NASA Astrophysics Data System (ADS)
Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu
2016-10-01
Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.
Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V
2013-10-01
Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Teleportation of a 3-dimensional GHZ State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan
2012-05-01
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.
ERIC Educational Resources Information Center
Cody, Jeremy A.; Craig, Paul A.; Loudermilk, Adam D.; Yacci, Paul M.; Frisco, Sarah L.; Milillo, Jennifer R.
2012-01-01
A novel stereochemistry lesson was prepared that incorporated both handheld molecular models and embedded virtual three-dimensional (3D) images. The images are fully interactive and eye-catching for the students; methods for preparing 3D molecular images in Adobe Acrobat are included. The lesson was designed and implemented to showcase the 3D…
Three-dimensional echocardiographic assessment of the repaired mitral valve.
Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun
2014-02-01
This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.
Direct 3-D morphological measurements of silicone rubber impression using micro-focus X-ray CT.
Kamegawa, Masayuki; Nakamura, Masayuki; Fukui, Yu; Tsutsumi, Sadami; Hojo, Masaki
2010-01-01
Three-dimensional computer models of dental arches play a significant role in prosthetic dentistry. The microfocus X-ray CT scanner has the advantage of capturing precise 3D shapes of deep fossa, and we propose a new method of measuring the three-dimensional morphology of a dental impression directly, which will eliminate the conversion process to dental casts. Measurement precision and accuracy were evaluated using a standard gage comprised of steel balls which simulate the dental arch. Measurement accuracy, standard deviation of distance distribution of superimposed models, was determined as +/-0.050 mm in comparison with a CAD model. Impressions and casts of an actual dental arch were scanned by microfocus X-ray CT and three-dimensional models were compared. The impression model had finer morphology, especially around the cervical margins of teeth. Within the limitations of the current study, direct three-dimensional impression modeling was successfully demonstrated using microfocus X-ray CT.
Bloch, Edward; Uddin, Nabil; Gannon, Laura; Rantell, Khadija; Jain, Saurabh
2015-01-01
Background Stereopsis is believed to be advantageous for surgical tasks that require precise hand-eye coordination. We investigated the effects of short-term and long-term absence of stereopsis on motor task performance in three-dimensional (3D) and two-dimensional (2D) viewing conditions. Methods 30 participants with normal stereopsis and 15 participants with absent stereopsis performed a simulated surgical task both in free space under direct vision (3D) and via a monitor (2D), with both eyes open and one eye covered in each condition. Results The stereo-normal group scored higher, on average, than the stereo-absent group with both eyes open under direct vision (p<0.001). Both groups performed comparably in monocular and binocular monitor viewing conditions (p=0.579). Conclusions High-grade stereopsis confers an advantage when performing a fine motor task under direct vision. However, stereopsis does not appear advantageous to task performance under 2D viewing conditions, such as in video-assisted surgery. PMID:25185439
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
Laser direct-write for fabrication of three-dimensional paper-based devices.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2016-08-16
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki
2009-01-01
Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
NASA Astrophysics Data System (ADS)
Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu
2017-12-01
A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.
Fabrication of 2D and 3D photonic structures using laser lithography
NASA Astrophysics Data System (ADS)
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
Little, Stephen H.; Igo, Stephen R.; Pirat, Bahar; McCulloch, Marti; Hartley, Craig J.; Nosé, Yukihiko; Zoghbi, William A.
2012-01-01
The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flowmeter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions. PMID:17493476
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Impact of local diffusion on macroscopic dispersion in three-dimensional porous media
NASA Astrophysics Data System (ADS)
Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge
2018-02-01
While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.
Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation
NASA Astrophysics Data System (ADS)
Hu
2014-02-01
A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d
Three-Dimensional Media Technologies: Potentials for Study in Visual Literacy.
ERIC Educational Resources Information Center
Thwaites, Hal
This paper presents an overview of three-dimensional media technologies (3Dmt). Many of the new 3Dmt are the direct result of interactions of computing, communications, and imaging technologies. Computer graphics are particularly well suited to the creation of 3D images due to the high resolution and programmable nature of the current displays.…
Lanzavecchia, S; Bellon, P L; Tosoni, L
1993-12-01
FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.
Daryadel, Soheil; Behroozfar, Ali; Morsali, S Reza; Moreno, Salvador; Baniasadi, Mahmoud; Bykova, Julia; Bernal, Rodrigo A; Minary-Jolandan, Majid
2018-01-10
Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.
Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.
Therriault, Daniel; White, Scott R; Lewis, Jennifer A
2003-04-01
The creation of geometrically complex fluidic devices is a subject of broad fundamental and technological interest. Here, we demonstrate the fabrication of three-dimensional (3D) microvascular networks through direct-write assembly of a fugitive organic ink. This approach yields a pervasive network of smooth cylindrical channels (approximately 10-300 microm) with defined connectivity. Square-spiral towers, isolated within this vascular network, promote fluid mixing through chaotic advection. These vertical towers give rise to dramatic improvements in mixing relative to simple straight (1D) and square-wave (2D) channels while significantly reducing the device planar footprint. We envisage that 3D microvascular networks will provide an enabling platform for a wide array of fluidic-based applications.
A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies
NASA Astrophysics Data System (ADS)
Belokar, R. M.; Banga, H. K.; Kumar, R.
2017-12-01
This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.
Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
NASA Astrophysics Data System (ADS)
Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun
2018-05-01
We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.
NASA Astrophysics Data System (ADS)
Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.
2015-06-01
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.
Tourret, D.; Karma, A.; Clarke, A. J.; ...
2015-06-11
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
Optimizing random searches on three-dimensional lattices
NASA Astrophysics Data System (ADS)
Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing
2018-07-01
Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng
2005-01-01
Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.
Three-dimensional accuracy of plastic transfer impression copings for three implant systems.
Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne
2014-01-01
The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.
Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street
NASA Astrophysics Data System (ADS)
Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang
1992-03-01
The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp
Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.
Estimating 3-dimensional colony surface area of field corals
Colony surface area is a critical descriptor for biological and physical attributes of reef-building (scleractinian, stony) corals. The three-dimensional (3D) size and structure of corals are directly related to many ecosystem values and functions. Most methods to estimate colony...
Shape-Reprogrammable Polymers: Encoding, Erasing, and Re-Encoding (Postprint)
2014-11-01
printing , is a layer-by-layer technology for producing 3D objects directly from a digital model. While 3D printing allows the fabrication of increasingly...one linear shape-translation processes often increase rapidly with shape complexity. Additive manufacturing, also called three-dimensional ( 3D
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Ya, Jixuan; Liu, Zhenguo; Wang, Yuanhang
2017-06-01
The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.
Faulting of Rocks in a Three-Dimensional Stress Field by Micro-Anticracks
Ghaffari, H. O.; Nasseri, M. H. B.; Young, R. Paul
2014-01-01
Nucleation and propagation of a shear fault is known to be the result of interaction and coalescence of many microcracks. Yet the character and rate of the microcracks' interactions, and their dependence on the three-dimensional stress state are poorly understood. Here we investigate formation of microcracks during sandstone faulting under 3D-polyaxial stress fields by analyzing multi-stationary acoustic waveforms. We show that in a true three-dimensional stress state (a) faulting forms in a orthorhombic pattern, and (b) the emitted acoustic waveforms from microcracking carry a shorter rapid slip phase. The later is associated with microcracking that dominantly develops parallel to the minimum stress direction. Our results imply that due to inducing the micro-anticracks, the three-dimensional (3D) stress state can quicken dynamic weakening and rupture propagation by a factor of two relatively to simpler stress states. The results suggest a new nucleation mechanism of 3D-faulting with implications for earthquakes' instabilities, as well as the understanding of avalanches associated with dislocations. PMID:24862447
Logistics of Three-dimensional Printing: Primer for Radiologists.
Hodgdon, Taryn; Danrad, Raman; Patel, Midhir J; Smith, Stacy E; Richardson, Michael L; Ballard, David H; Ali, Sayed; Trace, Anthony Paul; DeBenedectis, Carolynn M; Zygmont, Matthew E; Lenchik, Leon; Decker, Summer J
2018-01-01
The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
High brightness x ray source for directed energy and holographic imaging applications, phase 2
NASA Astrophysics Data System (ADS)
McPherson, Armon; Rhodes, Charles K.
1992-03-01
Advances in x-ray imaging technology and x-ray sources are such that a new technology can be brought to commercialization enabling the three-dimensional (3-D) microvisualization of hydrated biological specimens. The Company is engaged in a program whose main goal is the development of a new technology for direct three dimensional (3-D) x-ray holographic imaging. It is believed that this technology will have a wide range of important applications in the defense, medical, and scientific sectors. For example, in the medical area, it is expected that biomedical science will constitute a very active and substantial market, because the application of physical technologies for the direct visualization of biological entities has had a long and extremely fruitful history.
3D Heart Model and 4D Flow MRI 20 Years after Spiral Arterial Switch Operation.
Sievers, Hans-Hinrich; Kheradvar, Arash; Kramer, Hans-Heiner; Rickers, Carsten
2016-12-01
Case of a patient is presented here 20 years after spiral direct anastomosis of the great arteries in an arterial switch operation. Three-dimensional model of the heart combined with four-dimensional flow magnetic resonance imaging presents a novel comprehensive way to assess surgical results.
NASA Astrophysics Data System (ADS)
Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.
2014-05-01
Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).
Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo
2016-01-20
A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.
Four-dimensional Printing of Liquid Crystal Elastomers.
Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H
2017-10-25
Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Super long viewing distance light homogeneous emitting three-dimensional display
NASA Astrophysics Data System (ADS)
Liao, Hongen
2015-04-01
Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.
Programming standards for effective S-3D game development
NASA Astrophysics Data System (ADS)
Schneider, Neil; Matveev, Alexander
2008-02-01
When a video game is in development, more often than not it is being rendered in three dimensions - complete with volumetric depth. It's the PC monitor that is taking this three-dimensional information, and artificially displaying it in a flat, two-dimensional format. Stereoscopic drivers take the three-dimensional information captured from DirectX and OpenGL calls and properly display it with a unique left and right sided view for each eye so a proper stereoscopic 3D image can be seen by the gamer. The two-dimensional limitation of how information is displayed on screen has encouraged programming short-cuts and work-arounds that stifle this stereoscopic 3D effect, and the purpose of this guide is to outline techniques to get the best of both worlds. While the programming requirements do not significantly add to the game development time, following these guidelines will greatly enhance your customer's stereoscopic 3D experience, increase your likelihood of earning Meant to be Seen certification, and give you instant cost-free access to the industry's most valued consumer base. While this outline is mostly based on NVIDIA's programming guide and iZ3D resources, it is designed to work with all stereoscopic 3D hardware solutions and is not proprietary in any way.
Toward fully three-dimensional-printed miniaturized confocal imager
NASA Astrophysics Data System (ADS)
Savaş, Janset; Khayatzadeh, Ramin; Çivitçi, Fehmi; Gökdel, Yiğit Dağhan; Ferhanoğlu, Onur
2018-04-01
We present a disposable miniaturized confocal imager, consisting mostly of three-dimensional (3-D)-printed components. A 3-D printed laser scanner with 10×10 mm2 frame size is employed for Lissajous scan, with 180 and 315 Hz frequencies in orthogonal directions corresponding to ±8 deg and ±4 deg optical scan angles, respectively. The actuation is done electromagnetically via a magnet attached to the scanner and an external coil. A miniaturized lens with 6-mm clear aperture and 10-mm focal length is 3-D printed and postprocessed to obtain desired (≤λ/5 surface roughness) performance. All components are press-fitted into a 3-D-printed housing having 17 mm width, which is comparable to many of the MEMS-based scanning imagers. Finally, line-scan from a resolution target and two-dimensional scanning in the sample location were demonstrated with the integrated device.
Dual-view integral imaging three-dimensional display using polarized glasses.
Wu, Fei; Lv, Guo-Jiao; Deng, Huan; Zhao, Bai-Chuan; Wang, Qiong-Hua
2018-02-20
We propose a dual-view integral imaging (DVII) three-dimensional (3D) display using polarized glasses. The DVII 3D display consists of a display panel, a polarized parallax barrier, a microlens array, and two pairs of polarized glasses. Two kinds of elemental images, which are captured from two different 3D scenes, are alternately arranged on the display panel. The polarized parallax barrier is attached to the display panel and composed of two kinds of units that are also alternately arranged. The polarization directions between adjacent units are perpendicular. The polarization directions of the two pairs of polarized glasses are the same as those of the two kinds of units of the polarized parallax barrier, respectively. The lights emitted from the two kinds of elemental images are modulated by the corresponding polarizer units and microlenses, respectively. Two different 3D images are reconstructed in the viewing zone and separated by using two pairs of polarized glasses. A prototype of the DVII 3D display is developed and two 3D images can be presented simultaneously, verifying the hypothesis.
3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining
NASA Astrophysics Data System (ADS)
Deng, Jia
Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z-height control modes. Complex contours and both discrete and continuous height changes are able to be fabricated by the novel 3D nanofabrication processes. Results are imaged clearly after cleaning the debris covering on the 3D nanostructures after nanomachining process. The process is validated by fabricating various 3D nanostructures. The advantages and disadvantages are compared between these two control modes. Furthermore, the 3D nanostructures were further transferred from PMMA surfaces onto silicon surfaces using reactive ion etching (RIE) process. Recipes are developed based on the functionality of the etching gas in the transfer process. Tunable selectivity and controllable surface finishes are achieved by varying the flow rate of oxygen. The developed 3D nanofabrication process is used as a novel technique in two applications, master fabrication for soft lithography and SERS substrates fabrication. 3D nanostructures were reversely molded on PDMS and then duplicated on new PMMA substrates. 3D nanostructures are fabricated, which can be either directly used or transferred on silicon as SERS substrates after coating 80 nm gold layers. They greatly enhanced the intensity of Raman scattering with the enhancement factor of 3.11x103. These applications demonstrate the capability of the novel process of AFM-based 3D nanomachining.
Wigner analysis of three dimensional pupil with finite lateral aperture
Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan
2015-01-01
A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443
DAVIS: A direct algorithm for velocity-map imaging system
NASA Astrophysics Data System (ADS)
Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.
2018-05-01
In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Wen, Gongjian
2015-10-01
Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.
Dindaroğlu, Furkan; Kutlu, Pınar; Duran, Gökhan Serhat; Görgülü, Serkan; Aslan, Erhan
2016-05-01
To evaluate the accuracy of three-dimensional (3D) stereophotogrammetry by comparing it with the direct anthropometry and digital photogrammetry methods. The reliability of 3D stereophotogrammetry was also examined. Six profile and four frontal parameters were directly measured on the faces of 80 participants. The same measurements were repeated using two-dimensional (2D) photogrammetry and 3D stereophotogrammetry (3dMDflex System, 3dMD, Atlanta, Ga) to obtain images of the subjects. Another observer made the same measurements for images obtained with 3D stereophotogrammetry, and interobserver reproducibility was evaluated for 3D images. Both observers remeasured the 3D images 1 month later, and intraobserver reproducibility was evaluated. Statistical analysis was conducted using the paired samples t-test, intraclass correlation coefficient, and Bland-Altman limits of agreement. The highest mean difference was 0.30 mm between direct measurement and photogrammetry, 0.21 mm between direct measurement and 3D stereophotogrammetry, and 0.5 mm between photogrammetry and 3D stereophotogrammetry. The lowest agreement value was 0.965 in the Sn-Pro parameter between the photogrammetry and 3D stereophotogrammetry methods. Agreement between the two observers varied from 0.90 (Ch-Ch) to 0.99 (Sn-Me) in linear measurements. For intraobserver agreement, the highest difference between means was 0.33 for observer 1 and 1.42 mm for observer 2. Measurements obtained using 3D stereophotogrammetry indicate that it may be an accurate and reliable imaging method for use in orthodontics.
Evaluating the effects of modeling errors for isolated finite three-dimensional targets
NASA Astrophysics Data System (ADS)
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui
2017-10-01
Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.
[Research progress of three-dimensional printing technique in joint surgery].
Wang, Fuyou; Ren, Xiang; Yang, Liu
2014-03-01
To summarize the application status of three-dimensional (3-D) printing technique in joint surgery and look forward to the future research directions. The recent original articles about the application and research of 3-D printing technique in joint surgery were extensively reviewed and analyzed. In clinical applications, 3-D printing technique can provide "tailored" treatment and custom implants for patients, which helps doctors to perform the complex operations easier and more safely; in fundamental research, tissue engineered scaffolds with desirable external shape and internal organization are easily fabricated with 3-D printing technique, which can meet the demand of cell adherence and proliferation. Even more, cells may be deposited with the biomaterials during the printing. With the development of medical imaging, digital medicine and new materials, 3-D printing technique will have a wider range of applications in joint surgery.
Three-dimensional ultrasound strain imaging of skeletal muscles
NASA Astrophysics Data System (ADS)
Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, H. H. G.; Lopata, R. G. P.; Verdonschot, N.; de Korte, C. L.
2017-01-01
In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle contraction, is used as experimental validation of the 3D technique and to compare its performance with respect to a 2D based technique. Axial, lateral and (in case of 3D) elevational displacements are estimated using a cross-correlation based displacement estimation algorithm. After transformation of the displacements to a Cartesian coordinate system, strain is derived using a least-squares strain estimator. The performance of both methods is compared by calculating the root-mean-squared error of the estimated displacements with the calculated theoretical displacements of the phantom experiments. We observe that the 3D technique delivers more accurate displacement estimations compared to the 2D technique, especially in the translation experiment where out-of-plane motion hampers the 2D technique. In vivo application of the 3D technique in the musculus vastus intermedius shows good resemblance between measured strain and the force pattern. Similarity of the strain curves of repetitive measurements indicates the reproducibility of voluntary contractions. These results indicate that 3D ultrasound is a valuable imaging tool to quantify complex tissue motion, especially when there is motion in three directions, which results in out-of-plane errors for 2D techniques.
NASA Astrophysics Data System (ADS)
Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan
2018-04-01
The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.
Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir
2010-01-01
The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.
Zhou, Hui-li; Xiang, Hong; Duan, Li; Shahai, Gulinaer; Liu, Hui; Li, Xiang-hong; Mou, Rui-xue
2015-01-01
Objective. The goal of this study was to explore the clinical value of combining two-dimensional (2D) and three-dimensional (3D) transvaginal contrast-enhanced ultrasounds (CEUS) in diagnosis of endometrial carcinoma (EC). Methods. In this prospective diagnostic study, transvaginal 2D and 3D CEUS were performed on 68 patients with suspected EC, and the results of the obtained 2D-CEUS and 3D-CEUS images were compared with the gold standard for statistical analysis. Results. 2D-CEUS benign endometrial lesions showed the normal uterine perfusion phase while EC cases showed early arrival and early washout of the contrast agent and nonuniform enhancement. The 3D-CEUS images differed in central blood vessel manifestation, blood vessel shape, and vascular pattern between benign and malignant endometrial lesions (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of transvaginal 2D-CEUS and 2D-CEUS combined with 3D-CEUS for diagnosis of benign and malignant endometrial lesions were 76.9%, 73.8%, 64.5%, 83.8%, and 75.0% and 84.6%, 83.3%, 75.9%, 89.7%, and 83.8%, respectively. Conclusion. 3D-CEUS is a useful supplement to 2D-CEUS and can clearly reveal the angioarchitecture spatial relationships between vessels and depth of myometrial invasion in EC. The combined use of 2D and 3D-CEUS can offer direct, accurate, and comprehensive diagnosis of early EC. PMID:26090396
Passive lighting responsive three-dimensional integral imaging
NASA Astrophysics Data System (ADS)
Lou, Yimin; Hu, Juanmei
2017-11-01
A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.
NASA Astrophysics Data System (ADS)
Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun
2014-06-01
A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.
A Comparison of 3D3C Velocity Measurement Techniques
NASA Astrophysics Data System (ADS)
La Foy, Roderick; Vlachos, Pavlos
2013-11-01
The velocity measurement fidelity of several 3D3C PIV measurement techniques including tomographic PIV, synthetic aperture PIV, plenoptic PIV, defocusing PIV, and 3D PTV are compared in simulations. A physically realistic ray-tracing algorithm is used to generate synthetic images of a standard calibration grid and of illuminated particle fields advected by homogeneous isotropic turbulence. The simulated images for the tomographic, synthetic aperture, and plenoptic PIV cases are then used to create three-dimensional reconstructions upon which cross-correlations are performed to yield the measured velocity field. Particle tracking algorithms are applied to the images for the defocusing PIV and 3D PTV to directly yield the three-dimensional velocity field. In all cases the measured velocity fields are compared to one-another and to the true velocity field using several metrics.
