Science.gov

Sample records for direct uniparental mitochondrial

  1. Sex determination directs uniparental mitochondrial inheritance in Phycomyces.

    PubMed

    Shakya, Viplendra P S; Idnurm, Alexander

    2014-02-01

    Uniparental inheritance (UPI) of mitochondria is common among eukaryotes. The underlying molecular basis by which the sexes of the parents control this non-Mendelian pattern of inheritance is yet to be fully understood. Two major factors have complicated the understanding of the role of sex-specific genes in the UPI phenomenon: in many cases (i) fusion occurs between cells of unequal size or (ii) mating requires a large region of the genome or chromosome that includes genes unrelated to sex determination. The fungus Phycomyces blakesleeanus is a member of the Mucoromycotina and has a simple mating type locus encoding only one high-mobility group (HMG) domain protein, and mating occurs by fusion of isogamous cells, thus providing a model system without the limitations mentioned above. Analysis of more than 250 progeny from a series of genetic crosses between wild-type strains of Phycomyces revealed a correlation between the individual genes in the mating type locus and UPI of mitochondria. Inheritance is from the plus (+) sex type and is associated with degradation of the mtDNA from the minus (-) parent. These findings suggest that UPI can be directly controlled by genes that determine sex identity, independent of cell size or the complexity of the genetic composition of a sex chromosome.

  2. The a2 mating-type locus genes lga2 and rga2 direct uniparental mitochondrial DNA (mtDNA) inheritance and constrain mtDNA recombination during sexual development of Ustilago maydis.

    PubMed

    Fedler, Michael; Luh, Kai-Stephen; Stelter, Kathrin; Nieto-Jacobo, Fernanda; Basse, Christoph W

    2009-03-01

    Uniparental inheritance of mitochondria dominates among sexual eukaryotes. However, little is known about the mechanisms and genetic determinants. We have investigated the role of the plant pathogen Ustilago maydis genes lga2 and rga2 in uniparental mitochondrial DNA (mtDNA) inheritance during sexual development. The lga2 and rga2 genes are specific to the a2 mating-type locus and encode small mitochondrial proteins. On the basis of identified sequence polymorphisms due to variable intron numbers in mitochondrial genotypes, we could demonstrate that lga2 and rga2 decisively influence mtDNA inheritance in matings between a1 and a2 strains. Deletion of lga2 favored biparental inheritance and generation of recombinant mtDNA molecules in combinations in which inheritance of mtDNA of the a2 partner dominated. Conversely, deletion of rga2 resulted in predominant loss of a2-specific mtDNA and favored inheritance of the a1 mtDNA. Furthermore, expression of rga2 in the a1 partner protected the associated mtDNA from elimination. Our results indicate that Lga2 in conjunction with Rga2 directs uniparental mtDNA inheritance by mediating loss of the a1-associated mtDNA. This study shows for the first time an interplay of mitochondrial proteins in regulating uniparental mtDNA inheritance.

  3. The a2 Mating-Type Locus Genes lga2 and rga2 Direct Uniparental Mitochondrial DNA (mtDNA) Inheritance and Constrain mtDNA Recombination During Sexual Development of Ustilago maydis

    PubMed Central

    Fedler, Michael; Luh, Kai-Stephen; Stelter, Kathrin; Nieto-Jacobo, Fernanda; Basse, Christoph W.

    2009-01-01

    Uniparental inheritance of mitochondria dominates among sexual eukaryotes. However, little is known about the mechanisms and genetic determinants. We have investigated the role of the plant pathogen Ustilago maydis genes lga2 and rga2 in uniparental mitochondrial DNA (mtDNA) inheritance during sexual development. The lga2 and rga2 genes are specific to the a2 mating-type locus and encode small mitochondrial proteins. On the basis of identified sequence polymorphisms due to variable intron numbers in mitochondrial genotypes, we could demonstrate that lga2 and rga2 decisively influence mtDNA inheritance in matings between a1 and a2 strains. Deletion of lga2 favored biparental inheritance and generation of recombinant mtDNA molecules in combinations in which inheritance of mtDNA of the a2 partner dominated. Conversely, deletion of rga2 resulted in predominant loss of a2-specific mtDNA and favored inheritance of the a1 mtDNA. Furthermore, expression of rga2 in the a1 partner protected the associated mtDNA from elimination. Our results indicate that Lga2 in conjunction with Rga2 directs uniparental mtDNA inheritance by mediating loss of the a1-associated mtDNA. This study shows for the first time an interplay of mitochondrial proteins in regulating uniparental mtDNA inheritance. PMID:19104076

  4. Evolutionary origin and consequences of uniparental mitochondrial inheritance.

    PubMed

    Hoekstra, R F

    2000-07-01

    In the great majority of sexual organisms, cytoplasmic genomes such as the mitochondrial genome are inherited (almost) exclusively through only one, usually the maternal, parent. This rule probably evolved to minimize the potential spread of selfish cytoplasmic genomic mutations through a species. Maternal inheritance creates an asymmetry between the sexes from which several evolutionary consequences follow. Because natural selection on mitochondria operates only in females, mitochondrial mutations may have more deleterious effects in males than in females. Strictly uniparental inheritance creates asexual mitochondrial lineages that are vulnerable to mutation accumulation (Muller's ratchet). There is evidence that over evolutionary time mitochondrial genomes have indeed accumulated slightly deleterious mutations. Mutation accumulation in animal mitochondrial genomes is probably slowed down mainly by two processes: a severe reduction in germline mitochondrial genome copy number at some point in the life cycle, enabling more effective elimination of mutations by natural selection, and occasional recombination between maternal and paternal mitochondrial genomes following paternal leakage.

  5. Mechanisms of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans.

    PubMed

    Gyawali, Rachana; Lin, Xiaorong

    2011-12-01

    In contrast to the nuclear genome, the mitochondrial genome does not follow Mendelian laws of inheritance. The nuclear genome of meiotic progeny comes from the recombination of both parental genomes, whereas the meiotic progeny could inherit mitochondria from one, the other, or both parents. In fact, one fascinating phenomenon is that mitochondrial DNA in the majority of eukaryotes is inherited from only one particular parent. Typically, such unidirectional and uniparental inheritance of mitochondrial DNA can be explained by the size of the gametes involved in mating, with the larger gamete contributing towards mitochondrial DNA inheritance. However, in the human fungal pathogen Cryptococcus neoformans, bisexual mating involves the fusion of two isogamous cells of mating type (MAT) a and MATα, yet the mitochondrial DNA is inherited predominantly from the MATa parent. Although the exact mechanism underlying such uniparental mitochondrial inheritance in this fungus is still unclear, various hypotheses have been proposed. Elucidating the mechanism of mitochondrial inheritance in this clinically important and genetically amenable eukaryotic microbe will yield insights into general mechanisms that are likely conserved in higher eukaryotes. In this review, we highlight studies on Cryptococcus mitochondrial inheritance and point out some important questions that need to be addressed in the future.

  6. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance.

    PubMed

    Christie, Joshua R; Beekman, Madeleine

    2017-08-01

    Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against "selfish" mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  7. Prezygotic and postzygotic control of uniparental mitochondrial DNA inheritance in Cryptococcus neoformans.

    PubMed

    Gyawali, Rachana; Lin, Xiaorong

    2013-04-23

    Uniparental inheritance of mitochondrial DNA is pervasive in nonisogamic higher eukaryotes during sexual reproduction, and postzygotic and/or prezygotic factors are shown to be important in ensuring such an inheritance pattern. Although the fungus Cryptococcus neoformans undergoes sexual production with isogamic partners of opposite mating types a and α, most progeny derived from such mating events inherit the mitochondrial DNA (mtDNA) from the a parent. The homeodomain protein complex Sxi1α/Sxi2a, formed in the zygote after a-α cell fusion, was previously shown to play a role in this uniparental mtDNA inheritance. Here, we defined the timing of the establishment of the mtDNA inheritance pattern during the mating process and demonstrated a critical role in determining the mtDNA inheritance pattern by a prezygotic factor, Mat2. Mat2 is the key transcription factor that governs the pheromone sensing and response pathway, and it is critical for the early mating events that lead to cell fusion and zygote formation. We show that Mat2 governs mtDNA inheritance independently of the postzygotic factors Sxi1α/Sxi2a, and the cooperation between these prezygotic and postzygotic factors helps to achieve stricter uniparental mitochondrial inheritance in this eukaryotic microbe. Mitochondrial DNA is inherited uniparentally from the maternal parent in the majority of eukaryotes. Studies done on higher eukaryotes such as mammals have shown that the transmission of parental mitochondrial DNA is controlled at both the prefertilization and postfertilization stages to achieve strict uniparental inheritance. However, the molecular mechanisms underlying such uniparental mitochondrial inheritance have been investigated in detail mostly in anisogamic multicellular eukaryotes. Here, we show that in a simple isogamic microbe, Cryptococcus neoformans, the mitochondrial inheritance is controlled at the prezygotic level as well as the postzygotic level by regulators that are critical for

  8. Uniparental Inheritance of Mitochondrial Genes in Yeast: Dependence on Input Bias of Mitochondrial DNA and Preliminary Investigations of the Mechanism

    PubMed Central

    Birky, C. William; Demko, Catherine A.; Perlman, Philip S.; Strausberg, Robert

    1978-01-01

    In Saccharomyces cerevisiae, previous studies on the inheritance of mitochondrial genes controlling antibiotic resistance have shown that some crosses produce a substantial number of uniparental zygotes , which transmit to their diploid progeny mitochondrial alleles from only one parent. In this paper, we show that uniparental zygotes are formed especially when one parent (majority parent) contributes substantially more mitochondrial DNA molecules to the zygote than does the other (minority) parent. Cellular contents of mitochondrial DNA (mtDNA) are increased in these experiments by treatment with cycloheximide, alpha-factor, or the uvsρ5 nuclear mutation. In such a biased cross, some zygotes are uniparental for mitochondrial alleles from the majority parent, and the frequency of such zygotes increases with increasing bias. In two- and three-factor crosses, the cap1, ery1, and oli1 loci behave coordinately, rather than independently; minority markers tend to be transmitted or lost as a unit, suggesting that the uniparental mechanism acts on entire mtDNA molecules rather than on individual loci. This rules out the possibility that uniparental inheritance can be explained by the conversion of minority markers to the majority alleles during recombination. Exceptions to the coordinate behavior of different loci can be explained by marker rescue via recombination. Uniparental inheritance is largely independent of the position of buds on the zygote. We conclude that it is due to the failure of minority markers to replicate in some zygotes, possibly involving the rapid enzymatic destruction of such markers. We have considered two general classes of mechanisms: (1) random selection of molecules for replication, as for example by competition for replicating sites on a membrane; and (2) differential marking of mtDNA molecules in the two parents, possibly by modification enzymes, followed by a mechanism that "counts" molecules and replicates only the majority type. These

  9. Prezygotic and Postzygotic Control of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans

    PubMed Central

    Gyawali, Rachana; Lin, Xiaorong

    2013-01-01

    ABSTRACT Uniparental inheritance of mitochondrial DNA is pervasive in nonisogamic higher eukaryotes during sexual reproduction, and postzygotic and/or prezygotic factors are shown to be important in ensuring such an inheritance pattern. Although the fungus Cryptococcus neoformans undergoes sexual production with isogamic partners of opposite mating types a and α, most progeny derived from such mating events inherit the mitochondrial DNA (mtDNA) from the a parent. The homeodomain protein complex Sxi1α/Sxi2a, formed in the zygote after a-α cell fusion, was previously shown to play a role in this uniparental mtDNA inheritance. Here, we defined the timing of the establishment of the mtDNA inheritance pattern during the mating process and demonstrated a critical role in determining the mtDNA inheritance pattern by a prezygotic factor, Mat2. Mat2 is the key transcription factor that governs the pheromone sensing and response pathway, and it is critical for the early mating events that lead to cell fusion and zygote formation. We show that Mat2 governs mtDNA inheritance independently of the postzygotic factors Sxi1α/Sxi2a, and the cooperation between these prezygotic and postzygotic factors helps to achieve stricter uniparental mitochondrial inheritance in this eukaryotic microbe. PMID:23611907

  10. Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution.

    PubMed

    Passamonti, Marco; Ghiselli, Fabrizio

    2009-02-01

    Eukaryotes have exploited several mechanisms for organelle uniparental inheritance, so this feature arose and evolved independently many times in their history. Metazoans' mitochondria commonly experience strict maternal inheritance; that is, they are only transmitted by females. However, the most noteworthy exception comes from some bivalve mollusks, in which two mitochondrial lineages (together with their genomes) are inherited: one through females (F) and the other through males (M). M and F genomes show up to 30% sequence divergence. This inheritance mechanism is known as doubly uniparental inheritance (DUI), because both sexes inherit uniparentally their mitochondria. Here, we review what we know about this unusual system, and we propose a model for evolution of DUI that might account for its origin as sex determination mechanism. Moreover, we propose DUI as a choice model to address many aspects that should be of interest to a wide range of biological subfields, such as mitochondrial inheritance, mtDNA evolution and recombination, genomic conflicts, evolution of sex, and developmental biology. Actually, as research proceeds, mitochondria appear to have acquired a central role in many fundamental processes of life, which are not only in their metabolic activity as cellular power plants, such as cell signaling, fertilization, development, differentiation, ageing, apoptosis, and sex determination. A function of mitochondria in the origin and maintenance of sex has been also proposed.

  11. The mitochondrial plasmid of the true slime mold Physarum polycephalum bypasses uniparental inheritance by promoting mitochondrial fusion.

    PubMed

    Sakurai, Rakusa; Nomura, Hideo; Moriyam, Yohsuke; Kawano, Shigeyuki

    2004-08-01

    Mitochondrial DNA (mtDNA) is inherited maternally in most eukaryotes. Linear mitochondrial plasmids in higher plants and fungi are also transmitted from the maternal parent to the progeny. However, mF, which is a mitochondrial linear plasmid of Physarum polycephalum, evades uniparental mitochondrial inheritance. We examined 36 myxamoebal strains of Physarum and isolated three novel mF+ strains (JE8, TU111, NG111) that harbored free mF plasmids. These strains were mated with the mF- strain KM88. Of the three mF- x mF+ crosses, only KM88 x JE8 displayed complete uniparental inheritance. However, in KM88 x TU111 and KM88 x NG111, the mtDNA of KM88 and mF of TU111 and NG111 were inherited by the plasmodia and showed recombination. For example, although the mtDNA of TU111 was eliminated, the mF of TU111 persisted and became inserted into the mtDNA of KM88, such that recombinant mtDNA represented 80% of the total mtDNA. The parental mitochondria fused to yield giant mitochondria with two or more mitochondrial nucleoids. The mF appears to exchange mitochondria from the recipient (paternal) to the donor (maternal) by promoting mitochondrial fusion.

  12. Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae)

    PubMed Central

    2011-01-01

    Background Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. Results Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. Conclusions The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria. PMID:21896183

  13. Presence of two mitochondrial genomes in the mytilid Perumytilus purpuratus: Phylogenetic evidence for doubly uniparental inheritance

    PubMed Central

    Vargas, Jaime; Pérez, Montse; Toro, Jorge; Astorga, Marcela P.

    2015-01-01

    This study presents evidence, using sequences of ribosomal 16S and COI mtDNA, for the presence of two mitochondrial genomes in Perumytilus purpuratus. This may be considered evidence of doubly uniparental mtDNA inheritance. The presence of the two types of mitochondrial genomes differentiates females from males. The F genome was found in the somatic and gonadal tissues of females and in the somatic tissues of males; the M genome was found in the gonads and mantle of males only. For the mitochondrial 16S region, ten haplotypes were found for the F genome (nucleotide diversity 0.004), and 7 haplotypes for the M genome (nucleotide diversity 0.001), with a distance Dxy of 0.125 and divergence Kxy of 60.33%. For the COI gene 17 haplotypes were found for the F genome (nucleotide diversity 0.009), and 10 haplotypes for the M genome (nucleotide diversity 0.010), with a genetic distance Dxy of 0.184 and divergence Kxy of 99.97%. Our results report the presence of two well-differentiated, sex-specific types of mitochondrial genome (one present in the male gonad, the other in the female gonad), implying the presence of DUI in P. purpuratus. These results indicate that care must be taken in phylogenetic comparisons using mtDNA sequences of P. purpuratus without considering the sex of the individuals. PMID:26273220

  14. Doubly uniparental inheritance of mitochondrial DNA in the freshwater bivalve Anodonta woodiana (Bivalvia: Unionidae).

    PubMed

    Soroka, Marianna

    2008-01-01

    Unlike the vast majority of organisms in which mitochondrial DNA is transmitted maternally (standard mitochondrial inheritance, SMI), some marine or freshwater bivalves exhibit a different pattern of mtDNA transmission, named doubly uniparental inheritance (DUI). In this case there are two types of mtDNA, i.e. the female-transmitted (F-type) and the male-transmitted (M-type), the latter being present only in the male gonads of Unionidae bivalves. Current knowledge on DUI does not cover any freshwater mussels that are found in Poland. This study confirms DUI ofmtDNA in A. woodiana, a Chinese mussel discovered in Poland in 1993. The sequence divergence in the COI gene region for the F-type ranged between 0% (separately for Polish and Japanese mussels) and 8.1% (between Polish and Japanese specimens). On the other hand, this parameter was higher for the M-type, reaching 9.7% between Polish and Japanese specimens. Sequence divergence between the F- and M-types reached 34-35% and, although very high, was still characteristic for the bivalves in which DUI had been found.

  15. The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance?

    PubMed

    Beekman, Madeleine; Dowling, Damian K; Aanen, Duur K

    2014-07-05

    Eukaryotic cells typically contain numerous mitochondria, each with multiple copies of their own genome, the mtDNA. Uniparental transmission of mitochondria, usually via the mother, prevents the mixing of mtDNA from different individuals. While on the one hand, this should resolve the potential for selection for fast-replicating mtDNA variants that reduce organismal fitness, maternal inheritance will, in theory, come with another set of problems that are specifically relevant to males. Maternal inheritance implies that the mitochondrial genome is never transmitted through males, and thus selection can target only the mtDNA sequence when carried by females. A consequence is that mtDNA mutations that confer male-biased phenotypic expression will be prone to evade selection, and accumulate. Here, we review the evidence from the ecological, evolutionary and medical literature for male specificity of mtDNA mutations affecting fertility, health and ageing. While such effects have been discovered experimentally in the laboratory, their relevance to natural populations--including the human population--remains unclear. We suggest that the existence of male expression-biased mtDNA mutations is likely to be a broad phenomenon, but that these mutations remain cryptic owing to the presence of counter-adapted nuclear compensatory modifier mutations, which offset their deleterious effects.

  16. The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance?

    PubMed Central

    Beekman, Madeleine; Dowling, Damian K.; Aanen, Duur K.

    2014-01-01

    Eukaryotic cells typically contain numerous mitochondria, each with multiple copies of their own genome, the mtDNA. Uniparental transmission of mitochondria, usually via the mother, prevents the mixing of mtDNA from different individuals. While on the one hand, this should resolve the potential for selection for fast-replicating mtDNA variants that reduce organismal fitness, maternal inheritance will, in theory, come with another set of problems that are specifically relevant to males. Maternal inheritance implies that the mitochondrial genome is never transmitted through males, and thus selection can target only the mtDNA sequence when carried by females. A consequence is that mtDNA mutations that confer male-biased phenotypic expression will be prone to evade selection, and accumulate. Here, we review the evidence from the ecological, evolutionary and medical literature for male specificity of mtDNA mutations affecting fertility, health and ageing. While such effects have been discovered experimentally in the laboratory, their relevance to natural populations—including the human population—remains unclear. We suggest that the existence of male expression-biased mtDNA mutations is likely to be a broad phenomenon, but that these mutations remain cryptic owing to the presence of counter-adapted nuclear compensatory modifier mutations, which offset their deleterious effects. PMID:24864311

  17. Disruption of doubly uniparental inheritance of mitochondrial DNA in hybrid mussels (Mytilus edulis x M. galloprovincialis).

    PubMed

    Wood, A R; Turner, G; Skibinski, D O F; Beaumont, A R

    2003-10-01

    Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.

  18. Inheritance of mitochondrial DNA in the Pennate diatom Haslea ostrearia (Naviculaceae) during auxosporulation suggests a uniparental transmission.

    PubMed

    Gastineau, Romain; Leignel, Vincent; Jacquette, Boris; Hardivillier, Yann; Wulff, Angela; Gaudin, Pierre; Bendahmane, Djamel; Davidovich, Nicolaï A; Kaczmarska, Irena; Mouget, Jean-Luc

    2013-05-01

    We present the first study examining mtDNA transmission in diatoms, using sexual progeny of the pennate species Haslea ostrearia (Naviculaceae). A fragment of the cytochrome oxidase subunit I gene (cox1) with 7 nucleic substitutions between parental clones was used as a parental tracer in 16 F1 clones obtained from two pairs of mating crosses. Each cross involved a parental clone isolated from France (Bay of Bourgneuf) and Sweden (Kattegat Bay). We determined that all progeny possessed only one cox1 parental haplotype. These results suggest that the mitochondrial DNA transmission in H. ostrearia is uniparental. Implications and new topics of investigation are discussed.

  19. Early replication dynamics of sex-linked mitochondrial DNAs in the doubly uniparental inheritance species Ruditapes philippinarum (Bivalvia Veneridae).

    PubMed

    Guerra, D; Ghiselli, F; Milani, L; Breton, S; Passamonti, M

    2016-03-01

    Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development.

  20. Early replication dynamics of sex-linked mitochondrial DNAs in the doubly uniparental inheritance species Ruditapes philippinarum (Bivalvia Veneridae)

    PubMed Central

    Guerra, D; Ghiselli, F; Milani, L; Breton, S; Passamonti, M

    2016-01-01

    Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development. PMID:26626575

  1. Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mold Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission.

    PubMed

    Mirfakhrai, M; Tanaka, Y; Yanagisawa, K

    1990-03-01

    Restriction fragment length polymorphisms (RFLPs) were used as markers to monitor mitochondrial inheritance in the cellular slime mold, Polysphondylium pallidum. When two opposite mating types (mat1 and mat2) of closely related strains were crossed, all the haploid progeny regardless of mating type inherited their mitochondrial DNA from the mat2 parent only. When opposite mating types from more distantly related strains were crossed, most of the progeny also inherited their mitochondrial DNA from the mat2 parent, but some inherited their mitochondrial DNA from the mat1 parent. In both cases however, the transmission of mitochondrial DNA was uniparental, since in every individual progeny only one type of mitochondrial DNA exists. Moreover, in crosses involving more distantly related strains all the progeny of a single macrocyst were shown to contain the same type of mitochondrial DNA. These findings are discussed in regard to mechanisms of transmission and the possible involvement of nuclear genes in the control of transmission of mitochondrial DNA in Polysphondylium.

