasei KW3110 inhibits Th2-dependent allergic responses via upregulation of PD-L2 on dendritic cells.

    PubMed

    Inamine, Ayako; Sakurai, Daijyu; Horiguchi, Shigetoshi; Yonekura, Syuji; Hanazawa, Toyoyuki; Hosokawa, Hiroyuki; Matuura-Suzuki, Asaka; Nakayama, Toshinori; Okamoto, Yoshitaka

    2012-05-01

    Lactic acid bacteria have potential in immunomodulation therapy, but their clinical efficacy and underlying mechanisms are unclear. We aimed to clarify the anti-allergic immune responses induced by intragastric and sublingual administration of heat-killed Lactobacillus paracasei KW3110 and Lactobacillus acidophilus L-92. The KW3110 strain (but not the L-92 strain) enhanced ovalbumin (OVA)-induced expression of CCR-7 and PD-L2 in murine dendritic cells (DCs), and strongly inhibited IL-5 and IL-13 production in vitro in co-cultures with Th2-skewed CD4(+) T cells from DO11.10 transgenic mice. Sublingual administration of low-dose KW3110 (but not L-92) to OVA-sensitized mice selectively suppressed serum IgE production and Th2 cytokine expression in cervical lymph nodes, and significantly improved symptoms after OVA provocation in vivo. KW3110 probably accelerates DC migration into the regional lymph nodes and inhibits Th2 cytokine production through enhanced CCR-7 and PD-L2 expression. Thus, sublingual KW3110 administration may be effective in reducing allergic inflammation.

  7. Morbidly Obese Human Subjects Have Increased Peripheral Blood CD4+ T Cells With Skewing Toward a Treg- and Th2-Dominated Phenotype

    PubMed Central

    van der Weerd, Kim; Dik, Willem A.; Schrijver, Benjamin; Schweitzer, Dave H.; Langerak, Anton W.; Drexhage, Hemmo A.; Kiewiet, Rosalie M.; van Aken, Maarten O.; van Huisstede, Astrid; van Dongen, Jacques J.M.; van der Lelij, Aart-Jan; Staal, Frank J.T.; van Hagen, P. Martin

    2012-01-01

    Obesity is associated with local T-cell abnormalities in adipose tissue. Systemic obesity-related abnormalities in the peripheral blood T-cell compartment are not well defined. In this study, we investigated the peripheral blood T-cell compartment of morbidly obese and lean subjects. We determined all major T-cell subpopulations via six-color flow cytometry, including CD8+ and CD4+ T cells, CD4+ T-helper (Th) subpopulations, and natural CD4+CD25+FoxP3+ T-regulatory (Treg) cells. Moreover, molecular analyses to assess thymic output, T-cell proliferation (T-cell receptor excision circle analysis), and T-cell receptor-β (TCRB) repertoire (GeneScan analysis) were performed. In addition, we determined plasma levels of proinflammatory cytokines and cytokines associated with Th subpopulations and T-cell proliferation. Morbidly obese subjects had a selective increase in peripheral blood CD4+ naive, memory, natural CD4+CD25+FoxP3+ Treg, and Th2 T cells, whereas CD8+ T cells were normal. CD4+ and CD8+ T-cell proliferation was increased, whereas the TCRB repertoire was not significantly altered. Plasma levels of cytokines CCL5 and IL-7 were elevated. CD4+ T-cell numbers correlated positively with fasting insulin levels. The peripheral blood T-cell compartment of morbidly obese subjects is characterized by increased homeostatic T-cell proliferation to which cytokines IL-7 and CCL5, among others, might contribute. This is associated with increased CD4+ T cells, with skewing toward a Treg- and Th2-dominated phenotype, suggesting a more anti-inflammatory set point. PMID:22228716

  8. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype.

    PubMed

    van der Weerd, Kim; Dik, Willem A; Schrijver, Benjamin; Schweitzer, Dave H; Langerak, Anton W; Drexhage, Hemmo A; Kiewiet, Rosalie M; van Aken, Maarten O; van Huisstede, Astrid; van Dongen, Jacques J M; van der Lelij, Aart-Jan; Staal, Frank J T; van Hagen, P Martin

    2012-02-01

    Obesity is associated with local T-cell abnormalities in adipose tissue. Systemic obesity-related abnormalities in the peripheral blood T-cell compartment are not well defined. In this study, we investigated the peripheral blood T-cell compartment of morbidly obese and lean subjects. We determined all major T-cell subpopulations via six-color flow cytometry, including CD8+ and CD4+ T cells, CD4+ T-helper (Th) subpopulations, and natural CD4+CD25+FoxP3+ T-regulatory (Treg) cells. Moreover, molecular analyses to assess thymic output, T-cell proliferation (T-cell receptor excision circle analysis), and T-cell receptor-β (TCRB) repertoire (GeneScan analysis) were performed. In addition, we determined plasma levels of proinflammatory cytokines and cytokines associated with Th subpopulations and T-cell proliferation. Morbidly obese subjects had a selective increase in peripheral blood CD4+ naive, memory, natural CD4+CD25+FoxP3+ Treg, and Th2 T cells, whereas CD8+ T cells were normal. CD4+ and CD8+ T-cell proliferation was increased, whereas the TCRB repertoire was not significantly altered. Plasma levels of cytokines CCL5 and IL-7 were elevated. CD4+ T-cell numbers correlated positively with fasting insulin levels. The peripheral blood T-cell compartment of morbidly obese subjects is characterized by increased homeostatic T-cell proliferation to which cytokines IL-7 and CCL5, among others, might contribute. This is associated with increased CD4+ T cells, with skewing toward a Treg- and Th2-dominated phenotype, suggesting a more anti-inflammatory set point.

  9. B cells are required for the switch from Th1- to Th2-regulated immune responses to Plasmodium chabaudi chabaudi infection.

    PubMed

    Taylor-Robinson, A W; Phillips, R S

    1994-06-01

    The induction of T-helper cell subsets during the course of blood stage Plasmodium chabaudi chabaudi infection was compared in immunologically intact NIH mice and mice that were depleted of B cells from birth by treatment with anti-mu antibodies. For intact mice, in which the acute primary parasitemia peaked 10 days following infection, purified splenic CD4+ T cells recovered during the ascending parasitemia produced high levels in vitro of interleukin 2 (IL-2) (peak levels on day 10) and gamma interferon (IFN-gamma) (peak levels on day 7). Sera collected from these mice at around this time contained relatively high levels of P. c. chabaudi-specific immunoglobulin 2a (peak levels on day 12), and serum nitric oxide activity was significantly elevated at peak parasitemia. During the descending primary parasitemia, production of IFN-gamma and IL-2 decreased, while levels of IL-4 and IL-10 produced by splenic CD4+ T cells were significantly raised from the time at which subpatency was recorded (day 17) and persisted for at least 50 days. This was concomitant with a significant increase in levels of parasite-specific immunoglobulin G1, which peaked at around the time of recrudescence. Thus, in normal mice, sequential appearance of Th1 and Th2 responses was observed. In contrast, in B-cell-depleted mice, recovery from acute primary parasitemia was followed by a persistent patent infection which did not drop below 0.1% for at least 75 days after initiation of infection. These mice were unable to mount a significant Th2 response, manifest as an enduring inability of splenic CD4+ T cells to produce significant levels of IL-4 and IL-10. IL-2 and IFN-gamma levels remained significantly elevated throughout the 50-day observation period, and there was sustained production of nitric oxide. These data show that immune responses mediated by CD4+ T cells of the Th1 subset are capable of limiting infection beyond the initial acute phase, but that they do not eliminate parasitemia

  10. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation

    PubMed Central

    Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  11. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  12. Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells

    PubMed Central

    Ferraz-de-Paula, Viviane; Palermo-Neto, Joao; Castro, Carla N.; Druker, Jimena; Holsboer, Florian; Perone, Marcelo J.; Gerlo, Sarah; De Bosscher, Karolien; Haegeman, Guy; Arzt, Eduardo

    2012-01-01

    Background Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively. Conclusions Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders. PMID:22496903

  13. A possible mechanism in the recruitment of eosinophils and Th2 cells through CD163(+) M2 macrophages in the lesional skin of eosinophilic cellulitis.

    PubMed

    Fujimura, Taku; Kambayashi, Yumi; Furudate, Sadanori; Kakizaki, Aya; Aiba, Setsuya

    2014-01-01

    M2 macrophages play a critical role in the recruitment of T helper 2 (Th2) regulatory T cells (Treg). To study the role of M2 macrophages and Treg cells in eosinophilic celulitis. We employed immunohistochemical staining for CD163( )and CD206 (macrophages) as well as FoxP3 (Treg), in lesional skin of four cases of eosinophilic cellulitis. CD163(+) CD206(+) M2 macrophages, which were previously reported to produce CCL17 to induce Th2 cells and Treg cells, were predominantly infiltrating the subcutaneous tissues and interstitial area of the dermis. M2 macrophages derived from PBMC showed significantly increased expression of CCL11, CCL17, CCL24 and CCL26 mRNA and production of CCL17 and CCL24, when stimulated by IL-4 or IL- 13. In addition, CCL17-producing cells and CCL24-producing cells were prominent in the lesional skin of EC. Our study sheds light on one of the possible immunological mechanisms of eosinophilic cellulitis.

  14. The modulation of Th2 immune pathway in the immunosuppressive effect of human umbilical cord mesenchymal stem cells in a murine asthmatic model.

    PubMed

    Chan, Chin-Kan; Lin, Ting-Chun; Huang, Yung-An; Chen, Ya-Shan; Wu, Chia-Ling; Lo, Huei-Yu; Kuo, Ming-Ling; Wu, Kang-Hsi; Huang, Jing-Long

    2016-10-01

    Asthma is a chronic airway inflammatory disease that has a high prevalence nowadays, and seeking the means of relieving asthmatic symptoms is now an issue with increased importance. While mesenchymal stem cells have been demonstrated to display immunomodulatory effects, the effect of fetus-type mesenchymal stem cells (MSCs) on asthmatic symptoms in vivo have not been reported to date. Female BALB/c mice at 8 weeks of age were sensitized by ovalbumin, and MSCs derived from Wharton's jelly of human umbilical cord mesenchymal stem cells (hUCMSCs) were injected into the asthmatic mice. Airway hyper-responsiveness, lung eosinophil infiltration, cytokine level in splenocyte cultures and serum immunoglobulin level were measured. Enzyme-linked immunosorbent assay was used to determine cytokine and immunoglobulin levels. This current study demonstrated that hUCMSCs attenuated both lung lymphocyte and eosinophil infiltration, and significantly decreased the concentration of Th2 cytokines interleukin-5 in splenocyte cultures. Human umbilical cord mesenchymal stem cells have the advantage of being easily harvested non-invasively and are capable of rapid proliferation, therefore an ideal material for stem cell-based immune therapies. The current study showed that fetal-type MSCs were able to suppress asthmatic symptoms efficiently, and its immunomodulatory effect resulted primarily from suppressing the Th2 pathway in the animal model. This study suggested that hUCMSCs could be an ideal candidate for cell-based therapies of asthma.

  15. Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice.

    PubMed

    Nakae, Susumu; Ho, Lien H; Yu, Mang; Monteforte, Rossella; Iikura, Motoyasu; Suto, Hajime; Galli, Stephen J

    2007-07-01

    Mast cells, IgE, and TNF, which have been implicated in human atopic asthma, contribute significantly to the allergic airway inflammation induced by ovalbumin (OVA) challenge in mice sensitized with OVA without alum. However, it is not clear to what extent mast cells represent a significant source of TNF in this mouse model. We investigated the importance of mast cell-derived TNF in a mast cell-dependent model of OVA-induced airway hyperreactivity (AHR) and allergic airway inflammation. Features of this model of airway inflammation were analyzed in C57BL/6J-wild-type mice, mast cell-deficient C57BL/6J-Kit(W-sh)(/W-sh) mice, and C57BL/6J Kit(W-sh/W-sh) mice that had been systemically engrafted with bone marrow-derived cultured mast cells from C57BL/6J-wild-type or C57BL/6J-TNF(-/-) mice. Ovalbumin-induced AHR and airway inflammation were significantly reduced in mast cell-deficient Kit(W-sh/W-sh) mice versus wild-type mice. By contrast, Kit(W-sh/W-sh) mice that had been engrafted with wild-type but not with TNF(-/-) bone marrow-derived cultured mast cells exhibited responses very similar to those observed in wild-type mice. Mast cells and mast cell-derived TNF were not required for induction of OVA-specific memory T cells in the sensitization phase, but significantly enhanced lymphocyte recruitment and T(H)2 cytokine production in the challenge phase. Mast cell-derived TNF contributes significantly to the pathogenesis of mast cell-dependent and IgE-dependent, OVA-induced allergic inflammation and AHR in mice, perhaps in part by enhancing lymphocyte recruitment and T(H)2 cytokine production. Our findings in mice support the hypothesis that mast cell-derived TNF can promote allergic inflammation and AHR in asthma.

  16. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins

    PubMed Central

    Lisak, Robert P; Benjamins, Joyce A; Bealmear, Beverly; Nedelkoska, Liljana; Yao, Bin; Land, Susan; Studzinski, Diane

    2007-01-01

    Background In multiple sclerosis, inflammatory cells are found in both active and chronic lesions, and it is increasingly clear that cytokines are involved directly and indirectly in both formation and inhibition of lesions. We propose that cytokine mixtures typical of Th1 or Th2 lymphocytes, or monocyte/macrophages each induce unique molecular changes in glial cells. Methods To examine changes in gene expression that might occur in glial cells exposed to the secreted products of immune cells, we have used gene array analysis to assess the early effects of different cytokine mixtures on mixed CNS glia in culture. We compared the effects of cytokines typical of Th1 and Th2 lymphocytes and monocyte/macrophages (M/M) on CNS glia after 6 hours of treatment. Results In this paper we focus on changes with potential relevance for neuroprotection and axon/glial interactions. Each mixture of cytokines induced a unique pattern of changes in genes for neurotrophins, growth and maturation factors and related receptors; most notably an alternatively spliced form of trkC was markedly downregulated by Th1 and M/M cytokines, while Th2 cytokines upregulated BDNF. Genes for molecules of potential importance in axon/glial interactions, including cell adhesion molecules, connexins, and some molecules traditionally associated with neurons showed significant changes, while no genes for myelin-associated genes were regulated at this early time point. Unexpectedly, changes occurred in several genes for proteins initially associated with retina, cancer or bone development, and not previously reported in glial cells. Conclusion Each of the three cytokine mixtures induced specific changes in gene expression that could be altered by pharmacologic strategies to promote protection of the central nervous system. PMID:18088439

  17. Interleukin-33 produced by M2 macrophages and other immune cells contributes to Th2 immune reaction of IgG4-related disease

    PubMed Central

    Furukawa, Sachiko; Moriyama, Masafumi; Miyake, Kensuke; Nakashima, Hitoshi; Tanaka, Akihiko; Maehara, Takashi; Iizuka-Koga, Mana; Tsuboi, Hiroto; Hayashida, Jun-Nosuke; Ishiguro, Noriko; Yamauchi, Masaki; Sumida, Takayuki; Nakamura, Seiji

    2017-01-01

    IgG4-related disease (IgG4-RD) is characterized by elevated serum IgG4 and marked infiltration of IgG4-positive cells in multiple organs. Interleukin-33 (IL-33) is a recently described cytokine that is secreted by damaged epithelial cells, macrophages, and dendritic cells, and potently activates helper T type 2 (Th2) immune responses, which have been suggested to play a major role in IgG4 production of IgG4-RD. Here, we assessed the expression of IL-33 and related molecules in the salivary glands (SGs) of patients with IgG4-RD versus that in patients with Sjögren’s syndrome (SS) and controls. Expression of IL-33 and its receptor (ST2) was strongly detected around ectopic germinal centers (GCs) in the SGs from patients with IgG4-RD, whereas IL-33 was expressed only in epithelial cells in patients with SS and controls. Moreover, IL-33 and CD68+/CD163+ macrophages were mainly distributed around ectopic GCs in patients with IgG4-RD. Double immunofluorescence staining showed that IL-33 expression co-localized with CD68+/CD163+ macrophages. Finally, mRNA expression levels of IL-33 showed a positive correlation to those of Th2 cytokines (IL-4 and IL-13) in patients with IgG4-RD. Our data suggest that IL-33 produced by M2 macrophages might contribute to the pathogenesis of IgG4-RD via aberrant activation of Th2 immune responses. PMID:28205524

  18. Quantitative Proteomics Analysis of the Nuclear Fraction of Human CD4+ Cells in the Early Phases of IL-4-induced Th2 Differentiation*

    PubMed Central

    Moulder, Robert; Lönnberg, Tapio; Elo, Laura L.; Filén, Jan-Jonas; Rainio, Eeva; Corthals, Garry; Oresic, Matej; Nyman, Tuula A.; Aittokallio, Tero; Lahesmaa, Riitta

    2010-01-01

    We used stable isotope labeling with 4-plex iTRAQ (isobaric tags for relative and absolute quantification) reagents and LC-MS/MS to investigate proteomic changes in the nucleus of activated human CD4+ cells during the early stages of Th2 cell differentiation. The effects of IL-4 stimulation upon activated naïve CD4+ cells were measured in the nuclear fractions from 6 and 24 h in three biological replicates, each using pooled cord blood samples derived from seven or more individuals. In these analyses, in the order of 800 proteins were detected with two or more peptides and quantified in three biological replicates. In addition to consistent differences observed with the nuclear localization/expression of established human Th2 and Th1 markers, there were changes that suggested the involvement of several proteins either only recently reported or otherwise not known in this context. These included SATB1 and among the novel changes detected and validated an IL-4-induced increase in the level of YB1. This unique data set from human cord blood CD4+ T cells details an extensive list of protein determinations that compares with and complements previous data determined from the Jurkat cell nucleus. PMID:20467038

  19. Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4

    PubMed Central

    Hupfer, Thomas; Schick, Judith; Jozefowski, Katrin; Voehringer, David; Ostrop, Jenny; Lang, Roland

    2016-01-01

    The C-type lectin receptors (CLRs) Mincle, Mcl, and Dectin-2 bind mycobacterial and fungal cell wall glycolipids and carbohydrates. Recently, we described that expression of these CLR is downregulated during differentiation of human monocytes to dendritic cells (DC) in the presence of GM-CSF and IL-4. Here, we demonstrate that the Th2 cytokine IL-4 specifically inhibits expression of Mincle, Mcl, and Dectin-2 in human antigen-presenting cells (APC). This inhibitory effect of IL-4 was observed across species, as murine macrophages and DC treated with IL-4 also downregulated these receptors. IL-4 blocked upregulation of Mincle and Mcl mRNA expression and cell surface protein by murine macrophages in response to the Mincle ligand Trehalose-6,6-dibehenate (TDB), whereas the TLR4 ligand LPS overcame inhibition by IL-4. Functionally, downregulation of Mincle expression by IL-4 was accompanied by reduced cytokine production upon stimulation with TDB. These inhibitory effects of IL-4 were dependent on the transcription factor Stat6. Together, our results show that the key Th2 cytokine IL-4 exerts a negative effect on the expression of Mincle and other Dectin-2 cluster CLR in mouse and human macrophages and DC, which may render these sentinel cells less vigilant for sensing mycobacterial and fungal ligands. PMID:27790218

  20. Passage from normal mucosa to adenoma and colon cancer: alteration of normal sCD30 mechanisms regulating TH1/TH2 cell functions.

    PubMed

    Contasta, Ida; Berghella, Anna Maria; Pellegrini, Patrizia; Adorno, Domenico

    2003-08-01

    The pathogenesis of cancer is currently under intensive investigation to identify reliable prognostic indices for the early detection of disease. Adenomas have been identified as precursors of colorectal cancer and tumor establishment, and disease progression has been found to reflect a malfunction of the immune system. On the basis of the role of the CD30 molecule in the regulation of TH1/TH2 functions and our previous results, strongly suggesting the validity of serum TH1/TH2 cytokines in the study of tumor progression, we studied network interaction between the production of soluble (s) CD30/sBCl2 in whole blood culture [in basic conditions and after PHA, LPS, and anti-CD3 monoclonal antibody (mAb) stimulation] and levels of TH1/TH2 cytokines (IL2, IFN gamma, IL12, IL4, IL5, IL10). Peripheral blood from a group of healthy subjects, as well as from patients with adenoma and colorectal cancer was used. Our objective was to gain a better insight into the role of the CD30 molecule in the passage from normal mucosa to adenoma and tumor and identify specific disease markers. Our results suggest that the decrease in CD30 expression and the abnormal increase in Bcl2 expression, observed in the peripheral cells of both adenoma and tumor groups determine an imbalance between TH1/TH2 functions. Consequently, changes in sCD30/sBcl2 culture production and TH1/TH2 cytokine serum levels may be reliable markers for tumor progression. In fact, our overall data show that a decrease of sCD30 levels in basic and PHA conditions and an increase of IFN gamma, IL4, IL5, and IL12 serum levels and sBcl2 in all activation condition are indicative of the passage from normal mucosa to adenoma; whilst a decrease of sBcl2 level in basic, LPS and anti-CD3 conditions and of IL2, IFN gamma serum levels, together with an increase of IL5 are indicative of the passage from adenoma to tumor.

  1. Overexpression of HO-1 Contributes to Sepsis-Induced Immunosuppression by Modulating the Th1/Th2 Balance and Regulatory T-Cell Function.

    PubMed

    Yoon, Seong-Jin; Kim, So-Jin; Lee, Sun-Mee

    2017-05-15

    Countervailing anti-inflammatory response and immunosuppression can cause death in late sepsis. Depletion and dysfunction of T cells are critical for developing sepsis-induced immunosuppression. Heme oxygenase-1 (HO-1) has a regulatory effect on differentiation and function of T cells and anti-inflammatory properties. We therefore investigated the immunosuppressive role of HO-1 in sepsis with a focus on its effects on helper T-cell (Th) differentiation and regulatory T cells (Treg). Sepsis was induced by cecal ligation and puncture (CLP). Mice were intraperitoneally injected with zinc protoporphyrin (ZnPP; 25 mg/kg), an HO-1 inhibitor, or hemin (20 mg/kg), an HO-1 inducer, at 24 and 36 hours post-CLP. Splenocytes were isolated 48 hours post-CLP. Mice were intranasally infected with Pseudomonas aeruginosa 4 days post-CLP as a secondary pneumonia infection model. ZnPP improved survival and bacterial clearance, whereas hemin had the opposite effect in septic mice. CLP induced lymphocyte apoptosis and a proinflammatory Th1 to anti-inflammatory Th2 shift, which was attenuated by ZnPP. ZnPP attenuated the CLP-induced Treg population and protein expression of inhibitory costimulatory molecules. Furthermore, ZnPP improved survival in the secondary pneumonia infection model. Our findings suggest that HO-1 overexpression contributes to sepsis-induced immunosuppression during late phase sepsis by promoting Th2 polarization and Treg function.

  2. Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines.

    PubMed

    Li, Xiao-Li; Liu, Ying; Cao, Li-Li; Li, Heng; Yue, Long-Tao; Wang, Shan; Zhang, Min; Li, Xiu-Hua; Dou, Ying-Chun; Duan, Rui-Sheng

    2013-09-01

    Conventional therapies for autoimmune diseases produce nonspecific immune suppression, which are usually continued lifelong to maintain disease control, and associated with a variety of adverse effects. In this study, we found that spleen-derived dendritic cells (DCs) from the ongoing experimental autoimmune myasthenia gravis (EAMG) rats can be induced into tolerogenic DCs by atorvastatin in vitro. Administration of these tolerogenic DCs to EAMG rats on days 5 and 13 post immunization (p.i.) resulted in improved clinical symptoms, which were associated with increased numbers of CD4(+)CD25(+) T regulatory (Treg) cells and Foxp3 expression, decreased lymphocyte proliferation among lymph node mononuclear cells (MNC), shifted cytokine profile from Th1/Th17 to Th2 type cytokines, decreased level of anti-R97-116 peptide (region 97-116 of the rat acetylcholine receptor α subunit) IgG antibody in serum. These tolerogenic DCs can migrate to spleen, thymus, popliteal and inguinal lymph nodes after they were injected into the EAMG rats intraperitoneally. Furthermore, these tolerogenic DCs played their immunomodulatory effects in vivo mainly by decreased expression of CD86 and MHC class II on endogenous DCs. All these data provided us a new strategy to treat EAMG and even human myasthenia gravis (MG). Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Role of Th1 and Th2 lymphocytes and cytokines produced by these cells in suppression of immune reactions during subacute poisoning with anticholinesterase toxicants.

    PubMed

    Zabrodskii, P F; Germanchuk, V G; Mandych, V G; Kadushkin, A M

    2007-07-01

    Experiments on Wistar rats showed that subacute poisoning with anticholinesterase toxicants zarin and agent VX (daily subcutaneous injections in 1/7 LD50 for 6 days) led to suppression of cellular and humoral immune reactions and to a decrease in blood concentrations of cytokines (IL-2, IL-4, IFN-gamma) with a reduction of the IFN-gamma/IL-4 and IL-2/IL-4 ratios, which attests to more pronounced decrease in Th1 lymphocyte function in comparison with Th2 cells.

  4. Proliferation and TH1/TH2 cytokine production in human peripheral blood mononuclear cells after treatment with cypermethrin and mancozeb in vitro.

    PubMed

    Mandarapu, Rajesh; Ajumeera, Rajanna; Venkatesan, Vijayalakshmi; Prakhya, Balakrishna Murthy

    2014-01-01

    In recent times, human cell-based assays are gaining attention in assessments of immunomodulatory effects of chemicals. In the study here, the possible effects of cypermethrin and mancozeb on lymphocyte proliferation and proinflammatory (tumor necrosis factor (TNF-) α) and immunoregulatory cytokine (interferon- (IFN-) γ, interleukins (IL) 2, 4, 6, and 10) formation in vitro were investigated. Human peripheral blood mononuclear cells (PBMC) were isolated and exposed for 6 hr to noncytotoxic doses (0.45-30 µM) of cypermethrin or mancozeb in the presence of activating rat S9 fraction. Cultures were then further incubated for 48 or 72 hr in fresh medium containing phytohemagglutinin (10 µg/mL) to assess, respectively, effects on cell proliferation (BrdU-ELISA method) and cytokine formation (flow cytometric bead immunoassays). Mancozeb induced dose-dependent increases in lymphocyte proliferation, inhibition of production of TNFα and the TH2 cytokines IL-6 and IL-10, and an increase in IFNγ (TH1 cytokine) production (at least 2-fold compared to control); mancozeb also induced inhibition of IL-4 (TH2) and stimulated IL-2 (TH1) production, albeit only in dose-related manners for each. In contrast, cypermethrin exposure did not cause significant effects on proliferation or cytokine profiles. Further studies are needed to better understand the functional significance of our in vitro findings.

  5. The Anti-Allergic Rhinitis Effect of Traditional Chinese Medicine of Shenqi by Regulating Mast Cell Degranulation and Th1/Th2 Cytokine Balance.

    PubMed

    Shao, Yang-Yang; Zhou, Yi-Ming; Hu, Min; Li, Jin-Ze; Chen, Cheng-Juan; Wang, Yong-Jiang; Shi, Xiao-Yun; Wang, Wen-Jie; Zhang, Tian-Tai

    2017-03-22

    Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.

  6. Matrix MTM adjuvanted virosomal H5N1 vaccine induces balanced Th1/Th2 CD4+ T cell responses in man

    PubMed Central

    Pedersen, Gabriel K; Sjursen, Haakon; Nøstbakken, Jane K; Jul-Larsen, Åsne; Hoschler, Katja; Cox, Rebecca J

    2014-01-01

    T cellular responses play a significant role in mediating protective immune responses against influenza in humans. In the current study, we evaluated the ability of a candidate virosomal H5N1 vaccine adjuvanted with Matrix MTM to induce CD4+ and CD8+ T cell responses in a phase 1 clinical trial. We vaccinated 60 healthy adult volunteers (at days 0 and 21) with 30 μg haemagglutinin (HA) alone or 1.5, 7.5, or 30 μg HA formulated with Matrix MTM. To evaluate the T cellular responses, lymphocytes were stimulated in vitro with homologous (A/Vietnam/1194/2004 [H5N1]) and heterologous H5N1 (A/Anhui/1/05 or A/Bar-headed Goose/Qinghai/1A/05) antigens. The antigen-specific cytokine responses were measured by intracellular cytokine staining and by multiplex (Luminex) assays. An increase in CD4+ Th1 and Th2 cytokines was detected 21 days after the first vaccine dose. No increase in Th cytokine responses was observed after the second dose, although it is possible that the cytokine levels peaked earlier than sampling point at day 42. Formulation with the Matrix MTM adjuvant augmented both the homologous and cross-reactive cytokine response. Antigen-specific CD8+ T cell responses were detected only in a few vaccinated individuals. The concentrations of Th1 and to a lesser extent, Th2 cytokines at 21 days post-vaccination correlated moderately with subsequent days 35 and 180 serological responses as measured by the microneutralisation, haemagglutination inhibition, and single radial hemolysis assays. Results presented here show that the virosomal H5N1 vaccine induced balanced Th1/Th2 cytokine responses and that Matrix MTM is a promising adjuvant for future development of candidate pandemic influenza vaccines. PMID:25424948

  7. Selective development of T helper (Th)2 cells induced by continuous administration of low dose soluble proteins to normal and beta(2)- microglobulin-deficient BALB/c mice

    PubMed Central

    1996-01-01

    Continuous administration of soluble proteins, delivered over a 10-d period by a mini-osmotic pump implanted subcutaneously, induces a long- lasting inhibition of antigen-specific T cell proliferation in lymph node cells from BALB/c mice subsequently primed with antigen in adjuvant. The decreased T cell proliferative response is associated with a down-regulation of the T helper cell (Th)1 cytokines interleukin (IL)-2 and interferon (IFN)-gamma and with a strong increase in the secretion of the Th2 cytokines IL-4 and IL-5 by antigen specific CD4+ T cells. This is accompanied by predominant inhibition of antigen- specific antibody production of IgG2a and IgG2b, rather than IgG1 isotype. Interestingly, inhibition of Th1 and priming of Th2 cells is also induced in beta(2) microglobulin-deficient BALB/c mice, indicating that neither CD8+ nor CD4+ NK1.1+ T cells, respectively, are required. The polarization in Th2 cells is stably maintained by T cell lines, all composed of CD4+/CD8- cells expressing T cell receptor for antigen (TCR) alpha/beta chains, derived from BALB/c mice treated with continuous antigen administration, indicating that they originate from Th2 cells fully differentiated in vivo. This polarization is induced in BALB/c mice by continuous administration of any protein antigen tested, including soluble extracts from pathogenic microorganisms. Priming of Th2 cells is dose dependent and it is optimal for low rather than high doses of protein. Blocking endogenous IL-4 in vivo inhibits expansion of antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen, indicating the involvement of two independent mechanisms. Consistent with this, Th2 cell development, but not inhibition of Th1 cells, depends on non-major histocompatibility complex genetic predisposition, since the Th2 response is

  8. Ex vivo rapamycin generates Th1/Tc1 or Th2/Tc2 Effector T cells with enhanced in vivo function and differential sensitivity to post-transplant rapamycin therapy.