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Three Dimensional Assembly in Directed Self-assembly of Block Copolymers
Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...
2016-09-02
The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Three-dimensional carbon architectures for electrochemical capacitors.
Song, Yu; Liu, Tianyu; Qian, Fang; Zhu, Cheng; Yao, Bin; Duoss, Eric; Spadaccini, Christopher; Worsley, Marcus; Li, Yat
2018-01-01
Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided. Copyright © 2017 Elsevier Inc. All rights reserved.
Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei
2016-01-01
In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Nathaniel T.; Pothérat, Alban; Davoust, Laurent; Debray, François
2018-06-01
This experimental study analyzes the relationship between the dimensionality of turbulence and the upscale or downscale nature of its energy transfers. We do so by forcing low-R m magnetohydrodynamic turbulence in a confined channel, while precisely controlling its dimensionality by means of an externally applied magnetic field. We first identify a specific length scale l^⊥ c that separates smaller 3D structures from larger quasi-2D ones. We then show that an inverse energy cascade of horizontal kinetic energy along horizontal scales is always observable at large scales, and that it extends well into the region of 3D structures. At the same time, a direct energy cascade confined to the smallest and strongly 3D scales is observed. These dynamics therefore appear not to be simply determined by the dimensionality of individual scales, nor by the forcing scale, unlike in other studies. In fact, our findings suggest that the relationship between kinematics and dynamics is not universal and may strongly depend on the forcing and dissipating mechanisms at play.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors
NASA Astrophysics Data System (ADS)
Wachtel, Gideon; Kim, Yong Baek
2016-09-01
Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].
Lu, Qi; Yu, Binsheng
2016-09-08
To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.
Lan, Xiang; Chen, Zhong; Dai, Gaole; Lu, Xuxing; Ni, Weihai; Wang, Qiangbin
2013-08-07
Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality.
Valverde, Israel
2017-04-01
In recent years, three-dimensional (3D) printed models have been incorporated into cardiology because of their potential usefulness in enhancing understanding of congenital heart disease, surgical planning, and simulation of structural percutaneous interventions. This review provides an introduction to 3D printing technology and identifies the elements needed to construct a 3D model: the types of imaging modalities that can be used, their minimum quality requirements, and the kinds of 3D printers available. The review also assesses the usefulness of 3D printed models in medical education, specialist physician training, and patient communication. We also review the most recent applications of 3D models in surgical planning and simulation of percutaneous structural heart interventions. Finally, the current limitations of 3D printing and its future directions are discussed to explore potential new applications in this exciting medical field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi
2013-01-01
The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.
Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng
2017-04-05
Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Lombardero, Martin; Henquin, Ruth; Perea, Gabriel; Corneli, Mariana; Izurieta, Carlos
2017-01-01
Quantification of mitral regurgitation (MR) by two-dimensional (2D) transthoracic echocardiography (TTE) is based on the analysis of the proximal flow convergence (PFC) and the "vena contracta" (VC). This method assumes geometries and can be misleading. In contrast, three-dimensional (3D) echocardiography directly measures flow volumes and does not assume geometries, which allows for more accurate MR evaluation. To report the 3D transesophageal echocardiography (3DTEE) feasibility for MR quantification and evaluate its concordance with 2D echo. Twenty-seven consecutive patients undergoing 2D and 3DTEE for presurgical MR evaluation were studied prospectively. MR quantification was performed by classical 2D methods based on PFC. Diameters of the VC in orthogonal planes by 3DTEE were estimated, establishing the VC sphericity index as well as VC area (VCA) by direct planimetry. In case of multiple jets, we calculated the sum of the VCA. MR assessment by 3DTEE was feasible. An adequate concordance between VC measurements by 2D methods (TTE and TEE) was observed; however, there was a poor correlation when compared with 3DTEE. The sphericity index of the VC was: 2.08 (±0. 72), reflecting a noncircular VC. 3DTEE is a feasible method for the assessment of the MR true morphology, allowing a better quantification of MR without assuming any geometry. This method revealed the presence of multiple jets, potentially improving MR evaluation and leading to changes in medical decision when compared to 2D echo assessment. © 2016, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.
2005-01-01
The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.
Acanthamoeba migration in an electric field.
Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min
2013-06-21
We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at -0.65 ± 0.01 (P < 0.001). We find that the trophozoite migration response is voltage-dependent, with higher directionality with higher voltage application. Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis.
Czuba, Thaddeus B; Rokers, Bas; Guillet, Kyle; Huk, Alexander C; Cormack, Lawrence K
2011-09-26
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. © ARVO
Czuba, Thaddeus B.; Rokers, Bas; Guillet, Kyle; Huk, Alexander C.; Cormack, Lawrence K.
2013-01-01
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. PMID:21945967
3D printing for clinical application in otorhinolaryngology.
Zhong, Nongping; Zhao, Xia
2017-12-01
Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.
NASA Astrophysics Data System (ADS)
Gödecke, Niels; Maul, Christof; Chichinin, Alexey I.; Kauczok, Sebastian; Gericke, Karl-Heinz
2009-08-01
The bimolecular reaction O(D1)+N2O→NO+NO was photoinitiated in the (N2O)2 dimer at a wavelength of 193 nm and was investigated by three-dimensional (3D) velocity map imaging. State selective 3D momentum vector distributions were monitored and analyzed. For the first time, kinetic energy resolution and stereodynamic information about the reaction under constrained geometry conditions is available. Directly observable NO products exhibit moderate vibrational excitation and are rotationally and translationally cold. Speed and spatial distributions suggest a pronounced backward scattering of the observed products with respect to the direction of motion of the O(D1) atom. Forward scattered partner products, which are not directly detectable are also translationally cold, but carry very large internal energy as vibration or rotation. The results confirm and extend previous studies on the complex initiated reaction system. The restricted geometry of the van der Waals complex seems to favor an abstraction reaction of the terminal nitrogen atom by the O(D1) atom, which is in striking contrast to the behavior observed for the unrestricted gas phase reaction under bulk conditions.
Extension of a three-dimensional viscous wing flow analysis
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.
ERIC Educational Resources Information Center
Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady
2015-01-01
The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…
Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul
2017-03-01
Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.
Three-dimensional printing of Hela cells for cervical tumor model in vitro.
Zhao, Yu; Yao, Rui; Ouyang, Liliang; Ding, Hongxu; Zhang, Ting; Zhang, Kaitai; Cheng, Shujun; Sun, Wei
2014-09-01
Advances in three-dimensional (3D) printing have enabled the direct assembly of cells and extracellular matrix materials to form in vitro cellular models for 3D biology, the study of disease pathogenesis and new drug discovery. In this study, we report a method of 3D printing for Hela cells and gelatin/alginate/fibrinogen hydrogels to construct in vitro cervical tumor models. Cell proliferation, matrix metalloproteinase (MMP) protein expression and chemoresistance were measured in the printed 3D cervical tumor models and compared with conventional 2D planar culture models. Over 90% cell viability was observed using the defined printing process. Comparisons of 3D and 2D results revealed that Hela cells showed a higher proliferation rate in the printed 3D environment and tended to form cellular spheroids, but formed monolayer cell sheets in 2D culture. Hela cells in 3D printed models also showed higher MMP protein expression and higher chemoresistance than those in 2D culture. These new biological characteristics from the printed 3D tumor models in vitro as well as the novel 3D cell printing technology may help the evolution of 3D cancer study.
Three-dimensional liver motion tracking using real-time two-dimensional MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brix, Lau, E-mail: lau.brix@stab.rm.dk; Ringgaard, Steffen; Sørensen, Thomas Sangild
2014-04-15
Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (ormore » tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal, and coronal 2D MRI series yielded 3D respiratory motion curves for all volunteers. The motion directionality and amplitude were very similar when measured directly as in-plane motion or estimated indirectly as through-plane motion. The mean peak-to-peak breathing amplitude was 1.6 mm (left-right), 11.0 mm (craniocaudal), and 2.5 mm (anterior-posterior). The position of the watermelon structure was estimated in 2D MRI images with a root-mean-square error of 0.52 mm (in-plane) and 0.87 mm (through-plane). Conclusions: A method for 3D tracking in 2D MRI series was developed and demonstrated for liver tracking in volunteers. The method would allow real-time 3D localization with integrated MR-Linac systems.« less
Three-dimensional polarization states of monochromatic light fields.
Azzam, R M A
2011-11-01
The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.
Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.
Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie
2018-03-14
Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
Three-dimensional photonic crystals created by single-step multi-directional plasma etching.
Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu
2014-07-14
We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.
High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography
Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...
2016-11-21
Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less
Image intensifier-based volume tomographic angiography imaging system: system evaluation
NASA Astrophysics Data System (ADS)
Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.
1995-05-01
An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.
Lee, Hee Jin; Lee, Sungeun; Lee, Eun Joo; Song, In Ja; Kang, Byung-Cheol; Lee, Jae-Seo; Lim, Hoi-Jeong
2016-01-01
Purpose Facial asymmetry has been measured by the severity of deviation of the menton (Me) on posteroanterior (PA) cephalograms and three-dimensional (3D) computed tomography (CT). This study aimed to compare PA cephalograms and 3D CT regarding the severity of Me deviation and the direction of the Me. Materials and Methods PA cephalograms and 3D CT images of 35 patients who underwent orthognathic surgery (19 males and 16 females, with an average age of 22.1±3.3 years) were retrospectively reviewed in this study. By measuring the distance and direction of the Me from the midfacial reference line and the midsagittal plane in the cephalograms and 3D CT, respectively, the x-coordinates (x1 and x2) of the Me were obtained in each image. The difference between the x-coordinates was calculated and statistical analysis was performed to compare the severity of Me deviation and the direction of the Me in the two imaging modalities. Results A statistically significant difference in the severity of Me deviation was found between the two imaging modalities (Δx=2.45±2.03 mm, p<0.05) using the one-sample t-test. Statistically significant agreement was observed in the presence of deviation (k=0.64, p<0.05) and in the severity of Me deviation (k=0.27, p<0.05). A difference in the direction of the Me was detected in three patients (8.6%). The severity of the Me deviation was found to vary according to the imaging modality in 16 patients (45.7%). Conclusion The measurement of Me deviation may be different between PA cephalograms and 3D CT in some patients. PMID:27051637
Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.
Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia
2014-03-07
A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.
Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa
2017-01-01
Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.
Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa
2017-01-01
Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image. PMID:28912940
Three-dimensional bioprinting of rat embryonic neural cells.
Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik
2009-05-27
We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.
Three-dimensional fingerprint recognition by using convolution neural network
NASA Astrophysics Data System (ADS)
Tian, Qianyu; Gao, Nan; Zhang, Zonghua
2018-01-01
With the development of science and technology and the improvement of social information, fingerprint recognition technology has become a hot research direction and been widely applied in many actual fields because of its feasibility and reliability. The traditional two-dimensional (2D) fingerprint recognition method relies on matching feature points. This method is not only time-consuming, but also lost three-dimensional (3D) information of fingerprint, with the fingerprint rotation, scaling, damage and other issues, a serious decline in robustness. To solve these problems, 3D fingerprint has been used to recognize human being. Because it is a new research field, there are still lots of challenging problems in 3D fingerprint recognition. This paper presents a new 3D fingerprint recognition method by using a convolution neural network (CNN). By combining 2D fingerprint and fingerprint depth map into CNN, and then through another CNN feature fusion, the characteristics of the fusion complete 3D fingerprint recognition after classification. This method not only can preserve 3D information of fingerprints, but also solves the problem of CNN input. Moreover, the recognition process is simpler than traditional feature point matching algorithm. 3D fingerprint recognition rate by using CNN is compared with other fingerprint recognition algorithms. The experimental results show that the proposed 3D fingerprint recognition method has good recognition rate and robustness.
Disturb-Free Three-Dimensional Vertical Floating Gate NAND with Separated-Sidewall Control Gate
NASA Astrophysics Data System (ADS)
Seo, Moon-Sik; Endoh, Tetsuo
2012-02-01
Recently, the three-dimensional (3D) vertical floating gate (FG) type NAND cell arrays with the sidewall control gate (SCG) structure are receiving attention to overcome the reliability issues of charge trap (CT) type 3D NAND. In order to achieve the multilevel cell (MLC) operation for lower bit cost in 3D NAND, it is important to eliminate reliability issues, such as the Vth distribution with interference and disturbance problems and Vth shift with retention issues. In this paper, we intensively investigated the disturbance problems of the 3D vertical FG type NAND cell with separated-sidewall control gate (S-SCG) structure for the reliable MLC operation. Above all, we successfully demonstrate the fully suppressed disturbance problems, such as indirect programming of the unselected cells, hot electron injection of the edge cells and direct influence to the neighboring passing cells, by using the S-SCG with 30 nm pillar size.
Li, Guanghui; Wei, Jianhua; Wang, Xi; Wu, Guofeng; Ma, Dandan; Wang, Bo; Liu, Yanpu; Feng, Xinghua
2013-08-01
Cleft lip in the presence or absence of a cleft palate is a major public health problem. However, few studies have been published concerning the soft-tissue morphology of cleft lip infants. Currently, obtaining reliable three-dimensional (3D) surface models of infants remains a challenge. The aim of this study was to investigate a new way of capturing 3D images of cleft lip infants using a structured light scanning system. In addition, the accuracy and precision of the acquired facial 3D data were validated and compared with direct measurements. Ten unilateral cleft lip patients were enrolled in the study. Briefly, 3D facial images of the patients were acquired using a 3D scanner device before and after the surgery. Fourteen items were measured by direct anthropometry and 3D image software. The accuracy and precision of the 3D system were assessed by comparative analysis. The anthropometric data obtained using the 3D method were in agreement with the direct anthropometry measurements. All data calculated by the software were 'highly reliable' or 'reliable', as defined in the literature. The localisation of four landmarks was not consistent in repeated experiments of inter-observer reliability in preoperative images (P<0.05), while the intra-observer reliability in both pre- and postoperative images was good (P>0.05). The structured light scanning system is proven to be a non-invasive, accurate and precise method in cleft lip anthropometry. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir
2018-01-01
Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
2004-01-01
The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
Engineering cancer microenvironments for in vitro 3-D tumor models
Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan
2017-01-01
The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan
2016-09-01
The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.
Direct-Write 3D Nanoprinting of Plasmonic Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.
During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less
Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.
2014-01-01
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804
Direct-Write 3D Nanoprinting of Plasmonic Structures
Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.; ...
2016-11-23
During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less
Starek, Zdenek; Lehar, Frantisek; Jez, Jiri; Scurek, Martin; Wolf, Jiri; Kulik, Tomas; Zbankova, Alena; Novak, Miroslav
2017-08-01
The objective of this study was to evaluate the mobility of the oesophagus and the stability of the three-dimensional (3D) model of the oesophagus using 3D rotational angiography (3DRA) of the left atrium (LA) and the oesophagus, fused with live fluoroscopy during catheter ablation for atrial fibrillation. From March 2015 to September 2015, 3DRA of the LA and the oesophagus was performed in 33 patients before catheter ablation for atrial fibrillation. Control contrast oesophagography was performed every 30 min. The positions of the oesophagograms and the 3D model of the LA and the oesophagus were repeatedly measured and compared with the spine. The average shift of the oesophagus ranged from 2.7 ± 2.2 to 5.0 ± 3.5 mm. The average real-time oesophageal shift ranged from 2.7 ± 2.2 to 3.8 ± 3.4 mm. No significant shift was detected until the 90th minute of the procedure. The average shift of the 3D model of the LA and the oesophagus ranged from 1.4 ± 1.8 to 3.3 ± 3.0 mm (right-left direction) and from 0.9 ± 1.2 to 2.2 ± 1.3 mm (craniocaudal direction). During the 2 h procedure, there were no significant shifts of the model. During catheter ablation for atrial fibrillation, there is no significant change in the position of the oesophagus until the 90th minute of the procedure and no significant shift in the 3D model of the LA and the oesophagus. The 3D model of the oesophagus reliably depicts the position of the oesophagus during the entire procedure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
A three-dimensional digital atlas of the dura mater based on human head MRI.
Yang, Zhirong; Guo, Zhilin
2015-03-30
The goal of this paper was to design a three-dimensional (3D) digital dural atlas of the human brain for assisting neurosurgeons during the planning of an operation, medical research and teaching activities in neurosurgical anatomy. The 176 sagittal head magnetic resonance(MR) images of a 54-year-old female who suffered from the left posterior fossa tumor were processed and outlined, based on which a 3D dural model was created using the softwares of 3ds-max and Mimics. Then the model and images/anatomy photos were matched using the softwares of Z-brush and Photoshop to form the 3-D dural atlas. Dural anatomic photographs were needed to produce the 3D atlas in dural vault and skull base areas. The 3D dural atlas of the brain and related structures was successfully constructed using 73 dural delineations, the contours of dural model match very well on the dural structures of the original images in three orthogonal (axial, coronal and sagittal view) MR cross-sections. The atlas can be arbitrarily rotated and viewed from any direction. It can also be zoomed in and out directly using the zoom function. We successfully generated a 3D dural atlas of human brain, which can be used for repeated observation and research without limitations of time and shortage of corpses. In addition, the atlas has many potential applications in operative planning, surgical training, teaching activities, and so on. Copyright © 2014 Elsevier B.V. All rights reserved.
Shear-wave elasticity measurements of three-dimensional cell cultures for mechanobiology
Kuo, Po-Ling; Charng, Ching-Che; Wu, Po-Chen
2017-01-01
ABSTRACT Studying mechanobiology in three-dimensional (3D) cell cultures better recapitulates cell behaviors in response to various types of mechanical stimuli in vivo. Stiffening of the extracellular matrix resulting from cell remodeling potentiates many pathological conditions, including advanced cancers. However, an effective tool for measuring the spatiotemporal changes in elastic properties of such 3D cell cultures without directly contacting the samples has not been reported previously. We describe an ultrasonic shear-wave-based platform for quantitatively evaluating the spatiotemporal dynamics of the elasticity of a matrix remodeled by cells cultured in 3D environments. We used this approach to measure the elasticity changes of 3D matrices grown with highly invasive lung cancer cells and cardiac myoblasts, and to delineate the principal mechanism underlying the stiffening of matrices remodeled by these cells. The described approach can be a useful tool in fields investigating and manipulating the mechanotransduction of cells in 3D contexts, and also has potential as a drug-screening platform. PMID:27505887
Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda
2017-02-28
Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.
Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M
2015-12-01
The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.
Case study of 3D fingerprints applications
Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui
2017-01-01
Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition. PMID:28399141
Case study of 3D fingerprints applications.
Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui
2017-01-01
Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.
NASA Astrophysics Data System (ADS)
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Müller-Stich, Beat P; Löb, Nicole; Wald, Diana; Bruckner, Thomas; Meinzer, Hans-Peter; Kadmon, Martina; Büchler, Markus W; Fischer, Lars
2013-09-25
Three-dimensional (3D) presentations enhance the understanding of complex anatomical structures. However, it has been shown that two dimensional (2D) "key views" of anatomical structures may suffice in order to improve spatial understanding. The impact of real 3D images (3Dr) visible only with 3D glasses has not been examined yet. Contrary to 3Dr, regular 3D images apply techniques such as shadows and different grades of transparency to create the impression of 3D.This randomized study aimed to define the impact of both the addition of key views to CT images (2D+) and the use of 3Dr on the identification of liver anatomy in comparison with regular 3D presentations (3D). A computer-based teaching module (TM) was used. Medical students were randomized to three groups (2D+ or 3Dr or 3D) and asked to answer 11 anatomical questions and 4 evaluative questions. Both 3D groups had animated models of the human liver available to them which could be moved in all directions. 156 medical students (57.7% female) participated in this randomized trial. Students exposed to 3Dr and 3D performed significantly better than those exposed to 2D+ (p < 0.01, ANOVA). There were no significant differences between 3D and 3Dr and no significant gender differences (p > 0.1, t-test). Students randomized to 3D and 3Dr not only had significantly better results, but they also were significantly faster in answering the 11 anatomical questions when compared to students randomized to 2D+ (p < 0.03, ANOVA). Whether or not "key views" were used had no significant impact on the number of correct answers (p > 0.3, t-test). This randomized trial confirms that regular 3D visualization improve the identification of liver anatomy.