  2. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy.

    PubMed

    Wagner-Vogel, Gaby; Lämmer, Frauke; Kämper, Jörg; Basse, Christoph W

    2015-02-06

    Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.

  3. The mating type-specific homeodomain genes SXI1 alpha and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans.

    PubMed

    Yan, Zhun; Hull, Christina M; Sun, Sheng; Heitman, Joseph; Xu, Jianping

    2007-03-01

    In the great majority of sexual eukaryotes, mitochondrial genomes are inherited almost exclusively from a single parent. While many hypotheses have been proposed to explain this phenomenon, very little is known about the genetic elements controlling uniparental mitochondria inheritance. In the bipolar, isogamous basidiomycete yeast Cryptococcus neoformans, progeny from crosses between strains of mating type a (MATa) and mating type alpha (MATalpha) typically inherit mitochondrial DNA (mtDNA) from the MATa parent. We recently demonstrated that a mating type alpha (MATalpha)-specific gene SXI1a, controls mitochondrial inheritance in C. neoformans. Here, we show that another homeodomain gene SXI2a in the alternative mating type MATa is also required for uniparental mtDNA inheritance in this fungus. Disruption of SXI2a resulted in biparental mtDNA inheritance in the zygote population with significant numbers of progeny inheriting mtDNA from the MATa parent, the MATalpha parent, and both the MATa and the MATalpha parents. In addition, progeny from same-sex mating between MATalpha strains showed a biparental mitochondrial inheritance pattern. Our results suggest that SXI1alpha and SXI2a coordinately control uniparental mitochondrial inheritance in C. neoformans.

  4. Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool

    PubMed Central

    Kushniarevich, Alena; Sivitskaya, Larysa; Danilenko, Nina; Novogrodskii, Tadeush; Tsybovsky, Iosif; Kiseleva, Anna; Kotova, Svetlana; Chaubey, Gyaneshwer; Metspalu, Ene; Sahakyan, Hovhannes; Bahmanimehr, Ardeshir; Reidla, Maere; Rootsi, Siiri; Parik, Jüri; Reisberg, Tuuli; Achilli, Alessandro; Hooshiar Kashani, Baharak; Gandini, Francesca; Olivieri, Anna; Behar, Doron M.; Torroni, Antonio; Davydenko, Oleg; Villems, Richard

    2013-01-01

    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively. PMID:23785503

  5. Maternal uniparental disomy of chromosome 2 in a patient with a DGUOK mutation associated with hepatocerebral mitochondrial DNA depletion syndrome.

    PubMed

    Haudry, Coralie; de Lonlay, Pascale; Malan, Valerie; Bole-Feysot, Christine; Assouline, Zahra; Pruvost, Solenn; Brassier, Anais; Bonnefont, Jean-Paul; Munnich, Arnold; Rötig, Agnès; Lebre, Anne-Sophie

    2012-12-01

    We report maternal uniparental disomy of chromosome 2 (matUPD2) in a 9-month-old girl presenting with hepatocerebral mitochondrial DNA depletion syndrome. This patient was homozygous for the c.352C>T (p.Arg118Cys) mutation in DGUOK gene. The proband's mother was heterozygous for the mutation was absent in DNA of the father. For proband, the absence of paternal contribution at the DGUOK locus prompted us to exclude intragenic DGUOK deletion of the paternal allele with Multiplex ligation-dependent probe amplification (MLPA) analysis. We also excluded non-paternity by studying various markers at different loci. Then we performed an analysis of copy number variations and absence of heterozygosity (AOH) on the proband DNA using high resolution oligonucleotides microarray. Several large regions of AOH with no copy number change were detected on chromosome 2 and one of these AOH regions encompassed DGUOK gene. These results were confirmed with haplotype analysis using polymorphic markers. Informative SNPs and microsatellites markers spanning the whole chromosome 2 showed a matUPD2 with heterodisomy and isodisomy regions, the absence of paternal allele and presence of two maternal alleles, with only one maternal allele on the region of DGUOK locus in 2p13.1. This is the first demonstration of matUPD2 with segmental isodisomy at 2p13.1 locus in hepatocerebral mitochondrial DNA depletion syndrome. The identification of UPD2 will impact genetic counseling for the proband's parents. Because the recurrence risk for UPD2 is very low, the risk for disease in further offspring for this couple is negligible.

  6. Genetic perspective of uniparental mitochondrial DNA landscape on the Punjabi population, Pakistan.

    PubMed

    Bhatti, Shahzad; Abbas, Sana; Aslamkhan, Muhammad; Attimonelli, Marcella; Trinidad, Magali Segundo; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva; Gonzalez, Gerardo Rodriguez

    2017-07-26

    To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.

  7. A comparative analysis of mitochondrial ORFans: new clues on their origin and role in species with doubly uniparental inheritance of mitochondria.

    PubMed

    Milani, Liliana; Ghiselli, Fabrizio; Guerra, Davide; Breton, Sophie; Passamonti, Marco

    2013-01-01

    Despite numerous comparative mitochondrial genomics studies revealing that animal mitochondrial genomes are highly conserved in terms of gene content, supplementary genes are sometimes found, often arising from gene duplication. Mitochondrial ORFans (ORFs having no detectable homology and unknown function) were found in bivalve molluscs with Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI animals, two mitochondrial lineages are present: one transmitted through females (F-type) and the other through males (M-type), each showing a specific and conserved ORF. The analysis of 34 mitochondrial major Unassigned Regions of Musculista senhousia F- and M-mtDNA allowed us to verify the presence of novel mitochondrial ORFs in this species and to compare them with ORFs from other species with ascertained DUI, with other bivalves and with animals showing new mitochondrial elements. Overall, 17 ORFans from nine species were analyzed for structure and function. Many clues suggest that the analyzed ORFans arose from endogenization of viral genes. The co-option of such novel genes by viral hosts may have determined some evolutionary aspects of host life cycle, possibly involving mitochondria. The structure similarity of DUI ORFans within evolutionary lineages may also indicate that they originated from independent events. If these novel ORFs are in some way linked to DUI establishment, a multiple origin of DUI has to be considered. These putative proteins may have a role in the maintenance of sperm mitochondria during embryo development, possibly masking them from the degradation processes that normally affect sperm mitochondria in species with strictly maternal inheritance.

  8. Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in Bivalvia.

    PubMed

    Theologidis, Ioannis; Fodelianakis, Stilianos; Gaspar, Miguel B; Zouros, Eleftherios

    2008-04-01

    Mitochondrial DNA is transmitted maternally in metazoan species. This rule does not hold in several species of bivalves that have two mtDNA types, one that is transmitted maternally and the other paternally. This system of mitochondrial DNA transmission is known as doubly uniparental inheritance (DUI). Here we present evidence of DUI in the clam Donax trunculus making Donacidae the sixth bivalve family in which the phenomenon has been found. In addition, we present the taxonomic affiliation of all species in which DUI is currently known to occur and construct a phylogeny of the maternal and paternal genomes of these species. We use this information to address the question of a single or multiple origins of DUI and to discuss whether failed attempts to demonstrate the presence of DUI in several bivalve species might be due to problems of detection or to genuine absence of the phenomenon.

  9. A Comparative Analysis of Mitochondrial ORFans: New Clues on Their Origin and Role in Species with Doubly Uniparental Inheritance of Mitochondria

    PubMed Central

    Milani, Liliana; Ghiselli, Fabrizio; Guerra, Davide; Breton, Sophie; Passamonti, Marco

    2013-01-01

    Despite numerous comparative mitochondrial genomics studies revealing that animal mitochondrial genomes are highly conserved in terms of gene content, supplementary genes are sometimes found, often arising from gene duplication. Mitochondrial ORFans (ORFs having no detectable homology and unknown function) were found in bivalve molluscs with Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI animals, two mitochondrial lineages are present: one transmitted through females (F-type) and the other through males (M-type), each showing a specific and conserved ORF. The analysis of 34 mitochondrial major Unassigned Regions of Musculista senhousia F- and M-mtDNA allowed us to verify the presence of novel mitochondrial ORFs in this species and to compare them with ORFs from other species with ascertained DUI, with other bivalves and with animals showing new mitochondrial elements. Overall, 17 ORFans from nine species were analyzed for structure and function. Many clues suggest that the analyzed ORFans arose from endogenization of viral genes. The co-option of such novel genes by viral hosts may have determined some evolutionary aspects of host life cycle, possibly involving mitochondria. The structure similarity of DUI ORFans within evolutionary lineages may also indicate that they originated from independent events. If these novel ORFs are in some way linked to DUI establishment, a multiple origin of DUI has to be considered. These putative proteins may have a role in the maintenance of sperm mitochondria during embryo development, possibly masking them from the degradation processes that normally affect sperm mitochondria in species with strictly maternal inheritance. PMID:23824218

  10. Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication

    PubMed Central

    Breton, Sophie; Beaupré, Hélène Doucet; Stewart, Donald T.; Piontkivska, Helen; Karmakar, Moumita; Bogan, Arthur E.; Blier, Pierre U.; Hoeh, Walter R.

    2009-01-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (OH) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (OL) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted. PMID:19822725

  11. Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication.

    PubMed

    Breton, Sophie; Beaupré, Hélène Doucet; Stewart, Donald T; Piontkivska, Helen; Karmakar, Moumita; Bogan, Arthur E; Blier, Pierre U; Hoeh, Walter R

    2009-12-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.

  12. Mitochondrial DNA transmitted from sperm in the blue mussel Mytilus galloprovincialis showing doubly uniparental inheritance of mitochondria, quantified by real-time PCR.

    PubMed

    Sano, Natsumi; Obata, Mayu; Komaru, Akira

    2010-07-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA transmission to progeny has been reported in the mussel, Mytilus. In DUI, males have both paternally (M type) and maternally (F type) transmitted mitochondrial DNA (mtDNA), but females have only the F type. To estimate how much M type mtDNA enters the egg with sperm in the DUI system, ratios of M type to F type mtDNA were measured before and after fertilization. M type mtDNA content in eggs increased markedly after fertilization. Similar patterns in M type content changes after fertilization were observed in crosses using the same males. To compare mtDNA quantities, we subsequently measured the ratios of mtDNA to the 28S ribosomal RNA gene (an endogenous control sequence) in sperm or unfertilized eggs using a real-time polymerase chain reaction (PCR) assay. F type content in unfertilized eggs was greater than the M type in sperm by about 1000-fold on average. M type content in spermatozoa was greater than in unfertilized egg, but their distribution overlapped. These results may explain the post-fertilization changes in zygotic M type content. We previously demonstrated that paternal and maternal M type mtDNAs are transmitted to offspring, and hypothesized that the paternal M type contributed to M type transmission to the next generation more than the maternal type did. These quantitative data on M and F type mtDNA in sperm and eggs provide further support for that hypothesis.

  13. Sex-linked mitochondrial behavior during early embryo development in Ruditapes philippinarum (Bivalvia Veneridae) a species with the Doubly Uniparental Inheritance (DUI) of mitochondria.

    PubMed

    Milani, Liliana; Ghiselli, Fabrizio; Passamonti, Marco

    2012-05-01

    In most metazoans mitochondria are inherited maternally. However, in some bivalve molluscs, two mitochondrial lineages are present: one transmitted through females (F-type), the other through males (M-type). This unique system is called Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI species, M-type mitochondria have to invade the germ line of male embryos during development, otherwise sperm would transmit F-type mtDNA and DUI would fail. The mechanisms by which sperm mitochondria enter the germ line are still unknown. To address this question, we traced the movement of spermatozoon mitochondria (M-type) in embryos of the DUI species Ruditapes philippinarum by fertilizing eggs with sperm stained with the mitochondrial-specific vital dye MitoTracker Green. As in Mytilus DUI species, in R. philippinarum the distribution of sperm mitochondria follows two different patterns: an aggregated one in which these organelles locate near the first cleavage furrow, and a dispersed one in which sperm mitochondria are scattered. The presence of the two mitochondrial patterns in these taxa, together with their absence in species with Strictly Maternal Inheritance (SMI), confirms that their occurrence is related to DUI. Moreover, a Real-Time qPCR analysis showed that neither M-type nor F-type mitochondria undergo replication boosts in the earliest embryo development. This is the first study on sex-linked mtDNA copy number carried out by qPCR analysis on embryos of a DUI species and the first time the segregation patterns of sperm mitochondria are described in a DUI system other than Mytilus.

  14. Mitochondrial DNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the doubly uniparental inheritance of mitochondrial DNA system in the blue mussel Mytilus galloprovincialis.

    PubMed

    Sano, Natsumi; Obata, Mayu; Ooie, Yosiyasu; Komaru, Akira

    2011-08-01

    Doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA has been reported in the blue mussel Mytilus galloprovincialis. In DUI, males inherit both paternal (M type) and maternal (F type) mtDNA. Here we investigated changes in M type mtDNA copy numbers and mitochondrial mass in testicular cells by real-time polymerase chain reaction and flow cytometry. The ratios of M type mtDNA copy numbers to nuclear DNA content were not different between haploid (1n), diploid (2n) and tetraploid (4n) spermatogenic cells. The mitochondrial mass decreased gradually during spermatogenesis. These results suggest that mtDNA and mitochondrial mass are maintained during spermatogenesis. We then traced M type mtDNA in larvae after fertilization. M type mtDNA was maintained up to 24 h after fertilization in the male-biased crosses, but decreased significantly in female-biased crosses (predicted by Mito Tracker staining pattern). These results are strikingly different from those reported for mammals and fish, where it is well known that the mitochondria and mtDNA are reduced during spermatogenesis and that sperm mitochondria and mtDNA are eliminated soon after fertilization. Thus, the M type mtDNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the DUI system in the blue mussel.

  15. Sperm motility in Mytilus edulis in relation to mitochondrial DNA polymorphisms: implications for the evolution of doubly uniparental inheritance in bivalves.

    PubMed

    Jha, M; Côté, J; Hoeh, W R; Blier, P U; Stewart, D T

    2008-01-01

    Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.

  16. De Novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination.

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Chang, Peter L; Hedgecock, Dennis; Davis, Jonathan P; Nuzhdin, Sergey V; Passamonti, Marco

    2012-02-01

    Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings.

  17. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA

    PubMed Central

    2010-01-01

    Background Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata). Results Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the trnH gene, an inversion of the atp8-trnD genes and a unique 3'coding extension of the cytochrome c oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for V. ellipsiformis, 50% for I. japanensis, 51% for P. grandis and 52% for Q. quadrula (uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida). Conclusion The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple

  18. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA.

    PubMed

    Doucet-Beaupré, Hélène; Breton, Sophie; Chapman, Eric G; Blier, Pierre U; Bogan, Arthur E; Stewart, Donald T; Hoeh, Walter R

    2010-02-18

    Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata). Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the trnH gene, an inversion of the atp8-trnD genes and a unique 3'coding extension of the cytochrome c oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for V. ellipsiformis, 50% for I. japanensis, 51% for P. grandis and 52% for Q. quadrula (uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida). The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple descendant lineages and (2) the

  19. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance.

    PubMed

    Horn, Bruce W; Gell, Richard M; Singh, Rakhi; Sorensen, Ronald B; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.

  20. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance

    PubMed Central

    Horn, Bruce W.; Gell, Richard M.; Singh, Rakhi; Sorensen, Ronald B.; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing. PMID:26731416

  1. Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria.

    PubMed

    Christie, Joshua R; Schaerf, Timothy M; Beekman, Madeleine

    2015-04-01

    Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance.

  2. Segregation of sperm mitochondria in two- and four-cell embryos of the blue mussel Mytilus edulis: Implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA.

    PubMed

    Cogswell, Andrew T; Kenchington, Ellen L R; Zouros, Eleftherios

    2006-07-01

    Species of the family Mytilidae have 2 mitochondrial genomes, one that is transmitted through the egg and one that is transmitted through the sperm. In the Mytilus edulis species complex (M. edulis, M. galloprovincialis, and M. trossulus) there is also a strong mother-dependent sex-ratio bias in favor of one or the other sex among progeny from pair matings. In a previous study, we have shown that sperm mitochondria enter the egg and that their behavior during cell division is different depending on whether the egg originated from a female- or male-biased mother. Specifically, in eggs from females that produce mostly or exclusively daughters, sperm mitochondria disperse randomly among cells after egg division. In eggs from females that produce predominantly sons, sperm mitochondria tend to stay together in the same cell. Here, we extend these observations and show that in 2- and 4-cell embryos from male-biased mothers most sperm mitochondria are located near or at the cleavage furrow of the major cell, in contrast to embryos from female-biased mothers where there is no preferential association of sperm mitochondria with the cleavage furrow. This observation provides evidence for an early developmental mechanism through which sperm mitochondria are preferentially channeled into the primordial cells of male embryos, thus making the paternal mitochondrial genome the dominant mtDNA component of the male germ line.

  3. Uniparental ancestry markers in Chilean populations

    PubMed Central

    Vieira-Machado, Camilla Dutra; Tostes, Maluah; Alves, Gabrielle; Nazer, Julio; Martinez, Liliana; Wettig, Elisabeth; Pizarro Rivadeneira, Oscar; Diaz Caamaño, Marcela; Larenas Ascui, Jessica; Pavez, Pedro; Dutra, Maria da Graça; Castilla, Eduardo Enrique; Orioli, Ieda Maria

    2016-01-01

    Abstract The presence of Native Americans, Europeans, and Africans has led to the development of a multi-ethnic, admixed population in Chile. This study aimed to contribute to the characterization of the uniparental genetic structure of three Chilean regions. Newborns from seven hospitals in Independencia, Providencia, Santiago, Curicó, Cauquenes, Valdívia, and Puerto Montt communes, belonging to the Chilean regions of Santiago, Maule, and Los Lagos, were studied. The presence of Native American mitochondrial DNA (mtDNA) haplogroups and two markers present in the non-recombinant region of the Y chromosome, DYS199 and DYS287, indicative of Native American and African ancestry, respectively, was determined. A high Native American matrilineal contribution and a low Native American and African patrilineal contributions were found in all three studied regions. As previously found in Chilean admixed populations, the Native American matrilineal contribution was lower in Santiago than in the other studied regions. However, there was an unexpectedly higher contribution of Native American ancestry in one of the studied communes in Santiago, probably due to the high rate of immigration from other regions of the country. The population genetic sub-structure we detected in Santiago using few uniparental markers requires further confirmation, owing to possible stratification for autosomal and X-chromosome markers. PMID:27561109

  4. Selection for male-enforced uniparental cytoplasmic inheritance.

    PubMed

    Sreedharan, Vandana; Shpak, Max

    2010-12-01

    In most sexually reproducing species, including humans, mitochondria and other cytoplasmic elements are uniparentally (usually maternally) inherited. This phenomenon is of broad interest as a mechanism for countering the proliferation of selfish mitochondria. Uniparental inheritance can be enforced either by the female gametes excluding male cytoplasm or male gametes excluding their own from the zygote. Previous studies have shown that male-enforced uniparental inheritance is unlikely to evolve as a primary mechanism, because unlike female enforcement, the positive linkage disequilibrium between the modifier for eliminating the gamete's own mitochondria and a wild-type mitochondrial complement is broken from one generation to the next. However, it has been proposed that with a sufficiently high mutation rate and strong selection, elimination of the gamete's own mitochondria could be favored by selection. In this article, a series of numerical simulations confirm that this is indeed the case, although the conditions where male enforcement is favored are quite restrictive. Specifically, in addition to a high mutation rate to selfish mitochondria and strong selection against them, the cost of uniparental inheritance must be negligible.

  5. Mitochondrial inheritance in fungi.

    PubMed

    Basse, Christoph W

    2010-12-01

    Faithful inheritance of mitochondria is essential for growth and development. Uniparental inheritance of mitochondria is a common phenomenon in sexual eukaryotes and has been reported for numerous fungal species. Uniparental inheritance is a genetically regulated process, aimed to gain a homoplasmic state within cells, and this is often associated with selective elimination of one parental mitochondria population. This review will focus on recent developments in our understanding of common and specified regulatory circuits of selective mitochondrial inheritance during sexual development. It further refers to the influence of mitochondrial fusion on generation of recombinant mitochondrial DNA molecules. The latter aspect appears rather exciting in the context of intron homing and could bring a new twist to the debate on the significance of uniparental inheritance. The emergence of genome-wide studies offers new perspectives to address potential relationships between uniparental inheritance, vegetative inheritance and last but not least cellular scavenging systems to dispose of disintegrated organelles.

  6. Preparation of yeast mitochondrial DNA for direct sequence analysis.

    PubMed

    Valach, Matus; Tomaska, Lubomir; Nosek, Jozef

    2008-08-01

    We describe two simple protocols for preparation of templates for direct sequencing of yeast mitochondrial DNA (mtDNA) by automatic DNA analyzers. The protocols work with a range of yeast species and yield a sufficient quantity and quality of the template DNA. In combination with primer-walking strategy, they can be used either as an alternative or a complementary approach to shot-gun sequencing of random fragment DNA libraries. We demonstrate that the templates are suitable for re-sequencing of the mtDNA for comparative analyses of intraspecific variability of yeast strains as well as for primary determination of the complete mitochondrial genome sequence.