    PubMed

    Jung, Unsu; Foley, Jason E; Erdmann, Andreas A; Toda, Yoko; Borenstein, Todd; Mariotti, Jacopo; Fowler, Daniel H

    2006-09-01

    Rapamycin prevention of murine graft-versus-host disease (GVHD) is associated with a shift toward Th2- and Tc2-type cytokines. Recently, we found that use of rapamycin during ex vivo donor Th2 cell generation enhances the ability of adoptively transferred Th2 cells to prevent murine GVHD. In this study, using a method, without antigen-presenting cells, of T-cell expansion based on CD3,CD28 costimulation, we evaluated whether (1) rapamycin preferentially promotes the generation of Th2/Tc2 cells relative to Th1/Tc1 cells, (2) rapamycin-generated T-cell subsets induce cytokine skewing after allogeneic bone marrow transplantation (BMT), and (3) such in vivo cytokine skewing is sensitive to post-BMT rapamycin therapy. Contrary to our hypothesis, rapamycin did not preferentially promote Th2/Tc2 cell polarity, because rapamycin-generated Th1/Tc1 cells secreted type I cytokines (interleukin [IL]-2 and interferon-gamma) did not secrete type II cytokines (IL-4, IL-5, IL-10, or IL-13) and mediated fasL-based cytolysis. Rapamycin influenced T-cell differentiation, because each of the Th1, Th2, Tc1, and Tc2 subsets generated in rapamycin had increased expression of the central-memory T-cell marker, L-selectin (CD62L). Rapamycin-generated Th1/Tc1 and Th2/Tc2 cells were not anergic but instead had increased expansion after costimulation in vitro, increased expansion in vivo after BMT, and maintained full capacity to skew toward type I or II cytokines after BMT, respectively; further, rapamycin-generated Th1/Tc1 cells mediated increased lethal GVHD relative to control Th1/Tc1 cells. Rapamycin therapy after BMT in recipients of rapamycin-generated Th1/Tc1 cells greatly reduced Th1/Tc1 cell number, greatly reduced type I cytokines, and reduced lethal GVHD; in marked contrast, rapamycin therapy in recipients of rapamycin-generated Th2/Tc2 cells nominally influenced the number of Th2/Tc2 cells in vivo and did not abrogate post-BMT type II cytokine skewing. In conclusion, ex vivo and

  9. Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells

    PubMed Central

    East, James E.; Kennedy, Andrew J.; Webb, Tonya J.

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell′s cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. PMID:23239102

  10. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen

    PubMed Central

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi

    2015-01-01

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  11. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen.

    PubMed

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi; Ishii, Ken J

    2015-03-15

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO(+) macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD-adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors.

    PubMed

    Hammad, H; Charbonnier, A S; Duez, C; Jacquet, A; Stewart, G A; Tonnel, A B; Pestel, J

    2001-08-15

    The polarization of the immune response toward a Th2 or a Th1 profile can be mediated by dendritic cells (DCs) following antigen presentation and interaction with T cells. Costimulatory molecules such as CD80 and CD86 expressed by DCs, the polarizing cytokine environment during DC--T-cell interaction, and also the nature of the antigen are critical in the orientation of the immune response. In this study, the effect of the cysteine protease Der p 1, one of the major allergens of the house dust mite Dermatophagoides pteronyssinus, on these different parameters was evaluated comparatively on monocyte-derived DCs obtained from healthy donors, from pollen-sensitive patients, or from patients sensitive to Dermatophagoides pteronyssinus. Results showed that Der p 1 induced an increase in CD86 expression only on DCs from house dust mite--sensitive patients. This was also associated with a higher capacity to induce T-cell proliferation, a rapid increase in the production of proinflammatory cytokines, tumor necrosis factor--alpha and interleukin (IL)-1 beta, and the type 2 cytokine IL-10. No changes in the release of IL-12 p70 were induced by Der p 1. Finally, purified T cells from house dust mite-sensitive patients stimulated by autologous Der p 1--pulsed DCs preferentially produced IL-4 rather than interferon-gamma. These effects were abolished in the presence of the inactive precursor of Der p 1 (ProDer p 1). Taken together, these data suggest that DCs from house dust mite--sensitive patients, in contrast to DCs from healthy donors and from pollen-sensitive patients, exposed to Der p 1 play a pivotal role in the enhancement of the Th2 response associated with the allergic reaction developed in response to house dust mite exposure. (Blood. 2001;98:1135-1141)

  13. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production.

    PubMed

    Chen, Hsin-Hung; Lin, Han-Tso; Foung, Yi-Fan; Han-You Lin, John

    2012-10-01

    Interleukin 6 (IL-6) is a protein secreted by T cells and macrophages and plays an important role in immune response. IL-6 regulates the proliferation and differentiation of T cells, and elicits immunoglobulin production in B cells. In this study, the cDNA il-6 (gil-6) sequence of the orange spotted grouper (Epinephelus coioides) was obtained. The deduced IL-6 (gIL-6) protein comprised 223 amino acids, the sequence shared approximately 30% similarity with mammalian IL-6, and between 47% and 69% similarity with other available teleost IL-6. The protein comprises the signal peptide, the IL-6 family signature, and conserved amino acid residues found in IL-6 sequences of other teleost. In order to understand the bioactivity and influence of gIL-6 on humoral immune response, recombinant gIL-6 (rgIL-6) synthesized by prokaryotes was injected into orange spotted groupers, and the immune-related gene expression at various times in various organs was observed. Our results revealed that the Th1 specific transcription factor t-bet was down-regulated and Th2 specific transcription factors gata3, and c-maf were up-regulated in immune organs, following IL-6 stimulation. Additionally, higher levels of igm mRNA and translated protein were detected in rgIL-6 stimulated fish. These results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies.

  14. Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist.

    PubMed

    Walker, Kyle M; Rytelewski, Mateusz; Mazzuca, Delfina M; Meilleur, Shannon A; Mannik, Lisa A; Yue, David; Brintnell, William C; Welch, Ian; Cairns, Ewa; Haeryfar, S M Mansour

    2012-07-01

    Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA.

  15. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis

    PubMed Central

    Baggi, Fulvio; Andreetta, Francesca; Caspani, Elisabetta; Milani, Monica; Longhi, Renato; Mantegazza, Renato; Cornelio, Ferdinando; Antozzi, Carlo

    1999-01-01

    The mucosal administration of the native antigen or peptide fragments corresponding to immunodominant regions is effective in preventing or treating several T cell–dependent models of autoimmune disease. No data are yet available on oral tolerance with immunodominant T-cell peptides in experimental autoimmune myasthenia gravis (EAMG), an animal model of B cell–dependent disease. We report that oral administration of the T-cell epitope α146-162 of the Torpedo californica acetylcholine receptor (TAChR) α-subunit suppressed T-cell responses to AChR and ameliorated the disease in C57Bl/6 (B6) mice. Protection from EAMG was associated with reduced serum Ab’s to mouse AChR and reduced AChR loss in muscle. The effect of Tα146-162 feeding was specific; treatment with a control peptide did not affect EAMG manifestations. The protective effect induced by peptide Tα146-162 was mediated by reduced production of IFN-γ, IL-2, and IL-10 by TAChR-reactive cells, suggesting T-cell anergy. TGF-β–secreting Th3 cells did not seem to be involved in tolerance induction. We therefore demonstrate that feeding a single immunodominant epitope can prevent an Ab-mediated experimental model of autoimmune disease. PMID:10545527

  16. The Retinoic Acid Receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production.

    PubMed

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-04-16

    We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-gamma and TNF-alpha expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-alpha (RAR-alpha)-selective agonist, AM580 but not with the RAR-beta/gamma ligand, 4-hydroxyphenylretinamide (4-HPR). The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-alpha-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-alpha-selective antagonist, RO 41-5253, inhibited these effects. These results strongly support a role for RAR-alpha engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  17. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    PubMed Central

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-01-01

    Background We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-α (RAR-α)-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR). Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production. PMID:18416830

  18. Kinetics and functional implications of Th1 and Th2 cytokine production following activation of peripheral blood mononuclear cells in primary culture.

    PubMed

    McHugh, S; Deighton, J; Rifkin, I; Ewan, P

    1996-06-01

    The importance of cytokine production in some disease processes is now widely recognized. To investigate temporal relationships between cytokines, we stimulated peripheral blood mononuclear cells (PBMC) in vitro using the T cell mitogen phytohemagglutinin (PHA) and various antigens chosen to induce predominantly Th1 (streptokinase: streptodornase or purified protein derivative) or Th2 (Dermatophagoides pteronyssinus, bee or wasp venom: allergens in sensitive subjects) responses. Cytokine production was measured by sensitive bioassays or enzyme-linked immunosorbent assays. Of the 30 subjects studied, 10 were normal and 20 individuals were allergic to either D. pteronyssinus (n = 10) or bee venom (n = 10) (examined before specific allergen immunotherapy). We examined the temporal profiles of a panel of cytokines produced in primary culture. In PHA-driven cultures, cytokines were found to be sequentially produced in the order interleukin (IL)-2, IL-4, IL-5, IL-3, interferon (IFN)-gamma, IL-10, IL-6, IL-12 and tumor necrosis factor (TNF)-alpha. The response to allergen in allergic patients was predominantly Th2 in nature, with the production of IL-4, IL-5, IL-6 and IL-10, but little or no IFN-gamma. IL-2, IL-3, TNF-alpha and IL-12 were also produced in low amounts. The response of both atopic and normal subjects to recall bacterial antigens was predominantly Th1, with high levels of IFN-gamma, IL-2 and TNF-alpha. The relevance of the order, amount and speed of production, characteristic kinetics (production, consumption, homeostatic regulation) and the cell source of the cytokines are discussed.

  19. The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses.

    PubMed

    García-Barbazán, Irene; Trevijano-Contador, Nuria; Rueda, Cristina; de Andrés, Belén; Pérez-Tavárez, Raquel; Herrero-Fernández, Inés; Gaspar, María Luisa; Zaragoza, Oscar

    2016-01-01

    Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.

  20. Human Bone Marrow-derived Mesenchymal Stem Cells Induce Th2-Polarized Immune Response and Promote Endogenous Repair in Animal Models of Multiple Sclerosis

    PubMed Central

    Bai, L; Lennon, DP; Eaton, V; Maier, K; Caplan, AI; Miller, SD; Miller, RH

    2009-01-01

    Cell based therapies are attractive approaches to promote myelin repair. Recent studies demonstrated a reduction in disease burden in mice with EAE treated with mouse mesenchymal stem cells (MSCs). Here we demonstrated human bone marrow derived MSCs (BM-hMSCs) promote functional recovery in both chronic and relapsing-remitting models of mouse EAE, traced their migration into the injured CNS and assayed their ability to modulate disease progression and the host immune response. Injected BM-hMSCs accumulated in the CNS, reduced the extent of damage and increased oligodendrocyte lineage cells in lesion areas. The increase in oligodendrocytes in lesions may reflect BM-hMSC induced changes in neural fate determination since neurospheres from treated animals gave rise to more oligodendrocytes and less astrocytes than non-treated neurospheres. Host immune responses were also influenced by BM-hMSCs. Inflammatory T-cells including interferon gamma (IFN-γ) producing Th1 cells and IL-17 producing Th17 inflammatory cells and their associated cytokines were reduced along with concomitant increases in IL-4 producing Th2 cells and anti-inflammatory cytokines. Together these data suggest the BM-hMSCs represent a viable option for therapeutic approaches. PMID:19191336

  1. Pirfenidone restricts Th2 differentiation in vitro and limits Th2 response in experimental liver fibrosis.

    PubMed

    Navarro-Partida, Jose; Martinez-Rizo, Abril Bernardette; Gonzalez-Cuevas, Jaime; Arrevillaga-Boni, Gerardo; Ortiz-Navarrete, Vianney; Armendariz-Borunda, Juan

    2012-03-05

    Polarized T helper type 2 (Th2) response is linked with fibrosis. Here, we evaluated the effect of the anti-fibrotic agent pirfenidone on Th type 1 (Th1) and Th2 responses. For in vivo testing; Wistar rats were made cirrhotic by intraperitoneal administration of thioacetamide. Once hepatic damage was established, pirfenidone was administered intragastrically on a daily basis during three weeks. Gene expression of Th marks was evaluated by RT-PCR and Western blot assays from liver homogenates. Pirfenidone therapy induced down-regulation of Th2 transcripts and proteins (GATA3 and IL-4), without affecting significantly Th1 genes expression (T-bet and IFN-γ). We found that the activated form of p38 MAPK (identified by Western blot) was reduced by pirfenidone treatment, which is consistent with the anti-Th2 activity observed. Pirfenidone reduced GATA3 nuclear localization without modifying its DNA binding activity (evaluated by electrophoretic mobility shift assay). For in vitro testing; human naive CD4+ T cells were cultured in either Th1 or Th2 polarizing conditions in the presence of pirfenidone and flow cytometric analysis of intracellular synthesis of IFN-γ and IL-4 was conducted. Pirfenidone impaired development of Th2 subpopulation. In conclusion, pirfenidone is capable of impairing Th2 differentiation and limits Th2 profibrogenic response. The mechanism involves p38 inhibition and regulation of GATA3 expression and translocation.

  2. Bazex Syndrome in Lung Squamous Cell Carcinoma: High Expression of Epidermal Growth Factor Receptor in Lesional Keratinocytes with Th2 Immune Shift

    PubMed Central

    Amano, Maki; Hanafusa, Takaaki; Chikazawa, Sakiko; Ueno, Makiko; Namiki, Takeshi; Igawa, Ken; Miura, Keiko; Yokozeki, Hiroo

    2016-01-01

    An 82-year-old Japanese man was referred for detailed examination of hyperkeratotic erythematous plaques on his palms and soles for 6 months. Two weeks before his first visit, he had undergone lung lobectomy for right lung squamous cell carcinoma (SCC). Laboratory findings showed elevations of eosinophil counts, serum IgE, thymus and activation-regulated chemokine, SCC antigen, and soluble interleukin-2 receptor levels. Histological results of a skin biopsy involving the left palm showed psoriasiform dermatitis. Before lung lobectomy, the hyperkeratotic erythematous plaques on the palms and soles and the erythemas on the trunk and extremities were difficult to treat with topical steroids. After lobectomy, the skin symptoms dramatically and rapidly subsided with topical steroids. Therefore, we diagnosed Bazex syndrome (BS), also known as acrokeratosis paraneoplastica, as a paraneoplastic cutaneous disease in lung SCC. The mild eosinophilia subsided and levels of SCC antigen, IgE, and soluble interleukin-2 receptor were reduced. BS is a paraneoplastic cutaneous disease characterized by acral psoriasiform lesions associated with an underlying neoplasm. In a previous report, a shift to the Th2 immune condition was found in patients with non-small cell lung cancer, as shown in our patient. Epidermal growth factor receptor (EGFR) is also known as tumor growth factor-α receptor; it is increased in psoriatic keratinocytes. In our case, EGFR expression increased in lesional keratinocytes 2 weeks after surgery and decreased 4 weeks after surgery. We speculate that a shift to Th2 immune reactions in lung SCC may be the pathogenesis of BS, whereby lesional keratinocytes highly express EGFR in parallel with disease activity. PMID:28101024

  3. TLR4/MyD88-Induced CD11b+Gr-1intF4/80+ Non-Migratory Myeloid Cells Suppress Th2 Effector Function in the Lung

    PubMed Central

    Arora, Meenakshi; Poe, Stephanie L.; Oriss, Timothy B.; Krishnamoorthy, Nandini; Yarlagadda, Manohar; Wenzel, Sally E.; Billiar, Timothy R.; Ray, Anuradha; Ray, Prabir

    2010-01-01

    In humans, environmental exposure to a high dose of lipopolysaccharide (LPS) protects from allergic asthma the immunological underpinnings of which are not well understood. In mice, exposure to a high LPS dose blunted house dust mite-induced airway eosinophilia and Th2 cytokine production. While adoptively transferred Th2 cells induced allergic airway inflammation in control mice, they were unable to do so in LPS-exposed mice. LPS promoted the development of a CD11b+Gr1intF4/80+ lung-resident cell resembling myeloid-derived suppressor cells in a TLR4- and MyD88-dependent fashion that suppressed lung dendritic cell (DC)-mediated reactivation of primed Th2 cells. LPS effects switched from suppressive to stimulatory in MyD88-/- mice. Suppression of Th2 effector function was reversed by anti-IL-10 or inhibition of Arginase 1. Lineageneg bone marrow progenitor cells could be induced by LPS to develop into CD11b+Gr1intF4/80+ cells both in vivo and in vitro which when adoptively transferred suppressed allergen-induced airway inflammation in recipient mice. These data suggest that CD11b+Gr1intF4/80+ cells contribute to the protective effects of LPS in allergic asthma by tempering Th2 effector function in the tissue. PMID:20664577

  4. Dimethyl Fumarate Selectively Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2 in Multiple Sclerosis Patients.

    PubMed

    Wu, Qi; Wang, Qin; Mao, Guangmei; Dowling, Catherine A; Lundy, Steven K; Mao-Draayer, Yang

    2017-04-15

    Dimethyl fumarate (DMF; trade name Tecfidera) is an oral formulation of the fumaric acid ester that is Food and Drug Administration approved for treatment of relapsing-remitting multiple sclerosis. To better understand the therapeutic effects of Tecfidera and its rare side effect of progressive multifocal leukoencephalopathy, we conducted cross-sectional and longitudinal studies by immunophenotyping cells from peripheral blood (particularly T lymphocytes) derived from untreated and 4-6 and 18-26 mo Tecfidera-treated stable relapsing-remitting multiple sclerosis patients using multiparametric flow cytometry. The absolute numbers of CD4 and CD8 T cells were significantly decreased and the CD4/CD8 ratio was increased with DMF treatment. The proportions of both effector memory T cells and central memory T cells were reduced, whereas naive T cells increased in treated patients. T cell activation was reduced with DMF treatment, especially among effector memory T cells and effector memory RA T cells. Th subsets Th1 (CXCR3(+)), Th17 (CCR6(+)), and particularly those expressing both CXCR3 and CD161 were reduced most significantly, whereas the anti-inflammatory Th2 subset (CCR3(+)) was increased after DMF treatment. A corresponding increase in IL-4 and decrease in IFN-γ and IL-17-expressing CD4(+) T cells were observed in DMF-treated patients. DMF in vitro treatment also led to increased T cell apoptosis and decreased activation, proliferation, reactive oxygen species, and CCR7 expression. Our results suggest that DMF acts on specific memory and effector T cell subsets by limiting their survival, proliferation, activation, and cytokine production. Monitoring these subsets could help to evaluate the efficacy and safety of DMF treatment. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes.

    PubMed

    Dee, Christopher T; Nagaraju, Raghavendar T; Athanasiadis, Emmanouil I; Gray, Caroline; Fernandez Del Ama, Laura; Johnston, Simon A; Secombes, Christopher J; Cvejic, Ana; Hurlstone, Adam F L

    2016-11-01

    CD4(+) T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4(+) T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4(+) cells allowing us to scrutinize the development and specialization of teleost CD4(+) leukocytes in vivo. We provide further evidence that CD4(+) macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4(+) T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4(+) T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4(+) T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.

  6. Mucosal Immunization with the Live Attenuated Vaccine SPY1 Induces Humoral and Th2-Th17-Regulatory T Cell Cellular Immunity and Protects against Pneumococcal Infection

    PubMed Central

    Xu, Xiuyu; Wang, Hong; Liu, Yusi; Wang, Yiping; Zeng, Lingbing; Wu, Kaifeng; Wang, Jianmin; Ma, Feng; Xu, Wenchun; Yin, Yibing

    2014-01-01

    Mucosal immunization with attenuated vaccine can protect against pneumococcal invasion infection, but the mechanism was unknown. Our study found that mucosal delivery with the live attenuated SPY1 vaccine strain can confer T cell- and B cell-dependent protection against pneumococcal colonization and invasive infection; yet it is still unclear which cell subsets contribute to the protection, and their roles in pneumococcal colonization and invasion remain elusive. Adoptive transfer of anti-SPY1 antibody conferred protection to naive μMT mice, and immune T cells were indispensable to protection examined in nude mice. A critical role of interleukin 17A (IL-17A) in colonization was demonstrated in mice lacking IL-17A, and a vaccine-specific Th2 immune subset was necessary for systemic protection. Of note, we found that SPY1 could stimulate an immunoregulatory response and that SPY1-elicited regulatory T cells participated in protection against colonization and lethal infection. The data presented here aid our understanding of how live attenuated strains are able to function as effective vaccines and may contribute to a more comprehensive evaluation of live vaccines and other mucosal vaccines. PMID:25312946

  7. Lactobacilus Delbrueckii subsp. Bulgaricus Modulates the Secretion of Th1/Th2 and Treg Cell-Related Cytokines by PBMCs from Patients with Atopic Dermatitis.

    PubMed

    Sheikhi, Abdolkarim; Giti, Hojjat; Heibor, Mohammad Reza; Jafarzadeh, Abdollah; Shakerian, Mansour; Baharifar, Narges; Niruzad, Fereidon; Moghaddam, Ali Sadeghi; Kokhaei, Parviz; Baghaeifar, Mohammad

    2017-09-12

    Background Atopic dermatitis (AD) is an inflammatory skin disease which may be due to the imbalance between Th1-, Th2 and Treg cell-related immune responses. Evidences suggest that appropriate stimulation with probiotics may correct the skewed immune response in children with AD. The aim was to determine the effects of the yogurt culture lactobacillus Bulgaricus on the secretion of Th1/Th2/Treg type cytokines by PBMCs from children with AD. MethodsL. Bulgaricus was cultivated on MRS broth. The PBMCs from 20 children with AD were separated by Ficoll-Hypaque centrifugation and co-cultured with different concentrations of UV killed bacteria in RPMI-1640 plus 10% FCS for 48/72 h. The levels of IL-10, IL-4, IL-12 and IFN-γ were measured in supernatant of PBMCs by ELISA. ResultsL. Bulgaricus significantly up-regulated the secretion of IL-10, IL-12 and IFN-γ, whereas decreased the secretion of IL-4 by PBMCs at both incubation times 48 h/72 h and both bacteria:PBMCs ratios 100:1/50:1, compared to control (p<0.05). There were no significant differences between incubation times 48 h and 72 h regarding the secretion levels of IL-12, IFN-γ and IL-4. However, the secretion of IL-10 by L. Bulgaricus-stimulated PBMCs at incubation time 72 h and in the presence of bacteria:PBMCs ratio 100:1 was significantly higher than in incubation time 48 h and in the presence of bacteria:PBMCs ratio 50:1 (P<0.000 and P<0.00, respectively). Conclusion These data show that L. Bulgaricus may modulate the secretion of Th1-, Th2-Treg-related cytokines in AD patients. Therefore, the possible potential therapeutic of L. Bulgaricus for treatment of AD should be consider in further investigation. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE

    PubMed Central

    Choi, Eun Wha; Lee, MinJae; Song, Ji Woo; Shin, Il Seob; Kim, Sung Joo

    2016-01-01

    C3.MRL-Faslpr/J mice spontaneously develop high titers of anti-dsDNA, mild glomerular nephritis, and severe lymphoproliferation symptoms. This study aimed to compare the effects of long-term serial administration of human adipose tissue-derived mesenchymal stem cells (ASCs), and cyclophosphamide treatment in C3.MRL-Faslpr/J mice using a murine SLE model. C3.MRL-Faslpr/J mice were divided into saline (C), cyclophosphamide (Y), and ASC (H) treatment groups. Background-matched control C3H mice treated with saline (N) were also compared. The Y group showed the greatest improvement in disease parameters, but with damaged trabecular integrity. ASC transplantation reduced anti-dsDNA levels, glomerular C3 deposition and CD138 proportion significantly, without trabecular damage. Furthermore, both cyclophosphamide and ASC treatment significantly decreased the ratio of Th1/Th2 compared with the saline-treatment. The expression levels of miR-31-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-379-5p were significantly higher, while those of miR150-5p were significantly lower in the C group than in the N group. The expression levels of miR-96-5p, miR-182-5p in the Y and H groups were significantly lower than in the C group. Thus, treatment with cyclophosphamide or ASC can change miRNAs and decrease miR-96-5p and miR-182-5p expression, as well as decreasing the CD138 proportion and the Th1/Th2 ratio, which might be involved in the therapeutic mechanism. PMID:27924862

  9. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface.

    PubMed

    Wang, SongCun; Zhu, XiaoYong; Xu, YuanYuan; Zhang, Di; Li, YanHong; Tao, Yu; Piao, HaiLan; Li, DaJin; Du, MeiRong

    2016-04-01

    Are the immune regulatory molecules programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) involved in regulating CD4+ T cell function during pregnancy? PD-1 and Tim-3 promote Type 2 helper T cell (Th2) bias and pregnancy maintenance by regulating CD4+ T cell function at the maternal-fetal interface. The maternal CD4+ T cell response to fetal antigens is thought to be an important component of maternal-fetal tolerance during pregnancy. PD-1 and Tim-3 are important for limiting immunopathology. The co-expression of PD-1 and Tim-3 on T cells identifies a T cell subset with impaired proliferation and cytokine production. Combined blockade of Tim-3 and PD-1 could restore T cell function to the greatest degree. The expression of PD-1 and Tim-3 on CD4+ T cells was analyzed by flow cytometry, and in vitro and in vivo analyses were used to investigate the role of PD-1/Tim-3 signal in the regulation of CD4+ T cells function and pregnancy outcome. A total of 88 normal pregnant women, 37 women with recurrent spontaneous abortion, 36 normal pregnant mice and 45 abortion-prone mice were included. We measure the expression of PD-1 and Tim-3 on CD4+ T cells and their relationship to the function of CD4+ T cells and pregnancy outcome, as well as the effects of blocking PD-1 and Tim-3 pathways on decidual CD4+ T (dCD4+ T) cells during early pregnancy. PD-1 and Tim-3, by virtue of their up-regulation on dCD4+ T cells during pregnancy, define a specific effector/memory subset of CD4+ T cells and promote Th2 bias at the maternal-fetal interface. Using in vitro and in vivo experiments, we also found that combined targeting of PD-1 and Tim-3 pathways results in decreased production of Th2-type cytokines by dCD4+ T cells and increased fetal resorption of normal pregnant murine models. Moreover, decreased PD-1 and Tim-3 on dCD4+ T cells may be associated with miscarriage. Further study is required to examine the mechanism of PD-1 and Tim-3 effects on Th2 cytokine

  10. Transgenic expression of CXCR3 on T cells enhances susceptibility to cutaneous Leishmania major infection by inhibiting monocyte maturation and promoting a Th2 response.

    PubMed

    Oghumu, Steve; Stock, James C; Varikuti, Sanjay; Dong, Ran; Terrazas, Cesar; Edwards, Jessica A; Rappleye, Chad A; Holovatyk, Ariel; Sharpe, Arlene; Satoskar, Abhay R

    2015-01-01

    Cutaneous leishmaniasis, caused mainly by Leishmania major, an obligate intracellular parasite, is a disfiguring disease characterized by large skin lesions and is transmitted by a sand fly vector. We previously showed that the chemokine receptor CXCR3 plays a critical role in mediating resistance to cutaneous leishmaniasis caused by Leishmania major. Furthermore, T cells from L. major-susceptible BALB/c but not L. major-resistant C57BL/6 mice fail to efficiently upregulate CXCR3 upon activation. We therefore examined whether transgenic expression of CXCR3 on T cells would enhance resistance to L. major infection in susceptible BALB/c mice. We generated BALB/c and C57BL/6 transgenic mice, which constitutively overexpressed CXCR3 under a CD2 promoter, and then examined the outcomes with L. major infection. Contrary to our hypothesis, transgenic expression of CXCR3 (CXCR3(Tg)) on T cells of BALB/c mice resulted in increased lesion sizes and parasite burdens compared to wild-type (WT) littermates after L. major infection. Restimulated lymph node cells from L. major-infected BALB/c-CXCR3(Tg) mice produced more interleukin-4 (IL-4) and IL-10 and less gamma interferon (IFN-γ). Cells in draining lymph nodes from BALB/c-CXCR3(Tg) mice showed enhanced Th2 and reduced Th1 cell accumulation associated with increased neutrophils and inflammatory monocytes. However, monocytes displayed an immature phenotype which correlated with increased parasite burdens. Interestingly, transgenic expression of CXCR3 on T cells did not impact the outcome of L. major infection in C57BL/6 mice, which mounted a predominantly Th1 response and spontaneously resolved their infection similar to WT littermates. Our findings demonstrate that transgenic expression of CXCR3 on T cells increases susceptibility of BALB/c mice to L. major.

  11. Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses.

    PubMed

    Chen, Wei; Bao, Yige; Chen, Xuerong; Burton, Jeremy; Gong, Xueli; Gu, Dongqing; Mi, Youjun; Bao, Lang

    2016-04-01

    Mycobacterium tuberculosis evades innate host immune responses by parasitizing macrophages and causes significant morbidity and mortality around the world. A mycobacterial antigen that can activate dendritic cells (DCs) and elicit effective host innate immune responses will be vital to the development of an effective TB vaccine. The M. tuberculosis genes PE25/PPE41 encode proteins which have been associated with evasion of the host immune response. We constructed a PE25/PPE41 complex gene via splicing by overlapping extension and expressed it successfully in E. coli. We investigated whether this protein complex could interact with DCs to induce effective host immune responses. The PE25/PPE41 protein complex induced maturation of isolated mouse DCs in vitro, increasing expression of cell surface markers (CD80, CD86 and MHC-II), thereby promoting Th2 polarization via secretion of pro-inflammatory cytokines IL-4 and IL-10. In addition, PE25/PPE41 protein complex-activated DCs induced proliferation of mouse CD4(+) and CD8(+) T cells, and a strong humoral response in immunized mice. The sera of five TB patients were also highly reactive to this antigen. These findings suggest that interaction of the PE25/PPE41 protein complex with DCs may be of great immunological significance.