"Black Bone" MRI: a novel imaging technique for 3D printing.
Eley, Karen A; Watt-Smith, Stephen R; Golding, Stephen J
2017-03-01
Three-dimensionally printed anatomical models are rapidly becoming an integral part of pre-operative planning of complex surgical cases. We have previously reported the "Black Bone" MRI technique as a non-ionizing alternative to CT. Segmentation of bone becomes possible by minimizing soft tissue contrast to enhance the bone-soft tissue boundary. The objectives of this study were to ascertain the potential of utilizing this technique to produce three-dimensional (3D) printed models. "Black Bone" MRI acquired from adult volunteers and infants with craniosynostosis were 3D rendered and 3D printed. A custom phantom provided a surrogate marker of accuracy permitting comparison between direct measurements and 3D printed models created by segmenting both CT and "Black Bone" MRI data sets using two different software packages. "Black Bone" MRI was successfully utilized to produce 3D models of the craniofacial skeleton in both adults and an infant. Measurements of the cube phantom and 3D printed models demonstrated submillimetre discrepancy. In this novel preliminary study exploring the potential of 3D printing from "Black Bone" MRI data, the feasibility of producing anatomical 3D models has been demonstrated, thus offering a potential non-ionizing alterative to CT for the craniofacial skeleton.
Nishiyama, Yuichi; Nakamura, Makoto; Henmi, Chizuka; Yamaguchi, Kumiko; Mochizuki, Shuichi; Nakagawa, Hidemoto; Takiura, Koki
2009-03-01
We have developed a new technology for producing three-dimensional (3D) biological structures composed of living cells and hydrogel in vitro, via the direct and accurate printing of cells with an inkjet printing system. Various hydrogel structures were constructed with our custom-made inkjet printer, which we termed 3D bioprinter. In the present study, we used an alginate hydrogel that was obtained through the reaction of a sodium alginate solution with a calcium chloride solution. For the construction of the gel structure, sodium alginate solution was ejected from the inkjet nozzle (SEA-Jet, Seiko Epson Corp., Suwa, Japan) and was mixed with a substrate composed of a calcium chloride solution. In our 3D bioprinter, the nozzle head can be moved in three dimensions. Owing to the development of the 3D bioprinter, an innovative fabrication method that enables the gentle and precise fixation of 3D gel structures was established using living cells as a material. To date, several 3D structures that include living cells have been fabricated, including lines, planes, laminated structures, and tubes, and now, experiments to construct various hydrogel structures are being carried out in our laboratory.
A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.
Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai
2018-01-15
A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Physiological Events in 2D vs. 3D Cell Culture
Duval, Kayla; Grover, Hannah; Han, Li-Hsin; Mou, Yongchao; Pegoraro, Adrian F.; Fredberg, Jeffery
2017-01-01
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research. PMID:28615311
NASA Astrophysics Data System (ADS)
Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou
2016-07-01
The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the National Natural Science Foundation of China (Grant No. 11574367), the National Basic Research Program of China (Grant Nos. 2013CB921700, 2013CB921904, and 2015CB921300), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The synchrotron radiation experiments have been done under the HiSOR Proposal numbers, 12-B-47 and 13-B-16.
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.
2015-11-01
Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface.
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
Development of three-dimensional memory (3D-M)
NASA Astrophysics Data System (ADS)
Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao
2016-10-01
Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).
Three-Dimensional Printed Graphene Foams.
Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M
2017-07-25
An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.
NASA Astrophysics Data System (ADS)
Stark, David; Yin, Lin; Albright, Brian; Guo, Fan
2017-10-01
The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.
The three-dimensional Event-Driven Graphics Environment (3D-EDGE)
NASA Technical Reports Server (NTRS)
Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.
1993-01-01
Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.
3D deblending of simultaneous source data based on 3D multi-scale shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin
2018-04-01
We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.
Advanced Data Visualization in Astrophysics: The X3D Pathway
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Owen, Chris I.; Verdes-Montenegro, Lourdes; Borthakur, Sanchayeeta
2016-02-01
Most modern astrophysical data sets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. However, the same multi-dimensional data sets are systematically cropped, sliced, and/or projected to printable two-dimensional diagrams at the publication stage. In this article, we introduce the concept of the “X3D pathway” as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3D) diagrams. The X3D pathway exploits the facts that (1) the X3D 3D file format lies at the center of a product tree that includes interactive HTML documents, 3D printing, and high-end animations, and (2) all high-impact-factor and peer-reviewed journals in astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional data sets because it provides direct access to a range of different data visualization techniques, is fully open source, and is a well-defined standard from the International Organization for Standardization. Unlike other earlier propositions to publish multi-dimensional data sets via 3D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead is compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone toward the implementation of the X3D pathway for any other data set.
1999-12-01
addition, the data files saved in the POINT format can include an optional header which is compatible with Amtec Engineering’s 2-D and 3-D visualization...34.DAT" file so that the file can be used directly by Amtec Engineering’s 2-D and 3-D visualization package Tecplot©. The ARRAY and POINT formats are
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2018-04-01
Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.
Direct single-layered fabrication of 3D concavo convex patterns in nano-stereolithography
NASA Astrophysics Data System (ADS)
Lim, T. W.; Park, S. H.; Yang, D. Y.; Kong, H. J.; Lee, K. S.
2006-09-01
A nano-surfacing process (NSP) is proposed to directly fabricate three-dimensional (3D) concavo convex-shaped microstructures such as micro-lens arrays using two-photon polymerization (TPP), a promising technique for fabricating arbitrary 3D highly functional micro-devices. In TPP, commonly utilized methods for fabricating complex 3D microstructures to date are based on a layer-by-layer accumulating technique employing two-dimensional sliced data derived from 3D computer-aided design data. As such, this approach requires much time and effort for precise fabrication. In this work, a novel single-layer exposure method is proposed in order to improve the fabricating efficiency for 3D concavo convex-shaped microstructures. In the NSP, 3D microstructures are divided into 13 sub-regions horizontally with consideration of the heights. Those sub-regions are then expressed as 13 characteristic colors, after which a multi-voxel matrix (MVM) is composed with the characteristic colors. Voxels with various heights and diameters are generated to construct 3D structures using a MVM scanning method. Some 3D concavo convex-shaped microstructures were fabricated to estimate the usefulness of the NSP, and the results show that it readily enables the fabrication of single-layered 3D microstructures.
Fukuda, Muneyuki; Tomimatsu, Satoshi; Nakamura, Kuniyasu; Koguchi, Masanari; Shichi, Hiroyasu; Umemura, Kaoru
2004-01-01
A new method to prepare micropillar specimens with a high aspect ratio that is suitable for three-dimensional scanning transmission electron microscopy (3D-STEM) was developed. The key features of the micropillar fabrication are: first, microsampling to extract a small piece including the structure of interest in an IC chip, and second, an ion-beam with an incident direction of 60 degrees to the pillar's axis that enables the parallel sidewalls of the pillar to be produced with a high aspect ratio. A memory-cell structure (length: 6 microm; width: 300 x 500 nm) was fabricated in the micropillar and observed from various directions with a 3D-STEM. A planiform capacitor covered with granular surfaces and a solid crossing gate and metal lines was successfully observed threedimensionally at a resolution of approximately 5 nm.
Three-dimensional infrared metamaterial with asymmetric transmission
Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; ...
2015-01-14
A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less
Geometry of the generalized Bloch sphere for qutrits
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Neethi Simon, B.; Singh, Rajeev; Simon, Sudhavathani
2016-04-01
The geometry of the generalized Bloch sphere Ω3, the state space of a qutrit, is studied. Closed form expressions for Ω3, its boundary ∂Ω3, and the set of extremals {{{Ω }}}3{{ext}} are obtained by use of an elementary observation. These expressions and analytic methods are used to classify the 28 two-sections and the 56 three-sections of Ω3 into unitary equivalence classes, completing the works of earlier authors. It is shown, in particular, that there are families of two-sections and of three-sections which are equivalent geometrically but not unitarily, a feature that does not appear to have been appreciated earlier. A family of three-sections of obese-tetrahedral shape whose symmetry corresponds to the 24-element tetrahedral point group T d is examined in detail. This symmetry is traced to the natural reduction of the adjoint representation of SU(3), the symmetry underlying Ω3, into direct sum of the two-dimensional and the two (inequivalent) three-dimensional irreducible representations of T d .
Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing
2015-08-01
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.
NASA Astrophysics Data System (ADS)
Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team
2014-01-01
First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.
Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R
2016-09-01
Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Minezawa, Noriyuki; Kato, Shigeki
2007-02-01
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Minezawa, Noriyuki; Kato, Shigeki
2007-02-07
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Narayanan
2004-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Naryanan
2005-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
Zhao, Yanfei; Liu, Haiwen; Zhang, Chenglong; ...
2015-09-16
Three-dimensional (3D) topological Dirac semimetals have a linear dispersion in the 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle dependent magnetotransport on the newly revealed Cd 3As 2 single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in [112] or [44more » $$\\bar{1}$$] axis, magnetoresistance oscillations with only single period are present. However, the oscillation shows double periods when the field is applied along [1$$\\bar{1}$$0] direction. Moreover, aligning the magnetic field at certain directions also gives rise to double period oscillations. We attribute the observed anomalous oscillation behavior to the sophisticated geometry of Fermi surface and illustrate a complete 3D Fermi surfaces with two nested anisotropic ellipsoids around the Dirac points. Additionally, a sub-millimeter mean free path at 6 K is found in Cd 3As 2 crystals, indicating ballistic transport in this material. By measuring the magnetoresistance up to 60 T, we reach the quantum limit (n = 1 Landau level) at about 43 T. Lastly, these results improve the knowledge of the Dirac semimetal material Cd 3As 2, and also pave the way for proposing new electronic applications based on 3D Dirac materials.« less
Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
NASA Astrophysics Data System (ADS)
Sebastian Mannoor, Manu
Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.
Rashid, Shams; Rapacchi, Stanislas; Shivkumar, Kalyanam; Plotnik, Adam; Finn, J. Paul; Hu, Peng
2015-01-01
Purpose To study the effects of cardiac devices on three-dimensional (3D) late gadolinium enhancement (LGE) MRI and to develop a 3D LGE protocol for implantable cardioverter defibrillator (ICD) patients with reduced image artifacts. Theory and Methods The 3D LGE sequence was modified by implementing a wideband inversion pulse, which reduces hyperintensity artifacts, and by increasing bandwidth of the excitation pulse. The modified wideband 3D LGE sequence was tested in phantoms and evaluated in six volunteers and five patients with ICDs. Results Phantom and in vivo studies results demonstrated extended signal void and ripple artifacts in 3D LGE that were associated with ICDs. The reason for these artifacts was slab profile distortion and the subsequent aliasing in the slice-encoding direction. The modified wideband 3D LGE provided significantly reduced ripple artifacts than 3D LGE with wideband inversion only. Comparison of 3D and 2D LGE images demonstrated improved spatial resolution of the heart using 3D LGE. Conclusion Increased bandwidth of the inversion and excitation pulses can significantly reduce image artifacts associated with ICDs. Our modified wideband 3D LGE protocol can be readily used for imaging patients with ICDs given appropriate safety guidelines are followed. PMID:25772155
Mahmoud, Amr; Bennett, Michael
2015-08-01
Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.
NASA Astrophysics Data System (ADS)
Wang, Zhongke; Sugioka, Koji; Midorikawa, Katsumi
2007-12-01
We report the three-dimensional (3D) integration of microoptical components such as microlenses, micromirrors and optical waveguides in a single glass chip by femtosecond (fs) laser direct writing. First, two types of microoptical lenses were fabricated inside photosensitive Foturan glass by forming hollow microstructures using fs laser direct writing followed by thermal treatment, successive wet etching and additional annealing. One type of lens is the cylindrical microlens with a curvature radius R of 1.0 mm, and the other is the plano-convex microlens with radius R of 0.75 mm. Subsequently, by the continuous procedure of hollow microstructure fabrication, a micromirror was integrated with the plano-convex microlens in the single glass chip. Further integration of waveguides was performed by internal refractive index modification using fs laser direct writing after the hollow structure fabrication of the microlens and the micromirror. A demonstration of the laser beam transmission in the integrated optical microdevice shows that the 3D integration of waveguides with a micromirror and a microoptical lens in a single glass chip is highly effective for light beam guiding and focusing.
NASA Astrophysics Data System (ADS)
Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-01
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-10
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.
Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H
2017-09-18
A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.
3D-PDR: Three-dimensional photodissociation region code
NASA Astrophysics Data System (ADS)
Bisbas, T. G.; Bell, T. A.; Viti, S.; Yates, J.; Barlow, M. J.
2018-03-01
3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.
3D Volume Rendering and 3D Printing (Additive Manufacturing).
Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T
2018-07-01
Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.
Three-dimensional monochromatic x-ray CT
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao
1995-08-01
In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.
The Various Applications of 3D Printing in Cardiovascular Diseases.
El Sabbagh, Abdallah; Eleid, Mackram F; Al-Hijji, Mohammed; Anavekar, Nandan S; Holmes, David R; Nkomo, Vuyisile T; Oderich, Gustavo S; Cassivi, Stephen D; Said, Sameh M; Rihal, Charanjit S; Matsumoto, Jane M; Foley, Thomas A
2018-05-10
To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.
GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids
NASA Astrophysics Data System (ADS)
Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.
2016-02-01
Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun
2005-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer
Smith, Emma L; Rashidi, Hassan; Kanczler, Janos M; Shakesheff, Kevin M; Oreffo, Richard O C
2015-01-01
Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.
Direct Three-Dimensional Myocardial Strain Tensor Quantification and Tracking using zHARP★
Abd-Elmoniem, Khaled Z.; Stuber, Matthias; Prince, Jerry L.
2008-01-01
Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3-D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3-D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3-D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in-vitro on a phantom and in-vivo in four healthy adult human subjects. PMID:18511332
Three-dimensional transesophageal echocardiography: Principles and clinical applications.
Vegas, Annette
2016-10-01
A basic understanding of evolving 3D technology enables the echocardiographer to master the new skills necessary to acquire, manipulate, and interpret 3D datasets. Single button activation of specific 3D imaging modes for both TEE and transthoracic echocardiography (TTE) matrix array probes include (a) live, (b) zoom, (c) full volume (FV), and (d) color Doppler FV. Evaluation of regional LV wall motion by RT 3D TEE is based on a change in LV chamber subvolume over time from altered segmental myocardial contractility. Unlike standard 2D TEE, there is no direct measurement of myocardial thickening or displacement of individual segments.
Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation
Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu
2016-01-01
We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites. PMID:26965201
S2PLOT: Three-dimensional (3D) Plotting Library
NASA Astrophysics Data System (ADS)
Barnes, D. G.; Fluke, C. J.; Bourke, P. D.; Parry, O. T.
2011-03-01
We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.
R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...
2015-10-22
We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less
The Story in the Mind: The Effect of 3D Gameplay on the Structuring of Written L2 Narratives
ERIC Educational Resources Information Center
Neville, David O.
2015-01-01
The article reports on a mixed-methods study evaluating the use of a three-dimensional digital game-based language learning (3D-DGBLL) environment to teach German two-way prepositions and specialized vocabulary within a simulated real-world context of German recycling and waste management systems. The study assumed that goal-directed player…
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Load partitioning in Ai{sub 2}0{sub 3-}Al composites with three- dimensional periodic architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M. L.; Rao, R.; Almer, J. D.
2009-05-01
Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al{sub 2}O{sub 3} preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al{sub 2}O{sub 3} phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to -350MPa. Load transfer, found by diffraction to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffractionmore » measurements show variations in load transfer at two different positions within the composite.« less
Direct three-dimensional ultrasound-to-video registration using photoacoustic markers
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Kang, Jin U.; Taylor, Russell H.; Boctor, Emad M.
2013-06-01
Modern surgical procedures often have a fusion of video and other imaging modalities to provide the surgeon with information support. This requires interventional guidance equipment and surgical navigation systems to register different tools and devices together, such as stereoscopic endoscopes and ultrasound (US) transducers. In this work, the focus is specifically on the registration between these two devices. Electromagnetic and optical trackers are typically used to acquire this registration, but they have various drawbacks typically leading to target registration errors (TRE) of approximately 3 mm. We introduce photoacoustic markers for direct three-dimensional (3-D) US-to-video registration. The feasibility of this method was demonstrated on synthetic and ex vivo porcine liver, kidney, and fat phantoms with an air-coupled laser and a motorized 3-D US probe. The resulting TRE for each experiment ranged from 380 to 850 μm with standard deviations ranging from 150 to 450 μm. We also discuss a roadmap to bring this system into the surgical setting and possible challenges along the way.
Tan, A C; Richards, R
1989-01-01
Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Li, Lin-an; Wang, Teng; Wang, Yi
2018-05-01
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less
Vectorial point spread function and optical transfer function in oblique plane imaging.
Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang
2014-05-05
Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.
Manipulation of photons at the surface of three-dimensional photonic crystals.
Ishizaki, Kenji; Noda, Susumu
2009-07-16
In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.
Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures
2016-03-01
batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I
Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
Lee, Sanghyeon; Kim, Jung Hyun; Wajahat, Muhammad; Jeong, Hwakyung; Chang, Won Suk; Cho, Sung Ho; Kim, Ji Tae; Seol, Seung Kwon
2017-06-07
Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>10 4 S·cm -1 ) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.
Cheng, George Z; San Jose Estepar, Raul; Folch, Erik; Onieva, Jorge; Gangadharan, Sidhu; Majid, Adnan
2016-05-01
Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.
2015-01-01
Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface. PMID:25984986
Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho
2018-05-22
Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.
Three-dimensional Model of Tissue and Heavy Ions Effects
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.
A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.
Langley, Jason; Zhao, Qun
2009-09-07
The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Changes in the three-dimensional load-bearing axis after mobile-bearing total knee arthroplasty.
Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Ezawa, Nobukazu; Toyabe, Shin-Ichi
2016-07-01
The purpose of this study was to assess changes in the three-dimensional (3D) load-bearing mechanical axis (LBMA) preoperatively and at 3 weeks and more than 1-year follow-up after total knee arthroplasty (TKA), and effects of the degree of constraint in the anteroposterior (AP) direction because of the retention of the posterior cruciate ligament (PCL) and the implant design on the changes in LBMA. We evaluated 157 knees from 131 patients, including 79 knees that received meniscal-bearing-type (PCL-retaining) and 78 knees that received rotating-platform-type (PCL-substituting) prostheses. Quantitative 3D computed tomography was used to assess changes in the location of the pre- and postoperative LBMA at the tibial plateau level. Changes in the 3D axis were mainly found from medial to lateral and posterior to anterior in both implant designs with no significant differences. Change in the mediolateral (ML) direction was improved soon after TKA, but change in the AP direction improved more gradually over time. The different constraints in the AP direction because of the retention of the PCL and different implant designs did not affect the changes in the LBMA. The LBMA in the AP direction more than 1 year postoperatively, as well as the LBMA in the ML direction at 3 weeks, appears to shift toward the location found in normal knees after TKA, regardless of the type of prosthetic constraint. These changes may be an important factor that influences the periarticular knee bone mineral density which load bearing may be related to. Level II, Prognostic study.
NASA Astrophysics Data System (ADS)
Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching
2017-02-01
A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.
NASA Astrophysics Data System (ADS)
La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.
2013-04-01
In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.
Zhang, Sheng; Mai, Li-xiang; Liu, Cong-hua; Wang, Da-wei
2011-07-01
To investigate the displacement and stress distribution of upper incisors in three-dimensional (3D) space controlled by step-shaped vertical closing loop. The maxillary teeth and alveolar bone of a volunteer with normal occlusion were scanned with 3D spiral CT. Modeling and calculation were only carried out on right upper central incisor, lateral incisor and their alveolar bone in order to simplify the procedures. A 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was developed using Ansys finite element package. Finally, a 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was established based on mirror symmetry principle. The displacement of maxillary incisors and stress distribution in periodontal tissues were analyzed. When step-shaped vertical closing loop was simply drew back 1 mm, the maximum displacement of upper central incisor in labial and lingual direction were 5.29 × 10(-2) and 0.71 × 10(-2) mm; 10.47 × 10(-3) and 10.20 × 10(-3) mm in gingival and occlusal direction, 10.26 × 10(-3) and 1.63 × 10(-3) mm in medial and distal direction; the maximum displacement of upper lateral incisor in labial and lingual direction were 3.31 × 10(-2) and 0.41 × 10(-2) mm, 10.52 × 10(-3) and 5.10 × 10(-3) mm in gingival and occlusal direction, 6.29 × 10(-3) and 4.64 × 10(-3) mm in medial and distal direction, the displacement trend of them were moving lingually and gingivally similar to bodily movement. The stress peach of upper central incisor, periodontal ligament and alveolar bone were 31.35, 2.52 and 4.64 MPa, the stress peach of upper lateral incisor, periodontal ligament and alveolar bone were 19.59, 1.28 and 4.12 Mpa, the stress distribution of them were similar and the periodontal ligament buffered the stress imposed on the tooth.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.