  7. Directly repeated sequences associated with pathogenic mitochondrial DNA deletions.

    PubMed Central

    Johns, D R; Rutledge, S L; Stine, O C; Hurko, O

    1989-01-01

    We determined the nucleotide sequences of junctional regions associated with large deletions of mitochondrial DNA found in four unrelated individuals with a phenotype of chronic progressive external ophthalmoplegia. In each patient, the deletion breakpoint occurred within a directly repeated sequence of 13-18 base pairs, present in different regions of the normal mitochondrial genome-separated by 4.5-7.7 kilobases. In two patients, the deletions were identical. When all four repeated sequences are compared, a consensus sequence of 11 nucleotides emerges, similar to putative recombination signals, suggesting the involvement of a recombinational event. Partially deleted and normal mitochondrial DNAs were found in all tissues examined, but in very different proportions, indicating that these mutations originated before the primary cell layers diverged. Images PMID:2813377

  8. Direct quantification of mitochondria and mitochondrial DNA dynamics.

    PubMed

    Nomura, Yasutomo

    2012-11-01

    Mitochondria are known to be one of major organelles within a cell and to play a crucial role in many cellular functions. These organelles show the dynamic behaviors such as fusion, fission and the movement along cytoskeletal tracks. Besides mitochondria, mitochondrial DNA is also highly motile. Molecular analysis revealed that several proteins are involved in mitochondria and mitochondrial DNA dynamics. In addition to the degeneration of specific nerves with high energy requirement, mutation of genes coding these proteins results in metabolic diseases. During the last few years, a significant amount of relevant data has been obtained on molecular basis of these diseases but mitochondrial dynamics in cells derived from the patients is poorly understood. So far time-lapse fluorescence microscopy, fluorescence recovery after photo bleaching and image correlation methods have been used to study organellar motion. Especially, image correlation method has possibility to evaluate diffusion coefficient of mitochondria and mitochondrial DNA simultaneously and directly. When we search candidates for compounds that modulate mitochondrial dynamics by high throughput screening, image correlation method may be useful although the careful interpretation is required for crowded and heterogeneous environment within a cell.

  9. Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome.

    PubMed

    Kato, Hiroki; Han, Xu; Yamaza, Haruyoshi; Masuda, Keiji; Hirofuji, Yuta; Sato, Hiroshi; Pham, Thanh Thi Mai; Taguchi, Tomoaki; Nonaka, Kazuaki

    2017-09-09

    Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Uniparental genetic markers in South Amerindians

    PubMed Central

    Bisso-Machado, Rafael; Bortolini, Maria Cátira; Salzano, Francisco Mauro

    2012-01-01

    A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data. PMID:22888284

  11. Direct Effect of Zinc on Mitochondrial Apoptogenesis in Prostate Cells

    PubMed Central

    Feng, Pei; Li, Tie-Luo; Guan, Zhi-Xin; Franklin, Renty B.; Costello, Leslie C.

    2015-01-01

    BACKGROUND Prostate epithelial cells uniquely accumulate significantly higher levels of zinc than other mammalian cells. We previously showed that the accumulation of high intracellular zinc levels in specific prostate cells results in the induction of apoptosis and the inhibition of cell growth. The apoptotic effect is due to zinc induction of mitochondrial apoptogenesis. We now report additional studies that corroborate this effect of zinc and provide insight into the mechanism of this unique effect. METHODS The effect of exposure to physiological levels of zinc on apoptosis was determined for three human prostate cell lines (PC-3, BPH, and HPR-1). Zinc-induced apoptosis was identified by DNA fragmentation. The direct effect of zinc on isolated mitochondrial preparations from each cell line was determined. The mitochondrial release of cytochrome c was determined by Western blot. RESULTS Exposure to zinc induced apoptosis in PC-3 and BPH cells but not in HPR-1 cells. The zinc accumulation in PC-3 (4.3 ± 0.3) and BPH (2.8 ± 0.4) was higher than that in HPR-1 cells (1.8 ± 0.1). The apoptotic effect of zinc on PC-3 cells could be observed as early as 4–6 hr of zinc treatment, and this effect was not reversible. The exposure of isolated mitochondria from PC-3 and BPH cells to zinc resulted in the release of cytochrome c; but zinc had no effect on mitochondria from HPR-1 cells. CONCLUSIONS Exposure to zinc induces apoptosis in PC-3 and BPH cells, which accumulate high intracellular levels of zinc, but not in HPR-1 cells, which do not accumulate high levels of zinc. Once initiated, the induction of apoptosis is not reversed by the removal of zinc, i.e., it is an irreversible process. The apoptogenic effect is due to a direct effect of zinc on mitochondria that results in the release of cytochrome c. The cell specificity of zinc induction of apoptogenesis is dependent on the ability of the cells to accumulate high levels of intracellular zinc and on the ability of

  12. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    USGS Publications Warehouse

    Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.

  13. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    PubMed Central

    Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stéphanie; Sietman, Bernard E.; Johnson, Nathan; Bettinazzi, Stefano; Stewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy. PMID:28817688

  14. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    SciTech Connect

    Bowes, Timothy; Gupta, Radhey S.

    2008-11-07

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission.

  15. Inhibition of the Mitochondrial Permeability Transition for Cytoprotection: Direct versus Indirect Mechanisms

    PubMed Central

    Martel, Cécile; Huynh, Le Ha; Garnier, Anne; Ventura-Clapier, Renée; Brenner, Catherine

    2012-01-01

    Mitochondria are fascinating organelles, which fulfill multiple cellular functions, as diverse as energy production, fatty acid β oxidation, reactive oxygen species (ROS) production and detoxification, and cell death regulation. The coordination of these functions relies on autonomous mitochondrial processes as well as on sustained cross-talk with other organelles and/or the cytosol. Therefore, this implies a tight regulation of mitochondrial functions to ensure cell homeostasis. In many diseases (e.g., cancer, cardiopathies, nonalcoholic fatty liver diseases, and neurodegenerative diseases), mitochondria can receive harmful signals, dysfunction and then, participate to pathogenesis. They can undergo either a decrease of their bioenergetic function or a process called mitochondrial permeability transition (MPT) that can coordinate cell death execution. Many studies present evidence that protection of mitochondria limits disease progression and severity. Here, we will review recent strategies to preserve mitochondrial functions via direct or indirect mechanisms of MPT inhibition. Thus, several mitochondrial proteins may be considered for cytoprotective-targeted therapies. PMID:22675634

  16. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment.

    PubMed

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-02-15

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2(-/-) mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2(-/-) cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2(-/-) primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.

  17. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment

    PubMed Central

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-01-01

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2−/− mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2−/− cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2−/− primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis. PMID:27019748

  18. Rapidly Evolving Mitochondrial Genome and Directional Selection in Mitochondrial Genes in the Parasitic Wasp Nasonia (Hymenoptera: Pteromalidae)

    PubMed Central

    Raychoudhury, Rhitoban; Lavrov, Dennis V.; Werren, John H.

    2008-01-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a “Compensation-Draft Feedback”; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus

  19. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae).

    PubMed

    Oliveira, Deodoro C S G; Raychoudhury, Rhitoban; Lavrov, Dennis V; Werren, John H

    2008-10-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus

  20. Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans

    PubMed Central

    van de Weijer, Tineke; Phielix, Esther; Bilet, Lena; Williams, Evan G.; Ropelle, Eduardo R.; Bierwagen, Alessandra; Livingstone, Roshan; Nowotny, Peter; Sparks, Lauren M.; Paglialunga, Sabina; Szendroedi, Julia; Havekes, Bas; Moullan, Norman; Pirinen, Eija; Hwang, Jong-Hee; Schrauwen-Hinderling, Vera B.; Hesselink, Matthijs K.C.; Auwerx, Johan

    2015-01-01

    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD+) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD+ precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m2) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD+ levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD+ boosters can also directly affect skeletal muscle mitochondrial function in humans. PMID:25352640

  1. Direct human mitochondrial transfer: a novel concept based on the endosymbiotic theory.

    PubMed

    Kitani, T; Kami, D; Kawasaki, T; Nakata, M; Matoba, S; Gojo, S

    2014-05-01

    Mitochondria play an essential role in eukaryotes, and mitochondrial dysfunction is implicated in several diseases. Therefore, intercellular mitochondrial transfer has been proposed as a mechanism for cell-based therapy. In addition, internalization of isolated mitochondria cells by simple coincubation was reported to improve mitochondrial function in the recipient cells. However, substantial evidence for internalization of isolated mitochondria is still lacking, and its precise mechanism remains elusive. We tested whether enriched mitochondria can be internalized into cultured human cells by simple coincubation using fluorescence microscopy and flow cytometry. Mitochondria were isolated from endometrial gland-derived mesenchymal cells (EMCs) or EMCs stably expressing mitochondrial-targeted red fluorescent protein (EMCs-DsRed-mito), and enriched by anti-mitochondrial antibody-conjugated microbeads. They were coincubated with isogeneic EMCs stably expressing green fluorescent protein (GFP). Live fluorescence imaging clearly showed that DsRed-labeled mitochondria accumulated in the cytoplasm of EMCs stably expressing GFP around the nucleus. Flow cytometry confirmed the presence of a distinct population of GFP and DsRed double-positive cells within the recipient cells. In addition, transfer efficiency depended on mitochondrial concentration, indicating that human cells may possess the inherent ability to internalize mitochondria. Therefore, this study supports the application of direct transfer of isogeneic mitochondria as a novel approach for the treatment of diseases associated with mitochondrial dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite.

    PubMed

    Quijano, Celia; Castro, Laura; Peluffo, Gonzalo; Valez, Valeria; Radi, Rafael

    2007-12-01

    Hyperglycemic challenge to bovine aortic endothelial cells (BAECs) increases oxidant formation and cell damage that are abolished by MnSOD overexpression, implying mitochondrial superoxide (O(2)(.-)) as a central mediator. However, mitochondrial O(2)(.-) and its steady-state concentrations have not been measured directly yet. Therefore, we aimed to detect and quantify O(2)(.-) through different techniques, along with the oxidants derived from it. Mitochondrial aconitase, a sensitive target of O(2)(.-), was inactivated 60% in BAECs incubated in 30 mM glucose (hyperglycemic condition) with respect to cells incubated in 5 mM glucose (normoglycemic condition). Under hyperglycemic conditions, increased oxidation of the mitochondrially targeted hydroethidine derivative (MitoSOX) to hydroxyethidium, the product of the reaction with O(2)(.-), could be specifically detected. An 8.8-fold increase in mitochondrial O(2)(.-) steady-state concentration (to 250 pM) and formation rate (to 6 microM/s) was estimated. Superoxide formation increased the intracellular concentration of both hydrogen peroxide, measured as 3-amino-2,4,5-triazole-mediated inactivation of catalase, and nitric oxide-derived oxidants (i.e., peroxynitrite), evidenced by immunochemical detection of 3-nitrotyrosine. Oxidant formation was further evaluated by chloromethyl dichlorodihydrofluorescein (CM-H(2)DCF) oxidation. Exposure to hyperglycemic conditions triggered the oxidation of CM-H(2)DCF and was significantly reduced by pharmacological agents that lower the mitochondrial membrane potential, inhibit electron transport (i.e., myxothiazol), and scavenge mitochondrial oxidants (i.e., MitoQ). In BAECs devoid of mitochondria (rho(0) cells), hyperglycemic conditions did not increase CM-H(2)DCF oxidation. Mitochondrial O(2)(.-) formation in hyperglycemic conditions was associated with increased glucose metabolization in the Krebs cycle and hyperpolarization of the mitochondrial membrane.

  3. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  4. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  5. The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria.

    PubMed

    Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver

    2015-11-01

    The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.

  6. Directing experimental biology: a case study in mitochondrial biogenesis.

    PubMed

    Hibbs, Matthew A; Myers, Chad L; Huttenhower, Curtis; Hess, David C; Li, Kai; Caudy, Amy A; Troyanskaya, Olga G

    2009-03-01

    Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely characterize a biological

  7. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins.

    PubMed Central

    Hönlinger, A; Kübrich, M; Moczko, M; Gärtner, F; Mallet, L; Bussereau, F; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Jacquet, M

    1995-01-01

    A multisubunit complex in the mitochondrial outer membrane is responsible for targeting and membrane translocation of nuclear-encoded preproteins. This receptor complex contains two import receptors, a general insertion pore and the protein Mom22. It was unknown if Mom22 directly interacts with preproteins, and two views existed about the possible functions of Mom22: a central role in transfer of preproteins from both receptors to the general insertion pore or a more limited function dependent on the presence of the receptor Mom19. For this report, we identified and cloned Saccharomyces cerevisiae MOM22 and investigated whether it plays a direct role in targeting of preproteins. A preprotein accumulated at the mitochondrial outer membrane was cross-linked to Mom22. The cross-linking depended on the import stage of the preprotein. Overexpression of Mom22 suppressed the respiratory defect of yeast cells lacking Mom19 and increased preprotein import into mom19 delta mitochondria, demonstrating that Mom22 can function independently of Mom19. Overexpression of Mom22 even suppressed the lethal phenotype of a double deletion of the two import receptors known so far (mom19 delta mom72 delta). Deletion of the MOM22 gene was lethal for yeast cells, identifying Mom22 as one of the few mitochondrial membrane proteins essential for fermentative growth. These results suggest that Mom22 plays an essential role in the mitochondrial receptor complex. It directly interacts with preproteins in transit and can perform receptor-like activities. PMID:7760834

  8. Infantile neuroaxonal dystrophy caused by uniparental disomy.

    PubMed

    Solomons, Joyce; Ridgway, Oliver; Hardy, Carol; Kurian, Manju A; Kurian, Manju; Jayawant, Sandeep; Hughes, Sarah; Pretorius, Pieter; Németh, Andrea H

    2014-04-01

    Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the phospholipase A2 group 6 (Pla2G6) gene. Affected individuals usually present between the ages of 6 months and 2 years with rapid cognitive and motor regression and axial hypotonia. Gait disturbance, limb spasticity, cerebellar signs, and optic atrophy are other common features associated with INAD. Although magnetic resonance imaging (MRI) can sometimes contribute towards the diagnosis, the confirmation of INAD is by Pla2G6 gene analysis. In this case report, we describe the first individual (female) with INAD due to a combination of uniparental heterodisomy and isodisomy; we discuss the possible underlying mechanism and highlight the importance of parental carrier testing in accurately predicting the recurrence risk in these families. We also confirm the recent report of hypertrophy of the clava (also known as the 'gracile tubercle') as a useful MRI sign in INAD. © 2013 Mac Keith Press.

  9. Perinatal hypophosphatasia caused by uniparental isodisomy.

    PubMed

    Watanabe, Atsushi; Satoh, Shuhei; Fujita, Atsushi; Naing, Banyar Than; Orimo, Hideo; Shimada, Takashi

    2014-03-01

    Hypophosphatasia (HPP) is an inherited disorder characterized by defective bone mineralization caused by mutations in the alkaline phosphatase gene (ALPL). Clinically, the disease spans a great continuum of disease severity and six forms can be distinguished according to the age of onset. The most severe is the autosomal recessive perinatal form, a major prenatal skeletal dysplasia in Japan. The ALPL mutation c.1559delT causes perinatal HPP and occurs frequently in the Japanese. Most patients with perinatal HPP in Japan are homozygous for c.1559delT, and their parents are usually heterozygous with no evidence of consanguinity. Here we identified a fetus with perinatal HPP resulting from an unusual mechanism known as paternal uniparental isodisomy (UPD) of chromosome 1. Sequence analysis of ALPL in the patient revealed the presence of the homozygous mutation c.1559delT. We suspected UPD because the father and mother were heterozygous and wild type, respectively. Analysis of polymorphic microsatellite markers spanning chromosome 1 and whole-genome arrays revealed a uniparental inheritance from the father and excluded deletions or de novo mutations. This is the first description of perinatal HPP caused by UPD. This report also emphasizes the low recurrence risk of a non-Mendelian inheritance pattern in UPD and the value of determining parental genotypes with homozygous mutations in a patient to confirm whether the condition is caused by UPD or not, even when the mutation is detected as a hot spot, as described in the literature. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.

    PubMed

    Christie, Joshua R; Beekman, Madeleine

    2017-03-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids.

    PubMed

    Montero, Mayte; Lobatón, Carmen D; Hernández-Sanmiguel, Esther; Santodomingo, Jaime; Vay, Laura; Moreno, Alfredo; Alvarez, Javier

    2004-11-15

    During cell activation, mitochondria play an important role in Ca2+ homoeostasis due to the presence of a fast and specific Ca2+ channel in its inner membrane, the mitochondrial Ca2+ uniporter. This channel allows mitochondria to buffer local cytosolic [Ca2+] changes and controls the intramitochondrial Ca2+ levels, thus modulating a variety of phenomena from respiratory rate to apoptosis. We have described recently that SB202190, an inhibitor of p38 MAPK (mitogen-activated protein kinase), strongly activated the uniporter. We show in the present study that a series of natural plant flavonoids, widely distributed in foods, produced also a strong stimulation of the mitochondrial Ca2+ uniporter. This effect was of the same magnitude as that induced by SB202190 (an approx. 20-fold increase in the mitochondrial Ca2+ uptake rate), developed without measurable delay and was rapidly reversible. In intact cells, the mitochondrial Ca2+ peak induced by histamine was also largely increased by the flavonoids. Stimulation of the uniporter by either flavonoids or SB202190 did not require ATP, suggesting a direct effect on the uniporter or an associated protein which is not mediated by protein phosphorylation. The most active compound, kaempferol, increased the rate of mitochondrial Ca2+ uptake by 85+/-15% (mean+/-S.E.M., n=4) and the histamine-induced mitochondrial Ca2+ peak by 139+/-19% (mean+/-S.E.M., n=5) at a concentration of 1 microM. Given that flavonoids can reach this concentration range in plasma after ingestion of flavonoid-rich food, these compounds could be modulating the uniporter under physiological conditions.

  12. Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids

    PubMed Central

    2004-01-01

    During cell activation, mitochondria play an important role in Ca2+ homoeostasis due to the presence of a fast and specific Ca2+ channel in its inner membrane, the mitochondrial Ca2+ uniporter. This channel allows mitochondria to buffer local cytosolic [Ca2+] changes and controls the intramitochondrial Ca2+ levels, thus modulating a variety of phenomena from respiratory rate to apoptosis. We have described recently that SB202190, an inhibitor of p38 MAPK (mitogen-activated protein kinase), strongly activated the uniporter. We show in the present study that a series of natural plant flavonoids, widely distributed in foods, produced also a strong stimulation of the mitochondrial Ca2+ uniporter. This effect was of the same magnitude as that induced by SB202190 (an approx. 20-fold increase in the mitochondrial Ca2+ uptake rate), developed without measurable delay and was rapidly reversible. In intact cells, the mitochondrial Ca2+ peak induced by histamine was also largely increased by the flavonoids. Stimulation of the uniporter by either flavonoids or SB202190 did not require ATP, suggesting a direct effect on the uniporter or an associated protein which is not mediated by protein phosphorylation. The most active compound, kaempferol, increased the rate of mitochondrial Ca2+ uptake by 85±15% (mean±S.E.M., n=4) and the histamine-induced mitochondrial Ca2+ peak by 139±19% (mean±S.E.M., n=5) at a concentration of 1 μM. Given that flavonoids can reach this concentration range in plasma after ingestion of flavonoid-rich food, these compounds could be modulating the uniporter under physiological conditions. PMID:15324303

  13. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance.

    PubMed

    Nguyen, Tammy T; Lewandowska, Agnieszka; Choi, Jae-Yeon; Markgraf, Daniel F; Junker, Mirco; Bilgin, Mesut; Ejsing, Christer S; Voelker, Dennis R; Rapoport, Tom A; Shaw, Janet M

    2012-06-01

    In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology.

  14. Mitochondrial inheritance in Aspergillus nidulans.

    PubMed

    Coenen, A; Croft, J H; Slakhorst, M; Debets, F; Hoekstra, R

    1996-04-01

    Mitochondrial chloramphenicol and oligomycin resistance mutations were used to investigate mitochondrial inheritance in A. nidulans. Mitochondrial RFLPs could not be used to distinguish between paternal and maternal mitochondria because none were detected in the 54 isolates investigated. Several thousand ascospores from each of 111 hybrid cleistothecia from 21 different crosses between 7 heterokaryon incompatible isolates were tested for biparental inheritance. All mitochondrial inheritance was strictly uniparental. Not one instance of paternal inheritance of mitochondria was observed. The implications of our results for the theory that uniparental inheritance evolved to avoid cytoplasmic conflict are discussed. Possible explanations for the maintenance of strict uniparental inheritance of mitochondria in an inbreeding homothallic organism are suggested. The chloramphenicol resistance marker was inherited preferentially to the oligomycin resistance marker probably due to the inhibited energy production of mitochondria with the oligomycin resistance mutation. The maternal parent was determined for 93 hybrid cleistothecia from 17 crosses between 7 different strains. Contrary to previous reports A. nidulans strains functioned as both maternal and paternal parent in most crosses.

  15. Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism*

    PubMed Central

    Gohil, Vishal M.; Zhu, Lin; Baker, Charli D.; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B.; Brookes, Paul S.; Bakovic, Marica; Mootha, Vamsi K.

    2013-01-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism. PMID:24142790

  16. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism.

    PubMed

    Gohil, Vishal M; Zhu, Lin; Baker, Charli D; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B; Brookes, Paul S; Bakovic, Marica; Mootha, Vamsi K

    2013-12-06

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.

  17. Confined placental mosaicisms and uniparental disomy

    SciTech Connect

    Kalousek, D.K.; Langlois, S.; Harrison, K.J.

    1994-09-01

    Approximately 2% of pregnancies studied with chorionic villous sampling (CVS) show confined placental mosaicism (CPM) which persists to term in 50-70% of cases. An increased frequency of complications, such as intrauterine fetal growth restriction or intrauterine death, is observed in these pregnancies. As trisomic zygote rescue is a common mechanism responsible for CPM, fetal uniparental disomy (UPD), resulting from the loss of the extra trisomic chromosome in the embryonic stem cells, would be expected to occur in a proportion of pregnancies with CPM. We have studied 27 pregnancies with CPM involving trisomies for chromosomes 2, 7, 9, 10, 12, and 16 for involvement of specific cell lineage(s) and levels of mosaicism in term placentas. Also, DNA from the parents and infant was analyzed for UPD or biparental disomy (BPD). Five infants with UPD for chromosome 16 and one infant with UPD for chromosome 7 were detected. All other infants showed BPD for the chromosome involved in CPM. For trisomy 16 mosaic gestations, a close correlation between high levels of trisomic cells in placenta and intrauterine fetal growth restriction has been found irrespective of the type of disomy present in the infant. The effect of other trisomies (2, 7, 9, 10, 12) on placental function appears to be similar, but the low numbers of pregnancies studied and lack of detection of UPD for chromosomes 2, 9, 10 and 12 does not allow a definitive conclusion.