  12. Ma Huang Tang ameliorates asthma though modulation of Th1/Th2 cytokines and inhibition of Th17 cells in ovalbumin-sensitized mice.

    PubMed

    Ma, Chun-Hua; Ma, Zhan-Qiang; Fu, Qiang; Ma, Shi-Ping

    2014-05-01

    Ma Huang Tang (Ephedra decoction, MHT) is a famous classical formula from Shang Han Lun by Zhang Zhongjing in the Han Dynasty. The anti-asthmatic effects of MHT and the possible mechanisms were tested. An asthma model was established by ovalbumin (OVA)-induction in mice. A total of forty-eight mice were randomly assigned to six experimental groups: control, model, dexamethasone (2 mg·kg(-1)) and MHT (5, 10, and 20 mg·kg(-1)). Airway resistance (Raw) was measured by the forced oscillation technique, histological studies were evaluated by hematoxylin and eosin (HE) staining, Th1/Th2 and Th17 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th17 cells were evaluated by flow cytometry (FCM). This study demonstrated that MHT inhibited OVA-induced increases in Raw and eosinophil count; interleukin (IL)-4 and IL-17 levels were recovered in bronchoalveolar lavage fluid, increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that MHT substantially inhibited OVA-induced eosinophilia in lung tissue. Flow cytometry studies demonstrated that MHT substantially inhibited Th17 cells. These findings suggest that MHT may effectively ameliorate the progression of asthma, and could be further investigated for potential use as a therapy for patients with allergic asthma. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. NK T cell-induced protection against diabetes in V alpha 14-J alpha 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen.

    PubMed

    Laloux, V; Beaudoin, L; Jeske, D; Carnaud, C; Lehuen, A

    2001-03-15

    The onset of autoimmune diabetes is related to defective immune regulation. Recent studies have shown that NK T cells are deficient in number and function in both diabetic patients and nonobese diabetic (NOD) mice. NK T cells, which are CD1d restricted, express a TCR with an invariant V alpha 14-J alpha 281 chain and rapidly produce large amounts of cytokines. V alpha 14-J alpha 281 transgenic NOD mice have increased numbers of NK T cells and are protected against diabetes onset. In this study we analyzed where and how NK T cells interfere with the development of the anti-islet autoimmune response. NK T cells, which are usually rare in lymph nodes, are abundant in pancreatic lymph nodes and are also present in islets. IL-4 mRNA levels are increased and IFN-gamma mRNA levels decreased in islets from diabetes-free V alpha 14-J alpha 281 transgenic NOD mice; the IgG1/IgG2c ratio of autoantibodies against glutamic acid decarboxylase is also increased in these mice. Treatment with IL-12 (a pro-Th1 cytokine) or anti-IL-4 Ab abolishes the diabetes protection in V alpha 14-J alpha 281 NOD mice. The protection from diabetes conferred by NK T cells is thus associated with a Th2 shift within islets directed against autoantigen such as glutamic acid decarboxylase. Our findings also demonstrate the key role of IL-4.

  14. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  15. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease.

    PubMed

    Dolgachev, Vladislav; Petersen, Bryan C; Budelsky, Alison L; Berlin, Aaron A; Lukacs, Nicholas W

    2009-11-01

    In the present studies local neutralization of allergen-induced stem cell factor (SCF) leads to decreased production of Th2 cytokines, a reduction in inflammation, allergen-specific serum IgE/IgG1, and attenuation of severe asthma-like responses. The local blockade of pulmonary SCF also resulted in a significant reduction of IL-17E (IL-25). Sorted cell populations from the lung indicated that IL-25 was produced from c-kit(+) cells, whereas Th2 cytokine production was primarily from c-kit(-) cell populations. SCF stimulated c-kit(+) eosinophils produced IL-25, whereas bone marrow-derived mast cells did not. Using 4get mice that contain a IL-4-IRES-eGFP that when transcribed coexpress GFP and IL-4, our studies identified cells that comprised a CD11b(+), GR1(+), Ly6C(+/-), c-kit(-), CD4(-), CD11c(-), MHC class II(low) cell population as a source of IL-4 in the lung after chronic allergen challenge. In the bone marrow a similar cell was identified with approximately a third of the IL-4(+) cells also expressing c-kit(+). The pulmonary and bone marrow IL-4(+) cell populations were significantly reduced upon local pulmonary anti-SCF treatment. Subsequently, when IL-25R was examined during the chronic allergen responses the expression was found on the IL-4(+) myeloid cell population that expressed CD11b(+)GR1(+). Interestingly, the IL-25R(+) cells in the bone marrow were also all CD11b(+)GR1(+), similar to the lung cells, but they were also all c-kit(+), potentially suggesting a maturation of the bone marrow cell once it enters the lung and/or is stimulated by SCF. Overall, these studies suggest a complex relationship between SCF, bone marrow-derived IL-25-responsive myeloid cells, Th2 cytokines, and chronic allergic disease.

  16. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  17. Administration of TLR7 agonist, resiquimod, in different types of chicken induces a mixed Th1 and Th2 response in the peripheral blood mononuclear cells.

    PubMed

    Annamalai, Arunsaravanakumar; Ramakrishnan, Saravanan; Sachan, Swati; Sharma, Bal Krishan; Anand Kumar, B S; Kumar, Vimal; Badasara, Surendra Kumar; Kumar, Ajay; Saravanan, B C; Krishnaswamy, Narayanan

    2015-06-01

    This study evaluated the variation in immune response in peripheral blood mononuclear cells (PBMCs) of broiler, White Leghorn (WL) and Kadaknath breeds of chicken following administration of TLR7 agonist, resiquimod (R-848). Expression of different immune related genes viz., interferon-β (IFN-β), IFN-γ, IL-1β, IL-4, TLR7 and iNOS was assessed by quantitative real time PCR over a period of 24 h. The results indicated that there was a significant up-regulation in the relative expression of immune response genes post R-848 administration (P < 0.01). In conclusion, the transcriptional expression of IFN-β, IFN-γ, IL-1β, IL-4, iNOS and TLR7 genes in the PBMCs was significantly up-regulated over 24 h in broiler, WL and Kadaknath breeds of birds after the administration of R-848. Overall, R-848 induced a mixed Th1 and Th2 response in PBMCs of chicken origin ex vivo.

  18. Analysis of Cytokine Production by Peanut-Reactive T Cells Identifies Residual Th2 Effectors in Highly Allergic Children Who Received Peanut Oral Immunotherapy

    PubMed Central

    Wisniewski, Julia A.; Commins, Scott P.; Agrawal, Rachana; Hulse, Kathryn E.; Yu, Mingxi D.; Cronin, Julia; Heymann, Peter W.; Pomes, Anna; Platts-Mills, Thomas; Workman, Lisa; Woodfolk, Judith A.

    2015-01-01

    Background Only limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components. Objective To interrogate T-cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE, and to evaluate their modulation during oral immunotherapy (OIT). Methods Peanut-reactive effector T cells were analyzed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay. Cytokine-expressing T cell subpopulations were visualized using SPICE. Results Ara h 2 dominated the antibody response to peanut as judged by prevalence and quantity among a cohort of children with IgE to peanut. High IgE (>15 kUA/L) was almost exclusively associated with dual sensitization to Ara h 1 and Ara h 2, and was age-independent. Among PA children, IL-4-biased responses to both major allergens were induced, regardless of whether IgE antibodies to Ara h 1 were present. Among subjects receiving OIT in whom high IgE was maintained, Th2 reactivity to peanut components persisted despite clinical desensitization and modulation of allergen-specific immune parameters including augmented specific IgG4 antibodies, Th1 skewing and enhanced IL-10. The complexity of cytokine-positive subpopulations within peanut-reactive IL-4+ and IFN-γ+ T cells was similar to that observed in those who received no OIT, but was modified with extended therapy. Nonetheless, high Foxp3 expression was a distinguishing feature of peanut-reactive IL-4+ T cells irrespective of OIT, and a correlate of their ability to secrete type 2 cytokines. Conclusion Though total numbers of peanut-reactive IL-4+ and IFN-γ+ T cells are modulated by OIT in highly allergic children, complex T-cell populations with pathogenic potential persist in the presence of recognized immune markers of successful immunotherapy. [Clinical

  19. Analysis of cytokine production by peanut-reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy.

    PubMed

    Wisniewski, J A; Commins, S P; Agrawal, R; Hulse, K E; Yu, M D; Cronin, J; Heymann, P W; Pomes, A; Platts-Mills, T A; Workman, L; Woodfolk, J A

    2015-07-01

    Only limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components. To interrogate T cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE and to evaluate their modulation during oral immunotherapy (OIT). Peanut-reactive effector T cells were analysed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay. Cytokine-expressing T cell subpopulations were visualized using SPICE. Ara h 2 dominated the antibody response to peanut as judged by prevalence and quantity among a cohort of children with IgE to peanut. High IgE (> 15 kU(A)/L) was almost exclusively associated with dual sensitization to Ara h 1 and Ara h 2 and was age independent. Among PA children, IL-4-biased responses to both major allergens were induced, regardless of whether IgE antibodies to Ara h 1 were present. Among subjects receiving OIT in whom high IgE was maintained, Th2 reactivity to peanut components persisted despite clinical desensitization and modulation of allergen-specific immune parameters including augmented specific IgG4 antibodies, Th1 skewing and enhanced IL-10. The complexity of cytokine-positive subpopulations within peanut-reactive IL-4(+) and IFN-γ(+) T cells was similar to that observed in those who received no OIT, but was modified with extended therapy. Nonetheless, high Foxp3 expression was a distinguishing feature of peanut-reactive IL-4(+) T cells irrespective of OIT, and a correlate of their ability to secrete type 2 cytokines. Although total numbers of peanut-reactive IL-4(+) and IFN-γ(+) T cells are modulated by OIT in highly allergic children, complex T cell populations with pathogenic potential persist in the presence of recognized immune markers of successful immunotherapy. © 2015 John Wiley & Sons Ltd.

  20. Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population.

    PubMed

    Czarnowicki, Tali; Gonzalez, Juana; Shemer, Avner; Malajian, Dana; Xu, Hui; Zheng, Xiuzhong; Khattri, Saakshi; Gilleaudeau, Patricia; Sullivan-Whalen, Mary; Suárez-Fariñas, Mayte; Krueger, James G; Guttman-Yassky, Emma

    2015-07-01

    Past studies of blood T-cell phenotyping in patients with atopic dermatitis (AD) have provided controversial results and were mostly performed before the identification of TH9, TH17, and TH22 T-cell populations in human subjects. We sought to quantify TH1, TH2, TH9, TH17, and TH22 T-cell populations and corresponding CD8(+) T-cell subsets in both cutaneous lymphocyte antigen (CLA)-positive and CLA(-) T-cell subsets in patients with AD and control subjects. We studied 42 adults with severe AD (mean SCORAD score, 65) and 25 healthy subjects using an 11-color flow cytometric antibody panel. Frequencies of IFN-γ-, IL-22-, IL-13-, IL-17-, and IL-9-producing CD4(+) and CD8(+) T cells were compared in CLA(-) and CLA(+) populations. We measured increased TH2/TC2/IL-13(+) and TH22/TC22/IL-22(+) populations (P < .1) in patients with severe AD versus control subjects, with significant differences in CLA(+) T-cell numbers (P < .01). A significantly lower frequency of CLA(+) IFN-γ-producing cells was observed in patients with AD, with no significant differences in CLA(-) T-cell numbers. The CLA(+) TH1/TH2 and TC1/TC2 ratio was highly imbalanced in patients with AD (10 vs 3 [P = .005] and 19 vs 7 [P < .001], respectively). Positive correlations were found between frequencies of IL-13- and IL-22-producing CD4(+) and CD8(+) T cells (r = 0.5 and 0.8, respectively; P < .0001), and frequencies of IL-13-producing CLA(+) cells were also correlated with IgE levels and SCORAD scores. Patients with AD with skin infections had higher CD4(+) IL-22(+) and IL-17(+) cell frequencies, which were highly significant among CLA(-) cells (IL-22: 3.7 vs 1.7 [P < .001] and IL-17: 1.7 vs 0.6 [P < .001]), with less significant effects among CLA(+) T cells (IL-22: 11 vs 7.5, P = .04). Severe AD is accompanied by expansion of skin-homing TH2/TC2 and TH22/TC22 subsets with lower TH1/TC1 frequencies. These data create a critical basis for studying alterations in immune activation in adults and pediatric

  1. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    PubMed Central

    Lisak, Robert P; Benjamins, Joyce A; Bealmear, Beverly; Nedelkoska, Liljana; Studzinski, Diane; Retland, Ernest; Yao, Bin; Land, Susan

    2009-01-01

    Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS) in multiple sclerosis (MS). Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M). Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1) seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter signaling in glia. PMID

  2. Efficacy of the oral chemoattractant receptor homologous molecule on TH2 cells antagonist BI 671800 in patients with seasonal allergic rhinitis.

    PubMed

    Krug, Norbert; Gupta, Abhya; Badorrek, Philipp; Koenen, Ruediger; Mueller, Meike; Pivovarova, Anna; Hilbert, James; Wetzel, Kristiane; Hohlfeld, Jens M; Wood, Chester

    2014-02-01

    The inflammatory response in patients with seasonal allergic rhinitis (SAR) is partly mediated by the prostaglandin D2 receptor chemoattractant receptor homologous molecule on T(H)2 cells (CRTH2). We sought to investigate the efficacy and safety of the oral CRTH2 antagonist BI 671800 (50, 200, and 400 mg twice daily), fluticasone propionate nasal spray (200 μg once daily), or oral montelukast (10 mg once daily) administered for 2 weeks in patients with SAR. In this randomized, double-blind, placebo-controlled, partial-crossover study, participants aged 18 to 65 years with a positive skin prick test to Dactylis glomerata pollen were exposed to out-of-season allergen in the environmental challenge chamber for 6 hours. The primary efficacy variable was the total nasal symptom score assessed as the area under the curve (AUC)(0-6h). In total, 146 patients (63.7% male; mean age, 36.1 years) were randomized. The adjusted mean total nasal symptom score AUC(0-6h) was significantly reduced versus placebo with 200 mg of BI 671800 (absolute difference, -0.85; percentage difference, -17%; P = .0026), montelukast (absolute difference, -0.74; percentage difference, -15%; P = .0115), and fluticasone propionate (absolute difference, -1.64; percentage difference, -33%; P < .0001). Compared with placebo, BI 671800 significantly reduced nasal eosinophil values (P < .05 for all doses), significantly inhibited nasal inflammatory cytokine levels (IL-4 and eotaxin, P < .05; 200 mg twice daily), and induced a dose-related reduction in ex vivo prostaglandin D2-mediated eosinophil shape change. Two hundred milligrams of BI 671800 twice daily demonstrated efficacy in treating SAR symptoms induced by environmental challenge chamber allergen exposure and had a favorable safety profile. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  3. Effects of Psoraleae fructus and its major component psoralen on Th2 response in allergic asthma.

    PubMed

    Jin, Hualiang; Wang, Limin; Xu, Changqing; Li, Bei; Luo, Qingli; Wu, Jinfeng; Lv, Yubao; Wang, Genfa; Dong, Jingcheng

    2014-01-01

    This study is aimed to evaluate the effects of Psoraleae fructus (PF) on Th2 responses in a rat model of asthma in vivo and psoralen, a major constituent in PF, on Th2 responses in vitro. A rat model of asthma was established by sensitization and challenged with ovalbumin (OVA). Airway hyperresponsiveness was detected by direct airway resistance analysis. Lung tissues were examined for cell infiltration and mucus hypersecretion. Bronchoalveolar lavage fluid (BALF) was assessed for cytokine levels. In vitro study, Th2 cytokine production was evaluated in the culture supernatant of D10.G4.1 (D10 cells) followed by the determination of cell viability, meanwhile Th2 transcription factor GATA-3 expression in D10 cells was also determined. The oral administration of PF significantly reduced airway hyperresponsiveness (AHR) to aerosolized methacholine and decreased IL-4 and IL-13 levels in the BALF. Histological studies showed that PF markedly inhibited inflammatory infiltration and mucus secretion in the lung tissues. In vitro study, psoralen significantly suppressed Th2 cytokines of IL-4, IL-5 and IL-13 by ConA-stimulated D10 cells without inhibitory effect on cell viability. Furthermore, GATA-3 protein expression was also markedly reduced by psoralen. This study demonstrated that PF exhibited inhibitory effects on hyperresponsiveness and airway inflammation in a rat model of asthma, which was associated with the suppression of Th2 response. Psoralen, a major constituent of PF, has immunomodulatory properties on Th2 response in vitro, which indicated that psoralen might be a critical component of PF for its therapeutic effects.

  4. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells.

    PubMed

    da Silva, Marcos V; Massaro Junior, Vladimir J; Machado, Juliana R; Silva, Djalma A A; Castellano, Lúcio R; Alexandre, Patricia B D; Rodrigues, Denise B R; Rodrigues, Virmondes

    2015-01-01

    Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.

  5. Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release.

    PubMed

    Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Lee, Chang-Hyun; Shin, Hee Soon; Chai, Ok Hee

    2017-06-01

    Asthma is characterized by chronic inflammation, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration into the lungs. In this study, we examined the effects of baicalein, wogonin, and Scutellaria baicalensis ethanol extract on ovalbumin (OVA)-induced asthma by evaluating Th1/Th2 cytokine levels, histopathologic analysis, and compound 48/80-induced systemic anaphylaxis and mast cell activation, focusing on the histamine release from rat peritoneal mast cells. Baicalein, wogonin, and S. baicalensis ethanol extract also decreased the number of inflammatory cells especially eosinophils and downregulated peribronchial and perivascular inflammation in the lungs of mice challenged by OVA. Baicalein, wogonin, and S. baicalensis ethanol extract significantly reduced the levels of tumor necrosis factor α, interleukin (IL)-1β, IL-4, IL-5 and the production of OVA-specific IgE and IgG1, and upregulated the level of interferon-γ and OVA-specific IgG2a. In addition, oral administration of baicalein, wogonin, and S. baicalensis ethanol extract inhibited compound 48/80-induced systemic anaphylaxis and plasma histamine release in mice. Moreover, baicalein, wogonin, and S. baicalensis ethanol extract suppressed compound 48/80-induced mast cell degranulation and histamine release from rat peritoneal mast cells. Conclusively, baicalein and wogonin as major flavonoids of S. baicalensis may have therapeutic potential for allergic asthma through modulation of Th1/Th2 cytokine imbalance and histamine release from mast cells.

  6. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  7. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation.

    PubMed

    Cruz, Fernanda F; Borg, Zachary D; Goodwin, Meagan; Coffey, Amy L; Wagner, Darcy E; Rocco, Patricia R M; Weiss, Daniel J

    2016-04-01

    Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) or bone marrow-derived mesenchymal stromal cells (MSCs) reduces inflammation and airway hyperresponsiveness (AHR) in a murine model of Th2-mediated eosinophilic allergic airway inflammation. However, since BMDMCs are a heterogeneous population that includes MSCs, it is unclear whether the MSCs alone are responsible for the BMDMC effects. To determine which BMDMC population(s) is responsible for ameliorating AHR and lung inflammation in a model of mixed Th2-eosinophilic and Th17-neutrophilic allergic airway inflammation, reminiscent of severe clinical asthma, BMDMCs obtained from normal C57Bl/6 mice were serially depleted of CD45, CD34, CD11b, CD3, CD19, CD31, or Sca-1 positive cells. The different resulting cell populations were then assessed for ability to reduce lung inflammation and AHR in mixed Th2/Th17 allergic airway inflammation induced by mucosal sensitization to and challenge with Aspergillus hyphal extract (AHE) in syngeneic C56Bl/6 mice. BMDMCs depleted of either CD11b-positive (CD11b+) or Sca-1-positive (Sca-1+) cells were unable to ameliorate AHR or lung inflammation in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. In conclusion, in the current model of allergic inflammation, CD11b+ cells (monocytes, macrophages, dendritic cells) and Sca-1+ cells (MSCs) are responsible for the beneficial effects of BMDMCs. This study shows that bone marrow-derived mononuclear cells (BMDMCs) are as effective as bone marrow-derived mesenchymal stromal cells (MSCs) in ameliorating experimental asthma. It also demonstrates that not only MSCs present in the pool of BMDMCs are responsible for BMDMCs' beneficial effects but also monocytes, which are the most important cell population to trigger these effects. All of this is in the setting of a clinically relevant model of severe allergic airways inflammation and thus provides further

  8. Relationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations

    PubMed Central

    Laurent, Xavier; Renault, Nicolas; Farce, Amaury; Chavatte, Philippe; Hénon, Eric

    2014-01-01

    A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1. PMID:25376021

  9. New drugs targeting Th2 lymphocytes in asthma

    PubMed Central

    Caramori, Gaetano; Groneberg, David; Ito, Kazuhiro; Casolari, Paolo; Adcock, Ian M; Papi, Alberto

    2008-01-01

    Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled β2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic

  10. Loss of CD154 impairs the Th2 extrafollicular plasma cell response but not early T cell proliferation and interleukin-4 induction

    PubMed Central

    Cunningham, Adam F; Serre, Karine; Mohr, Elodie; Khan, Mahmood; Toellner, Kai-Michael

    2004-01-01

    Ligation of CD40 by CD4 T cells through CD154 is key both to germinal centre induction and follicular T-dependent Ig class switching, but its requirement for aspects of T cell priming and extrafollicular antibody responses is less clear. Here comparison of the T helper (Th) type 2 response in lymph nodes from wild-type mice and CD154-deficient mice after immunization with alum-precipitated antigen reveals selective effects of this immunodeficiency. The timing and magnitude of the early interleukin (IL)-4 induction and proliferation in T cells of the T zone were unaltered by CD154 deficiency. As expected, germinal centres were not induced. Additionally the T-dependent extrafollicular antibody response, which initially requires T cell help but expands without further T cell involvement, was severely curtailed. The median number of extrafollicular antigen-specific plasma cells was 370-fold lower in CD154-deficient mice. Of these plasma cells the median proportion that had switched to IgG1 was <5%, while in wild-type mice the proportion was 89%. Surprisingly, some CD154-deficient lymph nodes showed substantial switching to IgG1. Commensurately, increases in γ1 germline transcripts and Blimp-1 mRNA were observed, albeit significantly lower than in controls, but activation-induced cytidine deaminase mRNA was undetectable in CD154-deficient mice. These experiments demonstrate that the acquisition of some T cell priming characteristics can be CD154-independent; in contrast, T-dependent extrafollicular responses require CD154. Thus functional CD154 ligation during the first encounter of T cells and B cells in the T zone is critical for follicular and extrafollicular antibody responses. PMID:15379979

  11. Costimulation through B7-2 (CD86) Is Required for the Induction of a Lung Mucosal T Helper Cell 2 (TH2) Immune Response and Altered Airway Responsiveness

    PubMed Central

    Tsuyuki, Shogo; Tsuyuki, Junko; Einsle, Karin; Kopf, Manfred; Coyle, Anthony J.

    1997-01-01

    The recruitment of eosinophils into the airways after allergen exposure is dependent on interleukin (IL) 5 secreted from antigen-specific CD4+ T cells of the T helper cell (Th) 2 subset. However, while it is established that costimulation through CD28 is required for TCR-mediated activation and IL-2 production, the importance of this mechanism for the induction of a Th2 immune response is less clear. In the present study, we administered the fusion protein CTLA-4 immunoglobulin (Ig) into the lungs before allergen provocation to determine whether CD28/CTLA-4 ligands are required for allergen-induced eosinophil accumulation and the production of Th2 cytokines. Administration of CTLA-4 Ig inhibited the recruitment of eosinophils into the lungs by 75% and suppressed IgE in the bronchoalveolar lavage fluid. CTLA-4 Ig also inhibited the production of IL-4, IL-5, and IL-10 by 70–80% and enhanced interferon-γ production from CD3–T cell receptor–activated lung Thy1.2+ cells. Allergen exposure upregulated expression of B7-2, but not B7-1, on B cells from the lung within 24 h. Moreover, airway administration of an anti-B7-2 monoclonal antibody (mAb) inhibited eosinophil infiltration, IgE production, and Th2 cytokine secretion comparable in magnitude to that observed with CTLA-4 Ig. Treatment with an anti-B7-1 mAb had a small, but significant effect on eosinophil accumulation, although was less effective in inhibiting Th2 cytokine production. The anti-B7-2, but not anti-B7-1, mAb also inhibited antigen-induced airway hyperresponsiveness in vivo. In all of the parameters assessed, the combination of both the anti-B7-1 and anti-B7-2 mAb was no more effective than anti-B7-2 mAb treatment alone. We propose that strategies aimed at inhibition of CD28 interactions with B7-2 molecules may represent a novel therapeutic target for the treatment of lung mucosal allergic inflammation. PMID:9151904

  12. The comparison of expression of cutaneous lymphocyte-associated antigen (CLA), and Th1- and Th2-associated antigens in mycosis fungoides and cutaneous lesions of adult T-cell leukemia/lymphoma.

    PubMed

    Yamaguchi, Takahiro; Ohshima, Koichi; Tsuchiya, Takeshi; Suehuji, Hiroaki; Karube, Kennosuke; Nakayama, Juichiro; Suzumiya, Junji; Yoshino, Tadashi; Kikuchi, Masahiro

    2003-01-01

    Mycosis fungoides (MF) is morphologically similar to cutaneous lesions of adult T cell leukemia/lymphoma (ATLL) of human T-cell lymphotropic virus-type I (HTLV-1). In addition, the Th1 or Th2 characteristic of MF and ATLL is still controversial. In the present study, to discriminate MF and cutaneous lesion of ATLL using immunohistochemical markers, and to elucidate Th1 or Th2 dominancy in both disorders, CLA (cutaneous lymphocyte associated antigen) was expressed on epidermotrophic lymphoma cells in all early stage MF. In contrast, all ATLL were negative for CLA. CXCR3 was especially expressed in epidermotropic small lymphoma cells of MF. CCR5 was expressed in both disorders with variable sized lymphoma cells. ST2 was expressed on large transformed lymphoma cells with ATLL, but not in any MF cases. OX40 was expressed in the large transformed cell population in both disorders. These findings suggest that CLA and ST2 could be potentially useful immunohistochemical markers for discrimination of mycosis fungoides and cutaneous lesions of ATLL. And OX40 could be a useful immunohistochemical marker for the histopathological progression of both disorders.

  13. p(⁷⁰S⁶K¹) in the TORC1 pathway is essential for the differentiation of Th17 Cells, but not Th1, Th2, or Treg cells in mice.

    PubMed

    Sasaki, Carl Y; Chen, Gang; Munk, Rachel; Eitan, Erez; Martindale, Jennifer; Longo, Dan L; Ghosh, Paritosh

    2016-01-01

    The TORC1 pathway is necessary for ribosomal biogenesis and initiation of protein translation. Furthermore, the differentiation of Th1 and Th17 cells requires TORC1 activity. To investigate the role of the TORC1 pathway in the differentiation of Th1 and/or Th17 cells in more detail, we compared the differentiation capacity of naïve T cells from wild type and p70(S6K1) knockout mice. Expression of many of the genes associated with Th17-cell differentiation, such as IL17a, IL17f, and IL-23R, were reduced in p70(S6K1) knockout mice. In contrast, the development of Th1, Th2, and Treg cells was unaffected in the absence of p70(S6K1) . Furthermore, expression of the major transcription factor in Th17-cell differentiation, retinoic acid receptor-related orphan receptor gamma T, remained unchanged. However, the acetylation of histone 3 at the promoters of IL17a and IL17f was reduced in the absence of p70(S6K1) . In accordance with the in vitro data, the kinetics, but not the development, of EAE was affected with the loss of p70(S6K1) expression. Collectively, our findings suggested that both in vitro and in vivo differentiation of Th17 cells were positively regulated by p70(S6K1) .

  14. CD4+CD25+Foxp3+ T regulatory cells, Th1 (CCR5, IL-2, IFN-γ) and Th2 (CCR4, IL-4, Il-13) type chemokine receptors and intracellular cytokines in children with common variable immunodeficiency.

    PubMed

    Kutukculer, Necil; Azarsiz, Elif; Aksu, Guzide; Karaca, Neslihan Edeer

    2016-06-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary antibody deficiencies characterized by decreased serum immunoglobulin G along with a decrease in serum IgA and/or IgM, defective specific antibody production, and recurrent bacterial infections. Abnormal lymphocyte trafficking, dysregulated cellular responses to chemokines, and uncontrolled T cell polarization may be involved in the pathogenesis and may help to understand the clinical complications. We evaluated T helper cell subsets (chemokine receptors CCR4, CCR5, and CCR7), expressions on T lymphocytes, intracellular cytokines - IL-2, IL-4, IL-13, IFN- γ-on CD4(+) T cells, and expression of CD4(+)CD25(+)Foxp3(+) regulatory T cells of 20 CVID patients and 26 healthy controls. Autoimmune clinical findings and other complications were also determined. Percentages and absolute numbers of CD4(+)CD25(+) Foxp3(+) cells did not show any significant difference between CVID cases and healthy controls nor between severe and moderate disease patients. The only significant difference regarding Th1 and Th2 type intracellular cytokines was the decreased absolute numbers of CD3(+)CD4(+)IL4(+) cells in CVID cases. There were some findings about T helper cell type dominance in CVID patients such as positive correlation between hepatomegaly and high IL-2 and IFN-γ in CD3(+)CD4(+) cells and very high expression of CCR5 (Th1) on CD3(+)CD4(+) cells in patients with granuloma. Th1 (CCR5) and Th2 (CCR4) type chemokine receptors did not show any dominance in CVID cases. However, frequencies of CCR7 expressing CD3(+) T cells, CD3(+)CD4(+) T helper cells and CD3(+)CD8(+) T cytotoxic cells were significantly lower in severe CVID patients. In addition, presence of autoimmune clinical findings was negatively correlated with CCR7(+) cells. As CCR7 is a key mediator balancing immunity and tolerance in the immune system, the abnormality of this mediator may contribute to the profound immune dysregulation seen in CVID

  15. A New Inflammatory Cytokine on the Block: Re-thinking Periodontal Disease and the Th1/Th2 Paradigm in the Context of Th17 Cells and IL-17

    PubMed Central

    Gaffen, S.L.; Hajishengallis, G.