NASA Astrophysics Data System (ADS)
Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi
2014-06-01
We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.
Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg
2017-12-26
The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.
NASA Astrophysics Data System (ADS)
Kim, Jungkwun; Yoon, Yong-Kyu
2015-07-01
A rapid three-dimensional (3-D) ultraviolet (UV) lithography process for the fabrication of millimeter-tall high aspect ratio complex structures is presented. The liquid-state negative-tone photosensitive polyurethane, LF55GN, has been directly photopatterned using multidirectionally projected UV light for 3-D micropattern formation. The proposed lithographic scheme enabled us to overcome the maximum height obtained with a photopatternable epoxy, SU8, which has been conventionally most commonly used for the fabrication of tall and high aspect ratio microstructures. Also, the fabrication process time has been significantly reduced by eliminating photoresist-baking steps. Computer-controlled multidirectional UV lithography has been employed to fabricate 3-D structures, where the UV-exposure substrate is dynamically tilt-rotating during UV exposure to create various 3-D ray traces in the polyurethane layer. LF55GN has been characterized to provide feasible fabrication conditions for the multidirectional UV lithography. Very tall structures including a 6-mm tall triangular slab and a 5-mm tall hexablaze have been successfully fabricated. A 4.5-mm tall air-lifted polymer-core bowtie monopole antenna, which is the tallest monopole structure fabricated by photolithography and subsequent metallization, has been successfully demonstrated. The antenna shows a resonant radiation frequency of 12.34 GHz, a return loss of 36 dB, and a 10 dB bandwidth of 7%.
Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.
Zhu, Cheng; Liu, Tianyu; Qian, Fang; Han, T Yong-Jin; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A; Li, Yat
2016-06-08
Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g(-1)) and power densities (>4 kW·kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications.
Numerical study of core formation of asymmetrically driven cone-guided targets
Sawada, Hiroshi; Sakagami, Hitoshi
2017-09-22
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Hiroshi; Sakagami, Hitoshi
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Volumetric 3D display using a DLP projection engine
NASA Astrophysics Data System (ADS)
Geng, Jason
2012-03-01
In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.
Direct Ink Writing of Three-Dimensional (K, Na)NbO3-Based Piezoelectric Ceramics
Li, Yayun; Li, Longtu; Li, Bo
2015-01-01
A kind of piezoelectric ink was prepared with Li, Ta, Sb co-doped (K, Na)NbO3 (KNN) powders. Piezoelectric scaffolds with diameters at micrometer scale were constructed from this ink by using direct ink writing method. According to the micro-morphology and density test, the samples sintered at 1100 °C for 2 h have formed ceramics completely with a high relative density of 98%. X-ray diffraction (XRD) test shows that the main phase of sintered samples is orthogonal (Na0.52K0.4425Li0.0375)(Nb0.87Sb0.07Ta0.06)O3. The piezoelectric constant d33 of 280 pC/N, dielectric constant ε of 1775, remanent polarization Pr of 18.8 μC/cm2 and coercive field Ec of 8.5 kV/cm prove that the sintered samples exhibit good electrical properties. The direct ink writing method allows one to design and rapidly fabricate piezoelectric structures in complex three-dimensional (3D) shapes without the need for any dies or lithographic masks, which will simplify the process of material preparation and offer new ideas for the design and application of piezoelectric devices. PMID:28788028
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
NASA Astrophysics Data System (ADS)
Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu
2018-06-01
The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.
Three-Dimensional Nanoprinting via Direct Delivery.
Ventrici de Souza, Joao; Liu, Yang; Wang, Shuo; Dörig, Pablo; Kuhl, Tonya L; Frommer, Jane; Liu, Gang-Yu
2018-01-18
Direct writing methods are a generic and simple means to produce designed structures in three dimensions (3D). The printing is achieved by extruding printing materials through a nozzle, which provides a platform to deliver a wide range of materials. Although this method has been routinely used for 3D printing at macroscopic scales, miniaturization to micrometer and nanometer scales and building hierarchical structures at multidimensional scales represent new challenges in research and development. The current work addresses these challenges by combining the spatial precision of atomic force microscopy (AFM) and local delivery capability of microfluidics. Specialized AFM probes serve dual roles of a microscopy tip and a delivery tool, enabling the miniaturization of 3D printing via direct material delivery. Stacking grids of 20 μm periodicity were printed layer-by-layer covering 1 mm × 1 mm regions. The spatial fidelity was measured to be several nanometers, which is among the highest in 3D printing. The results clearly demonstrate the feasibility of achieving high precision 3D nanoprinting with nanometer feature size and accuracy with practical throughput and overall size. This work paves the way for advanced applications of 3D hierarchical nanostructures.
Development and applications of 3-dimensional integration nanotechnologies.
Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu
2014-02-01
Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).
Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.
Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2006-12-01
Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.
A Novel Three-Dimensional Vector Analysis of Axial Globe Position in Thyroid Eye Disease
Guo, Jie; Yuan, Yifei; Zhang, Rui; Huang, Wenhu
2017-01-01
Purpose. To define a three-dimensional (3D) vector method to describe the axial globe position in thyroid eye disease (TED). Methods. CT data from 59 patients with TED were collected and 3D images were reconstructed. A reference coordinate system was established, and the coordinates of the corneal apex and the eyeball center were calculated to obtain the globe vector EC→. The measurement reliability was evaluated. The parameters of EC→ were analyzed and compared with the results of two-dimensional (2D) CT measurement, Hertel exophthalmometry, and strabismus tests. Results. The reliability of EC→ measurement was excellent. The difference between EC→ and 2D CT measurement was significant (p = 0.003), and EC→ was more consistent with Hertel exophthalmometry than with 2D CT measurement (p < 0.001). There was no significant difference between EC→ and Hirschberg test, and a strong correlation was found between EC→ and synoptophore test. When one eye had a larger deviation angle than its fellow, its corneal apex shifted in the corresponding direction, but the shift of the eyeball center was not significant. The parameters of EC→ were almost perfectly consistent with the geometrical equation. Conclusions. The establishment of a 3D globe vector is feasible and reliable, and it could provide more information in the axial globe position. PMID:28491471
Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots
NASA Technical Reports Server (NTRS)
Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth
2007-01-01
A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.
Jianwei Song; Chaoji Chen; Chengwei Wang; Yudi Kuang; Yongfeng Li; Feng Jiang; Yiju Li; Emily Hitz; Ying Zhang; Boyang Liu; Amy Gong; Huiyang Bian; J. Y. Zhu; Jianhua Zhang; Jun Li; Liangbing Hu
2017-01-01
Flexible porous membranes have attracted increasing scientific interest due to their wide applications in flexible electronics, energy storage devices, sensors, and bioscaffolds. Here, inspired by nature, we develop a facile and scalable top-down approach for fabricating a superflexible, biocompatible, biodegradable three-dimensional (3D) porous membrane directly from...
Wu, Rengmao; Hua, Hong
2016-01-01
Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for extended sources, especially for extended non-Lambertian sources. What we present here is to our knowledge the first direct method for extended non-Lambertian sources in three-dimensional (3D) rotational geometry. In this method, both meridional rays and skew rays of the extended source are taken into account to tailor the lens profile in the meridional plane. A set of edge rays and interior rays emitted from the extended source which will take a given direction after the refraction of the aspherical lens are found by the Snell’s law, and the output intensity at this direction is then calculated to be the integral of the luminance function of the outgoing rays at this direction. This direct method is effective for both extended non-Lambertian sources and extended Lambertian sources in 3D rotational symmetry, and can directly find a solution to the prescribed design problem without cumbersome iterative illuminance compensation. Two examples are presented to demonstrate the effectiveness of the proposed method in terms of performance and capacity for tackling complex designs. PMID:26832484
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.
Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan
2015-02-09
Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
NASA Astrophysics Data System (ADS)
Martin, Joshua J.; Caunter, Andrew; Dendulk, Amy; Goodrich, Scott; Pembroke, Ryan; Shores, Dan; Erb, Randall M.
2017-05-01
Three-dimensional (3D) printing of fiber reinforced composites represents an enabling technology that may bring toughness and specific strength to complex parts. Recently, direct-write 3D printing has been offered as a promising route to manufacturing fiber reinforced composites that show high specific strength. These approaches primarily rely on the use of shear-alignment during the extrusion process to align fibers along the printing direction. Shear alignment prevents fibers from being oriented along principle stress directions of the final designed part. This paper describes a new direct-write style 3D printing system that incorporates magnetic fields to actively control the orientation of reinforcing fibers during the printing of fiber reinforced composites. Such a manufacturing system is fraught with complications from the high shear dominated alignment experienced by the fibers during extrusion to the slow magnetic alignment dynamics of fibers in viscous media. Here we characterize these issues and suggest effective operating windows in which magnetic alignment is a viable approach to orienting reinforcing particles during direct-write 3D printing.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
Phatak, C.; Knoop, L. de; Houdellier, F.; ...
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phatak, C.; Knoop, L. de; Houdellier, F.
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less
Development and proof-of-concept of three-dimensional lung histology volumes
NASA Astrophysics Data System (ADS)
Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace
2012-03-01
Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.
Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas
2017-12-11
New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
Xu, Jiawei; Qu, Xinhua; Li, Huiwu; Mao, Yuanqing; Yu, Degang; Zhu, Zhenan
2017-04-01
Recommendations for minimum cup coverage based on anteroposterior radiographs are widely used as an intraoperative guide in total hip arthroplasty for patients with developmental dysplasia of the hip. The purpose of this study was to examine the validity of two-dimensional (2D) measurement of coverage with three-dimensional (3D) coverage and to identify parameters for determining the 3D coverage during surgery. We developed a technique to accurately reproduce the intraoperative anatomic geometry of the dysplastic acetabulum and measure the 3D cup coverage postoperatively. With this technique, we retrospectively analyzed the difference and correlation between 2D and 3D measurements of native bone coverage in 35 patients (45 hips) with Crowe II or III DDH. Linear regression analysis was performed to examine the intraoperative parameters related to coverage. The mean follow-up period was 7.64 years (range, 6.1-9.5 years). There was a significant difference and a fair correlation between 2D and 3D measurements. The 2D measurement underestimated the 3D cup coverage by approximately 13%. An excellent linear relationship was noted between the 3D coverage/uncoverage and the height of the uncovered portion (R 2 = 0.8440, P < .0001). There was no case of loosening or revision during the follow-up. Current minimum cup coverage recommendations based on 2D radiograph measurements should not be used as a direct intraoperative guide. The height of the uncovered portion is a useful parameter to determine the 3D coverage during surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel
2016-07-01
The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier
2015-01-01
A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878
Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces
NASA Astrophysics Data System (ADS)
Winkelmann, Aimo; Akin Ünal, A.; Tusche, Christian; Ellguth, Martin; Chiang, Cheng-Tien; Kirschner, Jürgen
2012-08-01
Using a specifically tailored experimental approach, we revisit the exemplary effect of photoemission from quasi-free electronic states in crystals. Applying a momentum microscope, we measure photoelectron momentum patterns emitted into the complete half-space above the sample after excitation from a linearly polarized laser light source. By the application of a fully three-dimensional (3D) geometrical model of direct optical transitions, we explain the characteristic intensity distributions that are formed by the photoelectrons in k-space under the combination of energy conservation and crystal momentum conservation in the 3D bulk as well as at the two-dimensional (2D) surface. For bismuth surface alloys on Cu(111), the energy-resolved photoelectron momentum patterns allow us to identify specific emission processes in which bulk excited electrons are subsequently diffracted by an atomic 2D surface grating. The polarization dependence of the observed intensity features in momentum space is explained based on the different relative orientations of characteristic reciprocal space directions with respect to the electric field vector of the incident light.
Random-Profiles-Based 3D Face Recognition System
Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee
2014-01-01
In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Quantum transport through 3D Dirac materials
NASA Astrophysics Data System (ADS)
Salehi, M.; Jafari, S. A.
2015-08-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Zhao, Y J; Wang, S W; Liu, Y; Wang, Y
2017-02-18
To explore a new method for rapid extracting and rebuilding three-dimensional (3D) digital root model of vivo tooth from cone beam computed tomography (CBCT) data based on the anatomical characteristics of periodontal ligament, and to evaluate the extraction accuracy of the method. In the study, 15 extracted teeth (11 with single root, 4 with double roots) were collected from oral clinic and 3D digital root models of each tooth were obtained by 3D dental scanner with a high accuracy 0.02 mm in STL format. CBCT data for each patient were acquired before tooth extraction, DICOM data with a voxel size 0.3 mm were input to Mimics 18.0 software. Segmentation, Morphology operations, Boolean operations and Smart expanded function in Mimics software were used to edit teeth, bone and periodontal ligament threshold mask, and root threshold mask were automatically acquired after a series of mask operations. 3D digital root models were extracted in STL format finally. 3D morphology deviation between the extracted root models and corresponding vivo root models were compared in Geomagic Studio 2012 software. The 3D size errors in long axis, bucco-lingual direction and mesio-distal direction were also calculated. The average value of the 3D morphology deviation for 15 roots by calculating Root Mean Square (RMS) value was 0.22 mm, the average size errors in the mesio-distal direction, the bucco-lingual direction and the long axis were 0.46 mm, 0.36 mm and -0.68 mm separately. The average time of this new method for extracting single root was about 2-3 min. It could meet the accuracy requirement of the root 3D reconstruction fororal clinical use. This study established a new method for rapid extracting 3D root model of vivo tooth from CBCT data. It could simplify the traditional manual operation and improve the efficiency and automation of single root extraction. The strategy of this method for complete dentition extraction needs further research.
A multi-directional backlight for a wide-angle, glasses-free three-dimensional display.
Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G
2013-03-21
Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.
Pirat, Bahar; Little, Stephen H; Igo, Stephen R; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J; Zoghbi, William A
2009-03-01
The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2pi r(2), and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA x aliasing velocity x time velocity integral of AR/peak AR velocity. Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 +/- 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption.
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George
2012-01-01
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George
2012-12-03
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.
Three-dimensional radiation dosimetry based on optically-stimulated luminescence
NASA Astrophysics Data System (ADS)
Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.
2017-05-01
A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.
Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe
2011-04-01
Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.
ART 3.5D: an algorithm to label arteries and veins from three-dimensional angiography.
Barra, Beatrice; De Momi, Elena; Ferrigno, Giancarlo; Pero, Guglielmo; Cardinale, Francesco; Baselli, Giuseppe
2016-10-01
Preoperative three-dimensional (3-D) visualization of brain vasculature by digital subtraction angiography from computerized tomography (CT) in neurosurgery is gaining more and more importance, since vessels are the primary landmarks both for organs at risk and for navigation. Surgical embolization of cerebral aneurysms and arteriovenous malformations, epilepsy surgery, and stereoelectroencephalography are a few examples. Contrast-enhanced cone-beam computed tomography (CE-CBCT) represents a powerful facility, since it is capable of acquiring images in the operation room, shortly before surgery. However, standard 3-D reconstructions do not provide a direct distinction between arteries and veins, which is of utmost importance and is left to the surgeon's inference so far. Pioneering attempts by true four-dimensional (4-D) CT perfusion scans were already described, though at the expense of longer acquisition protocols, higher dosages, and sensible resolution losses. Hence, space is open to approaches attempting to recover the contrast dynamics from standard CE-CBCT, on the basis of anomalies overlooked in the standard 3-D approach. This paper aims at presenting algebraic reconstruction technique (ART) 3.5D, a method that overcomes the clinical limitations of 4-D CT, from standard 3-D CE-CBCT scans. The strategy works on the 3-D angiography, previously segmented in the standard way, and reprocesses the dynamics hidden in the raw data to recover an approximate dynamics in each segmented voxel. Next, a classification algorithm labels the angiographic voxels and artery or vein. Numerical simulations were performed on a digital phantom of a simplified 3-D vasculature with contrast transit. CE-CBCT projections were simulated and used for ART 3.5D testing. We achieved up to 90% classification accuracy in simulations, proving the feasibility of the presented approach for dynamic information recovery for arteries and veins segmentation.
A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.
Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K
2014-05-01
Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.
NASA Astrophysics Data System (ADS)
You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng
2016-05-01
Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. Electronic supplementary information (ESI) available: Calculating details of UCNP content per 3D QR code and decoding process of the 3D QR code. See DOI: 10.1039/c6nr01353h
Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating
Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian
2013-01-01
Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910
Three-Dimensional Printable High-Temperature and High-Rate Heaters.
Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing
2016-05-24
High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.
Three-Dimensional Printing of Bisphenol A-Free Polycarbonates.
Zhu, Wei; Pyo, Sang-Hyun; Wang, Pengrui; You, Shangting; Yu, Claire; Alido, Jeffrey; Liu, Justin; Leong, Yew; Chen, Shaochen
2018-02-14
Polycarbonates are widely used in food packages, drink bottles, and various healthcare products such as dental sealants and tooth coatings. However, bisphenol A (BPA) and phosgene used in the production of commercial polycarbonates pose major concerns to public health safety. Here, we report a green pathway to prepare BPA-free polycarbonates (BFPs) by thermal ring-opening polymerization and photopolymerization. Polycarbonates prepared from two cyclic carbonates in different mole ratios demonstrated tunable mechanical stiffness, excellent thermal stability, and high optical transparency. Three-dimensional (3D) printing of the new BFPs was demonstrated using a two-photon laser direct writing system and a rapid 3D optical projection printer to produce structures possessing complex high-resolution geometries. Seeded C3H10T1/2 cells also showed over 95% viability with potential applications in biological studies. By combining biocompatible BFPs with 3D printing, novel safe and high-performance biomedical devices and healthcare products could be developed with broad long-term benefits to society.
Physically-Induced Cytoskeleton Remodeling of Cells in Three-Dimensional Culture
Lee, Sheng-Lin; Nekouzadeh, Ali; Butler, Boyd; Pryse, Kenneth M.; McConnaughey, William B.; Nathan, Adam C.; Legant, Wesley R.; Schaefer, Pascal M.; Pless, Robert B.
2012-01-01
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension. PMID:23300512
Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.
Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J
2005-08-15
Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.
Rectification of curved document images based on single view three-dimensional reconstruction.
Kang, Lai; Wei, Yingmei; Jiang, Jie; Bai, Liang; Lao, Songyang
2016-10-01
Since distortions in camera-captured document images significantly affect the accuracy of optical character recognition (OCR), distortion removal plays a critical role for document digitalization systems using a camera for image capturing. This paper proposes a novel framework that performs three-dimensional (3D) reconstruction and rectification of camera-captured document images. While most existing methods rely on additional calibrated hardware or multiple images to recover the 3D shape of a document page, or make a simple but not always valid assumption on the corresponding 3D shape, our framework is more flexible and practical since it only requires a single input image and is able to handle a general locally smooth document surface. The main contributions of this paper include a new iterative refinement scheme for baseline fitting from connected components of text line, an efficient discrete vertical text direction estimation algorithm based on convex hull projection profile analysis, and a 2D distortion grid construction method based on text direction function estimation using 3D regularization. In order to examine the performance of our proposed method, both qualitative and quantitative evaluation and comparison with several recent methods are conducted in our experiments. The experimental results demonstrate that the proposed method outperforms relevant approaches for camera-captured document image rectification, in terms of improvements on both visual distortion removal and OCR accuracy.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.
Direct Measurement of Intracellular Pressure
Petrie, Ryan J.; Koo, Hyun
2014-01-01
A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836
NASA Astrophysics Data System (ADS)
Burns, J. H. R.; Delparte, D.
2017-02-01
Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Hsieh, K S; Lin, C C; Liu, W S; Chen, F L
1996-01-01
Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.
Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J
2016-12-01
Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.