  18. Searching for doubly uniparental inheritance of mtDNA in the apple snail Pomacea diffusa.

    PubMed

    Parakatselaki, Maria Eleni; Saavedra, Carlos; Ladoukakis, Emmanuel D

    2016-11-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) is an exceptional mode of mtDNA transmission, restricted so far to the class of bivalves. We searched for DUI outside bivalves using the apple snail Pomacea diffusa. It was an appropriate candidate to search for DUI for three reasons; it belongs to gastropods, which is the closest sister group to bivalves, it is gonochoristic and it has a strong sex bias in the progeny of different female individuals. These phenomena (gonochorism and sex-biased progeny) are also found in species with DUI. We searched for heteroplasmy in males and for high sequence divergence among mtDNA sequences obtained from male and female gonads. All sequences examined were identical. These data suggest that the mtDNA in P. diffusa is maternally transmitted and DUI remains an exclusive characteristic of bivalves.

  19. Correlative assessment of fecal indicators using human mitochondrial DNA as a direct marker.

    PubMed

    Kapoor, Vikram; Smith, Christopher; Santo Domingo, Jorge W; Lu, Ting; Wendell, David

    2013-09-17

    Identifying the source of surface water fecal contamination is paramount to mitigating pollution and risk to human health. Fecal bacteria such as E. coli have been staple indicator organisms for over a century, however there remains uncertainty with E. coli-based metrics since these bacteria are abundant in the environment. The relationships between the presence of direct indicator of human waste (human mitochondrial DNA), human-specific Bacteroidales, and E. coli were studied for water samples taken from an urban creek system (Duck Creek Watershed, Cincinnati, OH) impacted by combined sewer overflows. Logistic regression analysis shows that human-specific Bacteroidales correlates much more closely to human mitochondrial DNA (R = 0.62) relative to E. coli (R = 0.33). We also examine the speciation of Bacteroidales within the Duck Creek Watershed using next-generation sequencing technology (Ion Torrent) and show the most numerous populations to be associated with sewage. Here we demonstrate that human-specific Bacteroidales closely follow the dynamics of human mitochondrial DNA concentration changes, indicating that these obligate anaerobes are more accurate than E. coli for fecal source tracking, lending further support to risk overestimation using coliforms, especially fecal coliforms and E. coli.

  20. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels.

    PubMed

    Lustgarten, Michael S; Bhattacharya, Arunabh; Muller, Florian L; Jang, Youngmok C; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2012-06-08

    Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ∼4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (∼75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.

  1. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence.

    PubMed Central

    Petronilli, V; Miotto, G; Canton, M; Brini, M; Colonna, R; Bernardi, P; Di Lisa, F

    1999-01-01

    The occurrence and the mode of opening of the mitochondrial permeability transition pore (MTP) were investigated directly in intact cells by monitoring the fluorescence of mitochondrial entrapped calcein. When MH1C1 cells and hepatocytes were loaded with calcein AM, calcein was also present within mitochondria, because (i) its mitochondrial signal was quenched by the addition of tetramethylrhodamine methyl ester and (ii) calcein-loaded mitochondria could be visualized after digitonin permeabilization. Under the latter condition, the addition of Ca2+ induced a prompt and massive release of the accumulated calcein, which was prevented by CsA, indicating that calcein release could, in principle, probe MTP opening in intact cells as well. To study this process, we developed a procedure by which the cytosolic calcein signal was quenched by Co2+. In hepatocytes and MH1C1 cells coloaded with Co2+ and calcein AM, treatment with MTP inducers caused a rapid, though limited, decrease in mitochondrial calcein fluorescence, which was significantly reduced by CsA. We also observed a constant and spontaneous decrease in mitochondrial calcein fluorescence, which was completely prevented by CsA. Thus MTP likely fluctuates rapidly between open and closed states in intact cells. PMID:9929477

  2. Direct effects of Vaccinium myrtillus L. fruit extracts on rat heart mitochondrial functions.

    PubMed

    Trumbeckaitė, S; Burdulis, D; Raudonė, L; Liobikas, J; Toleikis, A; Janulis, V

    2013-04-01

    In this study, the direct influence of bilberry (Vaccinium myrtillus) fruit extracts (aqueous and ethanolic) rich in anthocyanins on the oxidative phosphorylation of isolated rat heart mitochondria was investigated in vitro. Higher concentrations of bilberry extracts concentration-dependently inhibited mitochondrial state 3 respiration (by 23%-61%) with pyruvate plus malate, mildly (by 1.2- to 1.3-fold) uncoupled the oxidative phosphorylation, and increased (by 30%-87%) the state 4 respiration rate in the presence of exogenous cytochrome c. Succinate oxidation was less affected. Pure anthocyanins, the main components of used extracts, malvidin-3-glucoside, malvidin-3-galactoside, and cyanidin-3-galactoside, had no effect on oxidation of pyruvate plus malate. A statistically significant decrease in H2 O2 production by mitochondria was found in the presence of bilberry fruit extracts. Our findings show that bilberry fruit anthocyanin-rich extracts possess direct effects on rat heart mitochondrial function in vitro. These findings give the first insights into the mechanism(s) of their action on cellular energy metabolism. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

    PubMed Central

    Hahn, Christoph; Bachmann, Lutz; Chevreux, Bastien

    2013-01-01

    We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim. PMID:23661685

  4. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads--a baiting and iterative mapping approach.

    PubMed

    Hahn, Christoph; Bachmann, Lutz; Chevreux, Bastien

    2013-07-01

    We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data-mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.

  5. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA.

    PubMed

    Gusman, Arthur; Lecomte, Sophia; Stewart, Donald T; Passamonti, Marco; Breton, Sophie

    2016-01-01

    There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI) in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841)and the veneroid Scrobicularia plana(Da Costa,1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

  6. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA

    PubMed Central

    Gusman, Arthur; Lecomte, Sophia; Stewart, Donald T.; Passamonti, Marco

    2016-01-01

    There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI) in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841)and the veneroid Scrobicularia plana(Da Costa,1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented. PMID:27994972

  7. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    PubMed

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  8. Uniparental Markers of Contemporary Italian Population Reveals Details on Its Pre-Roman Heritage

    PubMed Central

    Álvarez-Iglesias, Vanesa; Fondevila, Manuel; Blanco-Verea, Alejandro; Carracedo, Ángel; Pascali, Vincenzo L.; Capelli, Cristian

    2012-01-01

    Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times. PMID:23251386

  9. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  10. Patterns of mitochondrial inheritance in the myxogastrid Didymium iridis.

    PubMed

    Silliker, Margaret E; Liles, Jeffery L; Monroe, Jason A

    2002-01-01

    Seven strains of the Central American A1 mating series of Didymium iridis were crossed in all possible combinations. Individual plasmodia were isolated and grown to a stage where total DNA could be isolated for DNA-DNA hybridization with cloned mitochondrial DNA probes to determine the pattern of mitochondrial inheritance. Random, biased, and dominant patterns of uniparental mitochondrial inheritance were observed, as well as rare cases of biparental inheritance, depending on the particular parental strains mated. The diverse patterns suggest that the factors controlling mitochondrial inheritance in D. iridis are complex. Differences between trials of the same matings suggest that non-genetic factors may also influence mitochondrial inheritance.

  11. Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts.

    PubMed

    Feng, Wenke; Cai, Jian; Pierce, William M; Franklin, Renty B; Maret, Wolfgang; Benz, Frederick W; Kang, Y James

    2005-07-08

    Previous studies have shown that in a cell-free system, metallothionein (MT) releases zinc when the environment becomes oxidized and the released zinc is transferred to a zinc-binding protein if such a protein is present. However, it is unknown whether and how zinc transfers from MT to other proteins in vivo. The present study was undertaken to test the hypothesis that if zinc transfer from MT to other proteins occurs in vivo, the transfer would proceed through a direct interaction between MT and a specific group of proteins. The heart extract obtained from MT-null mice was incubated with 65Zn-MT or 65ZnCl2 and the proteins receiving 65Zn were separated by blue-native PAGE (BN-PAGE) or sodium dodecyl sulfate-PAGE (SDS-PAGE), and detected by autoradiography. A unique 65Zn-binding band was observed from the 65Zn-MT-incubated, but not the 65ZnCl2-incubated preparation. The analysis using matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry revealed that mitochondrial aconitase (m-aconitase) was among the proteins accepting Zn directly from Zn-MT. The m-aconitase, not the cytosolic aconitase (c-aconitase), was co-immunoprecipitated with MT. This study demonstrates that MT transfers zinc to m-aconitase through a direct interaction.

  12. Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein α-Synuclein*♦

    PubMed Central

    Nakamura, Ken; Nemani, Venu M.; Azarbal, Farnaz; Skibinski, Gaia; Levy, Jon M.; Egami, Kiyoshi; Munishkina, Larissa; Zhang, Jue; Gardner, Brooke; Wakabayashi, Junko; Sesaki, Hiromi; Cheng, Yifan; Finkbeiner, Steven; Nussbaum, Robert L.; Masliah, Eliezer; Edwards, Robert H.

    2011-01-01

    The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease. PMID:21489994

  13. Uniparental disomy in congenital disorders: A prospective study

    SciTech Connect

    Lindor, N.M.; Karnes, P.S.; Michels, V.V.

    1995-08-28

    Whole chromosome uniparental disomy (UPD) for several different chromosomes has been described in individuals with phenotypes that encompass a broad range of abnormalities. We prospectively searched for UPD in 25 cytogenetically normal individuals who had one or more of the following features: nonsyndromic multiple congenital anomalies, short stature, mental retardation, or dysmorphic findings. Using highly polymorphic microsatellite repeats, biparental inheritance of at least one locus on every chromosome was found in every individual and uniparental inheritance was not detected at any locus. If UPD does exist in this clinical setting, its frequency is less than 13.7% (95% confidence interval). Our data indicate that additional studies will be required to determine the true incidence of UPD in this population. 41 refs., 1 tab.

  14. Direct Substrate Delivery into Mitochondrial-Fission Deficient Pancreatic Islets Rescues Insulin Secretion.

    PubMed

    Kabra, Uma D; Pfuhlmann, Katrin; Migliorini, Adriana; Keipert, Susanne; Lamp, Daniel; Korsgren, Olle; Gegg, Moritz; Woods, Stephen C; Pfluger, Paul T; Lickert, Heiko; Affourtit, Charles; Tschöp, Matthias H; Jastroch, Martin

    2017-02-07

    In pancreatic beta cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion (GSIS). Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we here demonstrate that mitochondrial fission is necessary for GSIS in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fuelled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient beta cells, demonstrating that defective mitochondrial dynamics solely impact substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights in how mitochondrial dysfunction may cause pancreatic beta cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria.

  15. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    PubMed

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans.

  16. Distinct phenotype in maternal uniparental disomy of chromosome 14

    SciTech Connect

    Healey, S.; Chenevix-Trench, G.; McGill, J.; Battersby, M.

    1994-06-01

    We report on the occurrence of maternal uniparental disomy for chromosome 14 (mUPD14) in a 4-year-old girl with a de novo Robertsonian translocation, 45,XX,t (13q,14q). The child has arrested hydrocephalus, short stature, minor anomalies, small hands with hyperextensible joints, and mild to moderate developmental delay. Comparison of her phenotype with those of three previously described individuals show some common distinct traits which suggest a mUPD14 syndrome. 5 refs., 3 figs., 2 tabs.

  17. Pathogenesis and Consequences of Uniparental Disomy in Cancer

    PubMed Central

    Makishima, Hideki; Maciejewski, Jaroslaw P.

    2012-01-01

    Systematic application of new genome-wide single nucleotide polymorphism arrays has demonstrated that somatically acquired regions of loss of heterozygosity (LOH) without changes in copy number frequently occur in many types of cancer. Until recently, the ubiquity of this type of chromosomal defect had remained unrecognized as it cannot be detected using routine cytogenetic technologies. Random and recurrent patterns of copy-neutral LOH, also referred to as uniparental disomy (UPD), can be found in specific cancer types and probably contribute to clonal outgrowth owing to various mechanisms. In this review we explore the types, topography, genesis, pathophysiological consequences and clinical implications of UPD. PMID:21518781

  18. Uniparental Markers in Italy Reveal a Sex-Biased Genetic Structure and Different Historical Strata

    PubMed Central

    Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West–South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe. PMID:23734255

  19. Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata.

    PubMed

    Boattini, Alessio; Martinez-Cruz, Begoña; Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West-South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.

  20. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  1. Advances in the genetic mechanisms of mitochondrial disease.

    PubMed

    Vladutiu, G D

    1997-12-01

    During the past 16 years since the delineation of the human mitochondrial genome, substantial advances have been made in identifying pathogenic mutations causing mitochondrial disorders. However, just as we have come to accept the unexpected in the nontraditional aspects of Mendelian inheritance with the discovery of trinucleotide expansions, imprinting and uniparental disomy, unusual characteristics of mitochondrial inheritance also have been found that defy existing laws. For example, we now know that the nuclear genetic background of an individual might influence the expression and tissue specificity of mitochondrial mutations. Pathogenic mitochondrial DNA mutations contribute to the generation of new mutations by compromising mitochondrial function and increasing free radical production. Evidence for recombination raises new questions about repair mechanisms of mitochondrial DNA. It appears that the more we learn about the bases of mitochondrial disease, the more complex diagnosis, treatment, and genetic counseling become.

  2. Normal phenotype with paternal uniparental isodisomy for chromosome 21

    SciTech Connect

    Blouin, J.L.; Avramopoulos, D. ); Pangalos, C.; Antonarakis, S.E.

    1993-11-01

    Uniparental disomy (UPD) involving several different chromosomes has been described in several cases of human pathologies. In order to investigate whether UPD for chromosome 21 is associated with abnormal phenotypes, the authors analyzed DNA polymorphisms in DNA from a family with de novo Robertsonian translocation t(21q;21q). The proband was a healthy male with 45 dup(21q) who was ascertained through his trisomy 21 offspring. No phenotypic abnormalities were noted in the physical exam, and his past medical history was unremarkable. The authors obtained genotypes for the proband and his parents' leukocyte DNAs from 17 highly informative short sequence repeat polymorphisms that map in the pericentromeric region and along the entire length of 21q. The order of the markers has been previously determined through the linkage and physical maps of this chromosome. For the nine informative markers there was no maternal allele contribution to the genotype of the proband; in addition, there was always reduction to homozygosity of a paternal allele. These data indicated that there was paternal uniparental isodisomy for chromosome 21 (pUPiD21). The authors conclude that pUPiD21 is not associated with abnormal phenotypes and that there are probably no imprinted genes on chromosome 21. 36 refs., 3 figs.

  3. Do Uniparental Sanderlings Calidris alba Increase Egg Heat Input to Compensate for Low Nest Attentiveness?

    PubMed Central

    Reneerkens, Jeroen; Grond, Kirsten; Schekkerman, Hans; Tulp, Ingrid; Piersma, Theunis

    2011-01-01

    Birds breeding in cold environments regularly have to interrupt incubation to forage, causing a trade-off between two mutually exclusive behaviours. Earlier studies showed that uniparental Arctic sandpipers overall spend less time incubating their eggs than biparental species, but interspecific differences in size and ecology were potential confounding factors. This study reports on a within-species comparison of breeding schedules and metal egg temperatures in uni- and biparental sanderlings (Calidris alba) in Northeast Greenland in relation to ambient temperature. We recorded incubation schedules with nest temperature loggers in 34 sanderling clutches (13 uniparentals, 21 biparentals). The temperature of a metal egg placed within the clutch of 17 incubating birds (6 uniparentals, 9 biparentals) was measured as an indicator of the heat put into eggs. Recess frequency, recess duration and total recess time were higher in uniparentals than in biparentals and positively correlated with ambient temperatures in uniparentals only. Uniparental sanderlings maintained significantly higher metal egg temperatures during incubation than biparentals (1.4°C difference on average). Our results suggest that uniparental sanderlings compensate for the lower nest attendance, which may prolong the duration of the incubation period and negatively affect the condition of the hatchlings, by maintaining a higher heat flux into the eggs. PMID:21347377

  4. Pollen Fertility Restoration by Nuclear Gene Fr in Cms Bean: Nuclear-Directed Alteration of a Mitochondrial Population

    PubMed Central

    He, S.; Lyznik, A.; Mackenzie, S.

    1995-01-01

    Two nuclear genes, Fr and Fr2, have been identified that restore pollen fertility to cytoplasmic male sterile (CMS) common bean (Phaseolus vulgaris L.) by apparently distinct mechanisms. Whereas Fr2 appears to suppress the expression of a male sterility associated mitochondrial sequence (designated pvs), Fr restores pollen fertility by causing the elimination of this unusual mitochondrial DNA segment. To further investigate the mechanism of Fr action, Fr and Fr2 were cointroduced into the nucleus of a bean line containing the sterility inducing cytoplasm. When the effect of pvs was suppressed by Fr2, the presence of Fr no longer directed the elimination of the mitochondrial pvs sequence. This result suggests that the Fr function is dependent on proper expression of the pvs sequence. To evaluate the temporal and spatial patterns of Fr action, we undertook a polymerase chain reaction-based approach to trace the fate of the pvs sequence in different tissues of F(2) and F(3) fertile-restored plants derived from a genetic cross between a cytoplasmic male sterile line of common bean, CMS-Sprite (frfr), and fertility restorer line R351 (FrFr). We demonstrate that the Fr-directed disappearance of pvs sequence occurs during flower development. Elimination of the pvs sequence from developing megaspores results in permanent fertility restoration in the following generations. Genetic analysis demonstrated that permanent fertility restoration, that is, the complete elimination of pvs from reproductive tissues requires two doses of the Fr allele or the absence of fr in F(2) individuals. The effect of Fr was reversible until full fertility was achieved. On the basis of these results, we propose a model for the mechanism of pvs elimination by the Fr gene and discuss the dynamics of pvs-containing mitochondrial transmission in the presence of the Fr gene. PMID:7713444

  5. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone.

    PubMed

    Sayeed, Iqbal; Parvez, Suhel; Wali, Bushra; Siemen, Detlef; Stein, Donald G

    2009-03-31

    We previously demonstrated that the progesterone (PROG) metabolite allopregnanolone (AP) is more potent than PROG in the treatment of traumatic brain injury (TBI) and stroke, but the mechanisms for this differential effect are little understood. The mitochondrial permeability transition pore (mtPTP) appears to be a key player in the intrinsic pathway of apoptosis-induced loss of neurons. Its activation is accompanied by the release of cytochrome c (cyt c) from the intermembrane gap and subsequent cell death. We investigated whether mtPTP is implicated in the mechanisms of PROG and AP neuroprotection following traumatic and ischemic brain injury. To assess the neurosteroids' direct effects on mtPTP activity at the single-channel level, recordings from the inner mitochondrial membrane were obtained by a patch-clamp approach in rat liver mitoplasts. AP but not PROG strongly inhibited mtPTP currents. Interaction of AP with the PTP was further supported by a swelling assay demonstrating that AP inhibited Ca(2+)-triggered swelling in functionally intact rat liver and brain mitochondria. If AP inhibits the mtPTP, it should prevent the mitochondrial cyt c release seen in stroke and TBI. To test this idea, we subjected one group of rats to cortical contusion injury (CCI) and another to transient middle cerebral artery occlusion (MCAO). AP-treated animals showed substantially decreased cyt c release and AP was more potent than PROG in inhibiting mitochondrial cyt c release at 24 h post-CCI and -MCAO. Our results demonstrate that AP inhibits the mtPTP current. This may help to explain its more potent anti-apoptotic and neuroprotective effects compared to PROG.

  6. Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC)

    PubMed Central

    Tewari, Debanjan; Majumdar, Dhriti; Vallabhaneni, Sirisha; Bera, Amal Kanti

    2017-01-01

    Aspirin induces apoptotic cell death in various cancer cell lines. Here we showed that silencing of VDAC1 protected HeLa cells from aspirin-induced cell death. Compared to the wild type cells, VDAC1 knocked down cells showed lesser change of mitochondrial membrane potential (Δψm), upon aspirin treatment. Aspirin augmented ATP and ionomycin-induced mitochondrial Ca2+ uptake which was abolished in VDAC1 knocked down cells. Aspirin dissociated bound hexokinase II (HK-II) from mitochondria. Further, aspirin promoted the closure of recombinant human VDAC1, reconstituted in planar lipid bilayer. Taken together, these results imply that VDAC1 serves as a novel target for aspirin. Modulation of VDAC1 is possibly associated with the cell death and anticancer effects of aspirin. PMID:28327594

  7. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production

    PubMed Central

    Morgan, David J.; Poolman, Toryn M.; Williamson, Andrew J. K.; Wang, Zichen; Clark, Neil R.; Ma’ayan, Avi; Whetton, Anthony D.; Brass, Andrew; Matthews, Laura C.; Ray, David W.

    2016-01-01

    The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function. PMID:27226058

  8. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    SciTech Connect

    Ashley, Neil Poulton, Joanna

    2009-01-16

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  9. Bloom syndrome and maternal uniparental disomy for chromosome 15

    SciTech Connect

    Woodage, T.; Prasad, M.; Trent, R.J.; Smith, A. ); Dixon, J.W.; Romain, D.R.; Columbano-Green, L.M.; Selby, R.E. ); Graham, D. ); Rogan, P.K. )

    1994-07-01

    Bloom syndrome (BS) is an autosomal recessive disorder characterized by increases in the frequency of sister-chromatid exchange and in the incidence of malignancy. Chromosome-transfer studies have shown the BS locus to map to chromosome 15q. This report describes a subject with features of both BS and Prader-Willi syndrome (PWS). Molecular analysis showed maternal uniparental disomy for chromosome 15. Meiotic recombination between the two disomic chromosomes 15 has resulted in heterodisomy for proximal 15q and isodisomy for distal 15q. In this individual BS is probably due to homozygosity for a gene that is telomeric to D15S95 (15q25), rather than to genetic imprinting, the mechanism responsible for the development of PWS. This report represents the first application of disomy analysis to the regional localization of a disease gene. This strategy promises to be useful in the genetic mapping of other uncommon autosomal recessive conditions. 37 refs., 3 figs., 2 tabs.