    2009-01-01

    For almost two decades, the Th1/Th2 paradigm has offered a productive conceptual framework for investigating the pathogenesis of periodontitis. However, as with many other inflammatory diseases, the observed role of T-cell-mediated immunity in periodontitis did not readily fit this model. A new subset of CD4+ T-cells was recently discovered that explains many of the discrepancies in the classic Th1/Th2 model, and has been termed “Th17” based on its secretion of the novel pro-inflammatory cytokine IL-17. The identification of Th17 cells as a novel effector T-cell population compels re-examination of periodontitis in the context of the new subset and its signature cytokines. This review aims to offer a clarifying insight into periodontal pathogenesis under the extended Th1/Th2/Th17 paradigm, and is predicated on the principle that periodontal disease activity is determined by a complex interplay between the immune system and periodontal pathogens. The re-examination of existing periodontal literature and further studies in the light of these new discoveries may help explain how the inflammatory response results in damage to the periodontium while generally failing to control the pathogens. This knowledge is essential for the development of immunomodulatory intervention strategies for fine-tuning the host response to maximize the protective and minimize the destructive aspects of the periodontal host response. Moreover, with the advent of anti-cytokine biologic drugs that target the Th1 and Th17 pathways in autoimmunity, the potential consequences to periodontal disease susceptibility in humans need to be understood. PMID:18719207

  16. As2 O3 combined with leflunomide prolongs heart xenograft survival via suppressing the response of Th1, Th2, and B cells in a rat model.

    PubMed

    Jiao, Zhi-Xing; Leng, Yun; Xia, Jun-Jie; Wu, Hai-Qiao; Jin, Ning; Fu, Jia-Zhao; Cheng, Lian-Na; Wang, Jin-Hua; Ni, Shao-Bin; Qi, Zhong-Quan

    2016-05-01

    Xenotransplantation remits the severe shortage of human organs and tissues for transplantation, which is a problem that severely limits the application of transplantation to the treatment of human disease. However, severe immune rejection significantly limits the efficacy of xenotransplantation. In this study, we systematically investigated the immunosuppressive effect and mechanism of action of As2 O3 and leflunomide using a hamster-to-rat heart xenotransplantation model. We initially examined heart xenograft survival following As2 O3 and leflunomide treatment alone or combined treatment. We found that treatment with As2 O3 combined with leflunomide can significantly prolong the survival of heart xenograft by inhibiting Th1 and Th2 differentiation and reducing the production of IgG and IgM. Interestingly, As2 O3 and leflunomide showed low toxicity to the organs of the recipient. Taken together, these observations indicate that treatment with As2 O3 combined with leflunomide may be a promising immunosuppressive schedule for xenotransplantation.

  17. Th2 and eosinophil responses suppress inflammatory arthritis

    PubMed Central

    Chen, Zhu; Andreev, Darja; Oeser, Katharina; Krljanac, Branislav; Hueber, Axel; Kleyer, Arnd; Voehringer, David; Schett, Georg; Bozec, Aline

    2016-01-01

    Th2–eosinophil immune responses are well known for mediating host defence against helminths. Herein we describe a function of Th2–eosinophil responses in counteracting the development of arthritis. In two independent models of arthritis, Nippostrongylus brasiliensis infection leads to Th2 and eosinophil accumulation in the joints associated with robust inhibition of arthritis and protection from bone loss. Mechanistically, this protective effect is dependent on IL-4/IL-13-induced STAT6 pathway. Furthermore, we show that eosinophils play a central role in the modulation of arthritis probably through the increase of anti-inflammatory macrophages into arthritic joints. The presence of these pathways in human disease is confirmed by detection of GATA3-positive cells and eosinophils in the joints of rheumatoid arthritis patients. Taken together, these results demonstrate that eosinophils and helminth-induced activation of the Th2 pathway axis effectively mitigate the course of inflammatory arthritis. PMID:27273006

  18. Clinical association of baseline levels of conjugated dienes in low-density lipoprotein and nitric oxide with aggressive B-cell non-Hodgkin lymphoma and their relationship with immunoglobulins and Th1-to-Th2 ratio

    PubMed Central

    Haddouche, Mustapha; Meziane, Warda; Hadjidj, Zeyneb; Mesli, Naima; Aribi, Mourad

    2016-01-01

    Objective The aim of this study was to highlight the clinical association of baseline levels of conjugated dienes in low-density lipoprotein (LDL-BCD) and nitric oxide (NO) with immunoglobulins (Igs) and T helper (Th)1/Th2 ratio in patients with newly diagnosed B-cell non-Hodgkin lymphoma (NHL). Patients and methods Thirty-two newly diagnosed patients with aggressive B-cell NHL and 25 age-, sex-, and body-mass-index-matched healthy controls were randomly selected for a cross-sectional case–control study conducted at the Hematology Department of Tlemcen Medical Centre University (northwest of Algeria). Results Circulating levels of LDL-BCD and NO and those of IgA and IgM were significantly higher in patients than in controls. The levels of Th1/Th2 ratio and plasma total antioxidant capacity were significantly lower in patients compared with controls, while malondialdehyde and protein carbonyl levels were significantly higher in patients. B-cell NHL was significantly associated with high levels of LDL-BCD from 25th to 75th percentile (25th percentile: relative risk [RR] =2.26, 95% confidence interval [CI] 1.42–3.59, P=0.014; 50th percentile: RR =2.84, 95% CI 1.72–4.68, P<0.001; 75th percentile: RR =5.43, 95% CI 2.58–11.42, P<0.001). Similarly, the disease was significantly associated with high levels of NO production from 25th to 75th percentile (25th percentile: RR =2.07, 95% CI 1.25–3.44, P=0.024; 50th percentile: RR =2.78, 95% CI 1.63–4.72, P<0.001; 75th percentile: RR =4.68, 95% CI 2.21–9.91, P<0.001). Moreover, LDL-BCD levels were positively and significantly correlated with interferon (IFN)-γ, whereas NO levels were inversely and significantly correlated with IFN-γ and Th1/Th2 ratio. Conclusion LDL-BCD and NO production seem to be associated with aggressive B-cell NHL and alteration of Th1/Th2 ratio. Our results have to be examined using ex vivo mechanistic studies leading to further investigations of these parameters, with an interest in the

  19. Constituents of the anti–asthma herbal formula ASHMI™ synergistically inhibit IL–4 and IL–5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro

    PubMed Central

    Jayaprakasam, Bolleddula; Yang, Nan; Wen, Ming-Chun; Wang, Rong; Goldfarb, Joseph; Sampson, Hugh; Li, Xiu-Min

    2015-01-01

    OBJECTIVE Anti-asthma herbal medicine intervention (ASHMI™), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI™ exhibited synergy. METHODS Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION By comparing the interaction

  20. IL-2–Controlled Expression of Multiple T Cell Trafficking Genes and Th2 Cytokines in the Regulatory T Cell-Deficient Scurfy Mice: Implication to Multiorgan Inflammation and Control of Skin and Lung Inflammation

    PubMed Central

    Sharma, Rahul; Sharma, Poonam R.; Kim, Youngchul; Leitinger, Norbert; Lee, Jae K.; Fu, Shu Man; Ju, Shyr-Te

    2011-01-01

    Scurfy (Sf) mice bear a mutation in the Foxp3 transcription factor, lack regulatory T cells (Treg), develop multiorgan inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. Sf mice lacking the Il2 gene (Sf.Il2−/−), despite being devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver, pancreas, submandibular gland, and colon remained. Genome-wide microarray analysis revealed hundreds of genes that were differentially regulated among Sf, Sf.Il2−/−, and B6 CD4+ T cells, but the most significant changes were those encoding receptors for trafficking/chemotaxis/retention and cytokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent “organ-specific” manner through two novel mechanisms: by regulating the expression of genes encoding a variety of receptors for T cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and cytokine production. Thus, IL-2 is potentially a master regulator for multiorgan inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation. PMID:21169543

  1. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13.

    PubMed

    Gabitass, Rachel F; Annels, Nicola E; Stocken, Deborah D; Pandha, Hardev A; Middleton, Gary W

    2011-10-01

    We undertook a comprehensive analysis of circulating myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) in pancreatic, esophageal and gastric cancer patients and investigated whether MDSCs are an independent prognostic factor for survival. We evaluated a series of plasma cytokines and in particular re-evaluated the Th2 cytokine interleukin-13 (IL-13). Peripheral blood was collected from 131 cancer patients (46 pancreatic, 60 esophageal and 25 gastric) and 54 healthy controls. PBMC were harvested with subsequent flow cytometric analysis of MDSC (HLADR(-) Lin1(low/-) CD33(+) CD11b(+)) and Treg (CD4(+) CD25(+) CD127(low/-) FoxP3(+)) percentages. Plasma IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, IL-17, G-CSF, IFN-γ, TNF-α and VEGF levels were analyzed by the Bio-Plex cytokine assay. Plasma arginase I levels were analyzed by ELISA. MDSCs and Tregs were statistically significantly elevated in pancreatic, esophageal and gastric cancer compared with controls, and MDSC numbers correlated with Treg levels. Increasing MDSC percentage was associated with increased risk of death, and in a multivariate analysis, MDSC level was an independent prognostic factor for survival. A unit increase in MDSC percentage was associated with a 22% increased risk of death (hazard ratio 1.22, 95% confidence interval 1.06-1.41). Arginase I levels were also statistically significantly elevated in upper gastrointestinal cancer patients compared with controls. There was Th2 skewing for cytokine production in all three diseases, and importantly there were significant elevations of the pivotal Th2 cytokine interleukin-13, an increase that correlated with MDSC levels.

  2. A cell's sense of direction.

    PubMed

    Parent, C A; Devreotes, P N

    1999-04-30

    In eukaryotic cells directional sensing is mediated by heterotrimeric guanine nucleotide-binding protein (G protein)-linked signaling pathways. In Dictyostelium discoideum amoebae and mammalian leukocytes, the receptors and G-protein subunits are uniformly distributed around the cell perimeter. Chemoattractants induce the transient appearance of binding sites for several pleckstrin homology domain-containing proteins on the inner face of the membrane. In gradients of attractant these sites are persistently present on the side of the cell facing the higher concentration, even in the absence of a functional actin cytoskeleton or cell movement. Thus, the cell senses direction by spatially regulating the activity of the signal transduction pathway.

  3. Bach2–Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop

    PubMed Central

    Kuwahara, Makoto; Ise, Wataru; Ochi, Mizuki; Suzuki, Junpei; Kometani, Kohei; Maruyama, Saho; Izumoto, Maya; Matsumoto, Akira; Takemori, Nobuaki; Takemori, Ayako; Shinoda, Kenta; Nakayama, Toshinori; Ohara, Osamu; Yasukawa, Masaki; Sawasaki, Tatsuya; Kurosaki, Tomohiro; Yamashita, Masakatsu

    2016-01-01

    Although Bach2 has an important role in regulating the Th2-type immune response, the underlying molecular mechanisms remain unclear. We herein demonstrate that Bach2 associates with Batf and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2–Batf complex antagonizes the recruitment of the Batf–Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production. Furthermore, we find that Bach2 regulates the Batf and Batf3 expressions via two distinct pathways. First, Bach2 suppresses the maintenance of the Batf and Batf3 expression through the inhibition of IL-4 production. Second, the Bach2–Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf–Irf4 complex. These findings suggest that IL-4 and Batf form a positive feedback amplification loop to induce Th2 cell differentiation and the subsequent Th2-type immune response, and Bach2–Batf interactions are required to prevent an excessive Th2 response. PMID:27581382

  4. Selective Th2 Upregulation by Crocus sativus: A Neutraceutical Spice

    PubMed Central

    Bani, Sarang; Pandey, Anjali; Agnihotri, Vijai K.; Pathania, Vijaylata; Singh, Bikram

    2011-01-01

    The immunomodulatory activity of an Indian neutraceutical spice, saffron (Crocus sativus) was studied on Th1 and Th2 limbs of the immune system. Oral administration of alcoholic extract of Crocus sativus (ACS) at graded dose levels from 1.56–50 mg/kg p.o. potentiated the Th2 response of humoral immunity causing the significant increases in agglutinating antibody titre in mice at a dose of 6.25 mg/kg and an elevation of CD19+ B cells and IL-4 cytokine, a signature cytokine of Th2 pathway. Appreciable elevation in levels of IgG-1 and IgM antibodies of the primary and secondary immune response was observed. However, ACS showed no appreciable expression of the Th1 cytokines IL-2 (growth factor for CD4+ T cells) and IFN-γ (signature cytokine of Th1 response). A significant modulation of immune reactivity was observed in all the animal models used. This paper represents the selective upregulation of the Th2 response of the test material and suggests its use for subsequent selective Th2 immunomodulation. PMID:20953384

  5. A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses.

    PubMed

    Takagi, Hidenori; Hiroi, Takachika; Yang, Lijun; Tada, Yoshifumi; Yuki, Yoshikazu; Takamura, Kaoru; Ishimitsu, Ryotaro; Kawauchi, Hideyuki; Kiyono, Hiroshi; Takaiwa, Fumio

    2005-11-29

    Peptide immunotherapy using multiple predominant allergen-specific T cell epitopes is a safe and promising strategy for the control of type I allergy. In this study, we developed transgenic rice plants expressing mouse dominant T cell epitope peptides of Cry j I and Cry j II allergens of Japanese cedar pollen as a fusion protein with the soybean seed storage protein glycinin. Under the control of the rice seed storage protein glutelin GluB-1 promoter, the fusion protein was specifically expressed and accumulated in seeds at a level of 0.5% of the total seed protein. Oral feeding to mice of transgenic rice seeds expressing the T cell epitope peptides of Cry j I and Cry j II before systemic challenge with total protein of cedar pollen inhibited the development of allergen-specific serum IgE and IgG antibody and CD4(+) T cell proliferative responses. The levels of allergen-specific CD4(+) T cell-derived allergy-associated T helper 2 cytokine production of IL-4, IL-5, and IL-13 and histamine release in serum were significantly decreased. Moreover, the development of pollen-induced clinical symptoms was inhibited in our experimental sneezing mouse model. These results indicate the potential of transgenic rice seeds in production and mucosal delivery of allergen-specific T cell epitope peptides for the induction of oral tolerance to pollen allergens.

  6. T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis

    PubMed Central

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus; Lund, Henrik; Sellebjerg, Finn; Nielsen, Claus H

    2008-01-01

    Autoreactive T cells are thought to play an essential role in the pathogenesis of multiple sclerosis (MS). We examined the stimulatory effect of human myelin basic protein (MBP) on mononuclear cell (MNC) cultures from 22 patients with MS and 22 sex-matched and age-matched healthy individuals, and related the patient responses to disease activity, as indicated by magnetic resonance imaging. The MBP induced a dose-dependent release of interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) by patient-derived MNCs. The patients’ cells produced higher amounts of IFN-γ and TNF-α, and lower amounts of IL-10, than cells from healthy controls (P < 0·03 to P < 0·04). Five patients with MS and no controls, displayed MBP-induced CD4+ T-cell proliferation. These high-responders exhibited enhanced production of IL-17, IFN-γ, IL-5 and IL-4 upon challenge with MBP, as compared with the remaining patients and the healthy controls (P < 0·002 to P < 0·01). A strong correlation was found between the MBP-induced CD4+ T-cell proliferation and production of IL-17, IFN-γ, IL-5 and IL-4 (P < 0·0001 to P < 0·01) within the patient group, and the production of IL-17 and IL-5 correlated with the number of active plaques on magnetic resonance images (P = 0·04 and P = 0·007). These data suggest that autoantigen-driven CD4+ T-cell proliferation and release of IL-17 and IL-5 may be associated with disease activity. Larger studies are needed to confirm this. PMID:18397264

  7. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    PubMed Central

    2010-01-01

    Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status. PMID:20546583

  8. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response.

    PubMed

    Pawar, Vivek K; Panchal, Samir B; Singh, Yuvraj; Meher, Jaya Gopal; Sharma, Komal; Singh, Pankaj; Bora, Himangshu K; Singh, Akhilesh; Datta, Dipak; Chourasia, Manish K

    2014-12-28

    Paclitaxel (PTX) is used as first line treatment for metastatic breast cancer but the relief comes at a heavy cost in terms of accompanying adverse effects. The pharmaceutical credentials of PTX are further dampened by the intrinsically low aqueous solubility. In order to sideline such insidious tendencies, PTX was incorporated in a vitamin E nanoemulsion using high pressure homogenization. The encapsulation efficiency of PTX in nanoemulsion was 97.81±2.7% and a sustained drug release profile was obtained. PTX loaded nanoemulsion exhibited higher cytotoxicity in breast cancer cell line (MCF-7) when compared to free PTX and marketed formulation (Taxol). Cell cycle arrest study depicted that MCF-7 cells treated with PTX loaded nanoemulsion showed high arrest in G2-M phase. Moreover blank nanoemulsion induced additional apoptosis in breast cancer cells through G1-S arrest by disrupting mitochondrial membrane potential. Cytokine estimation study in macrophages showed that both PTX loaded nanoemulsion and blank nanoemulsion enhanced secretion of IL-12 and downregulated secretion of IL-4 and IL-10. Results suggest that inclusion of vitamin E in nanoemulsion opened multiple complementary molecular effects which not only magnified the principle antiproliferative activity of PTX but also independently showcased potential in restoring the proactive nature of the breast cancer slackened chronic immune response. In-vivo anticancer activity showed significantly improved efficacy of PTX loaded nanoemlsion compare to Taxol and free PTX. The list of plausible advantages of PTX nanoemulsification was further substantiated by acceptable haemolytic potential, reduced in-vivo toxicity and conveniently modified pharmacokinetic profile in which the AUC and MRT were extended considerably. Overall, there were strong evidences that developed formulation can serve as a viable alternative to currently available PTX options. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. PLD1 activation mediates Amb a 1-induced Th2-associated cytokine expression via the JNK/ATF-2 pathway in BEAS-2B cells.

    PubMed

    Kim, Joo-Hwa; Choi, Hye-Jin; Oh, Cheong-Hae; Oh, Jae-Won; Han, Joong-Soo

    2015-01-01

    The purpose of this study was to identify the role of phospholipase D1 (PLD1) in Amb a 1-induced IL-5 and IL-13 expression. When BEAS-2B cells were stimulated with Amb a 1, PLD activity increased, and knockdown of PLD1 decreased Amb a 1-induced IL-5 and IL-13 expression. Amb a 1 also activated the PLCγ/p70S6K/JNK pathway. Furthermore, Amb a 1-induced PLD activation was also attenuated by PLCγ inhibition, and knockdown of PLD1 decreased Amb a 1-induced activation of P70S6K and JNK. When ATF-2 activity was blocked with ATF-2 siRNA, Amb a 1-induced IL-5 and IL-13 expression was completely abolished, indicating that ATF-2 is a transcriptional factor required for the expression of IL-5 and IL-13 in response to Amb a 1. Taken together, we suggest that PLD1 acts as an important regulator in Amb a 1-induced expression of IL-5 and IL-13 via a PLCγ/p70S6K/JNK/ATF-2 pathway in BEAS-2B cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The effects of electroacupuncture on TH1/TH2 cytokine mRNA expression and mitogen-activated protein kinase signaling pathways in the splenic T cells of traumatized rats.

    PubMed

    Wang, Kun; Wu, Huaxing; Wang, Guonian; Li, Mingming; Zhang, Zhaodi; Gu, Guangying

    2009-11-01

    Surgical trauma contributes to postoperative immune suppression, which is associated with an increased susceptibility to subsequent infections. Electroacupuncture (EA) can alleviate pain and exert immunoregulatory effects. However, the mechanism underlying the immnuomodulation effects of EA is not fully elucidated. Therefore, we investigated the effects of EA on T helper (Th)1/Th2 cytokine production and mRNA expression and evaluated the signaling regulatory mechanism of EA effects. Rats were divided into four groups (n = 24 each): control, trauma, trauma (T) + sham EA, and T + EA. EA was applied to Zusanli (ST36) and Lanwei (Extra37) acupoints at 20 min after surgery for 30 min, and then performed once a day on postoperative days 1-5. Splenic T cells were isolated and the production and mRNA expression of interleukin (IL)-2, interferon-gamma, IL-4, and IL-10 were assayed. The activation of mitogen-activated protein kinase and the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1 were examined. Paw withdrawal threshold and paw withdrawal latency were significantly increased in the T + EA group compared with the trauma group from postoperative day 1 (paw withdrawal threshold: 5.8 +/- 0.7 vs 3.0 +/- 0.7 g; paw withdrawal latency: 7.0 +/- 0.8 vs 4.5 +/- 0.5 s; P < 0.001) to day 5 (9.0 +/- 0.6 vs 5.5 +/- 0.6 g; 12.0 +/- 1.3 vs 7.0 +/- 0.8 s; P < 0.001). Th1 cytokine (IL-2 and interferon-gamma) production and mRNA expression in splenic T cells of traumatized rats were significantly decreased on postoperative day 3 (P < 0.001, trauma group versus control group), whereas Th2 cytokine (IL-4 and IL-10) production and mRNA expression were increased (P < 0.001). This was accompanied with a significant depression in the activity of extracellular-regulated protein kinase (ERK)1/2, p38, NF-kappaB, and AP-1 (P < 0.001, trauma group versus control group). EA administration increased Th1 cytokine protein and mRNA expression, suppressed Th2 cytokine

  11. Direct-fuelled fuel cells

    NASA Astrophysics Data System (ADS)

    Waidhas, M.; Drenckhahn, W.; Preidel, W.; Landes, H.

    Fuel supply is one important problem to be solved for commercial application of fuel cell technology. Conventional fuel-cell types require hydrogen as the fuel, which has to be free from impurities when operated at temperatures below 100 °C. The storage and distribution of this explosive and extremely fugitive gas is one of the open questions in the context of a customer-oriented broad commercial market. The direct-fuelled fuel cells (DMFCs) overcome the hydrogen specific restrictions. They are capable of directly using natural gas or fuels which are liquid under ambient conditions. In this paper the different options from direct-fuelled systems are described and their general aspects discussed. The state-of-the-art at Siemens in this field, and also the remaining technical questions are outlined as a basis for assessing future applications.

  12. Correlation of TLR2 and TLR4 expressions in peripheral blood mononuclear cells to Th1- and Th2-type immune responses in children with henoch-schönlein purpura.

    PubMed

    Chang, Hong; Zhang, Qiu-Ye; Lin, Yi; Cheng, Na; Zhang, Shou-Qing

    2015-01-01

    We discussed the correlation of TLR2 (Toll-like receptor) and TLR4 expressions in peripheral blood mononuclear cells (PBMCs) to Th1- and Th2-type immune responses in children with Henoch-Schönlein Purpura (HSP). The role of TLR2 and TLR4 in the pathogenesis of HSP was analyzed. Sixty-four HSP children treated at our hospital from October 2011 to November 2012 were enrolled and divided into NHSPN group (complicated by renal impairment, 36 cases) and HSPN group (not complicated by renal impairment, 28 cases). In the meantime, 30 normal children receiving physical examination at our hospital were recruited as controls. Peripheral blood T cell subgroups and TLR2 and TLR4 expressions in PBMCs were detected by using flow cytometry; relative expression levels of TLR2 and TLR4 mRNA in PBMCs by real-time quantitative fluorescence PCR, and plasma levels of IFN-γ, IL-4 and IL-6 by ELISA method. Relative expression levels of TLR2 and TLR4 mRNAs in PBMCs and TLR2 and TLR4 protein expressions in children with HSP were significantly higher than those of the controls (P<0.01). The relative expression levels of TLR2 and TLR4 mRNAs in PBMCs and TLR2 and TLR4 protein expressions in HSPN group were obviously higher than those in NHSPN group (P<0.05; P<0.01; P<0.01; P<0.01); CD3(+) T cells and CD3(+)CD4(+) T cells in HSP group were significantly decreased, while CD3(+)CD8(+) T cells and CD3(+)HLADR(+) T activated cells were considerably increased (P<0.01); The plasma levels of IL-4 and IL-6 in HSP group were significantly higher than those of the normal controls (P<0.01, P<0.01); IFN-γ level in the former was much lower than in the control group (P<0.05); IFN-γ/IL-4 ratio in the former was also lower than that in the control (P<0.01); TLR2 and TLR4 expressions in HSP group showed significantly positive correlation with the plasma levels of IL-4 and IL-6 (P<0.01, P<0.05; P<0.01, P<0.01) and significantly negative correlation with IFN-γ/IL-4 ratio (P<0.01; P<0.01). TLR2 and TLR4

  13. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor

    PubMed Central

    Everts, Bart; Hussaarts, Leonie; Driessen, Nicole N.; Meevissen, Moniek H.J.; Schramm, Gabriele; van der Ham, Alwin J.; van der Hoeven, Barbara; Scholzen, Thomas; Burgdorf, Sven; Mohrs, Markus; Pearce, Edward J.; Hokke, Cornelis H.; Haas, Helmut; Smits, Hermelijn H.

    2012-01-01

    Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization. Mechanistically, we demonstrate that omega-1 is bound and internalized via its glycans by the mannose receptor (MR) and subsequently impairs protein synthesis by degrading both ribosomal and messenger RNA. These experiments reveal an unrecognized pathway involving MR and interference with protein synthesis that conditions DCs for Th2 priming. PMID:22966004

  14. The Translational Repressor T-cell Intracellular Antigen-1 (TIA-1) is a Key Modulator of Th2 and Th17 Responses Driving Pulmonary Inflammation Induced by Exposure to House Dust Mite

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.

    2012-01-01

    T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013

  15. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    PubMed

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. So-Cheong-Ryong-Tang, tradititional Korean medicine, suppresses Th2 lineage development.

    PubMed

    Ko, Eunjung; Rho, Samwoong; Cho, Chongwoon; Choi, Hyun; Ko, Seonggyu; Lee, Youngwon; Hong, Moo-Chang; Shin, Min-Kyu; Jung, Seung-Gi; Bae, Hyunsu

    2004-05-01

    The present study was designed to evaluate the effect of So-Cheong-Ryong-Tang (SCRT, also called Sho-Seiryu-To or Xiao-Qing-Long-Tang) on helper T cell development by monitoring Th1/Th2-specific cytokine secretion patterns in artificially induced Th1 or Th2 polarized conditions. The results demonstrated that Th2 cells were dramatically underpopulated in the Th2-driven condition triggered by SCRT treatment, while the Th1 cells were not altered in the Th1-skewed condition. Furthermore, under Th2-skewed conditions the levels of interleukin-4 were considerably decreased with SCRT treatment. The expression of GATA-3, a transcription factor that plays a pivotal role in Th2 lineage programming, did not change with SCRT treatment, while the expression of another Th2 transcription factor, c-Maf, was dramatically suppressed. These data suggest that SCRT modulates Th2 development by suppressing c-Maf expression. This study implies that the SCRT effect on CD4(+) T cells is a key pharmacologic point of effect for treating IgE-mediated allergic asthma. These results also suggest that SCRT might be a useful agent for the correction of Th2-dominant pathologic disorders.

  17. Protrusion Fluctuations Direct Cell Motion

    PubMed Central

    Caballero, David; Voituriez, Raphaël; Riveline, Daniel

    2014-01-01

    Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk. PMID:24988339

  18. Th1, Th2 and Treg/T17 cytokines in two types of proliferative glomerulonephritis

    PubMed Central

    Stangou, M.; Bantis, C.; Skoularopoulou, M.; Korelidou, L.; Kouloukouriotou, D.; Scina, M.; Labropoulou, I. T.; Kouri, N. M.; Papagianni, A.; Efstratiadis, G.

    2016-01-01

    IgA nephropathy (IgAN) and focal segmental necrotizing glomerulonephritis (FSNGN) are characterized by proliferation of native glomerular cells and infiltration by inflammatory cells. Several cytokines act as mediators of kidney damage in both diseases. The aim of the present study was to investigate the role of Th1, Th2 and Treg/T17 cytokines in these types of proliferative glomerulonephritis. Simultaneous measurement of Th1 interleukin (IL-2, IL-12, tumor necrosis factor-alpha [TNF-α], interferon-gamma [INF-γ]), Th2 (IL-4, IL-5, IL-6, IL-10, IL-13), Treg/T17 transforming growth factor-beta 1 (TGF-β1, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17) cytokines and C-C chemokines Monocyte chemoattractant protein-1 (MCP-1, macrophage inflammatory protein-1 [MIP-1] β) was performed in first-morning urine samples, at the day of renal biopsy, using a multiplex cytokine assay. Cytokine concentrations were correlated with histological findings and renal function outcome. Urinary excretion of Th1, Th2 and Treg/Th17 cytokines were significantly higher in FSNGN compared to IgAN patients. In IgAN patients (n = 50, M/F: 36/14, M age: 40.7 [17–67] years), Th1, Th2 and T17 cytokines correlated significantly with the presence of endocapillary proliferation, while in FSNGN patients (n = 40, M/F: 24/16, M age: 56.5 [25–80] years), MCP-1 and TGF-β1 had a positive correlation with severe extracapillary proliferation (P = 0.001 and P = 0.002, respectively). Urinary IL-17 was the only independent parameter associated with endocapillary proliferation in IgAN and with MCP-1 urinary excretion in FSNGN. Response to treatment was mainly predicted by IL-6 in IgAN, and by Th2 (IL-4, IL-6), Treg (GM-CSF) cytokines and MIP-1 β in FSNGN. Th1, Th2 and T17 cytokines were directly implicated in renal pathology in IgAN and possibly through MCP-1 production in FSNGN. IL-17 and IL-6 seem to have a central role in inflammation and progression of kidney injury. PMID:27194829

  19. Plasticity of Migrating CD1b+ and CD1b- Lymph Dendritic Cells in the Promotion of Th1, Th2 and Th17 in Response to Salmonella and Helminth Secretions

    PubMed Central

    Olivier, Michel; Foret, Benjamin; Le Vern, Yves; Kerboeuf, Dominique; Guilloteau, Laurence A.