Hogrebe, Nathaniel J; Gooch, Keith J
2016-09-01
Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016. © 2016 Wiley Periodicals, Inc.
Direct cortical control of 3D neuroprosthetic devices.
Taylor, Dawn M; Tillery, Stephen I Helms; Schwartz, Andrew B
2002-06-07
Three-dimensional (3D) movement of neuroprosthetic devices can be controlled by the activity of cortical neurons when appropriate algorithms are used to decode intended movement in real time. Previous studies assumed that neurons maintain fixed tuning properties, and the studies used subjects who were unaware of the movements predicted by their recorded units. In this study, subjects had real-time visual feedback of their brain-controlled trajectories. Cell tuning properties changed when used for brain-controlled movements. By using control algorithms that track these changes, subjects made long sequences of 3D movements using far fewer cortical units than expected. Daily practice improved movement accuracy and the directional tuning of these units.
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Zeng, Canjun; Xiao, Jidong; Wu, Zhanglin; Huang, Wenhua
2015-01-01
The aim of this study is to evaluate the efficacy and feasibility of three-dimensional printing (3D printing) assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach. A total of 38 patients with unstable pelvic fractures were analyzed retrospectively from August 2012 to February 2014. All cases were treated operatively with internal fixation assisted by three-dimensional printing from minimal invasive para-rectus abdominis approach. Both preoperative CT and three-dimensional reconstruction were performed. Pelvic model was created by 3D printing. Data including the best entry points, plate position and direction and length of screw were obtained from simulated operation based on 3D printing pelvic model. The diaplasis and internal fixation were performed by minimal invasive para-rectus abdominis approach according to the optimized dada in real surgical procedure. Matta and Majeed score were used to evaluate currative effects after operation. According to the Matta standard, the outcome of the diaplasis achieved 97.37% with excellent and good. Majeed assessment showed 94.4% with excellent and good. The imageological examination showed consistency of internal fixation and simulated operation. The mean operation time was 110 minutes, mean intraoperative blood loss 320 ml, and mean incision length 6.5 cm. All patients have achieved clinical healing, with mean healing time of 8 weeks. Three-dimensional printing assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach is feasible and effective. This method has the advantages of trauma minimally, bleeding less, healing rapidly and satisfactory reduction, and worthwhile for spreading in clinical practice.
Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Three-dimensional femtosecond laser processing for lab-on-a-chip applications
NASA Astrophysics Data System (ADS)
Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal
2018-02-01
The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.
3-D ultrasound guidance of surgical robotics: a feasibility study.
Pua, Eric C; Fronheiser, Matthew P; Noble, Joanna R; Light, Edward D; Wolf, Patrick D; von Allmen, Daniel; Smith, Stephen W
2006-11-01
Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Betti, R.; Sanz, J.
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
Generating Three-Dimensional Surface Models of Solid Objects from Multiple Projections.
1982-10-01
volume descriptions. The surface models are composed of curved, topologically rectangular, parametric patches. The data required to define these patches...geometry directly from image data .__ This method generates 3D surface descriptions of only those parts of the object that are illuminated by the pro- jected...objects. Generation of such models inherently requires the acquisition and analysis of 3D surface data . In this context, acquisition refers to the
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feedback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.
Little, Stephen H; Pirat, Bahar; Kumar, Rahul; Igo, Stephen R; McCulloch, Marti; Hartley, Craig J; Xu, Jiaqiong; Zoghbi, William A
2008-11-01
Our goal was to prospectively compare the accuracy of real-time three-dimensional (3D) color Doppler vena contracta (VC) area and two-dimensional (2D) VC diameter in an in vitro model and in the clinical assessment of mitral regurgitation (MR) severity. Real-time 3D color Doppler allows direct measurement of VC area and may be more accurate for assessment of MR than the conventional VC diameter measurement by 2D color Doppler. Using a circulatory loop with an incorporated imaging chamber, various pulsatile flow rates of MR were driven through 4 differently sized orifices. In a clinical study of patients with at least mild MR, regurgitation severity was assessed quantitatively using Doppler-derived effective regurgitant orifice area (EROA), and semiquantitatively as recommended by the American Society of Echocardiography. We describe a step-by-step process to accurately identify the 3D-VC area and compare that measure against known orifice areas (in vitro study) and EROA (clinical study). In vitro, 3D-VC area demonstrated the strongest correlation with known orifice area (r = 0.92, p < 0.001), whereas 2D-VC diameter had a weak correlation with orifice area (r = 0.56, p = 0.01). In a clinical study of 61 patients, 3D-VC area correlated with Doppler-derived EROA (r = 0.85, p < 0.001); the relation was stronger than for 2D-VC diameter (r = 0.67, p < 0.001). The advantage of 3D-VC area over 2D-VC diameter was more pronounced in eccentric jets (r = 0.87, p < 0.001 vs. r = 0.6, p < 0.001, respectively) and in moderate-to-severe or severe MR (r = 0.80, p < 0.001 vs. r = 0.18, p = 0.4, respectively). Measurement of VC area is feasible with real-time 3D color Doppler and provides a simple parameter that accurately reflects MR severity, particularly in eccentric and clinically significant MR where geometric assumptions may be challenging.
Little, Stephen H.; Pirat, Bahar; Kumar, Rahul; Igo, Stephen R.; McCulloch, Marti; Hartley, Craig J.; Xu, Jiaqiong; Zoghbi, William A.
2012-01-01
OBJECTIVES Our goal was to prospectively compare the accuracy of real-time three-dimensional (3D) color Doppler vena contracta (VC) area and two-dimensional (2D) VC diameter in an in vitro model and in the clinical assessment of mitral regurgitation (MR) severity. BACKGROUND Real-time 3D color Doppler allows direct measurement of VC area and may be more accurate for assessment of MR than the conventional VC diameter measurement by 2D color Doppler. METHODS Using a circulatory loop with an incorporated imaging chamber, various pulsatile flow rates of MR were driven through 4 differently sized orifices. In a clinical study of patients with at least mild MR, regurgitation severity was assessed quantitatively using Doppler-derived effective regurgitant orifice area (EROA), and semiquantitatively as recommended by the American Society of Echocardiography. We describe a step-by-step process to accurately identify the 3D-VC area and compare that measure against known orifice areas (in vitro study) and EROA (clinical study). RESULTS In vitro, 3D-VC area demonstrated the strongest correlation with known orifice area (r = 0.92, p < 0.001), whereas 2D-VC diameter had a weak correlation with orifice area (r = 0.56, p = 0.01). In a clinical study of 61 patients, 3D-VC area correlated with Doppler-derived EROA (r = 0.85, p < 0.001); the relation was stronger than for 2D-VC diameter (r = 0.67, p < 0.001). The advantage of 3D-VC area over 2D-VC diameter was more pronounced in eccentric jets (r = 0.87, p < 0.001 vs. r = 0.6, p < 0.001, respectively) and in moderate-to-severe or severe MR (r = 0.80, p < 0.001 vs. r = 0.18, p = 0.4, respectively). CONCLUSIONS Measurement of VC area is feasible with real-time 3D color Doppler and provides a simple parameter that accurately reflects MR severity, particularly in eccentric and clinically significant MR where geometric assumptions may be challenging. PMID:19356505
Cho, Jin-Hyung; Park, Wonse; Park, Kyeong-Mee; Kim, Seo-Yul
2017-01-01
Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication. PMID:28879329
Cho, Jin-Hyung; Park, Wonse; Park, Kyeong-Mee; Kim, Seo-Yul; Kim, Kee-Deog
2017-03-01
Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-11-09
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Integration of 3D intraoperative ultrasound for enhanced neuronavigation
NASA Astrophysics Data System (ADS)
Paulsen, Keith D.; Ji, Songbai; Hartov, Alex; Fan, Xiaoyao; Roberts, David W.
2012-03-01
True three-dimensional (3D) volumetric ultrasound (US) acquisitions stand to benefit intraoperative neuronavigation on multiple fronts. While traditional two-dimensional (2D) US and its tracked, hand-swept version have been recognized for many years to advantage significantly image-guided neurosurgery, especially when coregistered with preoperative MR scans, its unregulated and incomplete sampling of the surgical volume of interest have limited certain intraoperative uses of the information that are overcome through direct volume acquisition (i.e., through 2D scan-head transducer arrays). In this paper, we illustrate several of these advantages, including image-based intraoperative registration (and reregistration) and automated, volumetric displacement mapping for intraoperative image updating. These applications of 3D US are enabled by algorithmic advances in US image calibration, and volume rasterization and interpolation for multi-acquisition synthesis that will also be highlighted. We expect to demonstrate that coregistered 3D US is well worth incorporating into the standard neurosurgical navigational environment relative to traditional tracked, hand-swept 2D US.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Ocola, Leonidas E; Divan, Ralu; Doxastakis, Manolis; Ferrier, Nicola J; de Pablo, Juan; Nealey, Paul F
2017-02-28
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; ...
2016-12-22
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP- b-PS- b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domainsmore » and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. As a result, this research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedeneev, S. I., E-mail: vedeneev@sci.lebedev.ru; Knyazev, D. A.; Prudkoglyad, V. A.
2015-07-15
Two-dimensional (2D) Shubnikov–de Haas oscillations and 2D Hall oscillations are observed in 3D copper-doped Bi{sub 2}Se{sub 3} single crystals in magnetic fields up to 19.5 T at temperatures down to 0.3 K. Three samples with a high bulk carrier concentration (n ≈ 10{sup 19}–10{sup 20} cm{sup –3}) are studied. The rotation of the samples in a magnetic field shows that these oscillations are related to numerous parallel 2D conducting channels 1–5 nm thick. Their basic kinetic parameters are found. Quantized Hall resistance R{sub xy} is detected in 1-nm-thick 2D conducting channels at high fields. The distance Δ(1/R{sub xy}) between themore » steps in the field dependence of 1/R{sub xy} is found to be constant for different Landau levels, 1.3e{sup 2}/h per 1-nm-thick layer. The constructed fan diagrams of 2D Landau levels for various angles of sample inclination with respect to the magnetic field direction allowed us to conclude that the Berry phase in the 2D conducting channels is γ ≈ π and independent of the magnetic field direction. When studying the angular dependence of upper resistive critical magnetic field H{sub c2} in one of the superconducting samples, we showed that it can be considered as a bulk superconductor consisting of superconducting layers with an effective thickness of about 50 nm.« less
Tolkach, Yuri; Thomann, Stefan; Kristiansen, Glen
2018-05-01
Conventional morphology of prostate cancer considers only the two-dimensional (2D) architecture of the tumour. Our aim was to examine the feasibility of three-dimensional (3D) reconstruction of tumour morphology based on multiple consecutive histological sections and to decipher relevant features of prostate cancer architecture. Seventy-five consecutive histological sections (5 μm) of a typical prostate adenocarcinoma (Gleason score of 3 + 4 = 7) were immunostained (pan-cytokeratin) and scanned for further 3D reconstructions with fiji/imagej software. The main findings related to the prostate cancer architecture in this case were: (i) continuity of all glands, with the tumour being an integrated system, even in Gleason pattern 4 with poorly formed glands-no short-range migration of cells by Gleason pattern 4 (poorly formed glands); (ii) no repeated interconnections between the glands, with a tumour building a tree-like branched structure with very 'plastic' branches (maximal depth of investigation 375 μm); (iii) very stark compartmentalisation of the tumour related to extensive branching, the coexistence of independent terminal units of such branches in one 2D slice explaining intratumoral heterogeneity; (iv) evidence of a craniocaudal growth direction in interglandular regions of the prostate and for a lateromedial growth direction in subcapsular posterolateral regions; and (v) a 3D architecture-based description of Gleason pattern 4 with poorly formed glands, and its continuum with Gleason pattern 3. Consecutive histological sections provide high-quality material for 3D reconstructions of the tumour architecture, with excellent resolution. The reconstruction of multiple regions in this typical case of a Gleason score 3 + 4 = 7 tumour provides insights into relevant aspects of tumour growth, the continuity of Gleason patterns 3 and 4, and tumour heterogeneity. © 2018 John Wiley & Sons Ltd.
Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.
2014-01-01
Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427
Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin
2014-07-15
A facile simple hydrothermal method combined with a post-solution reaction is developed to grow interconnected three dimensional (3D) hierarchical Co-Al layered double hydroxides (LDHs) on reduced graphene oxide (rGO). The obtained 3D hierarchical rGO-LDHs are characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photo-electron spectroscopy. As LDHs nanosheets directly grow on the surface of rGO via chemical covalent bonding, the rGO could provide facile electron transport paths in the electrode for the fast Faradaic reaction. Moreover, benefiting from the rational 3D hierarchical structural, the rGO-LDHs demonstrate excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the 3D hierarchical rGO-LDHs exhibit specific capacitance values of 599 F g(-1) at a constant current density of 4 A g(-1). The rGO-LDHs also show high charge-discharge reversibility with an efficiency of 92.4% after 5000 cycles. Copyright © 2014 Elsevier Inc. All rights reserved.
Improved Virtual Planning for Bimaxillary Orthognathic Surgery.
Hatamleh, Muhanad; Turner, Catherine; Bhamrah, Gurprit; Mack, Gavin; Osher, Jonas
2016-09-01
Conventional model surgery planning for bimaxillary orthognathic surgery can be laborious, time-consuming and may contain potential errors; hence three-dimensional (3D) virtual orthognathic planning has been proven to be an efficient, reliable, and cost-effective alternative. In this report, the 3D planning is described for a patient presenting with a Class III incisor relationship on a Skeletal III base with pan facial asymmetry complicated by reverse overjet and anterior open bite. A combined scan data of direct cone beam computer tomography and indirect dental scan were used in the planning. Additionally, a new method of establishing optimum intercuspation by scanning dental casts in final occlusion and positioning it to the composite-scans model was shown. Furthermore, conventional model surgery planning was carried out following in-house protocol. Intermediate and final intermaxillary splints were produced following the conventional method and 3D printing. Three-dimensional planning showed great accuracy and treatment outcome and reduced laboratory time in comparison with the conventional method. Establishing the final dental occlusion on casts and integrating it in final 3D planning enabled us to achieve the best possible intercuspation.
Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen
2015-09-01
To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.
Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.
Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A
2017-08-01
Cloacal anomalies are complex to manage, and the anatomy affects prognosis and management. Assessment historically includes examination under anesthesia, and genitography is often performed, but these do not consistently capture three-dimensional (3D) detail or spatial relationships of the anatomic structures. Three-dimensional reconstruction cloacagrams can provide a high level of detail including channel measurements and the level of the cloaca (<3 cm vs. >3 cm), which typically determines the approach for surgical reconstruction and can impact long-term prognosis. Yet this imaging modality has not yet been directly compared with intra-operative or endoscopic findings. Our objective was to compare 3D reconstruction cloacagrams with endoscopic and intraoperative findings, as well as to describe the use of 3D printing to create models for surgical planning and education. An IRB-approved retrospective review of all cloaca patients seen by our multi-disciplinary program from 2014 to 2016 was performed. All patients underwent examination under anesthesia, endoscopy, 3D reconstruction cloacagram, and subsequent reconstructive surgery at a later date. Patient characteristics, intraoperative details, and measurements from endoscopy and cloacagram were reviewed and compared. One of the 3D cloacagrams was reformatted for 3D printing to create a model for surgical planning. Four patients were included for review, with the Figure illustrating 3D cloacagram results. Measurements of common channel length and urethral length were similar between modalities, particularly with confirming the level of cloaca. No patient experienced any complications or adverse effects from cloacagram or endoscopy. A model was successfully created from cloacagram images with the use of 3D printing technology. Accurate preoperative assessment for cloacal anomalies is important for counseling and surgical planning. Three-dimensional cloacagrams have been shown to yield a high level of anatomic detail. Here, cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.
2017-03-01
Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.
Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S
2017-04-01
Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.
NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces
NASA Astrophysics Data System (ADS)
Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.
1987-07-01
Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2017-07-01
We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.
Three-dimensional reconstruction of Roman coins from photometric image sets
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay; Moitinho de Almeida, Vera; Hess, Mona
2017-01-01
A method is presented for increasing the spatial resolution of the three-dimensional (3-D) digital representation of coins by combining fine photometric detail derived from a set of photographic images with accurate geometric data from a 3-D laser scanner. 3-D reconstructions were made of the obverse and reverse sides of two ancient Roman denarii by processing sets of images captured under directional lighting in an illumination dome. Surface normal vectors were calculated by a "bounded regression" technique, excluding both shadow and specular components of reflection from the metallic surface. Because of the known difficulty in achieving geometric accuracy when integrating photometric normals to produce a digital elevation model, the low spatial frequencies were replaced by those derived from the point cloud produced by a 3-D laser scanner. The two datasets were scaled and registered by matching the outlines and correlating the surface gradients. The final result was a realistic rendering of the coins at a spatial resolution of 75 pixels/mm (13-μm spacing), in which the fine detail modulated the underlying geometric form of the surface relief. The method opens the way to obtain high quality 3-D representations of coins in collections to enable interactive online viewing.
Effects of planar shear on the three-dimensional instability in flow past a circular cylinder
NASA Astrophysics Data System (ADS)
Park, Doohyun; Yang, Kyung-Soo
2018-03-01
A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.
Li, Junzhe; Luo, Shaohua; Ding, Xueyong; Wang, Qing; He, Ping
2018-04-04
In the efforts toward the rapidly increasing demands for high-power application, cathode materials with three-dimensional (3D) architectures have been proposed. Here, we report the construction of the 3D LiAlO 2 -LiMnPO 4 /C cathode materials for lithium-ion batteries in an innovation way. The as-prepared 3D active materials LiMnPO 4 /C and the honeycomb-like Li-ion conductor LiAlO 2 framework are used as working electrode directly without additional usage of polymeric binder. The electrochemical performance has been improved significantly due to the special designed core-shell architectures of LiMnPO 4 /C@LiAlO 2 . The 3D binder-free electrode exhibits high rate capability as well as superior cycling stability with a capability of ∼105 mAh g -1 and 98.4% capacity retention after 100 cycles at a high discharge rate of 10 C. Such synthesis method adopted in our work can be further extended to other promising candidates and would also inspire new avenues of development of 3D materials for lithium-ion batteries.
Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei
2014-01-21
Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.
Quantification of collagen contraction in three-dimensional cell culture.
Kopanska, Katarzyna S; Bussonnier, Matthias; Geraldo, Sara; Simon, Anthony; Vignjevic, Danijela; Betz, Timo
2015-01-01
Many different cell types including fibroblasts, smooth muscle cells, endothelial cells, and cancer cells exert traction forces on the fibrous components of the extracellular matrix. This can be observed as matrix contraction both macro- and microscopically in three-dimensional (3D) tissues models such as collagen type I gels. The quantification of local contraction at the micron scale, including its directionality and speed, in correlation with other parameters such as cell invasion, local protein or gene expression, can provide useful information to study wound healing, organism development, and cancer metastasis. In this article, we present a set of tools to quantify the flow dynamics of collagen contraction, induced by cells migrating out of a multicellular cancer spheroid into a three-dimensional (3D) collagen matrix. We adapted a pseudo-speckle technique that can be applied to bright-field and fluorescent microscopy time series. The image analysis presented here is based on an in-house written software developed in the Matlab (Mathworks) programming environment. The analysis program is freely available from GitHub following the link: http://dx.doi.org/10.5281/zenodo.10116. This tool provides an automatized technique to measure collagen contraction that can be utilized in different 3D cellular systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Real three-dimensional objects: effects on mental rotation.
Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I
2011-08-01
The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.
Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao
1998-08-01
We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.
Multicomponent Supramolecular Systems: Self-Organization in Coordination-Driven Self-Assembly
Zheng, Yao-Rong; Yang, Hai-Bo; Ghosh, Koushik; Zhao, Liang; Stang, Peter J.
2009-01-01
The self-organization of multicomponent supramolecular systems involving a variety of two-dimensional (2-D) polygons and three-dimensional (3-D) cages is presented. Nine self-organizing systems, SS1–SS9, have been studied. Each involving the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self-assembly into three to four specific 2-D (rectangular, triangular, and rhomboid) and/or 3-D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). In all cases, the self-organization process is directed by: (1) the geometric information encoded within the molecular subunits and (2) a thermodynamically driven dynamic self-correction process. The result is the selective self-assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables – temperature and solvent – on the self-correction process and the fidelity of the resulting self-organization systems is also described. PMID:19544512
NASA Astrophysics Data System (ADS)
Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.