  10. Maternal uniparental disomy 7 in Silver-Russell syndrome.

    PubMed Central

    Preece, M A; Price, S M; Davies, V; Clough, L; Stanier, P; Trembath, R C; Moore, G E

    1997-01-01

    Silver-Russell syndrome (SRS) is characterised by intrauterine and postnatal growth failure accompanied by a variable number of dysmorphic features. It is usually sporadic although a few familial cases have been described. In a prospective study of 33 patients with sporadic SRS, we have studied the parent of origin of chromosome 7 using variable number tandem repeat (VNTR) or microsatellite repeat markers and have identified two patients with maternal uniparental disomy of chromosome 7 (mUPD7). In one family, inconsistent inheritance of paternal alleles of markers on chromosomes other than 7 led to their exclusion from further study. The probands were clinically mild and symmetrical, but showed no gross clinical differences from the 30 patients with chromosome 7 derived from both parents. Images PMID:9032641

  11. Maternal uniparental disomy 22 has no impact on the phenotype

    SciTech Connect

    Schinzel, A.A.; Bernasconi, F.; Robinson, W.P. ); Basaran, S.; Karaman, B.; Yueksel-Apak, M.

    1994-01-01

    A 25-year-old normal healthy male was karyotyped because five of his wife's pregnancies terminated in spontaneous abortions at 6-14 wk of gestation. Cytogenetic investigation disclosed a de novo balanced Robertsonian t(22q;22q) translocation. Molecular studies revealed maternal only inheritance for chromosome 22 markers. Reduction to homozygosity for all informative markers indicates that the rearranged chromosome is an isochromosome derived from one of the maternal chromosomes 22. Except for the possibility of homozygosity for recessive mutations, maternal uniparental disomy 22 does not seem to have an adverse impact on the phenotype, apart from causing reproductive failure. It can be concluded that no maternally imprinted genes with major effect map to chromosome 22. 10 refs., 2 figs., 1 tab.

  12. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity.

    PubMed Central

    Goossens, V; Grooten, J; De Vos, K; Fiers, W

    1995-01-01

    Tumor necrosis factor (TNF) is selectively cytotoxic to some types of tumor cells in vitro and exerts antitumor activity in vivo. Reactive oxygen intermediates (ROIs) have been implicated in the direct cytotoxic activity of TNF. By using confocal microscopy, flow cytometry, and the ROI-specific probe dihydrorhodamine 123, we directly demonstrate that intracellular ROIs are formed after TNF stimulation. These ROIs are observed exclusively under conditions where cells are sensitive to the cytotoxic activity of TNF, suggesting a direct link between both phenomena. ROI scavengers, such as butylated hydroxyanisole, effectively blocked the formation of free radicals and arrested the cytotoxic response, confirming that the observed ROIs are cytocidal. The mitochondrial glutathione system scavenges the major part of the produced ROIs, an activity that could be blocked by diethyl maleate; under these conditions, TNF-induced ROIs detectable by dihydrorhodamine 123 oxidation were 5- to 20-fold higher. Images Fig. 1 Fig. 4 PMID:7667254

  13. Clinical follow up of uniparental disomy 16: First data

    SciTech Connect

    Dworniczak, B.; Koppers, B.; Bogdanova, N.

    1994-09-01

    Following the introduction of the concept of uniparental disomy (UPD) in 1980 by Engel this segregational anomaly is reported in an ever increasing number of patients. So far, several groups of individuals with an increased risk for UPD have been identified including abnormal carriers of familial balanced translocations or centric fusions, carriers of mosaic trisomies, and fetuses after prenatal diagnosis of confined placental mosaicism. A major pathogenetic mechanism appears to be post-meiotic chromosome loss in trisomic conceptuses. UPD was repeatedly observed in the fetus after diagnosis of mosaic or non-mosaic trisomies in the placenta which are usually considered {open_quotes}lethal{close_quotes} (i.e. trisomies 15 and 16). In an ongoing study to determine the incidence and clinical consequences of UPD we investigated the parental origin of chromosomes in the disomic cell line after prenatal diagnosis of mosaicism for various trisomies (e.g. 2, 7, 14, 15, and 16). At present, two maternal disomies 16 and one maternal disomy 15 were identified. Severe intrauterine growth retardation was a common symptome which, however, was also present in some but not all mosaics with a biparental origin of the chromosomes in question. While prognosis is clear in some instances (i.e. UPD 15) counseling can be extremely difficult in others, when imprinting effects and homozygosity for unknown recessive traits present in a parent have to be considered. To assess the clinical significance, detailed follow-up studies of proven cases of uniparental disomies are essential. First data of two cases with UPD 16 are presented.

  14. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    PubMed

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient. © 2015 Wiley Periodicals, Inc.

  15. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC

    PubMed Central

    Hacker, Christian; Howell, Matthew; Bhella, David; Lucocq, John

    2013-01-01

    Summary Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC-1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno-EM revealed that the ATP-delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria-vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP-delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite. PMID:24245785

  16. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC.

    PubMed

    Hacker, Christian; Howell, Matthew; Bhella, David; Lucocq, John

    2014-04-01

    Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole-host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative 'meront' stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC-1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno-EM revealed that the ATP-delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria-vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP-delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.

  17. Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers.

    PubMed

    de la Fuente, Constanza; Galimany, Jacqueline; Kemp, Brian M; Judd, Kathleen; Reyes, Omar; Moraga, Mauricio

    2015-12-01

    The human population history from Patagonia and Tierra del Fuego has been of great interest in the context of the American peopling. Different sources of evidence have contributed to the characterization of the local populations, but some main questions about their history remain unsolved. Among the native populations, two marine hunter-gatherers groups inhabited the Patagonian channels below the 478S: Kawéskar and Yámana. Regardless of their geographical proximity and cultural resemblance, their languages were mutually unintelligible. In this study we aim to evaluate the genetic diversity of uniparental genetic markers in both groups and to test if there is a high genetic differentiation between them, mirroring their linguistic differences. Ancient DNA was extracted from 37 samples from both populations. We compared their genetic variability of their mitochondrial lineages and Y-STR as well as with other modern native populations from the area and further north. We observed an important differentiation in their maternal lineages: while Kawéskar shows a high frequency of D (80%), Yámana shows a high frequency of C (90%). The analysis of paternal lineages reveals the presence of only Q1a2a1a1 and little variation was found between individuals. Both groups show very low levels of genetic diversity compared with modern populations. We also notice shared and unique mitochondrial DNA variants between modern and ancient samples of Kawéskar and Yámana. © 2015 Wiley Periodicals, Inc.

  18. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans.

    PubMed

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F

    2015-05-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.

  19. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans

    PubMed Central

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.

    2015-01-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765

  20. Genetic characterization of uniparental lineages in populations from Southwest Iberia with past malaria endemicity.

    PubMed

    Pereira, Vânia; Gomes, Verónica; Amorim, António; Gusmão, Leonor; João Prata, Maria

    2010-01-01

    Malaria endemicity in Southwest Iberia afforded conditions for an increase of sickle cell disease (SCD), which in the region follows a clinal pattern toward the south, where foci of high prevalence were found. SCD distribution is associated with specific geographical areas, and therefore, its introduction into Iberia may be related to the migration of different populations. We have analyzed the variation of uniparental markers in Portuguese populations with high frequency of SCD--Coruche, Pias, and Alcacer do Sal--to evaluate if their present-day pattern of neutral diversity could provide evidence about people inhabiting the area over different time periods. Two hundred and eighty-five individuals were sampled in Coruche, Pias, and Alcacer do Sal. All were analyzed for the control region of mitochondrial DNA (mtDNA); males were additionally examined for Y-chromosome markers. Results were then compared with data from other Portuguese and non-Portuguese populations. In Coruche, the genetic profile was similar to the profile usually found in Portugal. In Alcacer do Sal, the frequency of sub-Saharan mtDNA L lineages was the highest ever reported (22%) in Europe. In Pias, mtDNA diversity revealed higher frequencies of Mediterranean haplogroups I, J, and T than usually found in surrounding populations. The presence of Sub-Saharan maternal lineages in Alcacer do Sal is likely associated with the influx of African slaves between the 15th and 19th centuries, whereas in Pias, the Mediterranean influence might be traced to ancient contacts with Greeks, Phoenicians, and Carthaginians, who established important trading networks in southern Iberia.

  1. Mosaic maternal uniparental disomy of chromosome 15 in Prader-Willi syndrome: utility of genome-wide SNP array.

    PubMed

    Izumi, Kosuke; Santani, Avni B; Deardorff, Matthew A; Feret, Holly A; Tischler, Tanya; Thiel, Brian D; Mulchandani, Surabhi; Stolle, Catherine A; Spinner, Nancy B; Zackai, Elaine H; Conlin, Laura K

    2013-01-01

    Prader-Willi syndrome is caused by the loss of paternal gene expression on 15q11.2-q13.2, and one of the mechanisms resulting in Prader-Willi syndrome phenotype is maternal uniparental disomy of chromosome 15. Various mechanisms including trisomy rescue, monosomy rescue, and post fertilization errors can lead to uniparental disomy, and its mechanism can be inferred from the pattern of uniparental hetero and isodisomy. Detection of a mosaic cell line provides a unique opportunity to understand the mechanism of uniparental disomy; however, mosaic uniparental disomy is a rare finding in patients with Prader-Willi syndrome. We report on two infants with Prader-Willi syndrome caused by mosaic maternal uniparental disomy 15. Patient 1 has mosaic uniparental isodisomy of the entire chromosome 15, and Patient 2 has mosaic uniparental mixed iso/heterodisomy 15. Genome-wide single-nucleotide polymorphism array was able to demonstrate the presence of chromosomally normal cell line in the Patient 1 and trisomic cell line in Patient 2, and provide the evidence that post-fertilization error and trisomy rescue as a mechanism of uniparental disomy in each case, respectively. Given its ability of detecting small percent mosaicism as well as its capability of identifying the loss of heterozygosity of chromosomal regions, genome-wide single-nucleotide polymorphism array should be utilized as an adjunct to the standard methylation analysis in the evaluation of Prader-Willi syndrome.

  2. Molecular systematics of Vampyressine bats (Phyllostomidae: Stenodermatinae) with comparison of direct and indirect surveys of mitochondrial DNA variation.

    PubMed

    Hoofer, Steven R; Baker, Robert J

    2006-05-01

    Approximately 29 species in seven genera (Chiroderma, Mesophylla, Platyrrhinus, Uroderma, Vampyressa, Vampyriscus, and Vampyrodes) compose the Subtribe Vampyressina, a group of New World leaf-nosed bats (Phyllostomidae) specialized in fruit-eating. A recent study of restriction-site variability within the mitochondrial ND3-ND4 gene region contrasts with other molecular data, including sequence data from other mitochondrial genes, by suggesting that the monotypic genus Ectophylla (E. alba) also is member of the group and is related closely to Mesophylla. In this study, we address possible explanations for why the restriction-site data appear to contradict other molecular data by performing phylogenetic analysis of DNA sequence variation (direct survey) in the ND3-ND4 region and cytochrome b gene and by re-assessing ND3-ND4 restriction-site variability in the known sequences (indirect survey). Results from analysis of sequence data reject the Ectophylla-Mesophylla hypothesis (P<0.001) and suggest four primary lineages within Vampyressina: (1) Mesophylla-Vampyressa; (2) Chiroderma-Vampyriscus; (3) Platyrrhinus-Vampyrodes; and (4) Uroderma. We also find no support for the Ectophylla-Mesophylla hypothesis in our re-analysis of ND3-ND4 restriction-site variability, and suggest the differences between molecular studies have a methodological basis.

  3. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    PubMed Central

    Chupin, Stéphanie; Baron, Stéphanie; Nivet-Antoine, Valérie; Vessières, Emilie; Ayer, Audrey; Henrion, Daniel; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2015-01-01

    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed. PMID:26684010

  4. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice.

    PubMed

    Gueguen, Naïg; Desquiret-Dumas, Valérie; Leman, Géraldine; Chupin, Stéphanie; Baron, Stéphanie; Nivet-Antoine, Valérie; Vessières, Emilie; Ayer, Audrey; Henrion, Daniel; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2015-01-01

    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.

  5. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers.

    PubMed

    Zhao, Xin; Xu, Xiaowei; Xie, Hongxia; Chen, Shaojiang; Jin, Weiwei

    2013-10-01

    Producing maternal haploids via a male inducer can greatly accelerate maize (Zea mays) breeding process. However, the mechanism underlying haploid formation remains unclear. In this study, we constructed two inducer lines containing cytogenetic marker B chromosome or alien centromeric histone H3 variant-yellow fluorescent protein vector to investigate the mechanism. The two inducer lines as the pollinators were crossed with a hybrid ZhengDan958. B chromosomes were detected in F1 haploids at a low frequency, which was direct evidence to support the occurrence of selective chromosome elimination during haploid formation. We found that most of the inducer chromosomes were eliminated in haploid embryonic cells during the first week after pollination. The gradual elimination of chromosomes was also detected in the endosperm of defective kernels, although it occurred only in some endosperm cells as late as 15 d after pollination. We also performed a genome-wide identification of single nucleotide polymorphism markers in the inducers, noninducer inbred lines, and 42 derived haploids using a 50K single nucleotide polymorphism array. We found that an approximately 44-Mb heterozygous fragment from the male parent was detected in a single haploid, which further supported the occurrence of paternal introgression. Our results suggest that selective elimination of uniparental chromosomes leads to the formation of haploid and possible defective kernels in maize as well, which is accompanied with unusual paternal introgression in haploid cells.

  6. Developmental ability of trophoblast stem cells in uniparental mouse embryos.

    PubMed

    Ogawa, H; Shindo, N; Kumagai, T; Usami, Y; Shikanai, M; Jonwn, K; Fukuda, A; Kawahara, M; Sotomaru, Y; Tanaka, S; Arima, T; Kono, T

    2009-05-01

    Neither parthenogenetic (PG) nor androgenetic (AG) mouse embryos survive after day 9.5 of pregnancy, owing to the inadequate growth of extraembryonic tissues, including the placenta. At day 9.5 of pregnancy, the placental structures are poorly developed in PG embryos, while trophoblast giant cells are abundant at the implantation site in AG embryos. These findings suggest that both parental genomes are required for placental development. To gain further insight into the trophoblast lineage in PG and AG embryos, we attempted to derive trophoblast stem (TS)-like cell lines from uniparental embryos. Furthermore, we sought to assess their ability to differentiate into cells of the trophoblast lineage by using gene expression analysis. Three cell lines that expressed marker genes for undifferentiated TS cells (Cdx2 and Errbeta) were derived from AG embryos. Under differentiation conditions, these cells expressed the trophoblast giant cell-specific genes, but did not express the spongiotrophoblast-specific genes. In contrast, none of the four cell lines from PG embryos expressed marker genes for undifferentiated TS cells, but they expressed Oct3/4, a marker gene for embryonic stem cells. Immunohistochemical analysis indicated that PG blastocysts expressed Oct3/4 and Cdx2 specifically in inner cell mass and the trophectoderm respectively. These results suggest that PG embryos do not possess TS cells, because of the lack of the developmental ability of trophoblast cells.

  7. Somatic Uniparental Isodisomy Explains Multifocality of Glomuvenous Malformations

    PubMed Central

    Amyere, Mustapha; Aerts, Virginie; Brouillard, Pascal; McIntyre, Brendan A.S.; Duhoux, François P.; Wassef, Michel; Enjolras, Odile; Mulliken, John B.; Devuyst, Olivier; Antoine-Poirel, Hélène; Boon, Laurence M.; Vikkula, Miikka

    2013-01-01

    Inherited vascular malformations are commonly autosomal dominantly inherited with high, but incomplete, penetrance; they often present as multiple lesions. We hypothesized that Knudson’s two-hit model could explain this multifocality and partial penetrance. We performed a systematic analysis of inherited glomuvenous malformations (GVMs) by using multiple approaches, including a sensitive allele-specific pairwise SNP-chip method. Overall, we identified 16 somatic mutations, most of which were not intragenic but were cases of acquired uniparental isodisomy (aUPID) involving chromosome 1p. The breakpoint of each aUPID is located in an A- and T-rich, high-DNA-flexibility region (1p13.1–1p12). This region corresponds to a possible new fragile site. Occurrences of these mutations render the inherited glomulin variant in 1p22.1 homozygous in the affected tissues without loss of genetic material. This finding demonstrates that a double hit is needed to trigger formation of a GVM. It also suggests that somatic UPID, only detectable by sensitive pairwise analysis in heterogeneous tissues, might be a common phenomenon in human cells. Thus, aUPID might play a role in the pathogenesis of various nonmalignant disorders and might explain local impaired function and/or clinical variability. Furthermore, these data suggest that pairwise analysis of blood and tissue, even on heterogeneous tissue, can be used for localizing double-hit mutations in disease-causing genes. PMID:23375657

  8. Radiological evaluation of dysmorphic thorax of paternal uniparental disomy 14.

    PubMed

    Miyazaki, Osamu; Nishimura, Gen; Kagami, Masayo; Ogata, Tsutomu

    2011-08-01

    The "coat-hanger" sign of the ribs with a bell-shaped thorax has been known as a radiological hallmark of the paternal uniparental disomy 14 (upd(14)pat). To quantitatively determine the differences in thoracic deformity between upd(14)pat and other bone diseases with thoracic hypoplasia and to establish the age-dependent evolution. The subjects comprised 11 children with upd(14)pat. The angle between the 6th posterior rib and the horizontal axis was measured (coat hanger angle; CHA). The ratio of the mid- to widest thorax diameter (M/W ratio) was calculated for the bell-shaped thorax. CHA ranged from +28.5 to 45° (mean; 35.1° ± 5.2) in upd(14)pat, and from -19.8 to 21° (-3.3 ± 13°) in bone dysplasias (p < 0.01). The M/W ratio ranged from 58% to 93% (75.4 ± 10) in upd(14)pat, and from 80% to 92% (86.8 ± 3.3) in bone dysplasias (p < 0.05). Serial radiographs revealed that CHA remained constant during early childhood, while the M/W ratio gradually increased with age. The "coat-hanger" sign of upd(14)pat provides a distinctive radiological gestalt that makes it possible to differentiate the disorder from other skeletal dysplasias. By contrast, the bell-shaped thorax is significant only in the neonatal period.

  9. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p

    PubMed Central

    Chakraborty, Arka; Lyonnais, Sébastien; Battistini, Federica; Hospital, Adam; Medici, Giorgio; Prohens, Rafel; Orozco, Modesto; Vilardell, Josep; Solà, Maria

    2017-01-01

    The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct ‘phased-binding’ at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction. PMID:27899643

  10. Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers.

    PubMed

    Lark, Daniel S; Torres, Maria J; Lin, Chien-Te; Ryan, Terence E; Anderson, Ethan J; Neufer, P Darrell

    2016-08-01

    Oxidative phosphorylation (OXPHOS) efficiency, defined as the ATP-to-O ratio, is a critical feature of mitochondrial function that has been implicated in health, aging, and disease. To date, however, the methods to measure ATP/O have primarily relied on indirect approaches or entail parallel rather than simultaneous determination of ATP synthesis and O2 consumption rates. The purpose of this project was to develop and validate an approach to determine the ATP/O ratio in permeabilized fiber bundles (PmFBs) from simultaneous measures of ATP synthesis (JATP) and O2 consumption (JO2 ) rates in real time using a custom-designed apparatus. JO2 was measured via a polarigraphic oxygen sensor and JATP via fluorescence using an enzyme-linked assay system (hexokinase II, glucose-6-phosphate dehydrogenase) linked to NADPH production. Within the dynamic linear range of the assay system, ADP-stimulated increases in steady-state JATP mirrored increases in steady-state JO2 (r(2) = 0.91, P < 0.0001, n = 57 data points). ATP/O ratio was less than one under low rates of respiration (15 μM ADP) but increased to more than two at moderate (200 μM ADP) and maximal (2,000 μM ADP) rates of respiration with an interassay coefficient of variation of 24.03, 16.72, and 11.99%, respectively. Absolute and relative (to mechanistic) ATP/O ratios were lower in PmFBs (2.09 ± 0.251, 84%) compared with isolated mitochondria (2.44 ± 0.124, 98%). ATP/O ratios in PmFBs were not affected by the activity of adenylate kinase or creatine kinase. These findings validate an enzyme-linked respiratory clamp system for measuring OXPHOS efficiency in PmFBs and provide evidence that OXPHOS efficiency increases as energy demand increases. Copyright © 2016 the American Physiological Society.

  11. Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers

    PubMed Central

    Torres, Maria J.; Lin, Chien-Te; Ryan, Terence E.; Anderson, Ethan J.; Neufer, P. Darrell

    2016-01-01

    Oxidative phosphorylation (OXPHOS) efficiency, defined as the ATP-to-O ratio, is a critical feature of mitochondrial function that has been implicated in health, aging, and disease. To date, however, the methods to measure ATP/O have primarily relied on indirect approaches or entail parallel rather than simultaneous determination of ATP synthesis and O2 consumption rates. The purpose of this project was to develop and validate an approach to determine the ATP/O ratio in permeabilized fiber bundles (PmFBs) from simultaneous measures of ATP synthesis (JATP) and O2 consumption (JO2) rates in real time using a custom-designed apparatus. JO2 was measured via a polarigraphic oxygen sensor and JATP via fluorescence using an enzyme-linked assay system (hexokinase II, glucose-6-phosphate dehydrogenase) linked to NADPH production. Within the dynamic linear range of the assay system, ADP-stimulated increases in steady-state JATP mirrored increases in steady-state JO2 (r2 = 0.91, P < 0.0001, n = 57 data points). ATP/O ratio was less than one under low rates of respiration (15 μM ADP) but increased to more than two at moderate (200 μM ADP) and maximal (2,000 μM ADP) rates of respiration with an interassay coefficient of variation of 24.03, 16.72, and 11.99%, respectively. Absolute and relative (to mechanistic) ATP/O ratios were lower in PmFBs (2.09 ± 0.251, 84%) compared with isolated mitochondria (2.44 ± 0.124, 98%). ATP/O ratios in PmFBs were not affected by the activity of adenylate kinase or creatine kinase. These findings validate an enzyme-linked respiratory clamp system for measuring OXPHOS efficiency in PmFBs and provide evidence that OXPHOS efficiency increases as energy demand increases. PMID:27335172

  12. Directional migration in the Hindu castes: inferences from mitochondrial, autosomal and Y-chromosomal data.

    PubMed

    Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B

    2004-08-01

    Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females.