    2013-01-01

    Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets. PMID:24223964

  20. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  1. Disruption of Th2a and Th2b genes causes defects in spermatogenesis.

    PubMed

    Shinagawa, Toshie; Huynh, Linh My; Takagi, Tsuyoshi; Tsukamoto, Daisuke; Tomaru, Chinatsu; Kwak, Ho-Geun; Dohmae, Naoshi; Noguchi, Junko; Ishii, Shunsuke

    2015-04-01

    The variant histones TH2A and TH2B are abundant in the testis, but their roles in spermatogenesis remain elusive. Here, we show that male mutant mice lacking both Th2a and Th2b genes were sterile, with few sperm in the epididymis. In the mutant testis, the lack of TH2B was compensated for by overexpression of H2B, whereas overexpression of H2A was not observed, indicating a decrease in the total histone level. Mutant mice exhibited two defects: incomplete release of cohesin at interkinesis after meiosis I and histone replacement during spermiogenesis. In the mutant testis, secondary spermatocytes at interkinesis accumulated and cohesin was not released normally, suggesting that the retained cohesion of sister chromatids delayed the subsequent entry into meiosis II. In addition, impaired chromatin incorporation of TNP2 and degenerated spermatids were observed in the mutant testis. These results suggest that a loss of TH2A and TH2B function in chromatin dynamics or a decrease in the total histone levels causes defects in both cohesin release and histone replacement during spermatogenesis. © 2015. Published by The Company of Biologists Ltd.

  2. Superoxide dismutase 3 attenuates experimental Th2-driven allergic conjunctivitis.

    PubMed

    Lee, Hyun Jung; Kim, Bo-Mi; Shin, Soojung; Kim, Tae-Yoon; Chung, So-Hyang

    2017-03-01

    Allergic conjunctivitis is an inflammatory eye disease mediated by Th2 type immune response. The role of extracellular superoxide dismutase 3 (SOD3) in immune response and allergic conjunctival inflammation was examined in a murine model for experimental allergic conjunctivitis (EAC). Allergic conjunctivitis was induced in mice by allergen challenge with ovalbumin in alum via the conjunctival sac. SOD3 was topically applied and allergy indicators were compared. Clinical signs associated with conjunctivitis, such as OVA-specific IgE production, IgG1/G2a ratio and eosinophil infiltration, were drastically reduced in mice treated with SOD3. They also had less dendritic cells and CD4(+) T cells in conjunctiva than controls. Attenuated allergic inflammation was accredited to reduced Th2 type cytokine responses and increased Treg cytokine in draining lymph node. The characteristics of EAC were attributed to the absence of SOD3. Our findings suggest that SOD3 might be considered as a potential target for Th2-driven allergic conjunctival inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Thromboxane A2 receptor +795T>C and chemoattractant receptor-homologous molecule expressed on Th2 cells -466T>C gene polymorphisms in patients with aspirin-exacerbated respiratory disease.

    PubMed

    Kohyama, Kenya; Hashimoto, Masayuki; Abe, Shyuzo; Kodaira, Kazumi; Yukawa, Tatsuo; Hozawa, Soichiro; Morioka, Junichiro; Inamura, Hiroaki; Yano, Megumi; Ota, Mayumi; Sagara, Hironori; Kurosawa, Motohiro

    2012-02-01

    It is well known that aspirin-exacerbated respiratory disease (AERD) is more common in women than in men, however, whether gene polymorphisms of the thromboxane A2 receptor (TBXA2R) and chemoattractant receptor-homologous molecules expressed on Th2 cells (CRTH2) are associated with the susceptibility of AERD remains unknown. In this study, we examined the gene polymorphisms in a Japanese population. DNA specimens were obtained from the following three groups: 96 patients with AERD, 500 patients with aspirin-tolerant asthma (ATA) and 100 normal controls. The target DNA sequence of each gene was amplified, and an allelic discrimination assay for single nucleotide polymorphisms relating to expression of each gene was carried out. The frequencies of the CC/CT genotype of TBXA2R +795T>C were higher than those of the TT genotype in AERD patients compared to ATA patients (P=0.015). In female AERD patients, but not in males, frequencies of the CC/CT genotype were higher than those of the TT genotype of TBXA2R +795T>C compared to female ATA patients (P=0.013). Also, frequencies of the TT genotype of CRTH2 -466T>C were higher than those of the CC/CT genotype in AERD patients compared to ATA patients (P=0.034). In female AERD patients, but not in male, frequencies of the TT genotype were higher than those of the CC/CT genotype of CRTH2 -466T>C in AERD patients compared to female ATA patients (P=0.046). Based on our investigations, no significant relationship was found between the genotype and the clinical characteristics according to these gene polymorphisms in AERD patients. Our results suggest that an association between the TBXA2R and CRTH2 gene polymorphisms with AERD may exist in the Japanese population.

  4. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4(+)CD25(+)Foxp3+ regulatory T cells in ovalbumin-sensitized mice.

    PubMed

    Ma, Chunhua; Ma, Zhanqiang; Liao, Xiao-lin; Liu, Jiping; Fu, Qiang; Ma, Shiping

    2013-07-30

    Glycyrrhizic acid (GA) is the main bioactive ingredient of licorice (Glycyrrhiza glabra), and has been found to be associated with multiple therapeutic properties. In this study, we investigated immunoregulatory effects of glycyrrhizic acid on anti-asthmatic effects and underlying mechanisms. Asthma model was established by ovalbumin-induced. A total of 60 mice were randomly assigned to six experimental groups: control, model, dexamethasone (2 mg/kg) and GA (10 mg/kg, 20 mg/kg, 40 mg/kg). Airway resistance (Raw) were measured by the forced oscillation technique, histological studies were evaluated by The hematoxylin and eosin (HE) staining, Th1/Th2 and Th17 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was evaluated by Flow Cytometry (FCM), the forkhead/winged helix transcription factor (Foxp3) was evaluated by western blotting. Our study demonstrated that, compared with model group, GA inhibited OVA-induced increases in Raw and eosinophil count; interleukin (IL)-4, IL-5, IL-13 levels were recovered in bronchoalveolar lavage fluid compared; increased IFN-γ level in bronchoalveolar lavage fluid; histological studies demonstrated that GA substantially inhibited OVA-induced eosinophilia in lung tissue and airway tissue compared with model group. Flow cytometry studies demonstrated that GA substantially enhanced Tregs compared with model group. These findings suggest that GA may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC

    PubMed Central

    2013-01-01

    Background Host defences play a key role in tumour growth. Some of the benefits of chemotherapy may occur through modulation of these defences. The aim of this study was to define the status of regulatory cells in women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC) and surgery. Methods Bloods were collected from patients (n = 56) before, during and following NAC, and surgery. Controls (n = 10) were healthy, age-matched females donors (HFDs). Blood mononuclear cells (BMCs) were isolated and T regulatory cells (Tregs) (n = 31) determined. Absolute numbers (AbNs) of Tregs and myeloid-derived suppressor cells (MDSCs) were ascertained from whole blood (n = 25). Reverse transcriptase polymerase chain reaction analysis determined Treg mRNA (n = 16). In vitro production of Th1, Th2 and Th17 cytokines (n = 30), was documented. Patients were classified as clinical responders by magnetic resonance mammography after two cycles of NAC and as pathological responders using established criteria, following surgery. Results Patients with LLABCs had significantly increased circulating Tregs (≥ 6 fold AbN and percentage (%)) and MDSCs (≥ 1.5 fold AbN (p = 0.025)). Percentage of FOXP3+ Tregs in blood predicted the response of the LLABCs to subsequent NAC (p = 0.04). Post NAC blood Tregs (%) were significantly reduced in patients where tumours showed a good pathological response to NAC (p = 0.05). Blood MDSCs (granulocytic, monocytic) were significantly reduced in all patients, irrespective of the pathological tumour response to chemotherapy. NAC followed by surgery failed to restore blood Tregs to normal levels. MDSCs, however, were reduced to or below normal levels by NAC alone. Invitro Th1 profile (IL-1β, IL-2, INF-γ, TNF-α) was significantly reduced (p ≤ 0.009), whilst Th2 (IL-4, IL-5) was significantly enhanced (P ≤ 0.004). Th1 and Th2 (IL-5) were unaffected by NAC and surgery

  6. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  7. The essential role of SIGIRR/TIR8 in regulation of Th2 immune response1

    PubMed Central

    Bulek, Katarzyna; Swaidani, Shadi; Qin, Jinzhong; Lu, Yi; Gulen, Muhammet F.; Herjan, Tomasz; Min, Booki; Kastelein, Robert A.; Aronica, Mark; Kosz-Vnenchak, Magdalena; Li, Xiaoxia

    2010-01-01

    A novel cytokine IL-33, an IL-1 family member, signals via ST2 receptor and promotes T helper type 2 (Th2) responses, through the activation of NFκB and MAP kinases. Previous studies reported that SIGIRR (single immunoglobulin IL-1R-related molecule)/TIR8 (Toll IL-1R8) acts as negative regulator for TLR-IL-1R-mediated signaling. We now found that SIGIRR formed a complex with ST2 upon IL-33 stimulation and specifically inhibited IL-33/ST2-mediated signaling in cell culture model. Furthermore, IL-33-induced Th2 response was enhanced in SIGIRR-deficient mice compared to that in wild-type control mice, suggesting a negative regulatory role of SIGIRR in IL-33/ST2 signaling in vivo. Similar to ST2, SIGIRR was highly expressed in in vitro polarized Th2 cells, but not Th1 cells. SIGIRR-deficient Th2 cells produce higher levels of “Th2 cytokines”, including IL-5, IL-4 and IL-13 than that in wild-type cells. Moreover, SIGIRR-deficient mice developed stronger Th2 immune response in OVA-challenged asthma model. Taken together, our results suggest that SIGIRR plays an important role in the regulation of Th2 response in vivo, possibly through its impact on IL-33-ST2-mediated signaling. PMID:19234154

  8. Direct methanol fuel cell for portable applications

    SciTech Connect

    Valdez, T.I.; Narayanan, S.R.; Frank, H.; Chun, W.

    1997-12-01

    A five cell direct methanol fuel cell stack has been developed at the Jet Propulsion Laboratory. Presently direct methanol fuel cell technology is being incorporated into a system for portable applications. Electrochemical performance and its dependence on flow rate and temperature for a five cell stack are presented. Water transport data, and water transport mechanisms for direct methanol fuel cells are discussed. Stack response to pulse loads has been characterized. Implications of stack performance and operating conditions on system design have been addressed.

  9. Directional summation in non-direction selective retinal ganglion cells.

    PubMed

    Abbas, Syed Y; Hamade, Khaldoun C; Yang, Ellen J; Nawy, Scott; Smith, Robert G; Pettit, Diana L

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network.

  10. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  11. Signals for the execution of Th2 effector function.

    PubMed

    Fowell, Deborah J

    2009-04-01

    Appropriate control of infection depends on the generation of lymphocytes armed with a particular array of cytokine and chemokine effector molecules. The differentiation of naïve T cells into functionally distinct effector subsets is regulated by signals from the T cell receptor (TCR) and cytokine receptors. Using gene knock-out approaches, the initiation of discrete effector programs appears differentially sensitive to the loss of individual TCR signaling components; likely due to differences in the transcription factors needed to activate individual cytokine genes. Less well understood however, are the signal requirements for the execution of effector function. With a focus on Th2 cells and the kinase ITK, we review recent observations that point to differences between the signals needed for the initiation and implementation of cytokine programs in CD4+ T cells. Indeed, Th2 effector cells signal differently from both their naïve counterparts and from Th1 effectors suggesting they may transduce activation signals differently or may be selectively receptive to different activation signals. Potential regulation points for effector function lie at the level of transcription and translation of cytokine genes. We also discuss how provision of these execution signals may be spatially segregated in vivo occurring at tissue sites of inflammation and subject to modulation by the pathogen itself.

  12. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  13. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  14. Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T cell-attracting chemokines and spontaneously induce Th1, Th17 and Th2 cell activity

    PubMed Central

    2013-01-01

    Introduction Myeloid dendritic cells (mDCs) are potent T cell-activating antigen-presenting cells that have been suggested to play a crucial role in the regulation of immune responses in many disease states, including rheumatoid arthritis (RA). Despite this, studies that have reported on the capacity of naturally occurring circulating mDCs to regulate T cell activation in RA are still lacking. This study aimed to evaluate the phenotypic and functional properties of naturally occurring CD1c (BDCA-1)+ mDCs from synovial fluid (SF) compared to those from peripheral blood (PB) of RA patients. Methods CD1c+ mDC numbers and expression of costimulatory molecules were assessed by fluorescence-activated cell sorting (FACS) analysis in SF and PB from RA patients. Ex vivo secretion of 45 inflammatory mediators by mDCs from SF and PB of RA patients was determined by multiplex immunoassay. The capacity of mDCs from SF to activate autologous CD4+ T cells was measured. Results CD1c+ mDC numbers were significantly increased in SF versus PB of RA patients (mean 4.7% vs. 0.6%). mDCs from SF showed increased expression of antigen-presenting (human leukocyte antigen (HLA) class II, CD1c) and costimulatory molecules (CD80, CD86 and CD40). Numerous cytokines were equally abundantly produced by mDCs from both PB and SF (including IL-12, IL-23, IL-13, IL-21). SF mDCs secreted higher levels of interferon γ-inducible protein-10 (IP-10), monokine induced by interferon γ (MIG) and, thymus and activation-regulated chemokine (TARC), but lower macrophage-derived chemokine (MDC) levels compared to mDCs from PB. mDCs from SF displayed a strongly increased capacity to induce proliferation of CD4+ T cells associated with a strongly augmented IFNγ, IL-17, and IL-4 production. Conclusions This study suggests that increased numbers of CD1c+ mDCs in SF are involved in the inflammatory cascade intra-articularly by the secretion of specific T cell-attracting chemokines and the activation of

  15. CD30 antigen and multiple sclerosis: CD30, an important costimulatory molecule and marker of a regulatory subpopulation of dendritic cells, is involved in the maintenance of the physiological balance between TH1/TH2 immune responses and tolerance. The role of IFNbeta-1a in the treatment of multiple sclerosis.

    PubMed

    Pellegrini, Patrizia; Totaro, Rocco; Contasta, Ida; Berghella, Anna Maria; Carolei, Antonio; Adorno, Domenico

    2005-01-01

    The immunological effect of CD30 on dendritic cells (DCs) was examined in a comparative study of patients with relapsing-remitting multiple sclerosis (RRMS). The patients were divided into two groups on the basis of interferon (IFN)beta-1a treatment: IFNbeta-1a-treated patients and untreated patients. We have already shown that CD30 is a marker of cells involved in the regulation of the balance between TH1 and TH2 immune responses and so the aim of this study was to confirm this role in DCs and, consequently, to clarify the immunopathological mechanisms of MS and the causes of immunosuppressive drug failure. We studied network interactions between soluble (s) CD30 and TH1/TH2 cytokines in the supernatants of CD14+-derived immature DC (IDC) and DC cultures from treated and untreated patients. Network interactions between the sCD30 and cytokines in IDC and DC supernatants were also evaluated in relation to TH1/TH2 cytokine serum levels. Our overall results show that CD30 is expressed on IDCs and DCs, indicating an immunological role in resting and activated physiological conditions. This role would appear to be the regulation of the resting and activated physiological balance between the TH1/TH2 immune functions as abnormal increases in sCD30 levels result in impaired regulation. Further studies are undoubtedly required to clarify this situation. IFNbeta-1a treatment was found to determine a fall in sCD30 levels, leading to the restoration of the normal functional selection of IDCs from progenitor cells and the regulation of the TH1/TH2 network balance. However, IFNbeta-1a treatment may also be responsible for the in vivo suppression of CD30-mediated TH1-DC functions in immune activation. TH1-DC functions are involved in the induction of T-regulatory cells for the physiological deletion of self-aggressive cells. We conclude that CD30 is an important costimulatory molecule and marker of a regulatory subpopulation of DCs which induces and modulates immune cells

  16. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    Experimental runs were conducted on direct ammonia fuel cells . Effects of temperature, composition, as well as run effect and block effect were...cells and to electrode flooding are discussed. Data on performance of complete laboratory direct ammonia-oxygen fuel cells are presented and discussed. (Author)

  17. Development of chronic allergic responses by dampening Bcl6-mediated suppressor activity in memory T helper 2 cells.

    PubMed

    Ogasawara, Takashi; Hatano, Masahiko; Satake, Hisae; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hirata, Hirokuni; Sugiyama, Kumiya; Fukushima, Yasutsugu; Nakae, Susumu; Matsumoto, Kenji; Saito, Hirohisa; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi; Arima, Masafumi

    2017-01-31

    Mice deficient in the transcriptional repressor B-cell CLL/lymphoma 6 (Bcl6) exhibit similar T helper 2 (TH2) immune responses as patients with allergic diseases. However, the molecular mechanisms underlying Bcl6-directed regulation of TH2 cytokine genes remain unclear. We identified multiple Bcl6/STAT binding sites (BSs) in TH2 cytokine gene loci. We found that Bcl6 is modestly associated with the BSs, and it had no significant effect on cytokine production in newly differentiated TH2 cells. Contrarily, in memory TH2 (mTH2) cells derived from adaptively transferred TH2 effectors, Bcl6 outcompeted STAT5 for binding to TH2 cytokine gene loci, particularly Interleukin4 (Il4) loci, and attenuated GATA binding protein 3 (GATA3) binding to highly conserved intron enhancer regions in mTH2 cells. Bcl6 suppressed cytokine production epigenetically in mTH2 cells to negatively tune histone acetylation at TH2 cytokine gene loci, including Il4 loci. In addition, IL-33, a pro-TH2 cytokine, diminished Bcl6's association with loci to which GATA3 recruitment was inversely augmented, resulting in altered IL-4, but not IL-5 and IL-13, production in mTH2 cells but no altered production in newly differentiated TH2 cells. Use of a murine asthma model that generates high levels of pro-TH2 cytokines, such as IL-33, suggested that the suppressive function of Bcl6 in mTH2 cells is abolished in severe asthma. These findings indicate a role of the interaction between TH2-promoting factors and Bcl6 in promoting appropriate IL-4 production in mTH2 cells and suggest that chronic allergic diseases involve the TH2-promoting factor-mediated functional breakdown of Bcl6, resulting in allergy exacerbation.

  18. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  19. Gold and d-penicillamine induce vasculitis and up-regulate mRNA for IL-4 in the Brown Norway rat: support for a role for Th2 cell activity

    PubMed Central

    QASIM, F J; THIRU, S; GILLESPIE, K

    1997-01-01

    d-penicillamine (DP) and gold salts which are used as immune-modulating agents in the treatment of rheumatoid arthritis are known to be capable of causing autoimmune manifestations. Most autoimmune diseases in man are dominated by Th1-type responses, and one might presume that effective immunotherapy counteracts Th1 activity, perhaps by causing a shift to a Th2 response. The mechanism of action of gold and DP is not clear, but some clues may be obtained from their effects in animal models. DP, gold salts and mercuric chloride (HgCl2) are known to induce Th2-dominated autoimmune syndromes in genetically susceptible rodent strains, and we have demonstrated recently that HgCl2 up-regulates messenger RNA (mRNA) for IL-4 in the Brown Norway (BN) rat. In the BN rat HgCl2 treatment is also associated with the development of vasculitis, and anti-myeloperoxidase (MPO) antibodies are found in the serum. The present study examined and confirmed the hypothesis that, since gold and DP induce an autoimmune syndrome similar to HgCl2 in the BN rat, they may also induce vasculitis and an up-regulation in mRNA for IL-4. Tissue injury was assessed macroscopically and histologically on day 5 and day 15 after the start of injections with gold, DP or HgCl2, serum titres of IgE and presence of anti-MPO antibodies were determined using ELISA, and a semi-quantitative assay using reverse transcription-polymerase chain reaction was used to assay the level of mRNA for IL-4 in spleen and caecum. The relative degree of tissue injury reflected the potency of induction of IgE by the three agents (HgCl2 being most potent and DP least potent). The lesions were identical histologically, supporting the premise that the vasculitis is a manifestation of the autoimmune syndrome rather than non-specific HgCl2 toxicity. Both gold and DP induced less up-regulation of mRNA for IL-4 than HgCl2. HgCl2 (but not gold or DP) induced anti-MPO antibodies. It would be interesting to examine patients treated with

  20. Obesity and asthma: beyond T(H)2 inflammation.

    PubMed

    Leiria, Luiz O S; Martins, Milton A; Saad, Mário J A

    2015-02-01

    Obesity is a major risk factor for asthma. Likewise, obesity is known to increase disease severity in asthmatic subjects and also to impair the efficacy of first-line treatment medications for asthma, worsening asthma control in obese patients. This concept is in agreement with the current understanding that some asthma phenotypes are not accompanied by detectable inflammation, and may not be ameliorated by classical anti-inflammatory therapy. There are growing evidences suggesting that the obesity-related asthma phenotype does not necessarily involve the classical T(H)2-dependent inflammatory process. Hormones involved in glucose homeostasis and in the pathogeneses of obesity likely directly or indirectly link obesity and asthma through inflammatory and non-inflammatory pathways. Furthermore, the endocrine regulation of the airway-related pre-ganglionic nerves likely contributes to airway hyperreactivity (AHR) in obese states. In this review, we focused our efforts on understanding the mechanism underlying obesity-related asthma by exploring the T(H)2-independent mechanisms leading to this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of ultra violet irradiation on the interplay between Th1 and Th2 lymphocytes

    PubMed Central

    Abo Elnazar, Salma Y.; Ghazy, Amany A.; Ghoneim, Hossam E.; Taha, Abdul-Rahman M.; Abouelella, Amira M.

    2015-01-01

    Although ultraviolet (UV) radiation is used to treat several types of diseases, including rickets, psoriasis, eczema, and jaundice, the prolonged exposure to its radiation may result in acute and chronic health effects particularly on the skin, eyes, and the immune system. Aim: This study was carried out to show the effect of UV on both of the lymphoproliferative response and their capacity to produce IL-12 and IL-10 in mice. Methods: Mice were exposed to whole body UVB and tested for the effect of recovery times on lymphocyte proliferation and cytokine production. In addition, direct irradiation of spleens and lymphocyte suspension was carried out. Basal and mitogens-stimulated lymphocyte proliferation was assessed by MTT assay while IL-10 and IL-12 were measured using ELISA. Results: There was a significant suppression in lymphocyte proliferation in comparison with control. IL-12 level was significantly reduced while the level of IL-10 was increased. Con A and PWM mitogens had no significant changes in IL-10 while Con A caused a highly significant increase in IL-12 at day 6 of recovery in UVB body irradiation. Conclusion: Exposure to UVB radiation could cause a state of immune suppression and shifts Th1/Th2 cell response. This effect is closely associated with the reduction of Th1 cytokines’ expression and increase in Th2 cytokines’ levels. PMID:25852558

  2. Random versus directionally persistent cell migration

    PubMed Central

    Petrie, Ryan J.; Doyle, Andrew D.; Yamada, Kenneth M.

    2009-01-01

    Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking and co-receptors, and actin–myosin contraction converge on regulation of the Rho family of GTPases and control of lamellipodial protrusions to promote directional migration. PMID:19603038

  3. RHS6-mediated chromosomal looping and nuclear substructure binding is required for Th2 cytokine gene expression.

    PubMed

    Hwang, Soo Seok; Jang, Sung Woong; Lee, Gap Ryol

    2017-03-01

    Subset-specific gene expression is a critical feature of CD4 T cell differentiation. Th2 cells express Th2 cytokine genes including Il4, Il5, and Il13 and mediate the immune response against helminths. The expression of Th2 cytokine genes is regulated by Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region; however, the molecular mechanisms of RHS6 action at the chromatin level are poorly understood. Here, we demonstrate that RHS6 is crucial for chromosomal interactions and nuclear substructure binding of the Th2 cytokine locus. RHS6-deficient cells had a marked reduction in chromatin remodeling and in intrachromosomal interactions at the Th2 locus. Deficiency of RHS6-binding transcription factors GATA3, SATB1, and IRF4 also caused a great reduction in chromatin remodeling and long-range chromosomal interactions involving the Th2 locus. RHS6 deficiency abrogated association of the Th2 locus with the nuclear substructure and RNA polymerase II. Therefore, RHS6 serves as a crucial cis-acting hub for coordinate regulation of Th2 cytokine genes by forming chromosomal loops and binding to a nuclear substructure.

  4. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  5. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  6. Shallow cells in directional solidification

    NASA Technical Reports Server (NTRS)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The existing theory on two-dimensional transitions (appropriate to thin parallel-plate geometries) is presented in such a way that it is possible to identify easily conditions for the onset of shallow cells. Conditions are given under which succinonitrile-acetone mixtures should undergo supercritical bifurcation in experimentally accessible ranges. These results suggest a means for the quantitative test of the Mullins and Sekerka (1964) model and its weakly nonlinear extensions.

  7. Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection

    PubMed Central

    Sakala, Isaac G.; Chaudhri, Geeta; Eldi, Preethi; Buller, R. Mark; Karupiah, Gunasegaran

    2015-01-01

    Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses. PMID:25751266

  8. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-09-02

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis.

  9. Foxa2 Regulates Leukotrienes to Inhibit Th2-mediated Pulmonary Inflammation

    PubMed Central

    Tang, Xiaoju; Liu, Xiaojing J.; Tian, Cuijie; Su, Qiaoli; Lei, Yi; Wu, Qingbo; He, Yangyan; Whitsett, Jeffrey A.

    2013-01-01

    Foxa2 is a member of the Forkhead family of nuclear transcription factors that is highly expressed in respiratory epithelial cells of the developing and mature lung. Foxa2 is required for normal airway epithelial differentiation, and its deletion causes goblet-cell metaplasia and Th2-mediated pulmonary inflammation during postnatal development. Foxa2 expression is inhibited during aeroallergen sensitization and after stimulation with Th2 cytokines, when its loss is associated with goblet-cell metaplasia. Mechanisms by which Foxa2 controls airway epithelial differentiation and Th2 immunity are incompletely known. During the first 2 weeks after birth, the loss of Foxa2 increases the production of leukotrienes (LTs) and Th2 cytokines in the lungs of Foxa2 gene–targeted mice. Foxa2 expression inhibited 15-lipoxygenase (Alox15) and increased Alox5 transcription, each encoding key lipoxygenases associated with asthma. The inhibition of the cysteinyl LT (CysLT) signaling pathway by montelukast inhibited IL-4, IL-5, eotaxin-2, and regulated upon activation normal T cell expressed and presumably secreted expression in the developing lungs of Foxa2 gene–targeted mice. Montelukast inhibited the expression of genes regulating mucus metaplasia, including Spdef, Muc5ac, Foxa3, and Arg2. Foxa2 plays a cell-autonomous role in the respiratory epithelium, and is required for the suppression of Th2 immunity and mucus metaplasia in the developing lung in a process determined in part by its regulation of the CysLT pathway. PMID:23822876

  10. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma

    PubMed Central

    Xu, Xiaoqun; Wang, Rui; Su, Qinghong; Huang, Haiyan; Zhou, Peng; Luan, Junwen; Liu, Jingsheng; Wang, Junfu; Chen, Xuemei

    2016-01-01

    T-helper (Th) 0 cell differentiation into Th1 or Th2 cells is dependent on a number of transcription factors that act at specific time points to regulate gene expression. Th17 cells, a subset of interleukin (IL)-17-producing T cells distinct from Th1 or Th2 cells, are considered to exhibit a critical function in inflammation and autoimmune diseases, as well as cancer development. In the present study, the expression of Th1-, Th2- and Th17-associated cytokines in laryngeal cancer and pericarcinoma tissues obtained from 57 laryngeal carcinoma patients was investigated. The association between Th1, Th2 and Th17 infiltration and tumor development was also evaluated. Reverse transcription-polymerase chain reaction and western blotting results revealed that the mRNA and protein expression of Th2 cytokines was lower, while the expression of Th1 and Th17 cytokines was higher in tumor tissues than in pericarcinoma tissues. Furthermore, the early stage cancer patients exhibited a higher level of interferon-γ, IL-2 and IL-17 mRNA expression than those at advanced stages. Cancer tissues exhibited higher Th17 cytokine expression than pericarcinoma tissues. By contrast, Th1 cytokine expression was increased in pericarcinoma tissues compared with cancer tissues. These results indicate that high expression of Th1- and Th17-associated cytokines in laryngeal carcinoma may contribute to suppression of cancer development and a relatively good prognosis. PMID:27588143

  11. Nestin+ cells direct inflammatory cell migration in atherosclerosis

    PubMed Central

    del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  12. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  13. Pillars article: downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J. Exp. Med. 1991. 173: 159-166.

    PubMed

    Pearce, Edward J; Caspar, Patricia; Grzych, Jean-Marie; Lewis, Fred A; Sher, Alan

    2012-08-01

    In the mouse, infection with Schistosoma mansoni results in an egg-producing infection and associated disease, whereas vaccination with attenuated larval stages produces a substantial and specific immunity in the absence of egg-induced pathology. Preliminary data showing enhanced interleukin-5 (IL-5) production by T cells from infected mice and interferon γ (IFN-γ) synthesis by cells from vaccinated animals (7), suggested differential CD4(+) subset stimulation by the different parasite stimuli. To confirem this hyposthesis, lymphocytes from vaccinated or infected animals were compared for their ability to produce IFN-γ and IL-2 (secreted by Th1 cells) as compared with IL-4 and IL-5 (characteristic Th2 cytokines). After stimulation with specific antigen or mitogen, T cells from vaccinated mice or prepatently infected animals responded primarily with Th1 lymphokines, whereas lymphocytes from patenly infected mice instead produced Th2 cytokines. The Th2 response in infected animals was shown to be induced by schistosome eggs and directed largely against egg antigens, whereas the Th1 reactivity in vaccinated mice was triggered primarily by larval anigens. Interestingly, Th1 responses in mice carrying egg-producing infections were found to be profoundly downregulated. Moreover, the injection of eggs into vaccinated mice resulted in a reduction of antigen and mitogen-stimulated Th1 function accompanied by a coincident expression of Th2 responses. Together, the data suggest that coincident with the induction of Th2 responses, murine schistosome infection results in an inhibition of potentially protective Th1 function. This previously unrecognized downregulation of Th1 cytokine production may be an important immunological consequence of helminth infection related to host adaptation.