2014-03-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
Sforza, Chiarella; De Menezes, Marcio; Bresciani, Elena; Cerón-Zapata, Ana M; López-Palacio, Ana M; Rodriguez-Ardila, Myriam J; Berrio-Gutiérrez, Lina M
2012-07-01
To assess a three-dimensional stereophotogrammetric method for palatal cast digitization of children with unilateral cleft lip and palate. As part of a collaboration between the University of Milan (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with unilateral cleft lip and palate were obtained and digitized using a three-dimensional stereophotogrammetric imaging system. Three-dimensional measurements (cleft width, depth, length) were made separately for the longer and shorter cleft segments on the digital dental cast surface between landmarks, previously marked. Seven linear measurements were computed. Systematic and random errors between operators' tracings, and accuracy on geometric objects of known size were calculated. In addition, mean measurements from three-dimensional stereophotographs were compared statistically with those from direct anthropometry. The three-dimensional method presented good accuracy error (<0.9%) on measuring geometric objects. No systematic errors between operators' measurements were found (p > .05). Statistically significant differences (p < 5%) were noted for different methods (caliper versus stereophotogrammetry) for almost all distances analyzed, with mean absolute difference values ranging between 0.22 and 3.41 mm. Therefore, rates for the technical error of measurement and relative error magnitude were scored as moderate for Ag-Am and poor for Ag-Pg and Am-Pm distances. Generally, caliper values were larger than three-dimensional stereophotogrammetric values. Three-dimensional stereophotogrammetric systems have some advantages over direct anthropometry, and therefore the method could be sufficiently precise and accurate on palatal cast digitization with unilateral cleft lip and palate. This would be useful for clinical analyses in maxillofacial, plastic, and aesthetic surgery.
Mashari, Azad; Montealegre-Gallegos, Mario; Knio, Ziyad; Yeh, Lu; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze
2016-12-01
Three-dimensional (3D) printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping) derived from 3D transesophageal echocardiography (TEE) has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology. © 2016 The authors.
Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul
2016-12-01
We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake. PMID:29145475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.
A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less
Vertex shading of the three-dimensional model based on ray-tracing algorithm
NASA Astrophysics Data System (ADS)
Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.
NASA Astrophysics Data System (ADS)
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
An Advanced, Three-Dimensional Plotting Library for Astronomy
NASA Astrophysics Data System (ADS)
Barnes, David G.; Fluke, Christopher J.; Bourke, Paul D.; Parry, Owen T.
2006-07-01
We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - s2plot - is written in c and can be used by c, c++, and fortran programs on GNU/Linux and Apple/OSX systems. s2plot draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a pgplot-inspired interface, s2plot provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The s2plot architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce s2plot to the astronomical community, describe its potential applications, and present some example uses of the library.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.
Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan
2011-02-22
Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein.
NASA Astrophysics Data System (ADS)
Kim, Jeongwoo; Wu, Ruqian
2018-03-01
Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.
Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
You, Jeong Ho; Lee, Jun Hee
2013-10-01
Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.
Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.
Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R
2003-06-01
We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology. Copyright 2003 Wiley-Liss, Inc.
Rotary culture enhances pre-osteoblast aggregation and mineralization.
Facer, S R; Zaharias, R S; Andracki, M E; Lafoon, J; Hunter, S K; Schneider, G B
2005-06-01
Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to enhance the osteogenic potential of pre-osteoblast cells. HEPM cells were cultured in a RCCS to create 3D enviroments. Tissue culture plastic (2D) cultures served as our control. 3D environments promoted three-dimensional aggregate formations. Increased calcium and phosphorus deposition was significantly enhanced three- to 18-fold (P < 0.001) in 3D cultures as compared with 2D environments. 3D cultures mineralized in 1 wk as compared with the 2D cultures, which took 4 wks, a decrease in time of nearly 75%. In conclusion, our studies demonstrated that 3D environments enhanced osteoblast cell aggregation and mineralization.
An Interactive Preprocessor Program with Graphics for a Three-Dimensional Finite Element Code.
ERIC Educational Resources Information Center
Hamilton, Claude Hayden, III
The development and capabilities of an interactive preprocessor program with graphics for an existing three-dimensional finite element code is presented. This preprocessor program, EDGAP3D, is designed to be used in conjunction with the Texas Three Dimensional Grain Analysis Program (TXCAP3D). The code presented in this research is capable of the…
Assembly of RNA nanostructures on supported lipid bilayers
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2014-12-01
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. Electronic supplementary information (ESI) available: Table with sequences of tRNA units used in this study; schematic structures of the RNA polyhedron and its building blocks; gel electrophoresis characterization of the RNA polyhedron and squares; AFM characterization of RNA tectosquare; schematic structures of RNA-9 and RNA-10 and their association with lipid bilayers; QCM-D frequency and dissipation data (as function of time) for adsorption of RNA polyhedrons, RNA squares and RNA9-10 TIRF images of RNA with Gelstar after photobleaching with analysis; Correlation plot in change of shear viscosity for TS3 and TO3-4 models for the stoichiometry of TS; QCM-D dissipation data for the sequential experiment in Fig. 5a; QCM-D and for the assembly of building blocks at the bilayer scaffold at varying bulk concentrations; QCM-D of adsorption of TS3. See DOI: 10.1039/c4nr05968a
Flat holographic stereograms synthesized from computer-generated images by using LiNbO3 crystal
NASA Astrophysics Data System (ADS)
Qu, Zhi-Min; Liu, Jinsheng; Xu, Liangying
1991-02-01
In this paper we used a novel method for synthesizing computer gene rated images in which by means of a series of intermediate holograms recorded on Fe--doped LiNbO crystals a high quality flat stereograni with wide view angle and much deep 3D image ha been obtained. 2. INTRODUCTITJN As we all know the conventional holography is very limited. With the help of a contineous wave laser only stationary objects can be re corded due tO its insufficient power. Although some moving objects could be recorded by a pulsed laser the dimensions and kinds of object are restricted. If we would like to see a imaginary object or a three dimensional image designed by computer it is very difficult by means of above conventional holography. Of course if we have a two-dimensional image on a comouter screen we can rotate it to give a three-dimensional perspective but we can never really see it as a solid. However flat holographic stereograrns synthesized from computer generated images will make one directly see the comoute results in the form of 3D image. Obviously it will have wide applications in design architecture medicine education and arts. 406 / SPIE Vol. 1238 Three-Dimensional Holography: Science Culture Education (1989)
Research on the printability of hydrogels in 3D bioprinting
He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong
2016-01-01
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509
Research on the printability of hydrogels in 3D bioprinting
NASA Astrophysics Data System (ADS)
He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong
2016-07-01
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.
Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.
Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin
2009-01-01
Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.
Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.
Lund, A W; Stegemann, J P; Plopper, G E
2009-01-01
The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.
Three-dimensional chimera patterns in networks of spiking neuron oscillators
NASA Astrophysics Data System (ADS)
Kasimatis, T.; Hizanidis, J.; Provata, A.
2018-05-01
We study the stable spatiotemporal patterns that arise in a three-dimensional (3D) network of neuron oscillators, whose dynamics is described by the leaky integrate-and-fire (LIF) model. More specifically, we investigate the form of the chimera states induced by a 3D coupling matrix with nonlocal topology. The observed patterns are in many cases direct generalizations of the corresponding two-dimensional (2D) patterns, e.g., spheres, layers, and cylinder grids. We also find cylindrical and "cross-layered" chimeras that do not have an equivalent in 2D systems. Quantitative measures are calculated, such as the ratio of synchronized and unsynchronized neurons as a function of the coupling range, the mean phase velocities, and the distribution of neurons in mean phase velocities. Based on these measures, the chimeras are categorized in two families. The first family of patterns is observed for weaker coupling and exhibits higher mean phase velocities for the unsynchronized areas of the network. The opposite holds for the second family, where the unsynchronized areas have lower mean phase velocities. The various measures demonstrate discontinuities, indicating criticality as the parameters cross from the first family of patterns to the second.
Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth.
Antman-Passig, Merav; Levy, Shahar; Gartenberg, Chaim; Schori, Hadas; Shefi, Orit
2017-05-01
Recent studies in the field of neuro-tissue engineering have demonstrated the promising effects of aligned contact guidance cue to scaffolds of enhancement and direction of neuronal growth. In vivo, neurons grow and develop neurites in a complex three-dimensional (3D) extracellular matrix (ECM) surrounding. Studies have utilized hydrogel scaffolds derived from ECM molecules to better simulate natural growth. While many efforts have been made to control neuronal growth on 2D surfaces, the development of 3D scaffolds with an elaborate oriented topography to direct neuronal growth still remains a challenge. In this study, we designed a method for growing neurons in an aligned and oriented 3D collagen hydrogel. We aligned collagen fibers by inducing controlled uniaxial strain on gels. To examine the collagen hydrogel as a suitable scaffold for neuronal growth, we evaluated the physical properties of the hydrogel and measured collagen fiber properties. By combining the neuronal culture in 3D collagen hydrogels with strain-induced alignment, we were able to direct neuronal growth in the direction of the aligned collagen matrix. Quantitative evaluation of neurite extension and directionality within aligned gels was performed. The analysis showed neurite growth aligned with collagen matrix orientation, while maintaining the advantageous 3D growth.
Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms
Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...
2014-10-29
Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less
Woodbury, M A; Woodbury, M F
1998-01-01
Our 3-D Body Representation constructed during development by our Central Nervous System under the direction of our DNA, consists of a holographic representation arising from sensory input in the cerebellum and projected extraneurally in the brain ventricular fluid which has the chemical structure of liquid crystal. The structure of 3-D holographic Body Representation is then extrapolated by such cognitive instruments as boundarization, geometrization and gestalt organization upon the external environment which is perceived consequently as three dimensional. When the Body Representation collapses as in psychotic panic states. patients become terrified as they suddenly lose the perception of themselves and the world around them as three dimensional, solid in a reliably solid environment but feel suddenly that they are no longer a person but a disorganized blob. In our clinical practice we found serendipitously that the structure of three dimensionality can be restored even without medication by techniques involving stimulation of the body sensory system in the presence of a benevolent psychotherapist. Implications for Virtual Reality will be discussed.
NASA Astrophysics Data System (ADS)
Heizler, Shay I.; Kessler, David A.
2017-06-01
Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is difficult and controversial. The experimental results give several indications that the microbranching phenomenon is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure 3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the experimental findings.
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin
2018-03-01
Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L.
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy. PMID:29238513
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk
2016-09-15
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less
NASA Astrophysics Data System (ADS)
Damayanti, Ista; Lilies, Latief, Benny S.
2017-02-01
Three-dimensional (3-D) printing has been identified as an innovative manufacturing technology of functional parts. The 3-D model was produced based on CT-Scan using Osyrix software, where automatic segmentation was performed and convert into STL format. This STL format was then ready to be produced physically, layer-by-layer to create 3-D model.
Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.
2007-01-01
Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
ERIC Educational Resources Information Center
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…
Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
Shin, Sungchul; Hyun, Jinho
2017-08-09
A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng
2016-05-21
Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.
NASA Astrophysics Data System (ADS)
Mano, Tomohiro; Ohtsuki, Tomi
2017-11-01
The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [
A reusable anatomically segmented digital mannequin for public health communication.
Fujieda, Kaori; Okubo, Kosaku
2016-01-01
The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.
Sampaio, Francisco; Ladeiras-Lopes, Ricardo; Almeida, João; Fonseca, Paulo; Fontes-Carvalho, Ricardo; Ribeiro, José; Gama, Vasco
2017-07-01
Management of patients with mitral stenosis (MS) depends heavily on the accurate quantification of mitral valve area (MVA) using echocardiography. All currently used two-dimensional (2D) methods have limitations. Estimation of MVA using the proximal isovelocity surface area (PISA) method with real time three-dimensional (3D) echocardiography may circumvent those limitations. We aimed to evaluate the accuracy of 3D direct measurement of PISA in the estimation of MVA. Twenty-seven consecutive patients (median age of 63 years; 77.8% females) with rheumatic MS were prospectively studied. Transthoracic and transesophageal echocardiography with 2D and 3D acquisitions were performed on the same day. The reference method for MVA quantification was valve planimetry after 3D-volume multiplanar reconstruction. A semi-automated software was used to calculate the 3D flow convergence volume. Compared to MVA estimation using 3D planimetry, 3D PISA showed the best correlation (rho=0.78, P<.0001), followed by pressure half-time (PHT: rho=0.66, P<.001), continuity equation (CE: rho=0.61, P=.003), and 2D PISA (rho=0.26, P=.203). Bland-Altman analysis revealed a good agreement for MVA estimation with 3D PISA (mean difference -0.03 cm 2 ; limits of agreement (LOA) -0.40-0.35), in contrast to wider LOA for 2D methods: CE (mean difference 0.02 cm 2 , LOA -0.56-0.60); PHT (mean difference 0.31 cm 2 , LOA -0.32-0.95); 2D PISA (mean difference -0.03 cm 2 , LOA -0.92-0.86). MVA estimation using 3D PISA was feasible and more accurate than 2D methods. Its introduction in daily clinical practice seems possible and may overcome technical limitations of 2D methods. © 2017, Wiley Periodicals, Inc.
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
Li, Ning; Zhang, Qi; Gao, Song; Song, Qin; Huang, Rong; Wang, Long; Liu, Liwei; Dai, Jianwu; Tang, Mingliang; Cheng, Guosheng
2013-01-01
Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses. PMID:23549373
Zhu, Xiaolu; Gojgini, Shiva; Chen, Ting-Hsuan; Fei, Peng; Dong, Siyan; Ho, Chih-Ming; Segura, Tatiana
2017-01-01
Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. In this study, we integrated the Turing reaction-diffusion mechanism with the self-organization process of cells and produced multicellular 3D structures with the desired configurations in a rational manner. By optimizing the components of the hydrogel and applying exogenous morphogens, a variety of multicellular 3D architectures composed of multipotent vascular mesenchymal cells (VMCs) were formed inside hyaluronic acid (HA) hydrogels. These 3D architectures could mimic the features of trabecular bones and multicellular nodules. Based on the Turing reaction-diffusion instability of morphogens and cells, a theoretical model was proposed to predict the variations observed in 3D multicellular structures in response to exogenous factors. It enabled the feasibility to obtain diverse types of 3D multicellular structures by addition of Noggin and/or BMP2. The morphological consistency between the simulation prediction and experimental results probably revealed a Turing-type mechanism underlying the 3D self-organization of VMCs in HA hydrogels. Our study has provided new ways to create a variety of self-organized 3D multicellular architectures for regenerating biomaterial and tissues in a Turing mechanism-based approach.
Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J
1998-06-01
To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.
Who Needs 3D When the Universe Is Flat?
ERIC Educational Resources Information Center
Eriksson, Urban; Linder, Cedric; Airey, John; Redfors, Andreas
2014-01-01
An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D)…
Li, Jiaqiang; Xu, Jing; Xie, Ziqian; Gao, Xin; Zhou, Jingyuan; Xiong, Yan; Chen, Changguo; Zhang, Jin; Liu, Zhongfan
2018-05-01
Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh@3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yadav, Monica; Agrawal, Himanshu; Pandey, Mamta; Singh, Dheer; Onteru, Suneel K
2018-03-01
Granulosa cell (GC) culture models mimicking the intrafollicular environment are limited. Such models have a great potential in reproductive toxicity studies. The buffalo, a monovulatory species like humans, could be a better model than polyovulatory rodents. Therefore, we targeted the development and characterization of three-dimensional (3D) culture systems for buffalo GCs. The GCs from small ovarian follicles (SF) maintained the CYP19 gene expression for 144 hr in a 2D culture system. Hence, GCs from SF were cultured directly in 3D using hanging drop and Poly-([2-hydroxyethyl methacrylate]) (polyHEMA) methods in the DMEM media containing 1 ng/ml FSH and 10 ng/ml IGF-1 for 144 hr. The expression profile of nine GC-specific transcripts; CYP19, TNFAIP6, AMH, PTI, NR4A1, FSHR, RUNX, LHR, and COX2/PTGS2; revealed that 3D-spheroids developed in hanging drop method maintained the GC phenotype of preovulatory follicles. Therefore, hanging drop method is a best method for culturing GCs to mimic the intrafollicular environment. © 2017 Wiley Periodicals, Inc.
Galantucci, Luigi Maria; Percoco, Gianluca; Lavecchia, Fulvio; Di Gioia, Eliana
2013-05-01
The article describes a new methodology to scan and integrate facial soft tissue surface with dental hard tissue models in a three-dimensional (3D) virtual environment, for a novel diagnostic approach.The facial and the dental scans can be acquired using any optical scanning systems: the models are then aligned and integrated to obtain a full virtual navigable representation of the head of the patient. In this article, we report in detail and further implemented a method for integrating 3D digital cast models into a 3D facial image, to visualize the anatomic position of the dentition. This system uses several 3D technologies to scan and digitize, integrating them with traditional dentistry records. The acquisitions were mainly performed using photogrammetric scanners, suitable for clinics or hospitals, able to obtain high mesh resolution and optimal surface texture for the photorealistic rendering of the face. To increase the quality and the resolution of the photogrammetric scanning of the dental elements, the authors propose a new technique to enhance the texture of the dental surface. Three examples of the application of the proposed procedure are reported in this article, using first laser scanning and photogrammetry and then only photogrammetry. Using cheek retractors, it is possible to scan directly a great number of dental elements. The final results are good navigable 3D models that integrate facial soft tissue and dental hard tissues. The method is characterized by the complete absence of ionizing radiation, portability and simplicity, fast acquisition, easy alignment of the 3D models, and wide angle of view of the scanner. This method is completely noninvasive and can be repeated any time the physician needs new clinical records. The 3D virtual model is a precise representation both of the soft and the hard tissue scanned, and it is possible to make any dimensional measure directly in the virtual space, for a full integrated 3D anthropometry and cephalometry. Moreover, the authors propose a method completely based on close-range photogrammetric scanning, able to detect facial and dental surfaces, and reducing the time, the complexity, and the cost of the scanning operations and the numerical elaboration.
Flow transition with 2-D roughness elements in a 3-D channel
NASA Technical Reports Server (NTRS)
Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.
1993-01-01
We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.
NASA Astrophysics Data System (ADS)
Walker, Robin A.
2013-02-01
Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.
Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2018-02-19
Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.
Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle
2015-03-01
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Murata, Takahiro; Horiuchi, Tetsuyoshi; Rahmah, Nunung Nur; Sakai, Keiichi; Hongo, Kazuhiro
2011-01-01
Direct surgery remains important for the treatment of superficial cerebral arteriovenous malformation (AVM). Surgical planning on the basis of careful analysis from various neuroimaging modalities can aid in resection of superficial AVM with favorable outcome. Three-dimensional (3D) magnetic resonance (MR) imaging reconstructed from time-of-flight (TOF) MR angiography was developed as an adjunctive tool for surgical planning of superficial AVM. 3-T TOF MR imaging without contrast medium was performed preoperatively in patients with superficial AVM. The images were imported into OsiriX imaging software and the 3D reconstructed MR image was produced using the volume rendering method. This 3D MR image could clearly visualize the surface angioarchitecture of the AVM with the surrounding brain on a single image, and clarified feeding arteries including draining veins and the relationship with sulci or fissures surrounding the nidus. 3D MR image of the whole AVM angioarchitecture was also displayed by skeletonization of the surrounding brain. Preoperative 3D MR image corresponded to the intraoperative view. Feeders on the brain surface were easily confirmed and obliterated during surgery, with the aid of the 3D MR images. 3D MR imaging for surgical planning of superficial AVM is simple and noninvasive to perform, enhances intraoperative orientation, and is helpful for successful resection.
Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause
Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; ...
2015-02-03
We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less
Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin
2005-10-03
Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.
Methods for determining and processing 3D errors and uncertainties for AFM data analysis
NASA Astrophysics Data System (ADS)
Klapetek, P.; Nečas, D.; Campbellová, A.; Yacoot, A.; Koenders, L.
2011-02-01
This paper describes the processing of three-dimensional (3D) scanning probe microscopy (SPM) data. It is shown that 3D volumetric calibration error and uncertainty data can be acquired for both metrological atomic force microscope systems and commercial SPMs. These data can be used within nearly all the standard SPM data processing algorithms to determine local values of uncertainty of the scanning system. If the error function of the scanning system is determined for the whole measurement volume of an SPM, it can be converted to yield local dimensional uncertainty values that can in turn be used for evaluation of uncertainties related to the acquired data and for further data processing applications (e.g. area, ACF, roughness) within direct or statistical measurements. These have been implemented in the software package Gwyddion.