  13. Fibroadenoma in Beckwith-Wiedemann syndrome with paternal uniparental disomy of chromosome 11p15.5.

    PubMed

    Takama, Yuichi; Kubota, Akio; Nakayama, Masahiro; Higashimoto, Ken; Jozaki, Kosuke; Soejima, Hidenobu

    2014-12-01

    Herein is described a case of breast fibroadenomas in a 16-year-old girl with Beckwith-Wiedemann syndrome (BWS) and uniparental disomy (UPD) of chromosome 11p15.5. She was clinically diagnosed with BWS and direct closure was performed for an omphalocele at birth. Subtotal and 90% pancreatectomy were performed for nesidioblastosis at the ages 2 months and 8 years, respectively. Bilateral multiple breast fibroadenomas were noted at the age of 16 and 17 years. In this case, paternal UPD of chromosome 11p15.5 was identified on microsatellite marker analysis. The relevant imprinted chromosomal region in BWS is 11p15.5, and UPD of chromosome 11p15 is a risk factor for BWS-associated tumorigenicity. Chromosome 11p15.5 consists of imprinting domains of IGF2, the expression of which is associated with the tumorigenesis of various breast cancers. This case suggests that fibroadenomas occurred in association with BWS.

  14. The Complete Female- and Male-Transmitted Mitochondrial Genome of Meretrix lamarckii

    PubMed Central

    Passamonti, Marco

    2016-01-01

    Bivalve mitochondrial genomes show many uncommon features, like additional genes, high rates of gene rearrangement, high A-T content. Moreover, Doubly Uniparental Inheritance (DUI) is a distinctive inheritance mechanism allowing some bivalves to maintain and transmit two separate sex-linked mitochondrial genomes. Many bivalve mitochondrial features, such as gene extensions or additional ORFs, have been proposed to be related to DUI but, up to now, this topic is far from being understood. Several species are known to show this unusual organelle inheritance but, being widespread only among Unionidae and Mytilidae, DUI distribution is unclear. We sequenced and characterized the complete female- (F) and male-transmitted (M) mitochondrial genomes of Meretrix lamarckii, which, in fact, is the second species of the family Veneridae where DUI has been demonstrated so far. The two mitochondrial genomes are comparable in length and show roughly the same gene content and order, except for three additional tRNAs found in the M one. The two sex-linked genomes show an average nucleotide divergence of 16%. A 100-aminoacid insertion in M. lamarckii M-cox2 gene was found; moreover, additional ORFs have been found in both F and M Long Unassigned Regions of M. lamarckii. Even if no direct involvement in DUI process has been demonstrated so far, the finding of cox2 insertions and supernumerary ORFs in M. lamarckii both strengthens this hypothesis and widens the taxonomical distribution of such unusual features. Finally, the analysis of inter-sex genetic variability shows that DUI species form two separate clusters, namely Unionidae and Mytilidae+Veneridae; this dichotomy is probably due to different DUI regimes acting on separate taxa. PMID:27083010

  15. The exonuclease activity of the yeast mitochondrial DNA polymerase γ suppresses mitochondrial DNA deletions between short direct repeats in Saccharomyces cerevisiae.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2013-06-01

    The importance of mitochondrial DNA (mtDNA) deletions in the progeroid phenotype of exonuclease-deficient DNA polymerase γ mice has been intensely debated. We show that disruption of Mip1 exonuclease activity increases mtDNA deletions 160-fold, whereas disease-associated polymerase variants were mostly unaffected, suggesting that exonuclease activity is vital to avoid deletions during mtDNA replication.

  16. Direct Stimulation of Islet Insulin Secretion by Glycolytic and Mitochondrial Metabolites in KCl-Depolarized Islets

    PubMed Central

    Deeney, Jude T.; Corkey, Barbara E.

    2016-01-01

    We have previously demonstrated that islet depolarization with 70 mM KCl opens Cx36 hemichannels and allows diffusion of small metabolites and cofactors through the β-cell plasma membrane. We have investigated in this islet “permeabilized” model whether glycolytic and citric acid cycle intermediates stimulate insulin secretion and how it correlates with ATP production (islet content plus extracellular nucleotide accumulation). Glycolytic intermediates (10 mM) stimulated insulin secretion and ATP production similarly. However, they showed differential sensitivities to respiratory chain or enzyme inhibitors. Pyruvate showed a lower secretory capacity and less ATP production than phosphoenolpyruvate, implicating an important role for glycolytic generation of ATP. ATP production by glucose-6-phosphate was not sensitive to a pyruvate kinase inhibitor that effectively suppressed the phosphoenolpyruvate-induced secretory response and islet ATP rise. Strong suppression of both insulin secretion and ATP production induced by glucose-6-phosphate was caused by 10 μM antimycin A, implicating an important role for the glycerophosphate shuttle in transferring reducing equivalents to the mitochondria. Five citric acid cycle intermediates were investigated for their secretory and ATP production capacity (succinate, fumarate, malate, isocitrate and α-ketoglutarate at 5 mM, together with ADP and/or NADP+ to feed the NADPH re-oxidation cycles). The magnitude of the secretory response was very similar among the different mitochondrial metabolites but α-ketoglutarate showed a more sustained second phase of secretion. Gabaculine (1 mM, a GABA-transaminase inhibitor) suppressed the second phase of secretion and the ATP-production stimulated by α-ketoglutarate, supporting a role for the GABA shuttle in the control of glucose-induced insulin secretion. None of the other citric acid intermediates essayed showed any suppression of both insulin secretion or ATP-production by the

  17. Paternal Mitochondrial Transmission in Intra-Species Caenorhabditis briggsae Hybrids

    PubMed Central

    Ross, Joseph A.; Howe, Dana K.; Coleman-Hulbert, Anna; Denver, Dee R.; Estes, Suzanne

    2016-01-01

    To study mitochondrial–nuclear genetic interactions in the nematode Caenorhabditis briggsae, our three laboratories independently created 38 intra-species cytoplasmic–nuclear hybrid (cybrid) lines. Although the cross design combines maternal mitotypes with paternal nuclear genotypes, eight lines (21%) unexpectedly contained paternal mitotypes. All eight share in common ancestry of one of two genetically related strains. This unexpected parallel observation of paternal mitochondrial transmission, undesirable given our intent of creating cybrids, provides a serendipitous experimental model and framework to study the molecular and evolutionary basis of uniparental mitochondrial inheritance. PMID:27613821

  18. Acquired uniparental disomy of chromosome 9p in hematologic malignancies.

    PubMed

    Wang, Linghua; Wheeler, David A; Prchal, Josef T

    2016-08-01

    Acquired uniparental disomy (aUPD) is a common and recurrent molecular event in human cancers that leads to homozygosity for tumor suppressor genes as well as oncogenes, while retaining the diploid chromosomal complement. Because of the lack of copy number change, aUPD is undetectable by comparative genome hybridization, so the magnitude of this genetic change was underappreciated in the past. 9p aUPD was first described in 2002 in patients with polycythemia vera (PV). Since then, systematic application of genomewide single-nucleotide polymorphism arrays has indicated that 9p aUPD is the most common chromosomal aberration in myeloproliferative neoplasms (MPNs), contributing to discovery of the PV-defining mutation JAK2V617F21. It was also found in other myeloid and lymphoid malignancies, though at a relatively lower frequency. By leading to JAK2V617F 23 homozygosity, 9p aUPD plays a causal role in the development of PV and is also associated with less favorable clinical outcomes. It is also possible that new targets other than JAK2V617F 25 are present within 9p aUPD that may contribute to diversity of PV outcome and phenotype. This review summarizes recent discoveries on 9p aUPD in hematologic malignancies and discusses possible underlying mechanisms and potential roles of 9p aUPD in the pathogenesis of PV, the relationship between 9p aUPD and JAK2V617F29, and possible new cancer-related targets within the 9p aUPD region.

  19. CD45-deficient severe combined immunodeficiency caused by uniparental disomy

    PubMed Central

    Roberts, Joseph L.; Buckley, Rebecca H.; Luo, Biao; Pei, Jianming; Lapidus, Alla; Peri, Suraj; Wei, Qiong; Shin, Jinwook; Parrott, Roberta E.; Dunbrack, Roland L.; Testa, Joseph R.; Zhong, Xiao-Ping; Wiest, David L.

    2012-01-01

    Analysis of the molecular etiologies of SCID has led to important insights into the control of immune cell development. Most cases of SCID result from either X-linked or autosomal recessive inheritance of mutations in a known causative gene. However, in some cases, the molecular etiology remains unclear. To identify the cause of SCID in a patient known to lack the protein-tyrosine phosphatase CD45, we used SNP arrays and whole-exome sequencing. The patient’s mother was heterozygous for an inactivating mutation in CD45 but the paternal alleles exhibited no detectable mutations. The patient exhibited a single CD45 mutation identical to the maternal allele. Patient SNP array analysis revealed no change in copy number but loss of heterozygosity for the entire length of chromosome 1 (Chr1), indicating that disease was caused by uniparental disomy (UPD) with isodisomy of the entire maternal Chr1 bearing the mutant CD45 allele. Nonlymphoid blood cells and other mesoderm- and ectoderm-derived tissues retained UPD of the entire maternal Chr1 in this patient, who had undergone successful bone marrow transplantation. Exome sequencing revealed mutations in seven additional genes bearing nonsynonymous SNPs predicted to have deleterious effects. These findings are unique in representing a reported case of SCID caused by UPD and suggest UPD should be considered in SCID and other recessive disorders, especially when the patient appears homozygous for an abnormal gene found in only one parent. Evaluation for alterations in other genes affected by UPD should also be considered in such cases. PMID:22689986

  20. Somatic uniparental disomy of Chromosome 16p in hemimegalencephaly.

    PubMed

    Griffin, Nicole G; Cronin, Kenneth D; Walley, Nicole M; Hulette, Christine M; Grant, Gerald A; Mikati, Mohamad A; LaBreche, Heather G; Rehder, Catherine W; Allen, Andrew S; Crino, Peter B; Heinzen, Erin L

    2017-09-01

    Hemimegalencephaly (HME) is a heterogeneous cortical malformation characterized by enlargement of one cerebral hemisphere. Somatic variants in mammalian target of rapamycin (mTOR) regulatory genes have been implicated in some HME cases; however, ∼70% have no identified genetic etiology. Here, we screened two HME patients to identify disease-causing somatic variants. DNA from leukocytes, buccal swabs, and surgically resected brain tissue from two HME patients were screened for somatic variants using genome-wide genotyping arrays or sequencing of the protein-coding regions of the genome. Functional studies were performed to evaluate the molecular consequences of candidate disease-causing variants. Both HME patients evaluated were found to have likely disease-causing variants in DNA extracted from brain tissue but not in buccal swab or leukocyte DNA, consistent with a somatic mutational mechanism. In the first case, a previously identified disease-causing somatic single nucleotide in MTOR was identified. In the second case, we detected an overrepresentation of the alleles inherited from the mother on Chromosome 16 in brain tissue DNA only, indicative of somatic uniparental disomy (UPD) of the p-arm of Chromosome 16. Using methylation analyses, an imprinted locus on 16p spanning ZNF597 was identified, which results in increased expression of ZNF597 mRNA and protein in the brain tissue of the second case. Enhanced mTOR signaling was observed in tissue specimens from both patients. We speculate that overexpression of maternally expressed ZNF597 led to aberrant hemispheric development in the patient with somatic UPD of Chromosome 16p possibly through modulation of mTOR signaling. © 2017 Griffin et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Somatic uniparental disomy of Chromosome 16p in hemimegalencephaly

    PubMed Central

    Griffin, Nicole G.; Cronin, Kenneth D.; Walley, Nicole M.; Hulette, Christine M.; Grant, Gerald A.; Mikati, Mohamad A.; LaBreche, Heather G.; Rehder, Catherine W.; Allen, Andrew S.; Crino, Peter B.; Heinzen, Erin L.

    2017-01-01

    Hemimegalencephaly (HME) is a heterogeneous cortical malformation characterized by enlargement of one cerebral hemisphere. Somatic variants in mammalian target of rapamycin (mTOR) regulatory genes have been implicated in some HME cases; however, ∼70% have no identified genetic etiology. Here, we screened two HME patients to identify disease-causing somatic variants. DNA from leukocytes, buccal swabs, and surgically resected brain tissue from two HME patients were screened for somatic variants using genome-wide genotyping arrays or sequencing of the protein-coding regions of the genome. Functional studies were performed to evaluate the molecular consequences of candidate disease-causing variants. Both HME patients evaluated were found to have likely disease-causing variants in DNA extracted from brain tissue but not in buccal swab or leukocyte DNA, consistent with a somatic mutational mechanism. In the first case, a previously identified disease-causing somatic single nucleotide in MTOR was identified. In the second case, we detected an overrepresentation of the alleles inherited from the mother on Chromosome 16 in brain tissue DNA only, indicative of somatic uniparental disomy (UPD) of the p-arm of Chromosome 16. Using methylation analyses, an imprinted locus on 16p spanning ZNF597 was identified, which results in increased expression of ZNF597 mRNA and protein in the brain tissue of the second case. Enhanced mTOR signaling was observed in tissue specimens from both patients. We speculate that overexpression of maternally expressed ZNF597 led to aberrant hemispheric development in the patient with somatic UPD of Chromosome 16p possibly through modulation of mTOR signaling. PMID:28864461

  2. Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map

    PubMed Central

    Oppenheimer, Stephen

    2012-01-01

    Genetic relationships between human groups were first studied by comparisons of relative allele frequency at multiple loci. Geographical study of detailed, highly resolved trees of single, non-recombining uniparental loci (mitochondrial DNA: mtDNA and Y chromosome/non-recombining Y: NRY), following specific lineages rather than populations, then revolutionized knowledge of the peopling of the world, although, curiously, the use of geographically highly specific mutations that protect against malaria, found on individual autosomal globin genes, were first in single-locus phylogeography. mtDNA, with its high single nucleotide polymorphism (SNP) mutation rates and relative ease of dating, led the way and gave stronger proof of the recent near replacement of all human species by anatomically modern humans (AMH). AMH left Africa via a single southern exit about 70 000 years ago and rapidly spread around the Indian Ocean towards the Antipodes, long before a small branch left a South Asian colony, earlier on the trail, to populate Europe. The worldwide skeleton phylogeny of mtDNA is fully resolved, but a regional analysis will continue to illuminate subsequent migrations. NRY with a lower SNP mutation rate still has a dating problem relating to use the of single tandem repeats (STRs), but has validated mtDNA results and with more geographical specificity and genomic size, as with the autosomal human genome, has much more detail to offer for the future. PMID:22312044

  3. Mitochondrial maintenance failure in aging and role of sexual dimorphism

    PubMed Central

    Tower, John

    2014-01-01

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation. PMID:25447815

  4. Mitochondrial maintenance failure in aging and role of sexual dimorphism.

    PubMed

    Tower, John

    2015-06-15

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.

  5. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA

    PubMed Central

    MacAlpine, David M.; Kolesar, Jill; Okamoto, Koji; Butow, Ronald A.; Perlman, Philip S.

    2001-01-01

    Wild-type yeast mitochondrial DNA (mtDNA) is inherited biparentally, whereas mtDNA of hypersuppressive petite mutants is inherited uniparentally in crosses to strains with wild-type mtDNA. Genomes of hypersuppressive petites contain a conserved ori sequence that includes a promoter, but it is unclear whether the ori confers a segregation or replication advantage. Fluorescent in situ hybridization analysis of wild-type and petite mtDNAs in crosses reveals no preferential segregation of hypersuppressive petite mtDNA to first zygotic buds. We identify single-stranded DNA circles and RNA-primed DNA replication intermediates in hypersuppressive petite mtDNA that are absent from non-hypersuppressive petites. Mutating the promoter blocks hypersuppressiveness in crosses to wild-type strains and eliminates the distinctive replication intermediates. We propose that promoter-dependent RNA-primed replication accounts for the uniparental inheritance of hypersuppressive petite mtDNA. PMID:11285243

  6. Oxa1 Directly Interacts with Atp9 and Mediates Its Assembly into the Mitochondrial F1Fo-ATP Synthase Complex

    PubMed Central

    Jia, Lixia; Dienhart, Mary K.

    2007-01-01

    The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F1Fo-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded Fo-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F1-subunits, but its further assembly with subunit 6 (Atp6) of the Fo-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F1-subcomplex for its association with Atp6. PMID:17344477

  7. Maladaptive Behavior Differences in Prader-Willi Syndrome Due to Paternal Deletion versus Maternal Uniparental Disomy.

    ERIC Educational Resources Information Center

    Dykens, Elisabeth M.; King, Bryan H.; Cassidy, Suzanne B.

    1999-01-01

    This study compared maladaptive behavior in 23 people with Prader-Willi syndrome due to paternal deletion and in 23 age- and gender-matched subjects with maternal uniparental disomy. Controlling for IQs, the deletion cases showed significantly higher maladaptive ratings, more symptom-related distress, and more behavior problems. Findings suggest a…

  8. Maternal uniparental disomy of chromosome 2 in a baby with trisomy 2 mosaicism in amniotic fluid culture

    SciTech Connect

    Harrison, K.; Eisenger, K.; Brown, S.

    1995-08-28

    We describe the first case of a baby with maternal uniparental disomy of chromosome 2. Growth failure, hypothyroidism, and hyaline membrane disease were present at birth, and the first year of life was complicated by bronchopulmonary dysplasia. At age 14 months, motor and intellectual development were normal, but growth remained below the 10th centile. The baby was investigated for uniparental disomy because trisomy 2 mosaicism had been detected in a second trimester amniocentesis. This is the first reported case in which amniotic fluid chromosome mosaicism has been associated with uniparental disomy. Implications for prenatal diagnosis are considered. 26 refs., 4 figs.

  9. Maternal uniparental disomy of chromosome 2 in a baby with trisomy 2 mosaicism in amniotic fluid culture

    SciTech Connect

    Harrison, K.B.; Eisenger, K.; Brown, S.

    1994-09-01

    We describe the first case of a baby with maternal uniparental disomy for chromosome 2. Growth failure, hypothyroidism and hyaline membrane disease were present at birth, and the first year of life was complicated by bronchopulmonary dysplasia. At 14 months, motor and intellectual development appear to be normal, but growth remains below the 10th percentile. The baby was investigated for uniparental disomy because trisomy 2 mosaicism had been detected in a second trimester amniocentesis. This is the first reported case in which amniotic fluid chromosome mosaicism has been associated with uniparental disomy. Implications for prenatal diagnosis are considered.

  10. Paternal uniparental isodisomy for human chromosome 20 and absence of external ears

    SciTech Connect

    Spinner, N.B.; Rand, E.; McDonald-McGinn, D.M.

    1994-09-01

    Uniparental disomy can cause disease if the involved chromosomal region contains imprinted genes. Uniparental disomy for portions of human chromosomes 6, 7, 9, 11, 14 and 15 have been associated with abnormal phenotypes. We studied a patient with multiple abnormalities including an absent left ear with a small right ear remnant, microcephaly, congenital heart disease and Hirschprung`s disease. Cytogenetics revealed a 45,XY,-20,-20,+ter rea(20;20)(p13;p13) in 10/10 cells from bone marrow and 20/20 cells from peripheral blood. Analysis of a skin culture revealed a second cell line with trisomy 20 resulting from an apparently normal chromosome 20 in addition to the terminally rearranged chromosome, in 8/100 cells studied. The unusual phenotype of our patient was not consistent with previously reported cases of deletions of 20p or mosaic trisomy 20. We hypothesized that the patient`s phenotype could either result from deletion of both copies of a gene near the p arm terminus of chromosome 20 or from uniparental disomy of chromosome 20. There were no alterations or rearrangements of PTP-alpha (which maps to distal 20p) by Southern or Northern blot analysis. A chromosome 20 sub-telomeric probe was found to be present on the rearranged 20 by FISH suggesting that subtelomeric sequences have not been lost as a consequece of this rearrangement. To determine the parental origin of the 2 chromosome 20`s in the terminal rearrangement, we studied the genotypes of the proband and his parents in lymphoblastoid cell lines at 8 polymorphic loci. Genotypes at D20S115, D20S186, and D20S119 indicated that there was paternal isodisomy. Other loci were uninformative. This is the first example of uniparental disomy for chromosome 20. Further studies are warranted to correlate phenotype with uniparental inheritance of this chromosome.

  11. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast.

    PubMed

    Nishimura, Akira; Nasuno, Ryo; Takagi, Hiroshi

    2012-07-30

    The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum.

    PubMed

    Moriyama, Y; Kawano, S

    2003-07-01

    Although mitochondria are inherited uniparentally in nearly all eukaryotes, the mechanism for this is unclear. When zygotes of the isogamous protist Physarum polycephalum were stained with DAPI, the fluorescence of mtDNA in half of the mitochondria decreased simultaneously to give small spots and then disappeared completely approximately 1.5 hr after nuclear fusion, while the other mitochondrial nucleoids and all of the mitochondrial sheaths remained unchanged. PCR analysis of single zygote cells confirmed that the loss was limited to mtDNA from one parent. The vacant mitochondrial sheaths were gradually eliminated by 60 hr after mating. Using six mating types, the transmission patterns of mtDNA were examined in all possible crosses. In 39 of 60 crosses, strict uniparental inheritance was confirmed in accordance with a hierarchy of relative sexuality. In the other crosses, however, mtDNA from both parents was transmitted to plasmodia. The ratio of parental mtDNA was estimated to be from 1:1 to 1:10(-4). Nevertheless, the matA hierarchy was followed. In these crosses, the mtDNA was incompletely digested, and mtDNA replicated during subsequent plasmodial development. We conclude that the rapid, selective digestion of mtDNA promotes the uniparental inheritance of mitochondria; when this fails, biparental inheritance occurs.