  14. Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages

    USDA-ARS?s Scientific Manuscript database

    Enteric nematode infection induces a strong Th2 cytokine response and is characterized by increased infiltration of various immune cells including macrophages. The role of these immune cells in host defense against enteric nematode infection, however, remains poorly defined. The present study invest...

  15. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  16. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  17. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells.

    PubMed

    Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2013-03-01

    The aim of this study was to compare levels of apoptosis, necrosis, mitotic cell death and senescence after treatment with both direct radiation and irradiated cell conditioned medium. Human keratinocytes (HaCaT cell line) were irradiated (0.005, 0.05 and 0.5 Gy) using a cobalt 60 teletherapy unit. For bystander experiments, the medium was harvested from donor HaCaT cells 1 hour after irradiation and transferred to recipient HaCaT cells. Clonogenic assay, apoptosis, necrosis, mitotic cell death, senescence and cell cycle analysis were measured in both directly irradiated cells and bystander cells A reduction in cell survival was observed for both directly irradiated cells and irradiated cell conditioned medium (ICCM)-treated cells. Early apoptosis and necrosis was observed predominantly after direct irradiation. An increase in the number of cells in G2/M phase was observed at 6 and 12 h which led to mitotic cell death after 72 h following direct irradiation and ICCM treatment. No senescence was observed in the HaCaT cell line following either direct irradiation or treatment with ICCM. This study has shown that directly irradiated cells undergo apoptosis, necrosis and mitotic cell death whereas ICCM-treated cells predominantly undergo mitotic cell death.

  18. Diisononyl phthalate induces asthma via modulation of Th1/Th2 equilibrium.

    PubMed

    Hwang, Yun-Ho; Paik, Man-Jeong; Yee, Sung-Tae

    2017-03-12

    Diisononyl phthalate (DINP), a member of the phthalate family, is used to plasticize polyvinyl chloride (PVC). This chemical is known to enhance airway inflammation in the OVA-induced asthma model (adjuvant effects) and aggravate allergic dermatitis. Moreover, DINP enhances the production of interleukin-4 in activated CD4(+) T cells. However, the effect of DINP itself on the differentiation of naïve CD4(+) T cells into T helper cells (Th1/Th2) in vitro and allergic asthma in vivo has not yet been studied. In this study, DINP was shown to suppress the polarization of Th1 and enhance the polarization of Th2 from naïve CD4(+) T cells in vitro. Also, DINP induced allergic asthma via the production of IL-4, IL-5, IgE and IgG1 and the reduction of IFN-γ and IgG2a. Finally, we confirmed that exposure to DINP induces the infiltration of inflammatory cells and PAS positive cells and increases the expression of caspase-1 and caspase-3 in asthmatic mice. In conclusion, we suggest that DINP as an environmental pollutant or endocrine disruptor (ECD) induces asthma via the modulation of the Th1/Th2 equilibrium and production of Th2 mediated cytokines and immunoglobulin.

  19. Th-2 signature in chronic airway diseases: towards the extinction of asthma-COPD overlap syndrome?

    PubMed

    Cosío, Borja G; Pérez de Llano, Luis; Lopez Viña, Antolin; Torrego, Alfons; Lopez-Campos, Jose Luis; Soriano, Joan B; Martinez Moragon, Eva; Izquierdo, Jose Luis; Bobolea, Irina; Callejas, Javier; Plaza, Vicente; Miravitlles, Marc; Soler-Catalunya, Juan Jose

    2017-05-01

    We aimed to describe the differences and similarities between patients with chronic obstructive airway disease classified on the basis of classical diagnostic labels (asthma, chronic obstructive pulmonary disease (COPD), or asthma-COPD overlap (ACOS)) or according to the underlying inflammatory pattern (Th-2 signature, either Th-2-high or Th-2-low).We performed a cross-sectional study of patients aged ≥40 years and with a post-bronchodilator forced expiratory volume in 1 s to forced vital capacity ratio ≤0.7 with a previous diagnosis of asthma (non-smoking asthmatics (NSA)), COPD or ACOS, the latter including both smoking asthmatics (SA) and patients with eosinophilic COPD (COPD-e). Clinical, functional and inflammatory parameters (blood eosinophil count, IgE and exhaled nitric oxide fraction (FeNO)) were compared between groups. Th-2 signature was defined by a blood eosinophil count ≥300 cells·μL(-1) and/or a sputum eosinophil count ≥3%.Overall, 292 patients were included in the study: 89 with COPD, 94 NSA and 109 with ACOS (44 SA and 65 with COPD-e). No differences in symptoms or exacerbation rate were found between the three groups. With regards the underlying inflammatory pattern, 94 patients (32.2%) were characterised as Th-2-high and 198 (67.8%) as Th-2-low. The Th-2 signature was found in 49% of NSA, 3.3% of patients with COPD, 30% of SA and 49.3% of patients with COPD-e. This classification yielded significant differences in demographic, functional and inflammatory characteristics.We conclude that a classification based upon the inflammatory profile, irrespective of the taxonomy, provides a more clear distinction of patients with chronic obstructive airway disease. Copyright ©ERS 2017.

  20. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance

    PubMed Central

    Martino, Matteo; Rocchi, Giulio; Escelsior, Andrea; Fornaro, Michele

    2012-01-01

    Neurotransmitters and hormones regulate major immune functions, including the selection of T helper (Th)1 or Th2 cytokine responses, related to cell-mediated and humoral immunity, respectively. A role of imbalance and dynamic switching of Th1/Th2 system has been proposed, with relative displacement of the immune reserve in relation to complex interaction between Th1/Th2 and neuro-hormonal balance fluctuations, in the pathogenesis of various chronic human diseases, probably also including psychiatric disorders. Components of the stress system such as norepinephrine (NE) and glucocorticoids appear to mediate a Th2 shift, while serotonin (5-HT) and melatonin might mediate a Th1 shift. Some antidepressants would occur affecting these systems, acting on neurotransmitter balance (especially the 5-HT/NE balance) and expression levels of receptor subtypes, which in turn affect cytokine production and relative Th1/Th2 balance. It could be therefore hypothesized that the antidepressant-related increase in NE tone enhances the Th2 response, while the decrease in NE tone or the increase in 5-HT tone enhances the Th1 response. However, the neurotransmitter and Th1/Th2 balance modulation could be relative, aiming to restore physiological levels a previous imbalance in receptor sensitivity and cytokine production. The considerations on neuro-immunomodulation could represent an additional aid in the study of pathophysiology of psychiatric disorders and in the choice of specific antidepressants in specific clusters of symptoms, especially in comorbidity with internal pathologies. Furthermore limited data, reviewed here, have shown the effectiveness of some antidepressants as pure immunomodulators. However, these considerations are tentative and require experimental confirmation or refutation by future studies. PMID:23204981

  1. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements

    PubMed Central

    Kanhere, Aditi; Hertweck, Arnulf; Bhatia, Urvashi; Gökmen, M. Refik; Perucha, Esperanza; Jackson, Ian; Lord, Graham M.; Jenner, Richard G.

    2012-01-01

    T-bet and GATA3 regulate the CD4+ T cell Th1/Th2 cell fate decision but little is known about the interplay between these factors outside of the murine Ifng and Il4/Il5/Il13 loci. Here we show that T-bet and GATA3 bind to multiple distal sites at immune regulatory genes in human effector T cells. These sites display markers of functional elements, act as enhancers in reporter assays and are associated with a requirement for T-bet and GATA3. Furthermore, we demonstrate that both factors bind distal sites at Tbx21 and that T-bet directly activates its own expression. We also show that in Th1 cells, GATA3 is distributed away from Th2 genes, instead occupying T-bet binding sites at Th1 genes, and that T-bet is sufficient to induce GATA3 binding at these sites. We propose these aspects of T-bet and GATA3 function are important for Th1/Th2 differentiation and for understanding transcription factor interactions in other T cell lineage decisions. PMID:23232398

  2. Participation of MyD88 and Interleukin-33 as Innate Drivers of Th2 Immunity to Trichinella spiralis

    PubMed Central

    Scalfone, Lisa K.; Nel, Hendrik J.; Gagliardo, Lucille F.; Cameron, Jody L.; Al-Shokri, Shaikha; Leifer, Cynthia A.; Fallon, Padraic G.

    2013-01-01

    Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses. PMID:23403558

  3. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  4. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  5. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  6. Altered Th1/Th2 commitment contributes to lung senescence in CXCR3-deficient mice.

    PubMed

    Huang, Junmin; Li, Zongli; Yao, Xiujuan; Li, Yan; Reng, Xiaoxia; Li, Junfa; Wang, Wei; Gao, Jinming; Wang, Chen; Tankersley, Clarke G; Huang, Kewu

    2013-08-01

    Aging is an inevitable process associated with immune imbalance, which is characterized by a progressive functional decline in major organs, including lung. However, effects of altered Th1/Th2 commitment on lung senescence are largely unknown. To examine effects of altered Th1/Th2 balance on lung aging, we measured proportions of Th1 and Th2 cells and expression of cytokines, chemokines, collagen deposition and other relevant physiological and pathological parameters in 2- and 20-months-old (mo) CXCR3-deficient (CXCR3(-/-)) C57BL/6J mice compared with wild-type (WT) mice. There was a significant weight-loss observed in 20-mo CXCR3(-/-) mice compared with the same aged WT group. Although lung function and structure changed with age in both groups, central airway resistance (Rn), tissue elastance (H) and damping (G) were significantly lower in 20-mo CXCR3(-/-) mice than those of WT mice. In contrast, the whole lung volume (V(L)), the mean linear intercept length of alveolar (L(m)), and the total lung collagen content were significantly elevated in 20-mo CXCR3(-/-) mice. With aging, the lungs of WT mice had typical Th1-type status (increased population of Th1 cells and concentrations of cytokine IFN-γ and CXCR3 ligands) while CXCR3(-/-) mice showed Th2-type polarization (decreased proportion of Th1 cells and concentrations of CXCR3 ligands but increased level of IL-4). Our data suggest that Immunosenescence is associated with lung aging, and that altered Th1/Th2 imbalance favors Th2 predominance in CXCR3(-/-) mice, which contributes to the process of accelerated lung aging in this model.

  7. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  8. Identification of a variant-specific phosphorylation of TH2A during spermiogenesis

    PubMed Central

    Hada, Masashi; Masuda, Koji; Yamaguchi, Kosuke; Shirahige, Katsuhiko; Okada, Yuki

    2017-01-01

    Tissue-specific histone variant incorporation into chromatin plays dynamic and important roles in tissue development. Testis is one such tissue, and a number of testis-specific histone variants are expressed that have unique roles. While it is expected that such variants acquire post-transcriptional modifications to be functional, identification of variant-specific histone modifications is challenging because of the high similarity of amino acid sequences between canonical and variant versions. Here we identified a novel phosphorylation on TH2A, a germ cell-specific histone H2A variant. TH2A-Thr127 is unique to the variant and phosphorylated concomitant with chromatin condensation including spermiogenesis and early embryonic mitosis. In sperm chromatin, phosphorylated TH2A-Thr127 (=pTH2A) is co-localized with H3.3 at transcriptional starting sites of the genome, and subsequently becomes absent from the paternal genome upon fertilization. Notably, pTH2A is recurrent and accumulated in the pericentromeric heterochromatin of both paternal and maternal chromosomes in the first mitosis of embryos, suggesting its unique regulation during spermiogenesis and early embryogenesis. PMID:28387373

  9. Architecture for portable direct liquid fuel cells

    NASA Astrophysics Data System (ADS)

    Qian, Weimin; Wilkinson, David P.; Shen, Jun; Wang, Haijiang; Zhang, Jiujun

    Direct fuel cells (DFCs) are receiving increased interest for portable power applications. Cell and stack architecture is a vital technical issue for portable DFCs. The architecture of a DFC not only has to meet particular application requirements such as a compact size and easy handling, but also has to ensure desired performance, reliability and fabrication costs. In this paper, the most recent advances related to portable DFCs and their architecture are reviewed. The current status of system architecture, stack/unit cell architecture, flow-field designs and MEA morphology strategies along with analysis are surveyed. In addition, promising methods of passive fuel delivery are also presented.

  10. Improved Direct Methanol Fuel Cell Stack

    SciTech Connect

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  11. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  12. Biofuel cell based on direct bioelectrocatalysis.

    PubMed

    Ramanavicius, Arunas; Kausaite, Asta; Ramanaviciene, Almira

    2005-04-15

    A biofuel cell, consisting of two 3mm diameter carbon rod electrodes and operating at ambient temperature in aqueous solution, pH 6, is described. Biofuel cell based on enzymes able to exchange directly electrons with carbon electrodes was constructed and characterized. Anode of the biofuel cell was based on immobilized Quino-hemoprotein alcohol dehydrogenase from Gluconobacter sp. 33 (QH-ADH), cathode on co-immobilized glucose oxidase from Aspergilus niger (GO(x)) and microperoxidase 8 from the horse heart (MP-8) acting in the consecutive mode. Two enzymes GO(x) and MP-8 applied in the design of biofuel cell cathode were acting in consecutive mode and by hydrogen peroxide oxidized MP-8 was directly accepting electrons from carbon rod electrode. If ethanol was applied as an energy source the maximal open circuit potential of the biofuel cell was -125 mV. If glucose was applied as energy source the open circuit potential of the cell was +145 mV. The maximal open circuit potential (270 mV) was achieved in the presence of extent concentration (over 2 mM) of both substrates (ethanol and glucose). Operational half-life period (tau(1/2)) of the biofuel cell was found to be 2.5 days.

  13. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  14. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  15. Microbiota-Independent Ameliorative Effects of Antibiotics on Spontaneous Th2-Associated Pathology of the Small Intestine.

    PubMed

    Han, Daehee; Walsh, Matthew C; Kim, Kwang Soon; Hong, Sung-Wook; Lee, Junyoung; Yi, Jaeu; Rivas, Gloriany; Surh, Charles D; Choi, Yongwon

    2015-01-01

    We have previously generated a mouse model of spontaneous Th2-associated disease of the small intestine called TRAF6ΔDC, in which dendritic cell (DC)-intrinsic expression of the signaling mediator TRAF6 is ablated. Interestingly, broad-spectrum antibiotic treatment ameliorates TRAF6ΔDC disease, implying a role for commensal microbiota in disease development. However, the relationship between the drug effects and commensal microbiota status remains to be formally demonstrated. To directly assess this relationship, we have now generated TRAF6ΔDC bone marrow chimera mice under germ-free (GF) conditions lacking commensal microbiota, and found, unexpectedly, that Th2-associated disease is actually exacerbated in GF TRAF6ΔDC mice compared to specific pathogen-free (SPF) TRAF6ΔDC mice. At the same time, broad-spectrum antibiotic treatment of GF TRAF6ΔDC mice has an ameliorative effect similar to that observed in antibiotics-treated SPF TRAF6ΔDC mice, implying a commensal microbiota-independent effect of broad-spectrum antibiotic treatment. We further found that treatment of GF TRAF6ΔDC mice with broad-spectrum antibiotics increases Foxp3+ Treg populations in lymphoid organs and the small intestine, pointing to a possible mechanism by which treatment may directly exert an immunomodulatory effect. To investigate links between the exacerbated phenotype of the small intestines of GF TRAF6ΔDC mice and local microbiota, we performed microbiotic profiling of the luminal contents specifically within the small intestines of diseased TRAF6ΔDC mice, and, when compared to co-housed control mice, found significantly increased total bacterial content characterized by specific increases in Firmicutes Lactobacillus species. These data suggest a protective effect of Firmicutes Lactobacillus against the spontaneous Th2-related inflammation of the small intestine of the TRAF6ΔDC model, and may represent a potential mechanism for related disease phenotypes.

  16. Establishing direction during chemotaxis in eukaryotic cells.

    PubMed Central

    Rappel, Wouter-Jan; Thomas, Peter J; Levine, Herbert; Loomis, William F

    2002-01-01

    Several recent studies have demonstrated that eukaryotic cells, including amoeboid cells of Dictyostelium discoideum and neutrophils, respond to chemoattractants by translocation of PH-domain proteins to the cell membrane, where these proteins participate in the modulation of the cytoskeleton and relay of the signal. When the chemoattractant is released from a pipette, the localization is found predominantly on the proximal side of the cell. The recruitment of PH-domain proteins, particularly for Dictyostelium cells, occurs very rapidly (<2 s). Thus, the mechanism responsible for the first step in the directional sensing process of a cell must be able to establish an asymmetry on the same time scale. Here, we propose a simple mechanism in which a second messenger, generated by local activation of the membrane, diffuses through the interior of the cell, suppresses the activation of the back of the cell, and converts the temporal gradient into an initial cellular asymmetry. Numerical simulations show that such a mechanism is plausible. Available evidence suggests that the internal inhibitor may be cGMP, which accumulates within less than a second following treatment of cells with external cAMP. PMID:12202361

  17. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  18. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  19. Selective regulation of T cell IL-5 synthesis by OM-01, JTE-711 and p38 MAP kinase inhibitor: independent control of Th2 cytokines, IL-4 and IL-5.

    PubMed

    Mori, A; Okudaira, H; Kobayashi, N; Akiyama, K

    2001-01-01

    Helper T cells are involved in chronic eosinophilic inflammation. Control of cytokine production seems to be an effective management. The effect of nonactin, SB203580, a p38 MAP kinase inhibitor, and JTE-711 on the cytokine production of allergen-specific T cell clones was determined. The effect of nonactin on the airway eosinophilia was investigated using murine asthma model. Nonactin suppressed IL-5 synthesis by human Th cells in a dose-dependent manner without affecting IL-2 or IL-4 synthesis, and still significantly suppressed murine airway eosinophilia induced by the antigen inhalation. SB203580 and JTE-711 also selectively inhibited IL-5 synthesis in vitro. Synthesis of IL-5 by human Th cells can be differentially regulated from that of other major T cell cytokines. The in vivo effects of selective IL-5 synthesis inhibitors suggest that IL-5 is the reasonable target for the regulation of allergic disorders accompanied by eosinophilic inflammation. Copyright 2001 S. Karger AG, Basel

  20. TH2 profile in asymptomatic Taenia solium human neurocysticercosis.

    PubMed

    Chavarría, Anahí; Roger, Beatrice; Fragoso, Gladis; Tapia, Graciela; Fleury, Agnes; Dumas, Michel; Dessein, Alain; Larralde, Carlos; Sciutto, Edda

    2003-10-01

    Neurocysticercosis (NC), a parasitic disease caused by Taenia solium, may be either asymptomatic or have mild to severe symptoms due to several factors. In this study, the immunological factors that underlie NC pleomorphism were studied. Ten of the 132 inhabitants of a rural community in Mexico (Tepez) had a computerized tomography (CT) scan compatible with calcified NC, and all were asymptomatic. Their immunological profiles were compared with those of 122 CT scan negative (non-NC) subjects from the same village. NC was associated with a TH2 response (IgG4, IL-4, IL-5, IL-13). Subjects from Tepez had higher levels of specific antibodies (IgG1, IgG2, IgG4, IgE) and specific cell proliferation than subjects from an area with low exposure (Ensenada). This suggests that non-NC subjects from Tepez had been exposed to T. solium and resisted infection in the brain. Distinct immunological profiles in equally exposed individuals differing in outcome of infection support the hypothesis of host-related factors in resistance to and pathogenesis of NC. This is the first study reporting the immunological profile associated with the asymptomatic form of NC.

  1. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema

    PubMed Central

    Avraham, Tomer; Zampell, Jamie C.; Yan, Alan; Elhadad, Sonia; Weitman, Evan S.; Rockson, Stanley G.; Bromberg, Jacqueline; Mehrara, Babak J.

    2013-01-01

    Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4+ T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4+ cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4+ inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.—Avraham, T., Zampell, J. C., Yan, A., Elhadad, S., Weitman, E. S., Rockson, S. G., Bromberg, J., Mehrara, B. J. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. PMID:23193171

  2. Direct transesterification of fresh microalgal cells.

    PubMed

    Liu, Jiao; Liu, Yanan; Wang, Haitao; Xue, Song

    2015-01-01

    Transesterification of lipids is a vital step during the processes of both biodiesel production and fatty acid analysis. By comparing the yields and fatty acid profiles obtained from microalgal oil and dry microalgal cells, the reliability of method for the transesterification of micro-scale samples was tested. The minimum amount of microalgal cells needed for accurate analysis was found to be approximately 300μg dry cells. This direct transesterification method of fresh cells was applied to eight microalgal species, and the results indicate that the efficiency of the developed method is identical to that of conventional method, except for Spirulina whose lipid content is very low, which means the total lipid content should been considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths.

    PubMed

    Nutman, T B

    2015-06-01

    Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Pollen/TLR4 Innate Immunity Signaling Initiates IL-33/ST2/Th2 Pathways in Allergic Inflammation

    PubMed Central

    Li, Jin; Zhang, Lili; Chen, Xin; Chen, Ding; Hua, Xia; Bian, Fang; Deng, Ruzhi; Lu, Fan; Li, Zhijie; Pflugfelder, Stephen C.; Li, De-Quan

    2016-01-01

    Innate immunity has been extended to respond environmental pathogen other than microbial components. Here we explore a novel pollen/TLR4 innate immunity in allergic inflammation. In experimental allergic conjunctivitis induced by short ragweed (SRW) pollen, typical allergic signs, stimulated IL-33/ST2 signaling and overproduced Th2 cytokine were observed in ocular surface, cervical lymph nodes and isolated CD4+ T cells of BALB/c mice. These clinical, cellular and molecular changes were significantly reduced/eliminated in TLR4 deficient (Tlr4-d) or MyD88 knockout (MyD88−/−) mice. Aqueous SRW extract (SRWe) directly stimulated IL-33 mRNA and protein expression by corneal epithelium and conjunctiva in wild type, but not in Tlr4-d or MyD88−/− mice with topical challenge. Furthermore, SRWe-stimulated IL-33 production was blocked by TLR4 antibody and NF-kB inhibitor in mouse and human corneal epithelial cells. These findings for the first time uncovered a novel mechanism by which SRW pollen initiates TLR4-dependent IL-33/ST2 signaling that triggers Th2-dominant allergic inflammation. PMID:27796360

  5. T-bet, GATA-3 and Foxp3 expression and Th1/Th2 cytokine production in the clinical outcome of human infection with Leishmania Viannia species

    PubMed Central

    Díaz, Yira Rosalba; Rojas, Ricardo; Valderrama, Liliana; Saravia, Nancy Gore

    2010-01-01

    Background T cell differentiation determines susceptibility and resistance to experimental cutaneous leishmaniasis, yet mixed T1/Th2 responses characterize the clinical spectrum of human infection with Leishmania Viannia species. Materials and Methods To discern the inter-relationship of T cell differentiation and outcome of human infection, we examined factors that regulate T cell differentiation and Th1/Th2 cytokine responses in asymptomatic infection, active and historical chronic and recurrent cutaneous leishmaniasis. T-bet, GATA-3, Foxp3 and cytokine gene expression were quantified by real time PCR, and correlated with IL-2, IFN-γ, TNF-α, IL-4, IL-13, IL-10 secretion during in vitro response to live L. panamensis. Results Higher GATA-3 than T-bet expression occurred throughout the 15 days of co-culture with promastigotes, however neither transcription nor secretion of IL-4 was detected. Sustained, inverse correlation between GATA-3 expression and secretion of proinflammatory cytokines IFN-γ and TNF-α was observed in asymptomatic infection. In contrast, higher T-bet expression and T-bet:GATA-3 ratio characterized active recurrent disease. Down-regulation of T-bet and GATA-3 expression and increased IL-2 secretion compared to control was directly correlated with Foxp3 expression and IL-13 secretion in chronic disease. Conclusions Regulation of the inflammatory response rather than biased Th1/Th2 response distinguished asymptomatic and recalcitrant outcomes of infection with Leishmnania Viannia species. PMID:20583921

  6. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  7. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  8. Advanced direct methanol fuel cells. Final report

    SciTech Connect

    Hamdan, Monjid; Kosek, John A.

    1999-11-01

    The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

  9. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages

    PubMed Central

    Donnelly, Sheila; Stack, Colin M.; O'Neill, Sandra M.; Sayed, Ahmed A.; Williams, David L.; Dalton, John P.

    2008-01-01

    During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflammatory pathology. Th2 cytokines IL-4 and/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schistosoma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin (Prx), induces alternative activation of macrophages. These activated, Ym1-expressing macrophages enhanced the secretion of IL-4, IL-5, and IL-13 from naive CD4+ T cells. Administration of recombinant FhPrx and SmPrx to wild-type and IL-4−/− and IL-13−/− mice induced the production of AAMacs. In addition, Prx stimulated the expression of markers of AAMacs (particularly, Ym1) in vitro, and therefore can act independently of IL-4/IL-13 signaling. The immunomodulatory property of Prx is not due to its antioxidant activity, as an inactive recombinant variant with active site Cys residues replaced by Gly could also induce AAMacs and Th2 responses. Immunization of mice with recombinant Prx or passive transfer of anti-Prx antibodies prior to infection with Fh not only blocked the induction of AAMacs but also the development of parasite-specific Th2 responses. We propose that Prx activates macrophages as an initial step in the induction of Th2 responses by helminth parasites and is thereby a novel pathogen-associated molecular pattern.—Donnelly, S., Stack, C. M., O'Neill, S. M., Sayed, A. A., Williams, D. L., Dalton, J. P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. PMID:18708590

  10. Optogenetic engineering: light-directed cell motility.

    PubMed

    Hughes, Robert M; Lawrence, David S

    2014-10-06

    Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Qualitative evaluation of adjuvant activities and its application to Th2/17 diseases.

    PubMed

    Matsushita, Sho; Takagi, Rie; Hashimoto, Kumiko; Higashi, Takehiro

    2011-01-01

    Dendritic cells (DCs) are antigen-presenting cells specialized to activate naive T lymphocytes and initiate primary immune responses. The different classes of specific immune responses are driven by the biased development of antigen-specific helper T cell subsets - that is, Th1, Th2, and Th17 cells - that activate different components of cellular and humoral immunity. DCs reside in an immature state in many nonlymphoid tissues such as the skin or airway mucosa which are highly exposed to allergens, pathogens, and chemicals. T cell receptor stimulation with costimulation allows naive Th cells to develop into effector cells, normally accompanied by high-level expression of selective sets of cytokines. The balance of these cytokines and the resulting class of immune responses depend on the conditions under which DCs are primed. Immunomodulators such as lipopolysaccharides/forskolin/curdlan change the nature of DCs to induce Th1/Th2/Th17 cells thereby designated Th1/Th2/Th17 adjuvants. We have recently found that such activities can be scrutinized by using mixed lymphocyte reaction, cAMP, and differential expression of Notch ligand isoforms. Application of these methods for the analyses of atopic dermatitis and experimental autoimmune encephalomyelitis will be discussed. Copyright © 2011 S. Karger AG, Basel.

  12. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice

    PubMed Central

    1995-01-01

    Allergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a murine model that antigen- induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4+ T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mRNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration of IL-12 (1 microgram/d x 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) gamma and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-gamma, because concurrent treatment with IL-12 and anti-IFN-gamma monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel

  13. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  14. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway.

    PubMed

    Lou, Hongfei; Lu, Jingning; Choi, Eun Byul; Oh, Min Hee; Jeong, Mingeum; Barmettler, Sara; Zhu, Zhou; Zheng, Tao

    2017-04-01

    Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show in the present study that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, downregulation of epidermal differentiation complex genes, and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially upregulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP(+) cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (thymic stromal lymphopoietin and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced thymic stromal lymphopoietin but it also increased the expression of IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway.

  15. CD30, Th2 cytokines and HIV infection: a complex and fascinating link.

    PubMed

    Del Prete, G; Maggi, E; Pizzolo, G; Romagnani, S

    1995-02-01

    CD30 is a member of the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor superfamily, and was originally described as a marker of Hodgkin's and Reed-Sternberg cells in Hodgkin's lymphoma. CD30 is preferentially expressed on CD4+ and CD8+ T-cell clones that produce T helper 2 (Th2)-type cytokines, and is also released in a soluble form by these cells. Elevated serum levels of soluble (s)CD30 have been found in some conditions in which a pathogenic role for Th2 cells has been suggested, such as atopy, Omenn's syndrome, systemic lupus erythematosus, as well as following infection with measles virus or human immuno-deficiency virus (HIV). Here, Gianfranco Del Prete and colleagues suggest a complex and fascinating link between the expression and release of CD30, and the immunopathogenesis of HIV infection.

  16. Direct volume rendering methods for cell structures.

    PubMed

    Martišek, Dalibor; Martišek, Karel

    2012-01-01

    The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.

  17. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  18. Selective suppression of Th2-mediated airway eosinophil infiltration by low-molecular weight CCR3 antagonists.

    PubMed

    Mori, Akio; Ogawa, Koji; Someya, Koichiro; Kunori, Yuichi; Nagakubo, Daisuke; Yoshie, Osamu; Kitamura, Fujiko; Hiroi, Takachika; Kaminuma, Osamu

    2007-08-01

    The effects of selective CC chemokine receptor (CCR)-3 antagonists on antigen-induced leukocyte accumulation in the lungs of mice adoptively transferred with in vitro-differentiated T(h)1 and T(h)2 were investigated. Inhalation of antigen by mice injected with T(h)1 and T(h)2 initiated the migration of T cells themselves into the lungs. Subsequently, neutrophils massively accumulated in T(h)1-transferred mice, whereas eosinophil infiltration was specifically induced by T(h)2. CCR3 antagonists, SB-297006 and/or SB-328437, suppressed antigen-induced accumulation of T(h)2 as well as eosinophils in the lungs, whereas they failed to affect T(h)1-mediated airway inflammation. Not only T(h)2 and eosinophil infiltration but also cellular mobilization in T(h)1-transferred mice was attenuated by an anti-CC chemokine ligand-11 antibody. CCR3 antagonists reduced chemokine production in the lungs of mice transferred with T(h)2 but not T(h)1, suggesting that down-regulation of chemokine synthesis is involved in the selective inhibition of T(h)2-mediated eosinophil infiltration by CCR3 antagonists.