New families of interpolating type IIB backgrounds
NASA Astrophysics Data System (ADS)
Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto
2010-04-01
We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are mathbb{T}2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either mathcal{N}=2 or mathcal{N}=1 supersymmetry. In the mathcal{N}=2 case it can be shown that the solutions are regular.
Yang, Xiaoqing; Liu, Anran; Zhao, Yuewu; Lu, Huijia; Zhang, Yuanjian; Wei, Wei; Li, Ying; Liu, Songqin
2015-10-28
We report a general method for the fabrication of three-dimensional (3D) macroporous graphene/conducting polymer modified electrode and nitrogen-doped graphene modified electrode. This method involves three consecutive steps. First, the 3D macroporous graphene (3D MG) electrode was fabricated electrochemically by reducing graphene oxide dispersion on different conducting substrates and used hydrogen bubbles as the dynamic template. The morphology and pore size of 3D MG could be governed by the use of surfactants and the dynamics of bubble generation and departure. Second, 3D macroporous graphene/polypyrrole (MGPPy) composites were constructed via directly electropolymerizing pyrrole monomer onto the networks of 3D MG. Due to the benefit of the good conductivity of 3D MG and pseudocapacitance of PPy, the composites manifest outstanding area specific capacitance of 196 mF cm(-2) at a current density of 1 mA cm(-2). The symmetric supercapacitor device assembled by the composite materials had a good capacity property. Finally, the nitrogen-doped MGPPy (N-MGPPy or MGPPy-X) with 3D macroporous nanostructure and well-regulated nitrogen doping was prepared via thermal treatment of the composites. The resultant N-MGPPy electrode was explored as a good electrocatalyst for the oxygen reduction reaction (ORR) with the current density value of 5.56 mA cm(-2) (-0.132 V vs Ag/AgCl). Moreover, the fuel tolerance and durability under the electrochemical environment of the N-MGPPy catalyst were found to be superior to the Pt/C catalyst.
Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas
2017-01-01
New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts. PMID:29232892
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Three-dimensional scene reconstruction from a two-dimensional image
NASA Astrophysics Data System (ADS)
Parkins, Franz; Jacobs, Eddie
2017-05-01
We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
AdS3 to dS3 transition in the near horizon of asymptotically de Sitter solutions
NASA Astrophysics Data System (ADS)
Sadeghian, S.; Vahidinia, M. H.
2017-08-01
We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH) limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological constant. In the Kerr-dS case, this subspace interpolates between AdS3 , three-dimensional flat and dS3 by varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3 . The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric spacetimes with a horizon: Kerr-dS3 , flat space cosmology or BTZ black hole. We show that their thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.
Three-Dimensional (3D) Printers in Libraries: Perspective and Preliminary Safety Analysis
ERIC Educational Resources Information Center
Bharti, Neelam; Singh, Shailendra
2017-01-01
As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…
ERIC Educational Resources Information Center
Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz
2017-01-01
Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…
Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia
2015-02-04
Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.
NASA Astrophysics Data System (ADS)
Savitri, I. T.; Badri, C.; Sulistyani, L. D.
2017-08-01
Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.
Lei, Jun-Hui; Zhao, Yu-Qing; Tang, Qiong; Lin, Jian-Guo; Cai, Meng-Qiu
2018-05-16
Organic-inorganic hybrid perovskites are developed to pursue high charge carrier mobility and light absorption coefficient. In this study, we present a detailed comparative research of the atomic and electronic structures of single-layered perovskites (C4H9NH3)2PbBr4 with two-dimensional/three-dimensional (2D/3D) spatial arrangement to predict the in plane charge carrier mobility along with the charge effective mass, elastic constant, and deformation potential. The calculated results reveal that the intrinsic in plane carrier mobilities of 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 along the 100 and 010 directions are superior to those of the 3D structure. Furthermore, the optical properties are calculated from the electronic structure; it is found that the light absorption spectrum of 2D single-layered perovskite (C4H9NH3)2PbBr4 with a high absorption coefficient is wider than that of the 3D phase. We speculate that the superior mobility and wider absorption spectrum of the 2D mono-layered perovskite are due to high charge density and ferroelectricity originating from structure distortion upon 3D-to-2D structure transformation. These results indicate that the 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 is a potential candidate for application in the optoelectronic and photovoltaic fields.
Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5
Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...
2016-07-12
The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less
Frankel, A.
1993-01-01
Three-dimensional finite difference simulations of elastic waves in the San Bernardino Valley were performed for two hypothetical earthquakes on the San Andreas fault: a point source with moment magnitude M5 and an extended rupture with M6.5. A method is presented for incorporating a source with arbitrary focal mechanism in the grid. Synthetics from the 3-D simulations are compared with those derived from 2-D (vertical cross section) and 1-D (flat-layered) models. The synthetic seismograms from the 3-D and 2-D simulations exhibit large surface waves produced by conversion of incident S waves at the edge of the basin. Seismograms from the flat-layered model do not contain these converted surface waves and underestimate the duration of shaking. Maps of maximum ground velocities occur in localized portions of the basin. The location of the largest velocities changes with the rupture propagation direction. Contours of maximum shaking are also dependent on asperity positions and radiation pattern. -from Author
Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun
2014-01-01
A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268
Exact rebinning methods for three-dimensional PET.
Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D
1999-08-01
The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.
NASA Astrophysics Data System (ADS)
Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.
2015-09-01
Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Xin; Marshall, Matthew J.; Xiong, Yijia
2015-05-01
A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.
“In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes
NASA Astrophysics Data System (ADS)
Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.
2018-06-01
In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.
BRDF-dependent accuracy of array-projection-based 3D sensors.
Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2017-03-10
In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.
3D Printing of Biomolecular Models for Research and Pedagogy
Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel
2017-01-01
The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403
Echocardiography Comparison Between Two and Three Dimensional Echocardiograms
NASA Technical Reports Server (NTRS)
2003-01-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
NASA Astrophysics Data System (ADS)
Zhan, You-Bang; Zhang, Qun-Yong; Wang, Yu-Wu; Ma, Peng-Cheng
2010-01-01
We propose a scheme to teleport an unknown single-qubit state by using a high-dimensional entangled state as the quantum channel. As a special case, a scheme for teleportation of an unknown single-qubit state via three-dimensional entangled state is investigated in detail. Also, this scheme can be directly generalized to an unknown f-dimensional state by using a d-dimensional entangled state (d > f) as the quantum channel.
3D gaze tracking system for NVidia 3D Vision®.
Wibirama, Sunu; Hamamoto, Kazuhiko
2013-01-01
Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.
Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra
2013-07-02
The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA functionalization and hybridization. The yield of formed aggregates was found to be about 44%, with a relative fraction of dimers of some 30%. Finally, the electrical properties of the formed dimers were characterized using probe tips inside a scanning electron microscope.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
Arnela, Marc; Guasch, Oriol
2014-01-01
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.
Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L
2002-09-01
Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.
Three-Dimensional Weighting in Cone Beam FBP Reconstruction and Its Transformation Over Geometries.
Tang, Shaojie; Huang, Kuidong; Cheng, Yunyong; Niu, Tianye; Tang, Xiangyang
2018-06-01
With substantially increased number of detector rows in multidetector CT (MDCT), axial scan with projection data acquired along a circular source trajectory has become the method-of-choice in increasing clinical applications. Recognizing the practical relevance of image reconstruction directly from the projection data acquired in the native cone beam (CB) geometry, especially in scenarios wherein the most achievable in-plane resolution is desirable, we present a three-dimensional (3-D) weighted CB-FBP algorithm in such geometry in this paper. We start the algorithm's derivation in the cone-parallel geometry. Via changing of variables, taking the Jacobian into account and making heuristic and empirical assumptions, we arrive at the formulas for 3-D weighted image reconstruction in the native CB geometry. Using the projection data simulated by computer and acquired by an MDCT scanner, we evaluate and verify performance of the proposed algorithm for image reconstruction directly from projection data acquired in the native CB geometry. The preliminary data show that the proposed algorithm performs as well as the 3-D weighted CB-FBP algorithm in the cone-parallel geometry. The proposed algorithm is anticipated to find its utility in extensive clinical and preclinical applications wherein the reconstruction of images in the native CB geometry, i.e., the geometry for data acquisition, is of relevance.
Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto
2013-11-01
The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry
Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian
2017-01-01
The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced. PMID:29215600
Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.
Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian
2017-12-07
The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012
A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows
NASA Technical Reports Server (NTRS)
Gerbsch, R. A.; Agarwal, R. K.
1992-01-01
The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-01-01
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future. PMID:28774030
Three-dimensional unstructured grid refinement and optimization using edge-swapping
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Barth, Timothy
1993-01-01
This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.
3D Imaging with Structured Illumination for Advanced Security Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.
2015-09-01
Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capabilitymore » are discussed.« less
NASA Astrophysics Data System (ADS)
Daimon, Hiroshi
2018-06-01
Local three-dimensional (3D) atomic arrangements without periodicity have not been able to be studied until recently. Recently, several holographies and related techniques have been developed to reveal the 3D atomic arrangement around specific atoms with no translational symmetry. This review gives an overview of these new local 3D atomic imaging techniques.
Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot
2013-01-01
Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, G.; Biferale, L.; Alexakis, A.
2017-12-01
Direction of energy transfer among the scales in a turbulent flow has asignificant role in the macroscopic properties of the flow. It has been arguedthat the dimensionality and the ideal invariants of the flow determine thedirection of the cascade of energy. Because of two sign definite invariants,energy and enstrophy, of two-dimensional turbulence, energy is transferredbackwards from small scales to larger scales and enstrophy is transferred tosmaller scales. However in three-dimensions, while energy is sign-definite, theother invariant helicity does not have a definite sign and therefore there isno constraint on the direction of transfer. It is merely an empiricalobservation that the energy and helicity cascade to the smaller scales in athree-dimensional turbulent flow. Many systems, however, show bidirectionalsplit energy transfer, e.g., flows under strong rotation and stratification, inthin layers or under external magnetic field. The appearance of inverse energyflux in such systems are often considered as a result of enhancement ofquasi-2D Fourier interactions in a 3D background. We designed a model system[1] where the triadic interactions in Navier-Stokes equations are enhanced orsuppressed in a controlled manner without affecting the degrees of freedom,ideal invariants or breaking any of the symmetries of NSE. In our numericalsimulations that uses the tool of helical decomposition of velocity Fouriermodes, we introduced a parameter (0 ≤ λ ≤ 1) that controls therelative weight among homochiral triads and all the others in the nonlinearevolution. We show that by using this weighting protocol the turbulentevolution displays a sharp transition, for a critical value of the controlparameter, from forward to backward energy transfer but still keeping thedynamics fully three dimensional, isotropic, and parity invariant. [1] G Sahoo, A Alexakis and L Biferale, Phys. Rev. Lett. 118, 164501 (2017).
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
Computational techniques to enable visualizing shapes of objects of extra spatial dimensions
NASA Astrophysics Data System (ADS)
Black, Don Vaughn, II
Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.
Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia
2015-01-01
Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119
Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F
2014-01-01
Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.
Pirat, Bahar; Little, Stephen H.; Igo, Stephen R.; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J.; Zoghbi, William A.
2012-01-01
Objective The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. Methods We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2π r2, and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA × aliasing velocity × time velocity integral of AR/peak AR velocity. Results Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 ± 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Conclusion Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption. PMID:19168322
Pothuaud, L; Benhamou, C L; Porion, P; Lespessailles, E; Harba, R; Levitz, P
2000-04-01
The purpose of this work was to understand how fractal dimension of two-dimensional (2D) trabecular bone projection images could be related to three-dimensional (3D) trabecular bone properties such as porosity or connectivity. Two alteration processes were applied to trabecular bone images obtained by magnetic resonance imaging: a trabeculae dilation process and a trabeculae removal process. The trabeculae dilation process was applied from the 3D skeleton graph to the 3D initial structure with constant connectivity. The trabeculae removal process was applied from the initial structure to an altered structure having 99% of porosity, in which both porosity and connectivity were modified during this second process. Gray-level projection images of each of the altered structures were simply obtained by summation of voxels, and fractal dimension (Df) was calculated. Porosity (phi) and connectivity per unit volume (Cv) were calculated from the 3D structure. Significant relationships were found between Df, phi, and Cv. Df values increased when porosity increased (dilation and removal processes) and when connectivity decreased (only removal process). These variations were in accordance with all previous clinical studies, suggesting that fractal evaluation of trabecular bone projection has real meaning in terms of porosity and connectivity of the 3D architecture. Furthermore, there was a statistically significant linear dependence between Df and Cv when phi remained constant. Porosity is directly related to bone mineral density and fractal dimension can be easily evaluated in clinical routine. These two parameters could be associated to evaluate the connectivity of the structure.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
Subramania, Ganapathi; Lee, Yun-Ju; Brener, Igal; Luk, Ting-Shan; Clem, Paul G
2007-10-01
Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.
[3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].
Kneist, W; Huber, T; Paschold, M; Lang, H
2016-06-01
The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2013-10-01
Acoustically induced vibrations of the tympanic membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and three-dimensional (3-D) displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. Sound-induced 3-D displacements of the TM are estimated from shape and one-dimensional displacements measured in cadaveric chinchillas using a lensless dual-wavelength digital holography system (DWDHS). The DWDHS consists of laser delivery, optical head, and computing platform subsystems. Shape measurements are performed in double-exposure mode with the use of two wavelengths of a tunable laser, while nanometer-scale displacements are measured along a single sensitivity direction with a constant wavelength. Taking into consideration the geometrical and dimensional constrains imposed by the anatomy of the TM, we combine principles of thin-shell theory together with displacement measurements along a single sensitivity vector and TM surface shape to extract the three principal components of displacement in the full-field-of-view. We test, validate, and identify limitations of this approach via the application of finite element method to artificial geometries.
Three-dimensional magnetophotonic crystals based on artificial opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.
2004-06-01
We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.
NASA Astrophysics Data System (ADS)
Ai, Lingyu; Kim, Eun-Soo
2018-03-01
We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.
NASA Astrophysics Data System (ADS)
Zapiór, Maciej; Martínez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Momose, T.; Oku, S.
It is essential to obtain realistic brain surface images, in which sulci and gyri are easily recognized, when examining the correlation between functional (PET or SPECT) and anatomical (MRI) brain studies. The volume rendering technique (VRT) is commonly employed to make three-dimensional (3D) brain surface images. This technique, however, takes considerable time to make only one 3D image. Therefore it has not been practical to make the brain surface images in arbitrary directions on a real-time basis using ordinary work stations or personal computers. The surface rendering technique (SRT), on the other hand, is much less computationally demanding, but themore » quality of resulting images is not satisfactory for our purpose. A new computer algorithm has been developed to make 3D brain surface MR images very quickly using a volume-surface rendering technique (VSRT), in which the quality of resulting images is comparable to that of VRT and computation time to SRT. In VSRT the process of volume rendering is done only once to the direction of the normal vector of each surface point, rather than each time a new view point is determined as in VRT. Subsequent reconstruction of the 3D image uses a similar algorithm to that of SRT. Thus we can obtain brain surface MR images of sufficient quality viewed from any direction on a real-time basis using an easily available personal computer (Macintosh Quadra 800). The calculation time to make a 3D image is less than 1 sec. in VSRT, while that is more than 15 sec. in the conventional VRT. The difference of resulting image quality between VSRT and VRT is almost imperceptible. In conclusion, our new technique for real-time reconstruction of 3D brain surface MR image is very useful and practical in the functional and anatomical correlation study.« less
The 3D genome in transcriptional regulation and pluripotency.
Gorkin, David U; Leung, Danny; Ren, Bing
2014-06-05
It can be convenient to think of the genome as simply a string of nucleotides, the linear order of which encodes an organism's genetic blueprint. However, the genome does not exist as a linear entity within cells where this blueprint is actually utilized. Inside the nucleus, the genome is organized in three-dimensional (3D) space, and lineage-specific transcriptional programs that direct stem cell fate are implemented in this native 3D context. Here, we review principles of 3D genome organization in mammalian cells. We focus on the emerging relationship between genome organization and lineage-specific transcriptional regulation, which we argue are inextricably linked. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew
2009-06-01
Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihoodmore » ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.« less
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas; Melson, Tobias; Summa, Alexander
2016-10-01
Nonspherical mass motions are a generic feature of core-collapse supernovae, and hydrodynamic instabilities play a crucial role in the explosion mechanism. The first successful neutrino-driven explosions could be obtained with self-consistent, first-principles simulations in three spatial dimensions. But three-dimensional (3D) models tend to be less prone to explosion than the corresponding axisymmetric two-dimensional (2D) ones. The reason is that 3D turbulence leads to energy cascading from large to small spatial scales, the inverse of the 2D case, thus disfavoring the growth of buoyant plumes on the largest scales. Unless the inertia to explode simply reflects a lack of sufficient resolution in relevant regions, some important component of robust and sufficiently energetic neutrino-powered explosions may still be missing. Such a deficit could be associated with progenitor properties such as rotation, magnetic fields, or precollapse perturbations, or with microphysics that could cause enhancement of neutrino heating behind the shock. 3D simulations have also revealed new phenomena that are not present in 2D ones, such as spiral modes of the standing accretion shock instability (SASI) and a stunning dipolar lepton-number emission self-sustained asymmetry (LESA). Both impose time- and direction-dependent variations on the detectable neutrino signal. The understanding of these effects and of their consequences is still in its infancy.
Wieringa, Fokko P.; Bouma, Henri; Eendebak, Pieter T.; van Basten, Jean-Paul A.; Beerlage, Harrie P.; Smits, Geert A. H. J.; Bos, Jelte E.
2014-01-01
Abstract. In comparison to open surgery, endoscopic surgery offers impaired depth perception and narrower field-of-view. To improve depth perception, the Da Vinci robot offers three-dimensional (3-D) video on the console for the surgeon but not for assistants, although both must collaborate. We improved the shared perception of the whole surgical team by connecting live 3-D monitors to all three available Da Vinci generations, probed user experience after two years by questionnaire, and compared time measurements of a predefined complex interaction task performed with a 3-D monitor versus two-dimensional. Additionally, we investigated whether the complex mental task of reconstructing a 3-D overview from an endoscopic video can be performed by a computer and shared among users. During the study, 925 robot-assisted laparoscopic procedures were performed in three hospitals, including prostatectomies, cystectomies, and nephrectomies. Thirty-one users participated in our questionnaire. Eighty-four percent preferred 3-D monitors and 100% reported spatial-perception improvement. All participating urologists indicated quicker performance of tasks requiring delicate collaboration (e.g., clip placement) when assistants used 3-D monitors. Eighteen users participated in a timing experiment during a delicate cooperation task in vitro. Teamwork was significantly (40%) faster with the 3-D monitor. Computer-generated 3-D reconstructions from recordings offered very wide interactive panoramas with educational value, although the present embodiment is vulnerable to movement artifacts. PMID:26158026
Schure, Mark R; Davis, Joe M
2017-11-10
Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions, characterized by mixes of ordered and random retention times, and applied to the experimental datasets. In 2D, the new metric always equals or exceeds the original one. However, results from both the original and new methods are given. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.
1995-04-01
We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.
[Application of three-dimensional printing technique in orthopaedics].
Luo, Qiang; Lau, Tak Wing; Fang, Xinshuo; Leung, Frankie
2014-03-01
To review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. The recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. Currently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. 3-D printing technique is a promising technique in clinical application.
Prediction of 3D chip formation in the facing cutting with lathe machine using FEM
NASA Astrophysics Data System (ADS)
Prasetyo, Yudhi; Tauviqirrahman, Mohamad; Rusnaldy
2016-04-01
This paper presents the prediction of the chip formation at the machining process using a lathe machine in a more specific way focusing on facing cutting (face turning). The main purpose is to propose a new approach to predict the chip formation with the variation of the cutting directions i.e., the backward and forward direction. In addition, the interaction between stress analysis and chip formation on cutting process was also investigated. The simulations were conducted using three dimensional (3D) finite element method based on ABAQUS software with aluminum and high speed steel (HSS) as the workpiece and the tool materials, respectively. The simulation result showed that the chip resulted using a backward direction depicts a better formation than that using a conventional (forward) direction.