  13. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death

    PubMed Central

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-01-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. PMID:24309936

  14. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients

    PubMed Central

    She, Hua; Yang, Qian; Shepherd, Kennie; Smith, Yoland; Miller, Gary; Testa, Claudia; Mao, Zixu

    2011-01-01

    The transcription factors in the myocyte enhancer factor 2 (MEF2) family play important roles in cell survival by regulating nuclear gene expression. Here, we report that MEF2D is present in rodent neuronal mitochondria, where it can regulate the expression of a gene encoded within mitochondrial DNA (mtDNA). Immunocytochemical, immunoelectron microscopic, and biochemical analyses of rodent neuronal cells showed that a portion of MEF2D was targeted to mitochondria via an N-terminal motif and the chaperone protein mitochondrial heat shock protein 70 (mtHsp70). MEF2D bound to a MEF2 consensus site in the region of the mtDNA that contained the gene NADH dehydrogenase 6 (ND6), which encodes an essential component of the complex I enzyme of the oxidative phosphorylation system; MEF2D binding induced ND6 transcription. Blocking MEF2D function specifically in mitochondria decreased complex I activity, increased cellular H2O2 level, reduced ATP production, and sensitized neurons to stress-induced death. Toxins known to affect complex I preferentially disrupted MEF2D function in a mouse model of Parkinson disease (PD). In addition, mitochondrial MEF2D and ND6 levels were decreased in postmortem brain samples of patients with PD compared with age-matched controls. Thus, direct regulation of complex I by mitochondrial MEF2D underlies its neuroprotective effects, and dysregulation of this pathway may contribute to PD. PMID:21393861

  15. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

    PubMed

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-12-05

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.

  16. Trisomy 15 mosaicism and uniparental disomy (UPD) in a liveborn infant

    SciTech Connect

    Milunsky, J.M.; Wyandt, H.E.; Milunsky, A.

    1996-01-22

    We describe a liveborn infant with uniparental disomy (UPD) with trisomy 15 mosaicism. Third trimester amniocentesis yielded a 46,XX/47,XX,+15 karyotype. Symmetrical growth retardation, distinct craniofacies, congenital heart disease, severe hypotonia and minor skeletal anomalies were noted. The infant died at 6 weeks of life. Peripheral lymphocyte chromosomes were {open_quotes}normal{close_quotes} 46,XX in 100 cells. Parental lymphocyte chromosomes were normal. Skin biopsy showed 47,XX,+15 in 80% of fibroblasts and results were equivalent in fibroblasts from autopsy lung tissue. Molecular analysis revealed maternal uniparental heterodisomy for chromosome 15 in the 46,XX cell line. We describe an emerging phenotype of trisomy 15 mosaicism, confirm that more than one tissue should be studied in all cases of suspected mosaicism, and suggest that UPD be considered in all such cases. 19 refs., 2 figs., 1 tab.

  17. Selective toxicity of persian gulf sea cucumber holothuria parva on human chronic lymphocytic leukemia b lymphocytes by direct mitochondrial targeting.

    PubMed

    Salimi, Ahmad; Motallebi, Abbasali; Ayatollahi, Maryam; Seydi, Enayatollah; Mohseni, Ali Reza; Nazemi, Melika; Pourahmad, Jalal

    2017-04-01

    Natural products isolated from marine environment are well known for their pharmacodynamic potential in diversity of disease treatments such as cancer or inflammatory conditions. Sea cucumbers are one of the marine animals of the phylum Echinoderm. Many studies have shown that the sea cucumber contains antioxidants and anti-cancer compounds. Chronic lymphocytic leukemia (CLL) is a disease characterized by the relentless accumulation of CD5(+) B lymphocytes. CLL is the most common leukemia in adults, about 25-30% of all leukemias. In this study B lymphocytes and their mitochondria (cancerous and non-cancerous) were obtained from peripheral blood of human subjects and B lymphocyte cytotoxicity assay, and caspase 3 activation along with mitochondrial upstream events of apoptosis signaling including reactive oxygen species (ROS) production, collapse of mitochondrial membrane potential (MMP) and mitochondrial swelling were determined following the addition of Holothuria parva extract to both cancerous and non-cancerous B lymphocytes and their mitochondria. Our in vitro finding showed that mitochondrial ROS formation, MMP collapse, and mitochondrial swelling and cytochrome c release were significantly (P < 0.05) increased after addition of different concentrations of H. parva only in cancerous BUT NOT normal non-cancerous mitochondria. Consistently, different concentrations of H. parva significantly (P < 0.05) increased cytotoxicity and caspase 3 activation only in cancerous BUT NOT normal non-cancerous B lymphocytes. These results showed that H. parva methanolic extract has a selective mitochondria mediated apoptotic effect on chronic lymphocytic leukemia B lymphocytes hence may be promising in the future anticancer drug development for treatment of CLL. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1158-1169, 2017.

  18. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  19. Uniparental Inheritance of Chloroplast DNA Is Strict in the Isogamous Volvocalean Gonium

    PubMed Central

    Setohigashi, Yuka; Hamaji, Takashi; Hayama, Mahoko; Matsuzaki, Ryo; Nozaki, Hisayoshi

    2011-01-01

    Background A problem has remained unresolved regarding the exceptions to the unilateral inheritance of chloroplast DNA (cpDNA) from MT+/female in Chlamydomonas and other volvocaleans demonstrated by the previous genetic analyses. For identification of the parental types of cpDNA, these studies used parents that have differences in restriction fragment length polymorphisms and exhibit partial sexual incompatibility. Methodology/Principal Findings In the present study, we used sexually compatible parents of the isogamous colonial volvocalean Gonium maiaprilis that seemed an ideal species to identify the pattern of cpDNA inheritance based on the length difference in the putative group I intron interrupted in the Rubisco large subunit gene and objective identification of mating types by the presence or absence of the minus-dominance (MID) gene. We examined patterns of inheritance of cpDNA and presence/absence of a MID ortholog (GmMID) in 107 F1 progeny of G. maiaprilis that were obtained by inducing germination of separated single zygotes. The results demonstrated no exception of the uniparental inheritance of cpDNA from the MT+ parent (lacking GmMID) in sexually compatible or genetically less divergent strains of G. maiaprilis. Conclusions/Significance The present data suggest that the uniparental inheritance of cpDNA is likely more strict in crossings of less diverged strains or sexually compatible parental volvocaleans, and some genetic inconsistency between the parents may cause exceptional uniparental inheritance of cpDNA. PMID:21559302

  20. Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis.

    PubMed Central

    Gelb, B D; Willner, J P; Dunn, T M; Kardon, N B; Verloes, A; Poncin, J; Desnick, R J

    1998-01-01

    Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted. PMID:9529353

  1. Uniparental inheritance of chloroplast DNA is strict in the isogamous volvocalean Gonium.

    PubMed

    Setohigashi, Yuka; Hamaji, Takashi; Hayama, Mahoko; Matsuzaki, Ryo; Nozaki, Hisayoshi

    2011-04-29

    A problem has remained unresolved regarding the exceptions to the unilateral inheritance of chloroplast DNA (cpDNA) from MT+/female in Chlamydomonas and other volvocaleans demonstrated by the previous genetic analyses. For identification of the parental types of cpDNA, these studies used parents that have differences in restriction fragment length polymorphisms and exhibit partial sexual incompatibility. In the present study, we used sexually compatible parents of the isogamous colonial volvocalean Gonium maiaprilis that seemed an ideal species to identify the pattern of cpDNA inheritance based on the length difference in the putative group I intron interrupted in the Rubisco large subunit gene and objective identification of mating types by the presence or absence of the minus-dominance (MID) gene. We examined patterns of inheritance of cpDNA and presence/absence of a MID ortholog (GmMID) in 107 F(1) progeny of G. maiaprilis that were obtained by inducing germination of separated single zygotes. The results demonstrated no exception of the uniparental inheritance of cpDNA from the MT+ parent (lacking GmMID) in sexually compatible or genetically less divergent strains of G. maiaprilis. The present data suggest that the uniparental inheritance of cpDNA is likely more strict in crossings of less diverged strains or sexually compatible parental volvocaleans, and some genetic inconsistency between the parents may cause exceptional uniparental inheritance of cpDNA.

  2. The Genetic History of Peruvian Quechua-Lamistas and Chankas: Uniparental DNA Patterns among Autochthonous Amazonian and Andean Populations.

    PubMed

    Sandoval, José R; Lacerda, Daniela R; Acosta, Oscar; Jota, Marilza S; Robles-Ruiz, Paulo; Salazar-Granara, Alberto; Vieira, Pedro Paulo R; Paz-Y-Miño, César; Fujita, Ricardo; Santos, Fabricio R

    2016-03-01

    This study focuses on the genetic history of the Quechua-Lamistas, inhabitants of the Lamas Province in the San Martin Department, Peru, who speak their own distinct variety of the Quechua family of languages. It has been suggested that different pre-Columbian ethnic groups from the Peruvian Amazonia, like the Motilones or "shaven heads", assimilated the Quechua language and then formed the current native population of Lamas. However, many Quechua-Lamistas claim to be direct descendants of the Chankas, a famous pre-Columbian indigenous group that escaped from Inca rule in the Andes. To investigate the Quechua-Lamistas and Chankas' ancestries, we compared uniparental genetic profiles (17 STRs of Q-M3 Y-chromosome and mtDNA complete control region haplotypes) among autochthonous Amazonian and Andean populations from Peru, Bolivia and Ecuador. The phylogeographic and population genetic analyses indicate a fairly heterogeneous ancestry for the Quechua-Lamistas, while they are closely related to their neighbours who speak Amazonian languages, presenting no direct relationships with populations from the region where the ancient Chankas lived. On the other hand, the genetic profiles of self-identified Chanka descendants living in Andahuaylas (located in the Apurimac Department, Peru, in the Central Andes) were closely related to those living in Huancavelica and the assumed Chanka Confederation area before the Inca expansion.

  3. The Genetic History of Peruvian Quechua‐Lamistas and Chankas: Uniparental DNA Patterns among Autochthonous Amazonian and Andean Populations

    PubMed Central

    Sandoval, José R.; Lacerda, Daniela R.; Acosta, Oscar; Jota, Marilza S.; Robles‐Ruiz, Paulo; Salazar‐Granara, Alberto; Vieira, Pedro Paulo R.; Paz‐y‐Miño, César; Fujita, Ricardo

    2016-01-01

    Summary This study focuses on the genetic history of the Quechua‐Lamistas, inhabitants of the Lamas Province in the San Martin Department, Peru, who speak their own distinct variety of the Quechua family of languages. It has been suggested that different pre‐Columbian ethnic groups from the Peruvian Amazonia, like the Motilones or “shaven heads”, assimilated the Quechua language and then formed the current native population of Lamas. However, many Quechua‐Lamistas claim to be direct descendants of the Chankas, a famous pre‐Columbian indigenous group that escaped from Inca rule in the Andes. To investigate the Quechua‐Lamistas and Chankas’ ancestries, we compared uniparental genetic profiles (17 STRs of Q‐M3 Y‐chromosome and mtDNA complete control region haplotypes) among autochthonous Amazonian and Andean populations from Peru, Bolivia and Ecuador. The phylogeographic and population genetic analyses indicate a fairly heterogeneous ancestry for the Quechua‐Lamistas, while they are closely related to their neighbours who speak Amazonian languages, presenting no direct relationships with populations from the region where the ancient Chankas lived. On the other hand, the genetic profiles of self‐identified Chanka descendants living in Andahuaylas (located in the Apurimac Department, Peru, in the Central Andes) were closely related to those living in Huancavelica and the assumed Chanka Confederation area before the Inca expansion. PMID:26879156

  4. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  5. Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC).

    PubMed

    Jackson, Megan V; Krasnodembskaya, Anna D

    2017-05-05

    Mesenchymal stem/stromal cells (MSC) are adult stem cells which have been shown to improve survival, enhance bacterial clearance and alleviate inflammation in pre-clinical models of acute respiratory distress syndrome (ARDS) and sepsis. These diseases are characterised by uncontrolled inflammation often underpinned by bacterial infection. The mechanisms of MSC immunomodulatory effects are not fully understood yet. We sought to investigate MSC cell contact-dependent communication with alveolar macrophages (AM), professional phagocytes which play an important role in the lung inflammatory responses and anti-bacterial defence. With the use of a basic direct co-culture system, confocal microscopy and flow cytometry we visualised and effectively quantified MSC mitochondrial transfer to AM through tunnelling nanotubes (TNT). To model the human AM, primary monocytes were isolated from human donor blood and differentiated into macrophages (monocyte derived macrophages, MDM) in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), thus allowing adaptation of an AM-like phenotype (de Almeida et al., 2000; Guilliams et al., 2013). Human bone-marrow derived MSC, were labelled with mitochondria-specific fluorescent stain, washed extensively, seeded into the tissue culture plate with MDMs at the ratio of 1:20 (MSC/MDM) and co-cultured for 24 h. TNT formation and mitochondrial transfer were visualised by confocal microscopy and semi-quantified by flow cytometry. By using the method we described here we established that MSC use TNTs as the means to transfer mitochondria to macrophages. Further studies demonstrated that mitochondrial transfer enhances macrophage oxidative phosphorylation and phagocytosis. When TNT formation was blocked by cytochalasin B, MSC effect on macrophage phagocytosis was completely abrogated. This is the first study to demonstrate TNT-mediated mitochondrial transfer from MSC to innate immune cells.

  6. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min

    2017-02-01

    Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424.

  7. Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA.

    PubMed

    Apitz, Janina; Weihe, Andreas; Pohlheim, Frank; Börner, Thomas

    2013-02-01

    While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.

  8. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Zhang, Ying; Pun, Nicholas

    2013-06-01

    In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom.

  9. The Effects of Natural Hybridization on the Regulation of Doubly Uniparental Mtdna Inheritance in Blue Mussels (Mytilus Spp.)

    PubMed Central

    Rawson, P. D.; Secor, C. L.; Hilbish, T. J.

    1996-01-01

    Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations. PMID:8878689

  10. Polyalanine tracts directly induce the release of cytochrome c, independently of the mitochondrial permeability transition pore, leading to apoptosis.

    PubMed

    Toriumi, Kazuya; Oma, Yoko; Mimoto, Ai; Futai, Eugene; Sasagawa, Noboru; Turk, Boris; Ishiura, Shoichi

    2009-06-01

    In recent years, several novel types of disorder caused by the expansion of triplet repeats in specific genes have been characterized; in the "polyalanine diseases", these expanded repeats result in proteins with aberrantly elongated polyalanine tracts. In this study, we fused expanded polyalanine tracts to yellow fluorescent protein to examine their physical interaction with mitochondria. Tracts containing more than 23 alanine repeats were found to physically associate with mitochondria, strongly suggesting that an interaction between polyalanine tracts and mitochondria is a contributing factor in the pathology of polyalanine diseases. Furthermore, in in vitro experiments, polyalanine tracts induced release of cytochrome c from mitochondria and caspase-3 activation, independently of the mitochondrial permeability transition pore. These results suggest that oligomerized polyalanine tracts might induce the rupture of the mitochondrial membrane, the subsequent release of cytochrome c, and apoptosis. This novel mechanism for polyalanine tract cytotoxicity might be common to the pathogenesis of all polyalanine diseases. Further investigation of this mechanism might aid the development of therapies for these diseases.

  11. Mitochondrial disorders and the eye

    PubMed Central

    Van Bergen, Nicole J; Chakrabarti, Rahul; O’Neill, Evelyn C; Crowston, Jonathan G; Trounce, Ian A

    2011-01-01

    The clinical significance of disturbed mitochondrial function in the eye has emerged since mitochondrial DNA (mtDNA) mutation was described in Leber’s hereditary optic neuropathy. The spectrum of mitochondrial dysfunction has become apparent through increased understanding of the contribution of nuclear and somatic mtDNA mutations to mitochondrial dynamics and function. Common ophthalmic manifestations of mitochondrial dysfunction include optic atrophy, pigmentary retinopathy, and ophthalmoplegia. The majority of patients with ocular manifestations of mitochondrial disease also have variable central and peripheral nervous system involvement. Mitochondrial dysfunction has recently been associated with age-related retinal disease including macular degeneration and glaucoma. Therefore, therapeutic targets directed at promoting mitochondrial biogenesis and function offer a potential to both preserve retinal function and attenuate neurodegenerative processes. PMID:28539774

  12. Robertsonian (15q;15q) translocation in a child with Angelman syndrome: Evidence of uniparental disomy

    SciTech Connect

    Tonk, V.; Schultz, R.A.; Wilson, G.N.; Schultz, R.A.

    1996-12-30

    A balanced Robertsonian translocation 45,XY,t(15q15q) was detected in a patient with mental retardation, microcephaly, and hypertonia. Deletion of the 15q11q13 region was unlikely based on fluorescence in situ hybridization studies that revealed hybridization of appropriate DNA probes to both arms of the Robertsonian chromosome. Inheritance of alleles from 13 highly polymorphic DNA markers on chromosome 15 showed paternal uniparental isodisomy. The clinical, cytogenetic, and molecular results are consistent with a diagnosis of Angelman syndrome. 8 refs., 3 figs.

  13. Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism.

    PubMed

    Romanelli, Valeria; Nevado, Julián; Fraga, Mario; Trujillo, Alex Martín; Mori, Maria Ángeles; Fernández, Luis; Pérez de Nanclares, Guiomar; Martínez-Glez, Víctor; Pita, Guillermo; Meneses, Heloisa; Gracia, Ricardo; García-Miñaur, Sixto; García de Miguel, Purificación; Lecumberri, Beatriz; Rodríguez, José Ignacio; González Neira, Anna; Monk, David; Lapunzina, Pablo

    2011-03-01

    Molecular studies in a patient with Beckwith-Wiedemann syndrome phenotype who developed two different tumours revealed an unexpected observation of almost complete loss of heterozygosity of all chromosomes. It is shown, by means of numerous molecular methods, that the absence of maternal contribution in somatic cells is due to high-degree (∼ 85%) genome-wide paternal uniparental disomy (UPD). The observations indicate that the genome-wide UPD results from diploidisation, and have important implications for genetic counselling and tumour surveillance for the growing number of UPD associated imprinting disorders.

  14. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  15. Mitochondrial Diseases

    MedlinePlus

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  16. Uniparental disomy as an unexpected cause of Meckel-Gruber syndrome: report of a case.

    PubMed

    Bruechle, Nadia Ortiz; Steuernagel, Peter; Zerres, Klaus; Kurth, Ingo; Eggermann, Thomas; Knopp, Cordula

    2017-06-15

    Meckel-Gruber syndrome (MKS, OMIM #607361) is a rare pre- or perinatal lethal autosomal recessive ciliopathy caused by mutations in at least 12 known genes. It has a clinical and genetic overlap with other viable ciliopathies, especially Joubert syndrome and Joubert syndrome-related disorders. MKS is characterized by multicystic kidney dysplasia, central nervous system malformations (usually occipital encephalocele), ductal plate malformation of the liver, and postaxial polydactyly. We identified a homozygous mutation in TMEM67 (MKS3) in a fetus affected by MKS; however, only the mother was a carrier of the respective mutation. Genotyping with polymorphic microsatellite markers and single nucleotide polymorphism (SNP) array revealed a maternal uniparental disomy (UPD) of the entire chromosome 8 (upd(8)mat), harboring TMEM67. This is the first reported case of UPD as a cause of MKS. The possible underlying mechanisms for uniparental disomy (UPD) are reviewed. Even if rare, awareness of UPD and comprehensive work-up in the case of unexpected homozygosity for a recessive mutation is essential for accurate genetic counseling and assessment of the risk of recurrence.

  17. Uniparental isodisomy of chromosome 14 in two cases: An abnormal child and a normal adult

    SciTech Connect

    Papenhausen, P.R.; Mueller, O.T.; Sutcliffe, M.; Diamond, T.M.; Kousseff, B.G.; Johnson, V.P.

    1995-11-20

    Uniparental disomy (UPD) of a number of different chromosomes has been found in association with abnormal phenotypes. A growing body of evidence for an imprinting effect involving chromosome 14 has been accumulating. We report on a case of paternal UPD of chromosome 14 studied in late gestation due to polyhydramnios and a ventral wall hernia. A prenatal karyotype documented a balanced Robertsonian 14:14 translocation. The baby was born prematurely with hairy forehead, retrognathia, mild puckering of the lips and finger contractures. Hypotonia has persisted since birth and at age one year, a tracheostomy for laryngomalacia and gastrostomy for feeding remain necessary. Absence of maternal VNTR polymorphisms and homozygosity of paternal polymorphisms using chromosome 14 specific probes at D14S22 and D14S13 loci indicated paternal uniparental isodisomy (pUPID). Parental chromosomes were normal. We also report on a case of maternal LTPD in a normal patient with a balanced Robertsonian 14:14 translocation and a history of multiple miscarriages. Five previous reports of chromosome 14 UPD suggest that an adverse developmental effect may be more severe whenever the UPD is paternal in origin. This is the second reported patient with paternal UPD and the fifth reported with maternal UPD, and only few phenotypic similarities are apparent. Examination of these chromosome 14 UPD cases of maternal and paternal origin suggests that there are syndromic imprinting effects. 30 refs., 3 figs.

  18. Flexible compensation of uniparental care: female poison frogs take over when males disappear.

    PubMed

    Ringler, Eva; Pašukonis, Andrius; Fitch, W Tecumseh; Huber, Ludwig; Hödl, Walter; Ringler, Max

    2015-01-01

    Parental care systems are shaped by costs and benefits to each sex of investing into current versus future progeny. Flexible compensatory parental care is mainly known in biparental species, particularly where parental desertion or reduction of care by 1 parent is common. The other parent can then compensate this loss by either switching parental roles and/or by increasing its own parental effort. In uniparental species, desertion of the caregiver usually leads to total brood loss. In the poison frog, Allobates femoralis, obligatory tadpole transport (TT) is generally performed by males, whereas females abandon their clutches after oviposition. Nevertheless, in a natural population we previously observed 7.8% of TT performed by females, which we could link to the absence of the respective fathers. In the following experiment, under laboratory conditions, all tested A. femoralis females flexibly took over parental duties, but only when their mates were removed. Our findings provide clear evidence for compensatory flexibility in a species with unisexual parental care. Contrary to the view of amphibian parental care as being stereotypical and fixed, these results demonstrate behavioral flexibility as an adaptive response to environmental and social uncertainty. Behavioral flexibility might actually represent a crucial step in the evolutionary transition from uniparental to biparental care in poison frogs. We suspect that across animal species flexible parental roles are much more common than previously thought and suggest the idea of a 3-dimensional continuum regarding flexibility, parental involvement, and timing, when thinking about the evolution of parental care.