  19. Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines

    PubMed Central

    Bossley, Cara J.; Fleming, Louise; Gupta, Atul; Regamey, Nicolas; Frith, Jennifer; Oates, Timothy; Tsartsali, Lemonia; Lloyd, Clare M.; Bush, Andrew; Saglani, Sejal

    2012-01-01

    Background The pathology of pediatric severe therapy-resistant asthma (STRA) is little understood. Objectives We hypothesized that STRA in children is characterized by airway eosinophilia and mast cell inflammation and is driven by the TH2 cytokines IL-4, IL-5, and IL-13. Methods Sixty-nine children (mean age, 11.8 years; interquartile range, 5.6-17.3 years; patients with STRA, n = 53; control subjects, n = 16) underwent fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), and endobronchial biopsy. Airway inflammation, remodeling, and BAL fluid and biopsy specimen TH2 cytokines were quantified. Children with STRA also underwent symptom assessment (Asthma Control Test), spirometry, exhaled nitric oxide and induced sputum evaluation. Results Children with STRA had significantly increased BAL fluid and biopsy specimen eosinophil counts compared with those found in control subjects (BAL fluid, P < .001; biopsy specimen, P < .01); within the STRA group, there was marked between-patient variability in eosinophilia. Submucosal mast cell, neutrophil, and lymphocyte counts were similar in both groups. Reticular basement membrane thickness and airway smooth muscle were increased in patients with STRA compared with those found in control subjects (P < .0001 and P < .001, respectively). There was no increase in BAL fluid IL-4, IL-5, or IL-13 levels in patients with STRA compared with control subjects, and these cytokines were rarely detected in induced sputum. Biopsy IL-5+ and IL-13+ cell counts were also not higher in patients with STRA compared with those seen in control subjects. The subgroup (n = 15) of children with STRA with detectable BAL fluid TH2 cytokines had significantly lower lung function than those with undetectable BAL fluid TH2 cytokines. Conclusions STRA in children was characterized by remodeling and variable airway eosinophil counts. However, unlike in adults, there was no neutrophilia, and despite the wide range in eosinophil counts, the TH2 mediators

  20. Neurotransmitter signaling via NMDA receptors leads to decreased Th1-like and enhanced Th2-like immune balance in humans.

    PubMed

    Orihara, Kanami; Odemuyiwa, Solomon O; Stefura, Bill; Ilarraza, Ramses; HayGlass, Kent T; Moqbel, Redwan

    2017-09-22

    Given the pivotal roles that CD4 T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T cell subset dominance in vivo. Here, using primary CD4 T cells and short-term Th1 and Th2-like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human Type 1 vs Type 2 immunity. We hypothesized N-methyl-D-aspartate receptors (NMDA-R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA-R that are strongly up-regulated upon TCR mediated activation. Synthetic and physiologic NMDA-R agonists elicited Ca(++) flux and led to marked inhibition of Type 1 but not Type 2 or IL-10 cytokine responses. Among CD4 lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca++ flux, proliferation and survival of Th1-like cells via increased induction of cell death whereas Th2-like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA-R is rapidly upregulated upon CD4 T cell activation in humans and (ii) Th1 vs Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA-R agonists. Differential cytokine production and proliferative capacity of Th1 vs Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 vs Th2 cells, leading to increased Th2-like dominance. Thus, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation.

    PubMed

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; Mesman, Annelies W; Geijtenbeek, Teunis B H

    2014-05-28

    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.

  2. Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism.

    PubMed

    Bakheet, Saleh A; Alzahrani, Mohammad Zeed; Ansari, Mushtaq Ahmad; Nadeem, Ahmed; Zoheir, Khairy M A; Attia, Sabry M; Al-Ayadhi, Laila Yousef; Ahmad, Sheikh Fayaz

    2017-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder. It is characterized by impaired social communication, abnormal social interactions, and repetitive behaviors and/or restricted interests. BTBR T + tf/J (BTBR) inbred mice are commonly used as a model for ASD. Resveratrol is used widely as a beneficial therapeutic in the treatment of an extensive array of pathologies, including neurodegenerative diseases. In the present study, the effect of resveratrol administration (20 and 40 mg/kg) was evaluated in both BTBR and C57BL/6 (B6) mice. Behavioral (self-grooming), Foxp3, T-bet, GATA-3, RORγt, and IL-17A in CD4(+) T cells were assessed. Our study showed that BTBR control mice exhibited a distinct immune profile from that of the B6 control mice. BTBR mice were characterized by lower levels of Foxp3(+) and higher levels of RORγt(+), T-bet(+), and GATA-3(+) production in CD4(+) T cells when compared with B6 control. Resveratrol (20 and 40 mg/kg) treatment to B6 and BTBR mice showed substantial induction of Foxp3(+) and reduction of T-bet(+), GATA-3(+), and IL-17A(+) expression in CD4(+) cells when compared with the respective control groups. Moreover, resveratrol treatment resulted in upregulated expression of Foxp3 mRNA and decreased expression levels of T-bet, GATA-3, RORγt, and IL-17A in the spleen and brain tissues. Western blot analysis confirmed that resveratrol treatment decreased the protein expression of T-bet, GATA-3, RORγ, and IL-17 and that it increased Foxp3 in B6 and BTBR mice. Our results suggest that autism is associated with dysregulation of transcription factor signaling that can be corrected by resveratrol treatment.

  3. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions

    PubMed Central

    Planas, Raquel; Metz, Imke; Ortiz, Yaneth; Vilarrasa, Nuria; Jelčić, Ilijas; Salinas-Riester, Gabriela; Heesen, Christoph; Brück, Wolfgang; Martin, Roland; Sospedra, Mireia

    2015-01-01

    Objective Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. Methods We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. Results We identified clonally expanded CD8+ but also CD4+ T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. Interpretation Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients. PMID:26401510

  4. Epidermal expression of I-TAC (Cxcl11) instructs adaptive Th2-type immunity.

    PubMed

    Roebrock, Kirsten; Sunderkötter, Cord; Münck, Niels-Arne; Wolf, Marc; Nippe, Nadine; Barczyk, Katarzyna; Varga, Georg; Vogl, Thomas; Roth, Johannes; Ehrchen, Jan

    2014-04-01

    To decipher early promoters of the local microenvironment for Th2-type immunity, we wanted to identify gene patterns that were induced by Leishmania major in the infected skin of susceptible, Th2-prone BALB/c, but not of resistant, Th1-prone C57BL/6 mice. We found a marked up-regulation of the chemokine I-TAC (Cxcl11) during the first 2 d of infection in the epidermis of susceptible but not of resistant mice. Accordingly, local injection of I-TAC (2×1 μg) in resistant mice on the first day of infection resulted in a Th2-driven, sustained deterioration of disease and dramatically enhanced parasite levels. On the cellular level, I-TAC decreased IL-12 production by dendritic cells (DCs) in skin-draining lymph nodes and by DCs in vitro. Thus, we demonstrate for the first time that epidermis-derived I-TAC triggers a sustained Th2-response that determines the outcome of a complex immunological process.

  5. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background

    PubMed Central

    Jones, Stephen W.; Roberts, Reid A.; Robbins, Gregory R.; Perry, Jillian L.; Kai, Marc P.; Chen, Kai; Bo, Tao; Napier, Mary E.; Ting, Jenny P.Y.; DeSimone, Joseph M.; Bear, James E.

    2013-01-01

    Extended circulation of nanoparticles in blood is essential for most clinical applications. Nanoparticles are rapidly cleared by cells of the mononuclear phagocyte system (MPS). Approaches such as grafting polyethylene glycol onto particles (PEGylation) extend circulation times; however, these particles are still cleared, and the processes involved in this clearance remain poorly understood. Here, we present an intravital microscopy–based assay for the quantification of nanoparticle clearance, allowing us to determine the effect of mouse strain and immune system function on particle clearance. We demonstrate that mouse strains that are prone to Th1 immune responses clear nanoparticles at a slower rate than Th2-prone mice. Using depletion strategies, we show that both granulocytes and macrophages participate in the enhanced clearance observed in Th2-prone mice. Macrophages isolated from Th1 strains took up fewer particles in vitro than macrophages from Th2 strains. Treating macrophages from Th1 strains with cytokines to differentiate them into M2 macrophages increased the amount of particle uptake. Conversely, treating macrophages from Th2 strains with cytokines to differentiate them into M1 macrophages decreased their particle uptake. Moreover, these results were confirmed in human monocyte–derived macrophages, suggesting that global immune regulation has a significant impact on nanoparticle clearance in humans. PMID:23778144

  6. Interleukin-19 contributes as a protective factor in experimental Th2-mediated colitis.

    PubMed

    Fujimoto, Yasuyuki; Azuma, Yasu-Taka; Matsuo, Yukiko; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Miki, Mariko; Azuma, Naoki; Teramoto, Midori; Nishiyama, Kazuhiro; Izawa, Takeshi; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2017-03-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. IL-19 is a member of the IL-10 family, and IL-10 plays an important role in inflammatory bowel disease. We have previously shown that IL-19 knockout mice are more susceptible to innate-mediated colitis. Next, we ask whether IL-19 contributes to T cells-mediated colitis. Here, we investigated the role of IL-19 in a mouse model of Th2 cell-mediated colitis. Inflammatory responses in IL-19-deficient mice were assessed using a Th2-mediated colitis induced by oxazolone. The colitis was evaluated by analyzing the body weight loss and histology of the colon. Lymph node cells were cultured in vitro to determine cytokine production. IL-19 knockout mice exacerbated oxazolone-induced colitis by stimulating the transport of inflammatory cells into the colon, and by increasing IgE production and the number of circulating eosinophil. The exacerbation of oxazolone-induced colonic inflammation following IL-19 knockout mice was accompanied by an increased production of IL-4 and IL-9, but no changes in the expression of IL-5 and IL-13 in lymph node cells. IL-19 plays an anti-inflammatory role in the Th2-mediated colitis model, suggesting that IL-19 may represent a potential therapeutic target for reducing colonic inflammation.

  7. Evidence of Th2 polarization of the sentinel lymph node (SLN) in melanoma

    PubMed Central

    Grotz, Travis E; Jakub, James W; Mansfield, Aaron S; Goldenstein, Rachel; Enninga, Elizabeth Ann L; Nevala, Wendy K; Leontovich, Alexey A; Markovic, Svetomir N

    2015-01-01

    Melanoma has a propensity for lymphatogenous metastasis. Improved understanding of the sentinel lymph node (SLN) immunological environment may improve outcomes. The immune phenotype of fresh melanoma SLNs (n = 13) were compared to fresh control lymph nodes (n = 13) using flow cytometry. RNA was isolated from CD4+ T cells of the SLN and control lymph node and assessed for Th1/Th2 gene expression pathways using qRT-PCR. In addition, VEGF expression was compared between primary melanoma (n = 6) and benign nevi (n = 6) using immunohistochemistry. Melanoma SLNs had fewer CD8+ T cells compared to controls (9.2% vs. 19.5%, p = 0.0005). The CD8+ T cells within the SLN appeared to have an exhausted phenotype demonstrated by increased PD-1 mRNA expression (2.2% vs. 0.8%, p = 0.004) and a five-fold increase in CTLA-4 mRNA expression. The SLN also contained an increased number of CD14 (22.7% vs. 7.7%, p = 0.009) and CD68 (9.3% vs. 2.7%, p = 0.001) macrophages, and CD20 B cells (31.1% vs. 20.7%, p = 0.008), suggesting chronic inflammation. RT-PCR demonstrated a significant Th2 bias within the SLN. In vitro studies demonstrated a similar Th2 polarization with VEGF treatment of control lymph nodes. The primary melanoma demonstrated strong VEGF expression and an increase in VEGFR1 within the SLN. Melanoma is associated with Th2-mediated “chronic inflammation,” fewer cytotoxic T cells, and an exhausted T cell phenotype within the SLN combined with VEGF overproduction by the primary melanoma. These immunologic changes precede nodal metastasis and suggests consideration of VEGF inhibitors in future immunotherapy studies. PMID:26405583

  8. Evidence of Th2 polarization of the sentinel lymph node (SLN) in melanoma.

    PubMed

    Grotz, Travis E; Jakub, James W; Mansfield, Aaron S; Goldenstein, Rachel; Enninga, Elizabeth Ann L; Nevala, Wendy K; Leontovich, Alexey A; Markovic, Svetomir N

    2015-08-01

    Melanoma has a propensity for lymphatogenous metastasis. Improved understanding of the sentinel lymph node (SLN) immunological environment may improve outcomes. The immune phenotype of fresh melanoma SLNs (n = 13) were compared to fresh control lymph nodes (n = 13) using flow cytometry. RNA was isolated from CD4(+) T cells of the SLN and control lymph node and assessed for Th1/Th2 gene expression pathways using qRT-PCR. In addition, VEGF expression was compared between primary melanoma (n = 6) and benign nevi (n = 6) using immunohistochemistry. Melanoma SLNs had fewer CD8(+) T cells compared to controls (9.2% vs. 19.5%, p = 0.0005). The CD8(+) T cells within the SLN appeared to have an exhausted phenotype demonstrated by increased PD-1 mRNA expression (2.2% vs. 0.8%, p = 0.004) and a five-fold increase in CTLA-4 mRNA expression. The SLN also contained an increased number of CD14 (22.7% vs. 7.7%, p = 0.009) and CD68 (9.3% vs. 2.7%, p = 0.001) macrophages, and CD20 B cells (31.1% vs. 20.7%, p = 0.008), suggesting chronic inflammation. RT-PCR demonstrated a significant Th2 bias within the SLN. In vitro studies demonstrated a similar Th2 polarization with VEGF treatment of control lymph nodes. The primary melanoma demonstrated strong VEGF expression and an increase in VEGFR1 within the SLN. Melanoma is associated with Th2-mediated "chronic inflammation," fewer cytotoxic T cells, and an exhausted T cell phenotype within the SLN combined with VEGF overproduction by the primary melanoma. These immunologic changes precede nodal metastasis and suggests consideration of VEGF inhibitors in future immunotherapy studies.

  9. A micro direct methanol fuel cell demonstrator

    NASA Astrophysics Data System (ADS)

    Wozniak, Konrad; Johansson, David; Bring, Martin; Sanz-Velasco, Anke; Enoksson, Peter

    2004-09-01

    The demand for compact power sources with high energy density is increasing. A direct methanol fuel cell (DMFC) is a renewable energy source which works at near room temperature, and allows for easier liquid fuel storage, which makes it a potential candidate. We report the design, fabrication and characterization of a self-driven DMFC made by micromachining techniques and macro-assembly. Several designs were created on the basis of state-of-the-art DMFCs. A simplified mathematical model was used mainly to design the flow channels and verify the polarization curves, which reveal the output power of a cell. Silicon was used as a substrate for the fabrication of electrodes, and the membrane electrode assembly was provided by Ion Power, Inc. A 0.25 cm2 cell showed a performance of 0.29 mW cm-2 and an open circuit voltage of 0.7 V. Ten microliters of 6 M methanol solution is sufficient to operate the cell for more than 1 h.

  10. Dipyrone & 2,5-dimethylcelecoxib suppress Th2-related chemokine production in monocyte

    PubMed Central

    Shiang, Jeng-Chuan; Jan, Ren-Long; Tsai, Ming-Kai; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Kuo, Chang-Hung; Yang, San-Nan; Huang, Ming-Yii; Chen, Li-Chen; Hung, Chih-Hsing

    2014-01-01

    Background & objectives: Selective cyclooxygenase-2 (COX-2) inhibitor is a form of non steroidal anti-inflammatory drug (NSAID) and is commonly used in autoimmune and rheumatic diseases to control inflammation and alleviate pain. Tumour necrosis factor-alpha (TNF-α) production and an imbalance of T helper 1 (Th1)/Th2 contribute to the pathogenesis of autoimmune and also anti-tumour activity. Dipyrone is a NSAID used to treat pain worldwide. The celecoxib analogue, 2,5-dimethylcelecoxib (DMC), lacks COX-2 inhibitory activity but exhibits anti-tumour properties. However, the effects and the mechanisms of dipyrone and 2,5-dimethylcelecoxib on tumour necrosis factor (TNF)-α and Th1- and Th2-related chemokines in monocytes remain poorly defined. This study was carried out to investigate the effects of dipyrone and 2,5-dimethylcelecoxib on the expression of Th1 (IP-10) and Th2 (I-309 and MDC) and TNF-α in human monocytes and the associated intracellular mechanism. Methods: THP-1 cells and peripheral blood mononuclear cells (PBMCs) were pre-treated with dipyrone (10-9 – 10-4 M) and 2,5-dimethylcelecoxib (10-9 – 10-5 M) 2 h before lipopolysaccharide (LPS) stimulation. Cell supernatant was collected 24 h after LPS stimulation. TNF-α, I-309, MDC and IP-10 concentrations of cell supernatants were determined using ELISA. Intracellular signaling was evaluated by Western blot. Results: Dipyrone and 2,5-dimethylcelecoxib downregulated LPS-induced Th2-related chemokine I-309 and macrophage derived chemokine (MDC) production. Only high dose of 2,5-dimethylcelecoxib (10-5 M), but not dipyrone downregulated LPS-induced IP-10. Only very high dose of 2,5-dimethylcelecoxib had effect on LPS-induced TNF-α expression in PBMCs. Dipyrone and 2,5-dimethylcelecoxib suppressed LPS-induced p65 and JNK MAPK (C-Jun N-terminal kinase mitogen activated protein kinase). expression. Interpretation & conclusions: Dipyrone and 2,5-dimethylcelecoxib downregulated LPS-induced Th2-related

  11. Dipyrone & 2,5-dimethylcelecoxib suppress Th2-related chemokine production in monocyte.

    PubMed

    Shiang, Jeng-Chuan; Jan, Ren-Long; Tsai, Ming-Kai; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Kuo, Chang-Hung; Yang, San-Nan; Huang, Ming-Yii; Chen, Li-Chen; Hung, Chih-Hsing

    2014-07-01

    Selective cyclooxygenase-2 (COX-2) inhibitor is a form of thnon steroidal anti-inflammatory drug (NSAID) and is commonly used in autoimmune and rheumatic diseases to control inflammation and alleviate pain. Tumour necrosis factor-alpha (TNF-α) production and an imbalance of T helper 1 (Th1)/Th2 contribute to the pathogenesis of autoimmune and also anti-tumour activity. Dipyrone is a NSAID used to treat pain worldwide. The celecoxib analogue, 2,5-dimethylcelecoxib (DMC), lacks COX-2 inhibitory activity but exhibits anti-tumour properties. However, the effects and the mechanisms of dipyrone and 2,5-dimethylcelecoxib on tumour necrosis factor (TNF)-α and Th1- and Th2-related chemokines in monocytes remain poorly defined. This study was carried out to investigate the effects of dipyrone and 2,5-dimethylcelecoxib on the expression of Th1 (IP-10) and Th2 (I-309 and MDC) and TNF-α in human monocytes and the associated intracellular mechanism. THP-1 cells and peripheral blood mononuclear cells (PBMCs) were pre-treated with dipyrone (10(-9)-10(-4) M) and 2,5-dimethylcelecoxib (10(-9)-10(-5) M) 2 h before lipopolysaccharide (LPS) stimulation. Cell supernatant was collected 24 h after LPS stimulation. TNF-α, I-309, MDC and IP-10 concentrations of cell supernatants were determined using ELISA. Intracellular signaling was evaluated by w0 estern blot. Dipyrone and 2,5-dimethylcelecoxib downregulated LPS-induced Th2-related chemokine I-309 and macrophage derived chemokine (MDC) production. Only high dose of 2,5-dimethylcelecoxib (10(-5) M), but not dipyrone downregulated LPS-induced IP-10. Only very high dose of 2,5-dimethylcelecoxib had effect on LPS-induced TNF-α expression in PBMCs. Dipyrone and 2,5-dimethylcelecoxib suppressed LPS-induced p65 and JNK MAPK (C-Jun N-terminal kinase mitogen activated protein kinase). expression. Dipyrone and 2,5-dimethylcelecoxib downregulated LPS-induced Th2-related chemokine I-309 and MDC in THP-1 cells. The suppressive effect on Th2

  12. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  13. Skin exposure promotes a Th2-dependent sensitization to peanut allergens.

    PubMed

    Tordesillas, Leticia; Goswami, Ritobrata; Benedé, Sara; Grishina, Galina; Dunkin, David; Järvinen, Kirsi M; Maleki, Soheila J; Sampson, Hugh A; Berin, M Cecilia

    2014-11-01

    Sensitization to foods often occurs in infancy, without a known prior oral exposure, suggesting that alternative exposure routes contribute to food allergy. Here, we tested the hypothesis that peanut proteins activate innate immune pathways in the skin that promote sensitization. We exposed mice to peanut protein extract on undamaged areas of skin and observed that repeated topical exposure to peanut allergens led to sensitization and anaphylaxis upon rechallenge. In mice, this epicutaneous peanut exposure induced sensitization to the peanut components Ara h 1 and Ara h 2, which is also observed in human peanut allergy. Both crude peanut extract and Ara h 2 alone served as adjuvants, as both induced a bystander sensitization that was similar to that induced by the atopic dermatitis-associated staphylococcal enterotoxin B. In cultured human keratinocytes and in murine skin, peanut extract directly induced cytokine expression. Moreover, topical peanut extract application induced an alteration dependent on the IL-33 receptor ST2 in skin-draining DCs, resulting in Th2 cytokine production from T cells. Together, our data support the hypothesis that peanuts are allergenic due to inherent adjuvant activity and suggest that skin exposure to food allergens contributes to sensitization to foods in early life.

  14. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase[OPEN

    PubMed Central

    Niehaus, Thomas D.; Hasnain, Ghulam; Gidda, Satinder K.; Nguyen, Thuy N.D.; Anderson, Erin M.; Brown, Greg; Yakunin, Alexander F.; de Crécy-Lagard, Valérie; Gregory, Jesse F.

    2016-01-01

    To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470. Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms. PMID:27677881

  15. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  16. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  17. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  18. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo

    PubMed Central

    Yang, Nan; Patil, Sangita; Zhuge, Jian; Wen, Ming-Chun; Bolleddula, Jayaprakasam; Doddaga, Srinivasulu; Goldfarb, Joseph; Sampson, Hugh A.; Li, Xiu-Min

    2012-01-01

    Allergic asthma is associated with Th2-mediated inflammation. Several flavonoids were isolated from Glycyrrhiza uralensis, one of the herbs in the anti-asthma herbal medicine intervention, ASHMI. The aim of this investigation was to determine whether Glycyrrhiza uralensis flavonoids have inhibitory effects on memory Th2 responses in vitro, and antigen induced Th2 inflammation in vivo. The effects of three Glycyrrhiza uralensis flavonoids on effector memory Th2 cells, D10.G4.1 (D10 cells), were determined by measuring Th2 cytokine production. Isoliquiritigenin, 7, 4’-dihydroxyflavone (7, 4’-DHF) and liquiritigenin significantly suppressed IL-4 and IL-5 production in a dose dependent manner, 7, 4’-DHF being most potent. It was also evaluated for effects on D10 cell proliferation, GATA-3 expression and IL-4 mRNA expression, which were suppressed, with no loss of cell viability. Chronic treatment with 7, 4’-DHF in a murine model of allergic asthma not only significantly reduced eosinophilic pulmonary inflammation, serum IgE levels, IL-4 and IL-13 levels, but also increased IFN-γ production in lung cell cultures in response to antigen stimulation. PMID:23165939

  19. Peroxiredoxin I is a negative regulator of Th2-dominant allergic asthma.

    PubMed

    Inoue, Ken-ichiro; Takano, Hirohisa; Koike, Eiko; Warabi, Eiji; Yanagawa, Toru; Yanagisawa, Rie; Ishii, Tetsuro

    2009-10-01

    Peroxiredoxin (Prx) I, a ubiquitous antioxidant enzyme, is known to protect against inflammation; however, its role in the allergic inflammation remains unidentified. We determined whether intristic Prx I protects against allergic asthma traits using Prx-I knockout (-/-) mice. Prx I (-/-) and wild-type (WT) mice were immunized with ovalbumin (OVA) plus aluminum potassium sulfate (Alum: Th2 adjuvant) and subsequently challenged with OVA. Twenty-four hours after the last OVA challenge, leukocyte influx including eosinophils into bronchoalveolar lavage fluid was significantly greater in Prx I (-/-) mice compared to that in WT mice. On the other hand, when these mice were immunized with OVA+complete Freund's adjuvant (Th1 adjuvant), opposite phenomenon was observed. In the presence of OVA/Alum, peribronchial inflammatory leukocyte infiltration, cholinergic airway resistance, and the lung expression of interleukin (IL)-2 were significantly greater and that of interferon-gamma was significantly lesser in Prx I (-/-) than in WT mice. In vitro, OVA/Alum-sensitized Prx I (-/-) T cells proliferated more profoundly than WT T cells when they were cocultured with syngeneic bone marrow-generated dendritic cells. These results indicate that endogenous Prx I protects against allergen-related Th2-type airway inflammation and hyperresponsiveness, at least partly, via the suppression of the lung expression of IL-2 and regulation of the Th1/Th2 balance in addition to its antioxidative properties. Furthermore, Prx I can inhibit allergen-specific T-cell proliferation through immunological synapse. Our findings implicate an alternative therapeutic value of Prx I in the treatment of Th2-skewed allergic airway inflammatory diseases such as atopic asthma.

  20. GPRC6A mediates Alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses

    PubMed Central

    Quandt, Dagmar; Rothe, Kathrin; Baerwald, Christoph; Rossol, Manuela

    2015-01-01

    Alum adjuvanticity is still an unknown mechanism despite the frequent use as vaccine adjuvant in humans. Here we show that Alum-induced inflammasome activation in vitro and in vivo is mediated by the G protein-coupled receptor GPRC6A. The Alum-induced humoral response in vivo was independent of the inflammasome because Nlrp3−/− and ASC−/− mice responded normally to Alum and blockade of IL-1 had no effect on antibody production. In contrast, Alum adjuvanticity was increased in GPRC6A−/− mice resulting in increased antibody responses and increased Th2 cytokine concentrations compared to wildtype mice. In vitro activation of GPRC6A−/− splenic B cells also induced increased IgG1 concentrations compared to wildtype B cells. For the first time, we show GPRC6A expression in B cells, contributing to the direct effects of Alum on those cells. B cell produced immunostimulatory IL-10 is elevated in GPRC6A−/− B cells in vitro and in vivo. Our results demonstrate a dual role of GPRC6A in Alum adjuvanticity. GPCR6A activation by Alum leads to the initiation of innate inflammatory responses whereas it is an important signal for the limitation of adaptive immune responses induced by Alum, partially explained by B cell IL-10. PMID:26602597

  1. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology.

    PubMed

    Culley, Fiona J; Pennycook, Alasdair M J; Tregoning, John S; Hussell, Tracy; Openshaw, Peter J M

    2006-05-01

    Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.

  2. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  3. Basophil-associated OX40 Ligand Participates in the Initiation of Th2 Responses during Airway Inflammation*

    PubMed Central

    Di, Caixia; Lin, Xiaoliang; Zhang, Yanjie; Zhong, Wenwei; Yuan, Yufan; Zhou, Tong; Liu, Junling; Xia, Zhenwei

    2015-01-01

    Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40−/− mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation. PMID:25839234

  4. Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma.

    PubMed

    Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C

    2009-01-01

    Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.

  5. Synthesis and Characterization of Th2N2(NH) Isomorphous to Th2N3

    SciTech Connect

    Silva, G W Chinthaka M; Yeamans, Charles B.; Hunn, John D; Sattelberger, Alfred P; Czerwinski, Ken R.; Weck, Dr. Phil F

    2012-01-01

    Using a new, low-temperature, fluoride-based process, thorium nitride imide of the chemical formula Th{sub 2}N{sub 2}(NH) was synthesized from thorium dioxide via an ammonium thorium fluoride intermediate. The resulting product phase was characterized by powder X-ray diffraction (XRD) analysis and was found to be crystallographically similar to Th{sub 2}N{sub 3}. Its unit cell was hexagonal with a space group of P3m{bar 1} and lattice parameters of a = b = 3.886(1) and c = 6.185(2) {angstrom}. The presence of -NH in the nitride phase was verified by Fourier transform infrared spectroscopy (FTIR). Total energy calculations performed using all-electron scalar relativistic density functional theory (DFT) showed that the hydrogen atom in the Th{sub 2}N{sub 2}(NH) prefers to bond with nitrogen atoms occupying 1a Wyckoff positions of the unit cell. Lattice fringe disruptions observed in nanoparticle areas of the nitride species by high-resolution transmission electron microscopic (HRTEM) images also displayed some evidence for the presence of -NH group. As ThO{sub 2} was identified as an impurity, possible reaction mechanisms involving its formation are discussed.

  6. Transcriptionally Regulated Cell Adhesion Network Dictates Distal Tip Cell Directionality

    PubMed Central

    Wong, Ming-Ching; Kennedy, William P.; Schwarzbauer, Jean E.

    2015-01-01

    Background The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. Results Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. Conclusions Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion. PMID:24811939

  7. Directional Excitatory Input to Direction-Selective Ganglion Cells in the Rabbit Retina.

    PubMed

    Percival, Kumiko A; Venkataramani, Sowmya; Smith, Robert G; Rowland Taylor, W

    2017-03-14

    Directional responses in retinal ganglion cells are generated in large part by direction-selective release of GABA from starburst amacrine cells onto direction-selective ganglion cells (DSGCs). The excitatory inputs to DSGCs are also widely reported to be direction-selective, however, recent evidence suggests that glutamate release from bipolar cells is not directional, and directional excitation seen in patch-clamp analyses may be an artifact resulting from incomplete voltage control. Here we test this voltage-clamp-artifact hypothesis in recordings from 62 On-Off DSGCs in the rabbit retina. The strength of the directional excitatory signal varies considerably across the sample of cells, but is not correlated with the strength of directional inhibition, as required for a voltage-clamp artifact. These results implicate additional mechanisms in generating directional excitatory inputs to DSGCs. This article is protected by copyright. All rights reserved.