An update on intraoperative three-dimensional transesophageal echocardiography
2017-01-01
Transesophageal echocardiography (TEE) was first used routinely in the operating rooms in the 1980s to facilitate surgical decision-making. Since then, TEE has evolved from the standard two-dimensional (2D) exam to include focused real-time three-dimensional (RT-3D) imaging both inside and outside the operating rooms. Improved spatial and temporal resolution due to technological advances has expedited surgical interventions in diseased valves. 3D imaging has also emerged as a crucial adjunct in percutaneous interventions for structural heart disease. With continued advancement in software, RT-3D TEE will continue to impact perioperative decisions. PMID:28540070
A simple method of fabricating mask-free microfluidic devices for biological analysis
Yi, Xin; Kodzius, Rimantas; Gong, Xiuqing; Xiao, Kang; Wen, Weijia
2010-01-01
We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip’s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches. PMID:20890452
Creation of three-dimensional craniofacial standards from CBCT images
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Palomo, Martin; Hans, Mark
2006-03-01
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Seo, Kyung Won; Choi, Yong Seok; Sohn, Myong Hwan
2011-06-01
A digital holographic microscope is employed to measure the 3D motion of free-swimming microorganisms. The focus function used to quantify image sharpness provides a better depth-directional accuracy with a smaller depth-of-focus compared with the intensity method in determining the depth-directional position of spherical particles of various diameters. The focus function is then applied to measure the 3D positions of free-swimming microorganisms, namely dinoflagellates C. polykrikoides and P. minimum. Both automatic segmentation and proper selection of a focus function for a selected segment are important processes in measuring the positional information of two free-swimming microorganisms of different shapes with various width-to-length ratios. The digital holographic microscopy technique improved in this work is useful for measuring 3D swimming trajectories, velocities and attitudes of hundreds of microorganisms simultaneously. It also exhibits exceptional depth-directional accuracy.
Volumetric Analysis of 3-D-Cultured Colonies in Wet Alginate Spots Using 384-Pillar Plate.
Lee, Dong Woo; Choi, Yea-Jun; Lee, Sang-Yun; Kim, Myoung-Hee; Doh, Il; Ryu, Gyu Ha; Choi, Soo-Mi
2018-06-01
The volumetric analysis of three-dimensional (3-D)-cultured colonies in alginate spots has been proposed to increase drug efficacy. In a previously developed pillar/well chip platform, colonies within spots are usually stained and dried for analysis of cell viability using two-dimensional (2-D) fluorescent images. Since the number of viable cells in colonies is directly related to colony volume, we proposed the 3-D analysis of colonies for high-accuracy cell viability calculation. The spots were immersed in buffer, and the 3-D volume of each colony was calculated from the 2-D stacking fluorescent images of the spot with different focal positions. In the experiments with human gastric carcinoma cells and anticancer drugs, we compared cell viability values calculated using the 2-D area and 3-D volume of colonies in the wet and dried alginate spots, respectively. The IC 50 value calculated using the 3-D volume of the colonies (9.5 μM) was less than that calculated in the 2-D area analysis (121.5 μM). We observed that the colony showed a more sensitive drug response regarding volume calculated from the 3-D image reconstructed using several confocal images than regarding colony area calculated in the 2-D analysis.
Energy transfer in turbulence under rotation
NASA Astrophysics Data System (ADS)
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy
2006-01-01
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
Biomimetic strategies for the glioblastoma microenvironment
NASA Astrophysics Data System (ADS)
Cha, Junghwa; Kim, Pilnam
2017-12-01
Glioblastoma multiforme (GBM) is a devastating type of tumor with high mortality, caused by extensive infiltration into adjacent tissue and rapid recurrence. Most therapies for GBM have focused on the cytotoxicity, and have not targeted GBM spread. However, there have been numerous attempts to improve therapy by addressing GBM invasion, through understanding and mimicking its behavior using three-dimensional (3D) experimental models. Compared with two-dimensional models and in vivo animal models, 3D GBM models can capture the invasive motility of glioma cells within a 3D environment comprising many cellular and non-cellular components. Based on tissue engineering techniques, GBM invasion has been investigated within a biologically relevant environment, from biophysical and biochemical perspectives, to clarify the pro-invasive factors of GBM. This review discusses the recent progress in techniques for modeling the microenvironments of GBM tissue and suggests future directions with respect to recreating the GBM microenvironment and preclinical applications.
Li, Qi; Song, Xiaodong; Wu, Dingjun
2014-05-01
Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.
Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Li, J.; Chen, K.-C.; Jajoo, A.; Nicol, M.; Alfi, D. M.
2015-01-01
Three-dimensional (3D) cephalometry is not as simple as just adding a ‘third’ dimension to a traditional two-dimensional cephalometric analysis. There are more complex issues in 3D analysis. These include how reference frames are created, how size, position, orientation and shape are measured, and how symmetry is assessed. The main purpose of this article is to present the geometric principles of 3D cephalometry. In addition, the Gateno–Xia cephalometric analysis is presented; this is the first 3D cephalometric analysis to observe these principles. PMID:26573563
Vehicle dynamics control by using a three-dimensional stabilizer pendulum system
NASA Astrophysics Data System (ADS)
Goodarzi, A.; Naghibian, M.; Choodan, D.; Khajepour, A.
2016-12-01
Active safety systems of a vehicle normally work well on tyre-road interactions, however, these systems deteriorate in performance on low-friction road conditions. To combat this effect, an innovative idea for the yaw moment and roll dynamic control is presented in this paper. This idea was inspired by the chase and run dynamics animals like cheetahs in the nature; cheetahs have the ability to swerve while running at very high speeds. A cheetah controls its dynamics by rotating its long tail. A three-dimensional stabilizer pendulum system (3D-SPS) resembles the rotational motion of the tail of a cheetah to improve the stability and safety of a vehicle. The idea has been developed in a stand-alone 3D stabilizer pendulum system as well as in an integrated control system, which consists of an ordinary differential braking direct yaw control (DYC) and active steering control that is assisted by the 3D-SPS. The performance of the proposed 3D-SPS has been evaluated over a wide range of handling manoeuvres by using a comprehensive numerical simulation. The results show the advantage of 3D-SPS over conventional control approaches, which are ineffective on low-friction road conditions and high lateral acceleration manoeuvres. It should however be noted that the best vehicle dynamics performance is obtained when an integrated 3D-SPS and DYC and AFS is utilised.
Kato, A; Ohno, N
2009-03-01
The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.
NASA Astrophysics Data System (ADS)
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
Wang, W; Li, J; Zhang, Y; Li, F; Xu, M; Fan, T; Shao, Q; Shang, D
2014-01-01
To compare the target volume, position and matching index of the patient-specific internal gross tumor volume (IGTV) based on three-dimensional (3D) and four-dimensional (4D) computed tomography (CT) images for primary esophageal cancer. Twenty-nine patients with primary thoracic esophageal cancer underwent 3DCT and 4DCT scans during free breathing. IGTVs were constructed using three approaches: combining the gross target volumes from the 10 respiratory phases of the 4DCT dataset to produce IGTV10 ; IGTV2 was acquired by combining the two extreme phases; and IGTV3D was created from the 3DCT-based gross target volume by enlarging the 95th percentile of motion in each direction measured by the 4DCT. 0.16 cm lateral (LR), 0.14 cm anteroposterior (AP) and 0.29 cm superoinferior (SI) in the upper; 0.18 cm LR, 0.10 cm AP and 0.63 cm SI in the middle; and 0.40 cm LR, 0.58 cm AP and 0.82 cm in the lower thoracic esophagus could account for 95% of respiratory-induced tumor motion. The centroid position shift between IGTV10 and IGTV2 was all below 0.10 cm, and less than 0.20 cm between IGTV10 and IGTV3D . IGTV10 was bigger than IGTV2 ; the mean value of matching index for IGTV2 to IGTV10 was 0.87 ± 0.05, 0.85 ± 0.06 and 0.83 ± 0.05 for upper, middle and distal thoracic esophageal tumors, respectively, and just 0.57 ± 0.11, 0.56 ± 0.13 and 0.40 ± 0.03 between IGTV3D and IGTV10 . 4DCT-based IGTV10 is a reasonable patient-specific IGTV for primary thoracic esophageal cancer, and IGTV2 is considered as an acceptable alternative to IGTV10 . However, it seems unreasonable to use IGTV3D substitute IGTV10 . © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Hsieh, Paul A.; Winston, Richard B.
2002-01-01
Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.
Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J
2016-04-07
Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bai, Y X
2016-06-01
Three-dimensional(3D)digital technology has been widely used in the field of orthodontics in clinical examination, diagnosis, treatment and curative effect evaluation. 3D digital technology greatly improves the accuracy of diagnosis and treatment, and provides effective means for personalized orthodontic treatment. This review focuses on the application of 3D digital technology in the field of orthodontics.
NASA Astrophysics Data System (ADS)
Vorobiev, Dmitry; Ninkov, Zoran
2017-11-01
Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.
NASA Technical Reports Server (NTRS)
Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid
2003-01-01
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.
Three dimensional spheroid cell culture for nanoparticle safety testing.
Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas
2015-07-10
Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D cell culture. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, D; Kang, S; Kim, D
2016-06-15
Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by amore » 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm{sup 3} tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm{sup 3} tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm{sup 3} tumor, the tumor motion was larger than the 90 cm{sup 3} tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.
Kim, Hwi; Hahn, Joonku; Lee, Byoungho
2009-04-13
Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.
Deng, Lei; Fan, Chao; Zeng, Zhiwen
2017-12-28
Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
NASA Astrophysics Data System (ADS)
Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.
2017-12-01
At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.
3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.
Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul
2018-03-01
Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.
Systems and Methods for Data Visualization Using Three-Dimensional Displays
NASA Technical Reports Server (NTRS)
Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)
2017-01-01
Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.
Reconstructing spatial organizations of chromosomes through manifold learning
Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-01-01
Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992
Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng
2015-08-07
Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.
Needham, Robert; Stebbins, Julie; Chockalingam, Nachiappan
2016-01-01
To review the current scientific literature on the assessment of three-dimensional movement of the lumbar spine with a focus on the utilisation of a 3D cluster. Electronic databases PubMed, OVID, CINAHL, The Cochrance Library, ScienceDirect, ProQuest and Web of Knowledge were searched between 1966 and March 2015. The reference lists of the articles that met the inclusion criteria were also searched. From the 1530 articles identified through an initial search, 16 articles met the inclusion criteria. All information relating to methodology and kinematic modelling of the lumbar segment along with the outcome measures were extracted from the studies identified for synthesis. Guidelines detailing 3D cluster construction were limited in the identified articles and the lack of information presented makes it difficult to assess the external validity of this technique. Scarce information was presented detailing time-series angle data of the lumbar spine during gait. Further developments of the 3D cluster technique are required and it is essential that the authors provide clear instruction, definitions and standards in their manuscript to improve clarity and reproducibility.
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Reconstructing spatial organizations of chromosomes through manifold learning.
Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-05-04
Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Králová, Blanka
2011-12-01
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling.
Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei
The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.
Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin
2017-10-01
Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis
2017-04-01
The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.
A new series of two-dimensional silicon crystals with versatile electronic properties
NASA Astrophysics Data System (ADS)
Chae, Kisung; Kim, Duck Young; Son, Young-Woo
2018-04-01
Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.
Benazzi, Stefano; Panetta, Daniele; Fornai, Cinzia; Toussaint, Michel; Gruppioni, Giorgio; Hublin, Jean-Jacques
2014-02-01
The study of enamel thickness has received considerable attention in regard to the taxonomic, phylogenetic and dietary assessment of human and non-human primates. Recent developments based on two-dimensional (2D) and three-dimensional (3D) digital techniques have facilitated accurate analyses, preserving the original object from invasive procedures. Various digital protocols have been proposed. These include several procedures based on manual handling of the virtual models and technical shortcomings, which prevent other scholars from confidently reproducing the entire digital protocol. There is a compelling need for standard, reproducible, and well-tailored protocols for the digital analysis of 2D and 3D dental enamel thickness. In this contribution we provide essential guidelines for the digital computation of 2D and 3D enamel thickness in hominoid molars, premolars, canines and incisors. We modify previous techniques suggested for 2D analysis and we develop a new approach for 3D analysis that can also be applied to premolars and anterior teeth. For each tooth class, the cervical line should be considered as the fundamental morphological feature both to isolate the crown from the root (for 3D analysis) and to define the direction of the cross-sections (for 2D analysis). Copyright © 2013 Wiley Periodicals, Inc.
Three-dimensional ballistocardiography in microgravity: a review of past research.
De Ridder, S; Migeotte, P-F; Neyt, X; Pattyn, N; Prisk, G K
2011-01-01
This paper gives a short review of research on ballistocardiography in microgravity and indicates the benefits from this research for the use of BCG as a terrestrial cardiac monitoring system. In the past, 3-D methods required large devices to decouple the subject from the terrestrial environment and hence, BCG on Earth is usually limited to unidirectional recordings of the motion in the head-to-foot direction. However, microgravity provides a suspension-free environment where accelerations can be measured in all directions without the influence of gravity. Microgravity research indicated that along with the acceleration in the head-to-foot direction, the accelerations in the lateral and dorso-ventral direction are important in understanding the physiological forces during a cardiac cycle. Further, lung volume has a large influence on the transmission of cardiac forces to the surface of the body. To date, only the three separate components of the acceleration vector have been analyzed in 3-D BCG studies. Using the true acceleration and displacement vector (orientation and magnitude), rather than the three separate components, may permit more accurate cardiac event detection.
A new method of three-dimensional computer assisted reconstruction of the developing biliary tract.
Prudhomme, M; Gaubert-Cristol, R; Jaeger, M; De Reffye, P; Godlewski, G
1999-01-01
A three-dimensional (3-D) computer assisted reconstruction of the biliary tract was performed in human and rat embryos at Carnegie stage 23 to describe and compare the biliary structures and to point out the anatomic relations between the structures of the hepatic pedicle. Light micrograph images from consecutive serial sagittal sections (diameter 7 mm) of one human and 16 rat embryos were directly digitalized with a CCD camera. The serial views were aligned automatically by software. The data were analysed following segmentation and thresholding, allowing automatic reconstruction. The main bile ducts ascended in the mesoderm of the hepatoduodenal ligament. The extrahepatic bile ducts: common bile duct (CD), cystic duct and gallbladder in the human, formed a compound system which could not be shown so clearly in histologic sections. The hepato-pancreatic ampulla was studied as visualised through the duodenum. The course of the CD was like a chicane. The gallbladder diameter and length were similar to those of the CD. Computer-assisted reconstruction permitted easy acquisition of the data by direct examination of the sections through the microscope. This method showed the relationships between the different structures of the hepatic pedicle and allowed estimation of the volume of the bile duct. These findings were not obvious in two-dimensional (2-D) views from histologic sections. Each embryonic stage could be rebuilt in 3-D, which could introduce the time as a fourth dimension, fundamental for the study of organogenesis.
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
1997-04-30
Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Three-dimensional cell culture models for investigating human viruses.
He, Bing; Chen, Guomin; Zeng, Yi
2016-10-01
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Three-dimensional interpretation of TEM soundings
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2013-07-01
We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.
3D printing functional materials and devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
McAlpine, Michael C.
2017-05-01
The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.
Analysis of off-axis incoherent digital holographic microscopy
NASA Astrophysics Data System (ADS)
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
Yuan, Liang (Leon); Herman, Peter R.
2016-01-01
Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872
Lin, Tsung-Hsien; Li, Yannian; Wang, Chun-Ta; Jau, Hung-Chang; Chen, Chun-Wei; Li, Cheng-Chung; Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan
2013-09-25
A new light-driven chiral molecular switch doped in a stable blue phase (BP) liquid crystal allows wide optical tunability of three-dimensional cubic nanostructures with a selective reflection wavelength that is reversibly tuned through the visible region. Moreover, unprecedented reversible light-directed red, green, and blue reflections of the self-organized three-dimensional cubic nanostructure in a single film are demonstrated for the first time. Additionally, unusual isothermal photo-stimulated less ordered BP II to more ordered BP I phase transition was observed in the system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide.
Jung, Chan Su; Shojaei, Fazel; Park, Kidong; Oh, Jin Young; Im, Hyung Soon; Jang, Dong Myung; Park, Jeunghee; Kang, Hong Seok
2015-10-27
Graphene-like two-dimensional (2D) nanostructures have attracted significant attention because of their unique quantum confinement effect at the 2D limit. Multilayer nanosheets of GaS-GaSe alloy are found to have a band gap (Eg) of 2.0-2.5 eV that linearly tunes the emission in red-to-green. However, the epitaxial growth of monolayers produces a drastic increase in this Eg to 3.3-3.4 eV, which blue-shifts the emission to the UV region. First-principles calculations predict that the Eg of these GaS and GaSe monolayers should be 3.325 and 3.001 eV, respectively. As the number of layers is increased to three, both the direct/indirect Eg decrease significantly; the indirect Eg approaches that of the multilayers. Oxygen adsorption can cause the direct/indirect Eg of GaS to converge, resulting in monolayers with a strong emission. This wide Eg tuning over the visible-to-UV range could provide an insight for the realization of full-colored flexible and transparent light emitters and displays.
Three-Dimensional Display Technologies for Anatomical Education: A Literature Review
ERIC Educational Resources Information Center
Hackett, Matthew; Proctor, Michael
2016-01-01
Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…
Nondestructive analysis of three-dimensional objects using a fluid displacement method
USDA-ARS?s Scientific Manuscript database
Quantification of three-dimensional (3-D) objects has been a real challenge in agricultural, hydrological and environmental studies. We designed and tested a method that is capable of quantifying 3-D objects using measurements of fluid displacement. The device consists of a stand that supports a mov...
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Three-dimensional reconstruction of glycosomes in trypanosomatids of the genus Phytomonas.
Attias, M; de Souza, W
1995-02-01
Computer aided three dimensional (3-D) reconstruction of cells from two isolates of protozoa of the genus Phytomonas, trypanosomatids found in plants, were made from 0.3 microm thick sections, imaged on a Zeiss 902 electron microscope with a energy filter for in ellastically scattered electrons, in order to obtain information about glycosomal shape diversity. Direct counts of peroxisomes (glycosomes) from Phytomonas sp. from Chamaesyce thymifolia indicated that there were fewer glycosomes per cell than the simple count of ultrathin section profiles would suggest and that these organelles could be long and branched. On the other hand, the stacked glycosomes observed in the isolate from Euphorbia characias were small individual structures and no connection was seen between them.
Engineering three-dimensional cell mechanical microenvironment with hydrogels.
Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian
2012-12-01
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Axial tomography in live cell laser microscopy
NASA Astrophysics Data System (ADS)
Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert
2017-09-01
Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.
Three-dimensionality of the bulk electronic structure in WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Jo, Na Hyun; Mou, Daixiang
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Three-dimensionality of the bulk electronic structure in WTe 2
Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...
2017-05-18
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo
2013-11-01
The main challenge in engineered cartilage consists in understanding and controlling the growth process towards a functional tissue. Mathematical and computational modelling can help in the optimal design of the bioreactor configuration and in a quantitative understanding of important culture parameters. In this work, we present a multiphysics computational model for the prediction of cartilage tissue growth in an interstitial perfusion bioreactor. The model consists of two separate sub-models, one two-dimensional (2D) sub-model and one three-dimensional (3D) sub-model, which are coupled between each other. These sub-models account both for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Navier-Stokes equation, the mass transport equation and the biomass growth. The biomass, assumed as a phase comprising cells and the synthesised extracellular matrix, has been modelled by using a moving boundary approach. In particular, the boundary at the fluid-biomass interface is moving with a velocity depending from the local oxygen concentration and viscous stress. In this work, we show that all parameters predicted, such as oxygen concentration and wall shear stress, by the 2D sub-model with respect to the ones predicted by the 3D sub-model are systematically overestimated and thus the tissue growth, which directly depends on these parameters. This implies that further predictive models for tissue growth should take into account of the three dimensionality of the problem for any scaffold microarchitecture.
On the single-photon-counting (SPC) modes of imaging using an XFEL source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui
In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less
On the single-photon-counting (SPC) modes of imaging using an XFEL source
Wang, Zhehui
2015-12-14
In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less
3D reconstruction techniques made easy: know-how and pictures.
Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P
2005-10-01
Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling
2013-01-01
The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery. PMID:24174875
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.