  8. Early immunological response to German cockroach frass exposure induces a Th2/Th17 environment.

    PubMed

    Page, Kristen; Zhou, Ping; Ledford, John R; Day, Scottie B; Lutfi, Riad; Dienger, Krista; Lewkowich, Ian P

    2011-01-01

    Cockroach exposure is a major risk factor for the development of asthma; however, the early immune events induced by cockroach leading to the Th2 response are not fully understood. Exposure of naïve mice to German cockroach (GC) feces (frass) was sufficient to induce dendritic cell (DC) recruiting and activating chemokines C-C motif ligand 20, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor and macrophage inflammatory protein-1α into the airways. This corresponded with an increase in myeloid DCs (mDCs) in the airways as well as increased expression of CD80 and CD86 on the mDCs. Plasmacytoid DCs in the lung were unchanged. Levels of IL-5, IL-17A and IL-6 cytokines in whole lung cultures were significantly increased 18 h following GC frass exposure demonstrating the early development of a mixed Th2/Th17 response. In addition, GC frass stimulated the production of IL-23, IL-6 and IL-12p70 from bone marrow-derived mDCs. Adoptive transfer of GC frass-pulsed mDCs induced airway reactivity, airway inflammation as well as eosinophilia and induced a strong Th2/Th17 response in the lung. MyD88-deficient bone marrow-derived mDCs did not respond to GC frass treatment, suggesting a functional Toll-like receptor pathway was important to induce the Th2/Th17 response. Together, our data show that GC frass activated the innate immune response to augment DC recruitment and activation of mDCs which promoted robust T cell-skewing cytokines and ultimately drive the development of airway inflammation.

  9. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    PubMed

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.

  10. Involvement of CD300a Phosphatidylserine Immunoreceptor in Aluminum Salt Adjuvant-Induced Th2 Responses.

    PubMed

    Miki, Haruka; Nakahashi-Oda, Chigusa; Sumida, Takayuki; Shibuya, Akira

    2015-06-01

    Aluminum salt (alum) has been widely used for vaccinations as an adjuvant. Alum not only enhances immunogenicity but also induces Th2 cell immune responses. However, the mechanisms of how alum enhances Th2 cell immune responses have been controversial. In an experimental allergic airway inflammation model, in which alum in conjunction with OVA Ag was i.p. injected for immunization, we found that apoptotic cells and inflammatory dendritic cells (iDC) expressing CD300a, an inhibitory immunoreceptor for phosphatidylserine (PS), significantly increased in number in the peritoneal cavity after the immunization. In contrast, apoptotic cells and iDCs were scarcely observed in the peritoneal cavity after injection of OVA alone. In CD300a-deficient mice, eosinophil infiltration in bronchoalveolar lavage fluid, serum IgE levels, and airway hyperreactivity were significantly decreased after immunization with alum plus OVA compared with wild-type mice. In vitro, iDCs purified from CD300a-deficient mice after the immunization induced significantly less IL-4 production from OT-II naive CD4(+) T cells after coculture with OVA Ag. CD300a expressed on iDCs bound PS on apoptotic cells in the peritoneal cavity after injection of OVA plus alum. Blocking CD300a interaction with PS by injection of a neutralizing anti-CD300a Ab resulted in inhibition of the development of allergic airway inflammation. These results suggest that CD300a is involved in alum-induced Th2 skewing. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response.

    PubMed

    Bulek, Katarzyna; Swaidani, Shadi; Qin, Jinzhong; Lu, Yi; Gulen, Muhammet F; Herjan, Tomasz; Min, Booki; Kastelein, Robert A; Aronica, Mark; Kosz-Vnenchak, Magdalena; Li, Xiaoxia

    2009-03-01

    A novel cytokine IL-33, an IL-1 family member, signals via ST2 receptor and promotes Th2 responses, through the activation of NF-kappaB and MAP kinases. Previous studies reported that single Ig IL-1R-related molecule (SIGIRR)/Toll IL-1R8 acts as negative regulator for TLR-IL-1R-mediated signaling. We now found that SIGIRR formed a complex with ST2 upon IL-33 stimulation and specifically inhibited IL-33/ST2-mediated signaling in cell culture model. Furthermore, IL-33-induced Th2 response was enhanced in SIGIRR-deficient mice compared with that in wild-type control mice, suggesting a negative regulatory role of SIGIRR in IL-33/ST2 signaling in vivo. Similar to ST2, SIGIRR was highly expressed in in vitro polarized Th2 cells, but not Th1 cells. SIGIRR-deficient Th2 cells produce higher levels of Th2 cytokines, including IL-5, IL-4, and IL-13, than that in wild-type cells. Moreover, SIGIRR-deficient mice developed stronger Th2 immune response in OVA-challenged asthma model. Taken together, our results suggest that SIGIRR plays an important role in the regulation of Th2 response in vivo, possibly through its impact on IL-33-ST2-mediated signaling.

  12. Immunization of proteins from Toxascaris leonina adult worm inhibits allergic specific Th2 response.

    PubMed

    Lee, Keun Hee; Park, Hye Kyung; Jeong, Hae Jin; Park, Sang Kyun; Lee, Sun Joo; Choi, Sun Hee; Cho, Min Kyoung; Ock, Mee Sun; Hong, Yeon-Chul; Yu, Hak Sun

    2008-10-01

    Recently, the influence of parasitic infections on the incidence of allergic diseases has become the focus of increased attention. In order to ascertain whether parasite-derived proteins could inhibit the allergic specific Th2 response, we applied excretory-secretory protein (Tl-ES) or total protein (Tl-TP) of the adult worm Toxascaris leonina to asthma model mice prior to or simultaneously with OVA challenge, after which we assessed the OVA-specific Th2 responses. The group subjected to immunization with Tl-ES and Tl-TP (immunized group) evidenced a thinning of the bronchial epithelial and muscle layer, a disruption and shedding of epithelial cells, a reduction in the number of goblet cells, and a reduction in mucus production as compared to the group treated with Tl-ES coupled with OVA challenge (challenge with OVA groups) and the OVA-induced asthma group. The administration of Tl-ES and Tl-TP, regardless of injection time, was shown to inhibit the recruitment of inflammatory cells into the airway, and in particular, macrophages, neutrophils, and lymphocytes were significantly reduced as the result of the parasite proteins. However, the total number of eosinophils was slightly reduced as the result of the administration of parasite proteins. Sensitization and OVA challenge was shown to accelerate the secretion of Th2 cytokines (IL-4 and IL-5) within the lung, but in the immunized groups, those levels were lower. The administration of Tl-TP and OVA challenge group also evidenced a significant reduction in IL-4 levels as compared to the OVA-challenged group. The concentrations of Th2 cytokines in the Tl-ES and OVA challenge group were more similar to those observed in the OVA-challenged group. The concentration of IL-10 and TGF-beta in the lung was decreased substantially in the OVA-only challenge group, but the Tl-TP immunized group exhibited significantly induced IL-10 cytokine. OVA-specific IgG2a, IgG1, and IgE levels in the immunized groups were significantly

  13. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients

    PubMed Central

    Nasr, Amre; Abushouk, Amir; Hamza, Anhar; Siddig, Emmanuel; Fahal, Ahmed H.

    2016-01-01

    Eumycetoma is a progressive and destructive chronic granulomatous subcutaneous inflammatory disease caused by certain fungi, the most common being Madurella mycetomatis. The host defence mechanisms against fungi usually range from an early non-specific immune response to activation and induction of specific adaptive immune responses by the production of Th-1 and Th-2 cytokines. The aim of this study is to determine the levels of Th-1 and Th-2 cytokines in patients infected with Madurella mycetomatis, and the association between their levels and disease prognosis. This is a descriptive cross-sectional study conducted at the Mycetoma Research Centre, University of Khartoum, Sudan, where 70 patients with confirmed M. mycetomatis eumycetoma were enrolled; 35 with, and 35 without surgical excision. 70 healthy individuals from mycetoma endemic areas were selected as controls. The levels of serum cytokines were determined by cytometric bead array technique. Significantly higher levels of the Th-1 cytokines (IFN-γ, TNF-α, IL-1β and IL-2) were recorded in patients treated with surgical excision, compared to those treated without surgical excision. In contrast, the Th-2 cytokines (IL-4, IL-5, IL-6 and IL-10) were significantly lower in patients treated with surgical excision compared to those treated without surgical excision. In conclusion, the results of this study suggest that cell-mediated immunity can have a role to play in the pathogenesis of eumycetoma. PMID:27434108

  14. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients.

    PubMed

    Nasr, Amre; Abushouk, Amir; Hamza, Anhar; Siddig, Emmanuel; Fahal, Ahmed H

    2016-07-01

    Eumycetoma is a progressive and destructive chronic granulomatous subcutaneous inflammatory disease caused by certain fungi, the most common being Madurella mycetomatis. The host defence mechanisms against fungi usually range from an early non-specific immune response to activation and induction of specific adaptive immune responses by the production of Th-1 and Th-2 cytokines. The aim of this study is to determine the levels of Th-1 and Th-2 cytokines in patients infected with Madurella mycetomatis, and the association between their levels and disease prognosis. This is a descriptive cross-sectional study conducted at the Mycetoma Research Centre, University of Khartoum, Sudan, where 70 patients with confirmed M. mycetomatis eumycetoma were enrolled; 35 with, and 35 without surgical excision. 70 healthy individuals from mycetoma endemic areas were selected as controls. The levels of serum cytokines were determined by cytometric bead array technique. Significantly higher levels of the Th-1 cytokines (IFN-γ, TNF-α, IL-1β and IL-2) were recorded in patients treated with surgical excision, compared to those treated without surgical excision. In contrast, the Th-2 cytokines (IL-4, IL-5, IL-6 and IL-10) were significantly lower in patients treated with surgical excision compared to those treated without surgical excision. In conclusion, the results of this study suggest that cell-mediated immunity can have a role to play in the pathogenesis of eumycetoma.

  15. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy

    PubMed Central

    Lexmond, Willem S.; Goettel, Jeremy A.; Lyons, Jonathan J.; Jacobse, Justin; Deken, Marion M.; Lawrence, Monica G.; DiMaggio, Thomas H.; Kotlarz, Daniel; Garabedian, Elizabeth; Sackstein, Paul; Nelson, Celeste C.; Jones, Nina; Stone, Kelly D.; Rings, Edmond H.H.M.; Thrasher, Adrian J.; Milner, Joshua D.; Snapper, Scott B.; Fiebiger, Edda

    2016-01-01

    In addition to the infectious consequences of immunodeficiency, patients with Wiskott-Aldrich syndrome (WAS) often suffer from poorly understood exaggerated immune responses that result in autoimmunity and elevated levels of serum IgE. Here, we have shown that WAS patients and mice deficient in WAS protein (WASP) frequently develop IgE-mediated reactions to common food allergens. WASP-deficient animals displayed an adjuvant-free IgE-sensitization to chow antigens that was most pronounced for wheat and soy and occurred under specific pathogen–free as well as germ-free housing conditions. Conditional deletion of Was in FOXP3+ Tregs resulted in more severe Th2-type intestinal inflammation than that observed in mice with global WASP deficiency, indicating that allergic responses to food allergens are dependent upon loss of WASP expression in this immune compartment. While WASP-deficient Tregs efficiently contained Th1- and Th17-type effector differentiation in vivo, they failed to restrain Th2 effector responses that drive allergic intestinal inflammation. Loss of WASP was phenotypically associated with increased GATA3 expression in effector memory FOXP3+ Tregs, but not in naive-like FOXP3+ Tregs, an effect that occurred independently of increased IL-4 signaling. Our results reveal a Treg-specific role for WASP that is required for prevention of Th2 effector cell differentiation and allergic sensitization to dietary antigens. PMID:27643438

  16. [Circulating levels of Th1- and Th2-chemokines increase in patients with early syphilis].

    PubMed

    Zhu, Anyou; Wang, Chenchen; Sun, Hong; Han, Hongfang; Wang, Fengchao; Zhang, Lunjun; Hu, Jianguo

    2017-03-01

    Objective To study the changes of plasma T helper type I (Th1)-and Th2-chemokine levels and analyze their roles in immune response and pathogenesis of early syphilis. Methods Heparin-anticoagulated peripheral blood was collected from 56 patients with early syphilis (primary syphilis, PS, n=22; secondary syphilis, SS, n=34) and healthy controls (HC, n=20). The levels of plasma Th1 chemokines including monokine induced by interferon-γ (MIG), interferon-γ inducible protein-10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC) and Th2 chemokines including thymus-and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) were examined using ELISA. Meanwhile, the levels of plasma cytokines (IFN-γ, IL-4 and TNF-α) and C-reactive protein (CRP) were detected. Results The levels of plasma MIG, IP-10 and TARC, MDC in the patients with PS and SS were significantly higher than those in the healthy controls. Moreover, the level of I-TAC in the patients with SS was significantly higher than that in the healthy controls. In particular, the levels of plasma Th1 chemokines (MIG, IP-10 and I-TAC) in the patients with SS significantly increased compared with those with PS. However, no significant difference was observed in the levels of plasma Th2 chemokines (TARC and MDC) between the patients with PS and SS. The correlation analysis showed that there was an obvious positive correlation between IP-10 and MIG, I-TAC, IFN-γ, TNF-α levels in the patients with early syphilis. Furthermore, the levels of MIG and IP-10 were positively associated with plasma CRP in the patients with early syphilis. Conclusion Both Th1 chemokines and Th2 chemokines are involved in immune response of early syphilis.

  17. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis.

    PubMed

    Wang, Jianing; Zhao, Qi; Wang, Gaoya; Yang, Chunshu; Xu, Yong; Li, Yujia; Yang, Pingting

    2016-05-01

    Although chemokines are critical elements for the selective attraction and activation of various leukocyte subsets in the inflammatory process, there are few findings concerning T helper (Th) 1 or Th2 chemokines in ankylosing spondylitis (AS). This study was designed to determine whether serum levels of chemokines that are preferentially chemotactic for Th1 (IFN-gamma-inducible protein-10, IP-10/CXCL10) and Th2 (thymus and activation regulated chemokine, TARC/CCL17) and (macrophage derived chemokine, MDC/CCL22) cells were elevated and whether they correlated with the clinical features in patients with AS. Forty-two patients with axial AS and 25 healthy controls were enrolled into the study. Serum levels of chemokines (IP-10, TARC and MDC) and cytokines (IFN-γ, TNF-α and IL-4) were examined using ELISA. The disease activity was evaluated by Ankylosing Spondylitis Disease Activity Score (ASDAS). Serum levels of IgG, IgA, IgM, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were measured. Serum chemokine levels of IP-10, TARC and MDC were significantly higher in patients with AS than those in healthy controls. Serum cytokine levels of IFN-γ, TNF-α were also significantly increased, but the levels of IL-4 were not. Furthermore, IP-10 levels in AS patients correlated with ESP, CRP and ASDAS, while the levels of TARC and MDC did not correlate with these clinic indexes. Correlation analysis between the levels of chemokines and cytokines revealed a positive correlation between IP-10 and TNF-α. The levels of both Th1 and Th2 chemokines decreased under blockade of TNF-α. Our results suggest that both a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, cooperatively play a role in the development of AS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  19. Directional sensitivity of hair cell afferents in the Octopus statocyst.

    PubMed

    Budelmann, B U; Williamson, R

    1994-02-01

    Changes in threshold sensitivity of hair cell afferents of the macula and crista of the Octopus statocyst were analyzed when the hair cells were stimulated with sinusoidal water movements from different directions. The experiments indicate that cephalopod statocyst hair cells are directionally sensitive in a way that is similar to the responses of the hair cells of the vertebrate vestibular and lateral line systems, with the amplitude of the response changing according to the cosine of the angle by which the direction of the stimulus (the deflection of the ciliary bundle) deviates from the direction of the hair cell's morphological polarization.

  20. Lactation-Based Maternal Educational Immunity Crosses MHC Class I Barriers and Can Impart Th1 Immunity to Th2-Biased Recipients.

    PubMed

    Ghosh, Mrinal K; Muller, H Konrad; Walker, Ameae M

    2017-09-01

    We have previously demonstrated lactational transfer of T cell-based immunity from dam to foster pup. In the short term, a significant part of transferred immunity is passive cellular immunity. However, as time progresses, this is replaced by what we have described as maternal educational immunity such that by young adulthood, all immune cells responding to a foster dam immunogen are the product of the foster pup's thymus. To reduce confounding factors, this original demonstration used congenic/syngeneic dam and foster pup pairs. In this study, we investigated lactational transfer of immunity to Mycobacterium tuberculosis in MHC class I-mismatched animals, as well as from Th1-biased dams to Th2-biased foster pups. Using immunized C57BL/6J dams, lactational transfer to nonimmunized BALB/cJ foster pups resulted in much greater immunity than direct immunization in 5-wk-old pups (ex vivo assay of pup splenocytes). At this age, 82% of immunogen-responding cells in the pup spleen were produced through maternal educational immunity. FVB/NJ nonimmunized foster recipients had a greater number of maternal cells in the spleen and thymus but a much larger percentage was Foxp3(+), resulting in equivalent immunity to direct immunization. Depletion of maternal Foxp3(+) cells from pup splenocytes illustrated a substantial role for lactationally transferred dam regulatory T cells in suppression of the ex vivo response in FVB/NJ, but not BALB/cJ, recipients. We conclude that lactational transfer of immunity can cross MHC class I barriers and that Th1 immunity can be imparted to Th2-biased offspring; in some instances, it can be greater than that achieved by direct immunization. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen

    PubMed Central

    Plantinga, Maud; Deswarte, Kim; Pouliot, Philippe; Willart, Monique A.M.; Kool, Mirjam; Muskens, Femke

    2010-01-01

    It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen. PMID:20819925

  2. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  3. Laser-based direct-write techniques for cell printing.

    PubMed

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2010-09-01

    Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.

  4. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss.

    PubMed

    Myneni, Srinivas R; Settem, Rajendra P; Connell, Terry D; Keegan, Achsah D; Gaffen, Sarah L; Sharma, Ashu

    2011-07-01

    Periodontal disease (PD) is a chronic inflammation of the tooth-supporting soft tissue and alveolar bone due to infection by a select group of gram-negative microbes, which leads to tooth loss if untreated. Because mice deficient in CD4(+) cells are resistant to infection-induced alveolar bone loss, Th cells have been implicated in bone-destructive processes during PD. However, the extent to which different Th cell subtypes play roles in pathogenesis or host protection remains to be defined and is likely to vary depending on the dominant microorganism involved. By far, Porphyromonas gingivalis is the best-studied periodontal microbe in PD. Although the gram-negative anaerobe Tannerella forsythia is also a vital contributor to periodontal bone loss, almost nothing is known about immune responses to this organism. Previous studies from our laboratory revealed that T. forsythia induces periodontal bone loss in mice and that this bone loss depends on the bacterially expressed BspA protein. In this study, we showed that T. forsythia activates murine APCs primarily through TLR2-dependent signaling via BspA. Furthermore, T. forsythia infection causes a pronounced Th2 bias, evidenced by T cell expression of IL-5, but not IFN-γ or IL-17, in draining lymph nodes. Consistently, deficiencies in TLR2 or STAT6 result in resistance to T. forsythia-induced alveolar bone loss. Thus, TLR2 signaling and Th2 cells play pathogenic roles in T. forsythia-induced alveolar bone destruction.

  5. Th1, Th2, Th17 and Treg levels in umbilical cord blood in preeclampsia.

    PubMed

    Vargas-Rojas, María I; Solleiro-Villavicencio, Helena; Soto-Vega, Elena

    2016-01-01

    Preeclampsia is one of the major causes of maternal and neonatal mortality. During pregnancy, the immune system must maintain the tolerance to the fetus, thus changes in the cytokine balance may result in a disturbed pregnancy. T helper cells play an important role in modulation of the immune system and are involved in this cytokine balance. Many studies have been performed to study the T cell composition in different compartments during pregnancy, although this is the first study in which T cells are evaluated in umbilical cord blood. Intracellular expression of INF-gamma, IL-17, IL-4 and forkhead foxP3 in CD4+ T cells was evaluated in umbilical blood from healthy pregnant and preeclamptic women using a flow cytometer. Th2 and Treg cells levels were significantly diminished in preeclamptic compared to the healthy women, but no difference in Th1 and Th17 levels were found between both groups. Our data suggest that the cytokine balance is broken, encouraging the development of an exacerbated inflammatory response. Our results show that there is a shift, in the Th1/Th2, and the Th17/Treg balance, favoring skewness towards a proinflammatory status in the umbilical cord blood in preeclampsia.

  6. Direct reprogramming and biomaterials for controlling cell fate.

    PubMed

    Kim, Eunsol; Tae, Giyoong

    2016-01-01

    Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

  7. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  8. Collective cell migration has distinct directionality and speed dynamics.

    PubMed

    Zhang, Yan; Xu, Guoqing; Lee, Rachel M; Zhu, Zijie; Wu, Jiandong; Liao, Simon; Zhang, Gong; Sun, Yaohui; Mogilner, Alex; Losert, Wolfgang; Pan, Tingrui; Lin, Francis; Xu, Zhengping; Zhao, Min

    2017-06-13

    When a constraint is removed, confluent cells migrate directionally into the available space. How the migration directionality and speed increase are initiated at the leading edge and propagate into neighboring cells are not well understood. Using a quantitative visualization technique-Particle Image Velocimetry (PIV)-we revealed that migration directionality and speed had strikingly different dynamics. Migration directionality increases as a wave propagating from the leading edge into the cell sheet, while the increase in cell migration speed is maintained only at the leading edge. The overall directionality steadily increases with time as cells migrate into the cell-free space, but migration speed remains largely the same. A particle-based compass (PBC) model suggests cellular interplay (which depends on cell-cell distance) and migration speed are sufficient to capture the dynamics of migration directionality revealed experimentally. Extracellular Ca(2+) regulated both migration speed and directionality, but in a significantly different way, suggested by the correlation between directionality and speed only in some dynamic ranges. Our experimental and modeling results reveal distinct directionality and speed dynamics in collective migration, and these factors can be regulated by extracellular Ca(2+) through cellular interplay. Quantitative visualization using PIV and our PBC model thus provide a powerful approach to dissect the mechanisms of collective cell migration.

  9. Intrauterine undernourishment alters TH1/TH2 cytokine balance and attenuates lung allergic inflammation in wistar rats.

    PubMed

    Landgraf, Maristella A; Landgraf, Richardt G; Silva, Reinaldo C; Semedo, Patrícia; Câmara, Niels O S; Fortes, Zuleica B

    2012-01-01

    IL-4 produced by Th2 cells can block cytokine production by Th1 cells, and Th1 IFN-γ is known to counterregulate Th2 immune response, inhibiting allergic eosinophilia. As intrauterine undernutrition can attenuate lung inflammation, we investigated the influence of intrauterine undernourishment on the Th1/Th2 cytokine balance and allergic lung inflammation. Intrauterine undernourished offspring were obtained from dams fed 50% of the nourished diet of their counterparts and were immunized at 9 weeks of age. We evaluated the cell counts and cytokine protein expression in the bronchoalveolar lavage, mucus production and collagen deposition, and cytokine gene expression and transcription factors in lung tissue 21 days after ovalbumin immunization. Intrauterine undernourishment significantly reduced inflammatory cell airway infiltration, mucus secretion and collagen deposition, in rats immunized and challenged. Intrauterine undernourished rats also exhibited an altered cytokine expression profile, including higher TNF-α and IL-1β expression and lower IL-6 expression than well-nourished rats following immunization and challenge. Furthermore, the intrauterine undernourished group showed reduced ratios of the IL-4/IFN-γ and the transcription factors GATA-3/T-Bet after immunization and challenge. We suggest that the attenuated allergic lung inflammation observed in intrauterine undernourished rats is related to an altered Th1/Th2 cytokine balance resulting from a reduced GATA-3/T-bet ratio. Copyright © 2012 S. Karger AG, Basel.

  10. The Direct Methanol Liquid-Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1997-01-01

    Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.

  11. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles.

    PubMed

    Guimarães, Poliana Macedo; Scavuzzi, Bruna Miglioranza; Stadtlober, Nicole Perugini; Franchi Santos, Lorena Flor da Rosa; Lozovoy, Marcell Alysson Batisti; Iriyoda, Tatiana Mayumi Veiga; Costa, Neide Tomimura; Reiche, Edna Maria Vissoci; Maes, Michael; Dichi, Isaias; Simão, Andréa Name Colado

    2017-06-26

    The aims of this study were to delineate cytokine profiles of systemic lupus erythematosus (SLE), construct prediction models for diagnosis and disease activity using those profiles, and to examine the associations between TNFB Ncol polymorphism, body mass index (BMI) and vitamin D levels with cytokine levels. Two hundred SLE patients and 196 healthy controls participated in this case-control study. Plasma cytokines levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL- 4, IL-6, IL-10, IL-12 and IL-17 were measured and cytokines profiles were computed. IL-6, IL-12, IL-17, IFN-γ and IL-10 levels were significantly higher in SLE, while IL-4 was lower in SLE. The Th1/Th2 and Th1+Th17/Th2 profiles were significantly higher in SLE than in healthy controls, whereas there were no significant differences in the proinflammatory cytokine profile (TNFα+IL-6+IL-1β). In total, 90.4% of all subjects were correctly classified using Th1+Th17 profile and IL-10 (positively associated) and IL-4 (negatively associated) as predictor variables (sensitivity=66.7% and specificity=96.9%). In all, 20.9% of the variance in the SLE Disease Activity Index was predicted by the Th1+Th17/Th2 ratio, IL-10 and BMI (all positively) and proinflammatory profile (inversely associated). B1/B1 genotype is accompanied by increased IL-17 and Th17/Th2 ratio, while B1/B2 genotype is accompanied by higher IL-4 and IFNγ values. 25-OH vitamin D was inversely associated with IFN-γ levels. SLE is accompanied by Th1, Th17 and Treg profile and lowered IL-4 production. Lowered vitamin D levels and B1/B1 genotype, but not BMI, contribute to changes in cytokines profiles. Future treatments should target Th1, Th2 and Th17 profiles rather than inflammatory cytokines.Immunology and Cell Biology advance online publication, 25 July 2017; doi:10.1038/icb.2017.53.

  12. TDI can induce respiratory allergy with Th2-dominated response in mice.

    PubMed

    Ban, Masarin; Morel, Georges; Langonné, Isabelle; Huguet, Nelly; Pépin, Elsa; Binet, Stéphane

    2006-01-20

    Toluene diisocyanate (TDI), a highly reactive industrial chemical is one of the leading causes of occupation-related asthma in industrialized countries. The pathophysiology of TDI-induced asthma, however, remains poorly understood, in part due to a lack of appropriate animal models. In this study, four models of TDI-sensitised mice were investigated. In model number 1, the mice were sensitised for 4 h/day on four consecutive days to 3 ppm inhaled TDI and challenged twice for 4 h each time with 0.3 ppm inhaled TDI. In model number 2, the sensitising condition was similar to that of model 1, but the challenge conditions involved an initial inhalation of 2 ppmTDI for 4h and then tracheal instillation with 50 microg/mouse albumin-TDI. In model number 3, the mice were sensitised first to 25% TDI (sc) and then three times for 4 h each time to 1 ppm inhaled TDI and challenged twice for 4h each time with 0.1 ppm inhalated TDI. In model number 4, the mice were first sensitised to 1% TDI by skin application and then with 0.2% TDI by tracheal instillation and challenged tree times by tracheal instillation of 0.1% TDI. In model number 4, skin application followed by tracheal instillations of TDI led to local and systemic Th2-dominated immune responses that were characterized: (1) in the lung-associated lymph nodes by a decrease in Th1 cytokine (IFN-gamma) production associated with an increase in Th2 cytokine (IL-4, IL-5, IL-3) production; (2) in the lungs by an allergic inflammation throughout the conducting airways: goblet cell proliferation and eosinophil influx and; (3) in the serums by increased total and specific IgE levels, 17.5- and 3.5-fold higher than that of the controls, respectively. The conditions used for sensitisation in the other models, i.e. inhalation or subcutaneous administration plus inhalation, failed to induce a strong Th2 response like that observed in model number 4. The findings indicate that TDI can induce a Th2-dominated response in mice when

  13. HIV-specific Th2 and Th17 responses predict HIV vaccine protection efficacy

    PubMed Central

    Sauce, Delphine; Gorochov, Guy; Larsen, Martin

    2016-01-01

    Understanding the factors that delineate the efficacy of T-cell responses towards pathogens is crucial for our ability to develop potent therapies and vaccines against infectious diseases, such as HIV. Here we show that a recently developed analytical tool, the polyfunctionality index (PI), not only enables prediction of protection after vaccination against HIV, but also allows identification of the immunological pathways involved. Our data suggest that induction of a synergistic network of CD4+ T-cell subsets is implicated in HIV-protection. Accordingly, we provide evidence that vaccine-induced protection is associated with CD40L expressing Th2 cells and IL-2 secreting Th17 cells. In conclusion, we describe a novel approach that is widely applicable and readily interpretable in a biological and clinical context. This approach could greatly impact our fundamental understanding of T-cell immunity as well as the search for effective vaccines. PMID:27324186

  14. Leptin Enhances TH2 and ILC2 Responses in Allergic Airway Disease.

    PubMed

    Zheng, Handong; Zhang, Xing; Castillo, Eliseo F; Luo, Yan; Liu, Meilian; Yang, Xuexian O

    2016-10-14

    Allergic asthma and obesity are the leading health problems in the world. Many studies have shown that obesity is a risk factor of development of asthma. However, the underlying mechanism has not been well established. In this study, we demonstrate that leptin, an adipokine elevated in obese individuals, promoted proliferation and survival of pro-allergic type 2 helper T cells and group 2 innate lymphoid cells and production of type 2 cytokines, which together contribute to allergic responses. Leptin activates mTORC1, MAPK, and STAT3 pathways in TH2 cells. The effects of leptin on TH2 cell proliferation, survival, and cytokine production are dependent on the mTORC1 and MAPK pathways as revealed by specific inhibitors. In vivo, leptin-deficiency led to attenuated experimental allergic airway inflammation. Our results thus support that obesity-associated elevation of leptin contributes to the increased susceptibility of asthma via modulation of pro-allergic lymphocyte responses. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  16. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  17. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  18. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  19. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  20. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  1. TH1/TH2 Cytokine profile in relapsing-remitting multiple sclerosis patients treated with Glatiramer acetate or Natalizumab

    PubMed Central

    2012-01-01

    Background The balance between T helper cells Th2- and Th1-related cytokines plays a key role in multiple sclerosis (MS). A shift from a Th1 towards a Th2 cytokine profile could have a beneficial effect on the clinical course of the disease. The