  19. Flexible compensation of uniparental care: female poison frogs take over when males disappear

    PubMed Central

    Pašukonis, Andrius; Fitch, W. Tecumseh; Huber, Ludwig; Hödl, Walter; Ringler, Max

    2015-01-01

    Parental care systems are shaped by costs and benefits to each sex of investing into current versus future progeny. Flexible compensatory parental care is mainly known in biparental species, particularly where parental desertion or reduction of care by 1 parent is common. The other parent can then compensate this loss by either switching parental roles and/or by increasing its own parental effort. In uniparental species, desertion of the caregiver usually leads to total brood loss. In the poison frog, Allobates femoralis, obligatory tadpole transport (TT) is generally performed by males, whereas females abandon their clutches after oviposition. Nevertheless, in a natural population we previously observed 7.8% of TT performed by females, which we could link to the absence of the respective fathers. In the following experiment, under laboratory conditions, all tested A. femoralis females flexibly took over parental duties, but only when their mates were removed. Our findings provide clear evidence for compensatory flexibility in a species with unisexual parental care. Contrary to the view of amphibian parental care as being stereotypical and fixed, these results demonstrate behavioral flexibility as an adaptive response to environmental and social uncertainty. Behavioral flexibility might actually represent a crucial step in the evolutionary transition from uniparental to biparental care in poison frogs. We suspect that across animal species flexible parental roles are much more common than previously thought and suggest the idea of a 3-dimensional continuum regarding flexibility, parental involvement, and timing, when thinking about the evolution of parental care. PMID:26167099

  20. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance.

    PubMed

    Kuppu, Sundaram; Tan, Ek Han; Nguyen, Hanh; Rodgers, Andrea; Comai, Luca; Chan, Simon W L; Britt, Anne B

    2015-09-01

    The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.

  1. Angelman syndrome due to paternal uniparental disomy of chromosome 15: A milder phenotype?

    SciTech Connect

    Bottani, A.; Robinson, W.P.; DeLoizer-Blanchet, C.D.; Engel, E.; Morris, M.A.; Schmitt, Thun-Hohenstein, L.; Schinzel, A.

    1994-05-15

    The Angelman syndrome (AS) is a neurological disorder characterized by severe mental retardation, absent speech, seizures, gait disturbances, and a typical age-dependent facial phenotype. Most cases are due to an interstitial deletion on the maternally inherited chromosome 15, in the critical region q11-q13. Rare cases also result from paternal uniparental disomy of chromosome 15. In a group of 14 patients with sporadic AS diagnosed in Switzerland, we found 2 unrelated females with paternal isodisomy for the entire chromosome 15. Their phenotypes were milder than usually seen in this syndrome: one girl did not show the typical AS facial changes; both patients had late-onset mild seizures; as they grow older, they had largely undisturbed gross motor functions, in particular no severe ataxia. Both girls were born to older fathers (45 and 43 years old, respectively). The apparent association of a relatively milder phenotype in AS with paternal uniparental disomy will have to be confirmed by detailed clinical descriptions of further patients. 25 refs., 2 figs., 1 tab.

  2. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12.

    PubMed

    Georgiades, P; Watkins, M; Surani, M A; Ferguson-Smith, A C

    2000-11-01

    Genetic analysis has shown that the distal portion of mouse chromosome 12 is imprinted; however, the developmental roles of imprinted genes in this region are not known. We have therefore generated conceptuses with uniparental disomy for chromosome 12, in which both copies of chromosome 12 are either paternally or maternally derived (pUPD12 and mUPD12, respectively). Both types of UPD12 result in embryos that are non-viable and that exhibit distinct developmental abnormalities. Embryos with pUPD12 die late in gestation, whereas embryos with mUPD12 can survive to term but die perinatally. The mUPD12 conceptuses are invariably growth-retarded while pUPD12 conceptuses exhibit placentomegaly. Skeletal muscle maturation defects are evident in both types of UPD12. In addition, embryos with paternal UPD12 have costal cartilage defects and hypo-ossification of mesoderm-derived bones. In embryos with mUPD12, the development of the neural crest-derived middle ear ossicles is defective. Some of these anomalies are consistent with those seen with uniparental disomies of the orthologous chromosome 14 region in humans. Thus, imprinted genes on chromosome 12 are essential for viability, the regulation of prenatal growth, and the development of mesodermal and neural crest-derived lineages.

  3. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  4. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  5. Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements

    PubMed Central

    Kotzot, D.

    2001-01-01

    OBJECTIVE—To review all cases with segmental and/or complex uniparental disomy (UPD), to study aetiology and mechanisms of formation, and to draw conclusions.
DESIGN—Searching published reports in Medline.
RESULTS—The survey found at least nine cases with segmental UPD and a normal karyotype, 22 cases with UPD of a whole chromosome and a simple or a non-homologous Robertsonian translocation, eight cases with UPD and two isochromosomes, one of the short arm and one of the long arm of a non-acrocentric chromosome, 39 cases with UPD and an isochromosome of the long arm of two homologous acrocentric chromosomes, one case of UPD and an isochromosome 8 associated with a homozygous del(8)(p23.3pter), and 21 cases with UPD of a whole or parts of a chromosome associated with a complex karyotype. Segmental UPD is formed by somatic recombination (isodisomy) or by trisomy rescue. In the latter mechanism, a meiosis I error is associated with meiotic recombination and an additional somatic exchange between two non-uniparental chromatids. Subsequently, the chromatid that originated from the disomic gamete is lost (iso- and heterodisomy). In cases of UPD associated with one isochromosome of the short arm and one isochromosome of the long arm of a non-acrocentric chromosome and in cases of UPD associated with a true isochromosome of an acrocentric chromosome, mitotic complementation is assumed. This term describes the formation by misdivision at the centromere during an early mitosis of a monosomic zygote. In cases of UPD associated with an additional marker chromosome, either mitotic formation of the marker chromosome in a trisomic zygote or fertilisation of a gamete with a marker chromosome formed in meiosis by a disomic gamete or by a normal gamete and subsequent duplication are possible.
CONCLUSIONS—Research in the field of segmental and/or complex UPD may help to explain undiagnosed non-Mendelian disorders, to recognise hotspots for meiotic and mitotic

  6. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  7. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  8. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  9. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    PubMed

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  10. Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators.

    PubMed

    Stalnecker, Clint A; Erickson, Jon W; Cerione, Richard A

    2017-04-14

    The first step in glutamine catabolism is catalysis by the mitochondrial enzyme glutaminase, with a specific isoform, glutaminase C (GAC), being highly expressed in cancer cells. GAC activation requires the formation of homotetramers, promoted by anionic allosteric activators such as inorganic phosphate. This leads to the proper orientation of a flexible loop proximal to the dimer-dimer interface that is essential for catalysis (i.e. the "activation loop"). A major class of allosteric inhibitors of GAC, with the prototype being bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and the related molecule CB-839, binds to the activation loop and induces the formation of an inactive tetramer (two inhibitors bound per active tetramer). Here we describe a direct readout for monitoring the dynamics of the activation loop of GAC in response to these allosteric inhibitors, as well as allosteric activators, through the substitution of phenylalanine at position 327 with tryptophan (F327W). The tryptophan fluorescence of the GAC(F327W) mutant undergoes a marked quenching upon the binding of BPTES or CB-839, yielding titration profiles that make it possible to measure the binding affinities of these inhibitors for the enzyme. Allosteric activators like phosphate induce the opposite effect (i.e. fluorescence enhancement). These results describe direct readouts for the binding of the BPTES class of allosteric inhibitors as well as for inorganic phosphate and related activators of GAC, which should facilitate screening for additional modulators of this important metabolic enzyme.

  11. Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation.

    PubMed

    Ewen, Catherine L; Kane, Kevin P; Bleackley, R Chris

    2013-07-01

    Natural killer and T cell-mediated cytotoxicity is important for the elimination of viruses and transformed cells. The granule lytic pathway utilizes perforin and granzymes to induce cell death, while receptor-mediated lytic pathways rely on molecules such as FasL. Pro-apoptotic activities of Granzyme B (GrB) and Fas are well-established, and many of their cellular targets have been identified. However, humans express additional related granzymes - GrA, GrM, GrK, and GrH. Neither the cytotoxic potential of GrH, nor the mechanism by which GrH may induce target cell death is currently understood. We proposed that GrH would have pro-apoptotic activity that would be distinct from that of GrB and FasL, which could be relevant when Fas/FasL or GrB activity or death pathways were impaired. Our results, using a purified recombinant form of GrH, revealed that GrH induced cell death via a Bcl-2-sensitive mitochondrial pathway without direct processing of Bid. Additionally, neither the apoptosome nor caspase-3 was essential to the induction of GrH-mediated cell death. However, GrH did directly process DFF45, potentially leading to DNA damage. Our findings support the idea that multiple, non-redundant death pathways may be initiated by cytotoxic cells to counteract various immune evasion strategies.

  12. DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts.

    PubMed

    Bendich, Arnold J

    2013-05-01

    For most eukaryotic organisms, the nuclear genomes of both parents are transmitted to the progeny following biparental inheritance. For mitochondria and chloroplasts, however, uniparental inheritance (UPI) is frequently observed. The maternal mode of inheritance for mitochondria in animals can be nearly absolute, suggesting an adaptive advantage for UPI. In other organisms, however, the mode of inheritance for mitochondria and chloroplasts can vary greatly even among strains of a species. Here, I review the data on the transmission of organellar DNA (orgDNA) from parent to progeny and the structure, copy number, and stability of orgDNA molecules. I propose that UPI is an incidental by-product of DNA abandonment, a process that lowers the metabolic cost of orgDNA repair.

  13. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells.

    PubMed

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human-mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human-mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis.

  14. Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer.

    PubMed

    Torabi, Keyvan; Miró, Rosa; Fernández-Jiménez, Nora; Quintanilla, Isabel; Ramos, Laia; Prat, Esther; del Rey, Javier; Pujol, Núria; Killian, J Keith; Meltzer, Paul S; Fernández, Pedro Luis; Ried, Thomas; Lozano, Juan José; Camps, Jordi; Ponsa, Immaculada

    2015-10-01

    Colorectal cancer (CRC) is characterized by specific patterns of copy number alterations (CNAs), which helped with the identification of driver oncogenes and tumor suppressor genes (TSGs). More recently, the usage of single nucleotide polymorphism arrays provided information of copy number neutral loss of heterozygosity, thus suggesting the occurrence of somatic uniparental disomy (UPD) and uniparental polysomy (UPP) events. The aim of this study is to establish an integrative profiling of recurrent UPDs/UPPs and CNAs in sporadic CRC. Our results indicate that regions showing high frequencies of UPD/UPP mostly coincide with regions typically involved in genomic losses. Among them, chromosome arms 3p, 5q, 9q, 10q, 14q, 17p, 17q, 20p, 21q and 22q preferentially showed UPDs/UPPs over genomic losses suggesting that tumor cells must maintain the disomic state of certain genes to favor cellular fitness. A meta-analysis using over 300 samples from The Cancer Genome Atlas confirmed our findings. Several regions affected by recurrent UPDs/UPPs contain well-known TSGs, as well as novel candidates such as ARID1A, DLC1, TCF7L2 and DMBT1. In addition, VCAN, FLT4, SFRP1 and GAS7 were also frequently involved in regions of UPD/UPP and displayed high levels of methylation. Finally, sequencing and fluorescence in situ hybridization analysis of the gene APC underlined that a somatic UPD event might represent the second hit to achieve biallelic inactivation of this TSG in colorectal tumors. In summary, our data define a profile of somatic UPDs/UPPs in sporadic CRC and highlights the importance of these events as a mechanism to achieve the inactivation of TSGs.

  15. Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer

    PubMed Central

    Torabi, Keyvan; Miró, Rosa; Fernández-Jiménez, Nora; Quintanilla, Isabel; Ramos, Laia; Prat, Esther; del Rey, Javier; Pujol, Núria; Killian, J. Keith; Meltzer, Paul S.; Fernández, Pedro Luis; Ried, Thomas; Lozano, Juan José; Camps, Jordi; Ponsa, Immaculada

    2015-01-01

    Colorectal cancer (CRC) is characterized by specific patterns of copy number alterations (CNAs), which helped with the identification of driver oncogenes and tumor suppressor genes (TSGs). More recently, the usage of single nucleotide polymorphism arrays provided information of copy number neutral loss of heterozygosity, thus suggesting the occurrence of somatic uniparental disomy (UPD) and uniparental polysomy (UPP) events. The aim of this study is to establish an integrative profiling of recurrent UPDs/UPPs and CNAs in sporadic CRC. Our results indicate that regions showing high frequencies of UPD/UPP mostly coincide with regions typically involved in genomic losses. Among them, chromosome arms 3p, 5q, 9q, 10q, 14q, 17p, 17q, 20p, 21q and 22q preferentially showed UPDs/UPPs over genomic losses suggesting that tumor cells must maintain the disomic state of certain genes to favor cellular fitness. A meta-analysis using over 300 samples from The Cancer Genome Atlas confirmed our findings. Several regions affected by recurrent UPDs/UPPs contain well-known TSGs, as well as novel candidates such as ARID1A, DLC1, TCF7L2 and DMBT1. In addition, VCAN, FLT4, SFRP1 and GAS7 were also frequently involved in regions of UPD/UPP and displayed high levels of methylation. Finally, sequencing and fluorescence in situ hybridization analysis of the gene APC underlined that a somatic UPD event might represent the second hit to achieve biallelic inactivation of this TSG in colorectal tumors. In summary, our data define a profile of somatic UPDs/UPPs in sporadic CRC and highlights the importance of these events as a mechanism to achieve the inactivation of TSGs. PMID:26243311

  16. The clinical maze of mitochondrial neurology

    PubMed Central

    DiMauro, Salvatore; Schon, Eric A.; Carelli, Valerio; Hirano, Michio

    2014-01-01

    Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed. PMID:23835535

  17. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly.

    PubMed

    Kuwana, Tomomi; Bouchier-Hayes, Lisa; Chipuk, Jerry E; Bonzon, Christine; Sullivan, Barbara A; Green, Douglas R; Newmeyer, Donald D

    2005-02-18

    Using a Bax-dependent membrane-permeabilization assay, we show that peptides corresponding to the BH3 domains of Bcl-2 family "BH3-only" proteins have dual functions. Several BH3 peptides relieved the inhibition of Bax caused by the antiapoptotic Bcl-x(L) and/or Mcl-1 proteins, some displaying a specificity for either Bcl-x(L) or Mcl-1. Besides having this derepression function, the Bid and Bim peptides activated Bax directly and were the only BH3 peptides tested that could potently induce cytochrome c release from mitochondria in cultured cells. Furthermore, Bax activator molecules (cleaved Bid protein and the Bim BH3 peptide) synergistically induced cytochrome c release when introduced into cells along with derepressor BH3 peptides. These observations support a unified model of BH3 domain function, encompassing both positive and negative regulation of other Bcl-2 family members. In this model, the simple inhibition of antiapoptotic functions is insufficient to induce apoptosis unless a direct activator of Bax or Bak is present.

  18. Sexual reproduction in Aspergillus flavus sclerotia: acquisition of novel alleles from soil populations and uniparental mitochondrial inheritance

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. ...

  19. Molecular evolution and recombination in gender-associated mitochondrial DNAs of the Manila clam Tapes philippinarum.

    PubMed Central

    Passamonti, Marco; Boore, Jeffrey L; Scali, Valerio

    2003-01-01

    Doubly uniparental inheritance (DUI) provides an intriguing system for addressing aspects of molecular evolution and intermolecular recombination of mitochondrial DNA. For this reason, a large sequence analysis has been performed on Tapes philippinarum (Bivalvia, Veneridae), which has mitochondrial DNA heteroplasmy that is consistent with a DUI. The sequences of a 9.2-kb region (containing 29 genes) from 9 individuals and the sequences of a single gene from another 44 individuals are analyzed. Comparisons suggest that the two sex-related mitochondrial genomes do not experience a neutral pattern of divergence and that selection may act with varying strength on different genes. This pattern of evolution may be related to the long, separate history of M and F genomes within their tissue-specific "arenas." Moreover, our data suggest that recombinants, although occurring in soma, may seldom be transmitted to progeny in T. philippinarum. PMID:12807780

  20. Paternal Uniparental Isodisomy of Chromosome 6 Causing a Complex Syndrome Including Complete IFN-γ Receptor 1 Deficiency

    PubMed Central

    Prando, Carolina; Boisson-Dupuis, Stéphanie; Grant, Audrey; Kong, Xiao-Fei; Bustamante, Jacinta; Feinberg, Jacqueline; Chapgier, Ariane; Rose, Yoann; Jannière, Lucile; Rizzardi, Elena; Zhang, Qiuping; Shanahan, Catherine M; Viollet, Louis; Lyonnet, Stanislas; Abel, Laurent; Ruga, Ezia Maria; Casanova, Jean-Laurent

    2010-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency associated with clinical disease caused by weakly virulent mycobacterial species. Interferon gamma receptor 1 (IFN-γR1) deficiency is a genetic etiology of MSMD. We describe the clinical and genetic features of a seven-year-old Italian boy suffering from MSMD associated with a complex phenotype, including neonatal hyperglycemia, neuromuscular disease, and dysmorphic features. The child also developed necrotizing pneumonia caused by Rhodococcus equi. The child is homozygous for a nonsense mutation in exon 3 of IFNGR1 as a result of paternal uniparental disomy (UPD) of the entire chromosome 6. This is the first reported case of uniparental disomy resulting in a complex phenotype including MSMD. PMID:20186794

  1. XX true hemaphroditism in Southern Africa blacks: Exclusion of SRY sequences and uniparental disomy of the X chromosome

    SciTech Connect

    Spurdle, A.B.; Shankman, S.; Ramsay, M.

    1995-01-02

    A molecular investigation of 16 Bantu-speaking Black XX true hermaphrodites was undertaken in an attempt to determine the cause of the disorder. Y-specific sequences, including sequences mapping to the sex-determining region of the Y, were shown to be absent from lymphocyte tissue of all 16 patients tested. Y chromosome sequences were also absent from the ovarian and testicular components of both ovotestes of a single XX true hermaphrodite, thus excluding gonadal mosaicism involving Y chromosome sequences. Since there is evidence of Xp genes involved in testis determination/differentiation, uniparental disomy of the X chromosome was investigated in 14 XXTH families. Uniparental disomy was excluded in 12 of the 14 families, and isodisomy was excluded in the remaining two cases. 29 refs., 2 tabs.

  2. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase.

    PubMed

    Nesci, Salvatore; Trombetti, Fabiana; Ventrella, Vittoria; Pagliarani, Alessandra

    2015-01-01

    The main and best known role of the mitochondrial ATP synthase is to synthesize ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. However, under different conditions, the same enzyme can also switch to the opposite function of ATP hydrolysis and exploits its energy to pump protons against their gradient and energize the membrane. The change in functionality is linked to the change of direction of rotation of the two matched sectors of this unique complex, namely the hydrophilic F1, which performs the catalysis, and the hydrophobic membrane-embedded FO, which channels protons. Accordingly, viewed from the matrix side, ATP synthesis is driven by counterclockwise rotation and ATP hydrolysis by clockwise rotation of the FO rotor which is transmitted to F1. ATP dissipation through this mechanism features some diseases such as myocardial ischemia. Increasing evidence shoulders the hypothesis that the asymmetry of the a subunit of FO and particularly the steric arrangement of the two inner semi-channels for protons, play a key role in conferring to the coupled bi-functional complex the ability to reverse rotation by switching from ATP synthesis to ATP hydrolysis and vice versa. Accordingly, the conserved steric arrangement of the chiral a subunit of FO yields the same direction of rotation for all the ATP synthases. According to this hypothesis, the a subunit chirality imposes the direction of rotation of the rotor according to the proton gradient across the membrane. It seems likely that the direction of rotation of the membrane-embedded c-ring, which is adjacent to the a-subunit and acts as a rotor, may be under multiple control, being rotation essential to make the whole enzyme machinery work. However, the asymmetric features of the a subunit would make it the master regulator, thus directly determining which of the two functions, ATP production or ATP dissipation, will be performed. The handedness of a subunit should

  3. Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Kawano, Shigeyuki

    2010-03-01

    Direct evidence of digestion of paternal mitochondrial DNA (mtDNA) has been found in the true slime mold Physarum polycephalum. This is the first report on the selective digestion of mtDNA inside the zygote, and is striking evidence for the mechanism of maternal inheritance of mitochondria. Moreover, two mitochondrial nuclease activities were detected in this organism as-candidates for the nucleases responsible for selective digestion of mtDNA. In the true slime mold, there is an additional-feature of the uniparental inheritance of mitochondria.Although mitochondria are believed to be inherited from the maternal lineage in nearly all eukaryotes, the mating types of the true slime mold P. polycephalum is not restricted to two: there are three mating loci--matA, matB,and matC--and these loci have 16, 15, and 3 alleles,-respectively. Interestingly, the transmission patterns of mtDNA are determined by the matA locus, in a hierarchical-fashion (matA hierarchy) as follows: matA7[matA2[matA11[matA12[matA15/matA16[matA1[matA6.The strain possessing the higher status of matA would be the mtDNA donor in crosses. Furthermore, we have found that some crosses showed biparental inheritance of mitochondria.This review describes the phenomenon of hierarchical transmission of mtDNA in true slime molds, and discusses the presumed molecular mechanism of maternal and biparental inheritance.

  4. Patterns of mitochondrial sorting in yeast zygotes.

    PubMed Central

    Azpiroz, R; Butow, R A

    1993-01-01

    Inheritance of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae is usually biparental. Pedigree studies of zygotic first buds indicate limited mixing of wild-type (p+) parental mtDNAs: end buds are frequently homoplasmic for one parental mtDNA, while heteroplasmic and recombinant progeny usually arise from medial buds. In crosses involving certain petites, however, mitochondrial inheritance can be uniparental. In this study we show that mitochondrial sorting can be influenced by the parental mtDNAs and have identified intermediates in the process. In crosses where mtDNA mixing is limited and one parent is prelabeled with the matrix enzyme citrate synthase 1 (CS1), the protein freely equilibrates throughout the zygote before the first bud has matured. Furthermore, if one parent is p0 (lacking mtDNA), mtDNA from the p+ parent can also equilibrate; intracellular movement of mtDNA is unhindered in this case. Surprisingly, in zygotes from a p0 CS1+ x p+ CS1- cross, CS1 is quantitatively translocated to the p+ end of the zygote before mtDNA movement; subsequently, both components equilibrate throughout the cell. This initial vectorial transfer does not require respiratory function in the p+ parent, although it does not occur if that parent is p-. Mouse dihydrofolate reductase (DHFR) present in the mitochondrial matrix can also be vectorially translocated, indicating that the process is general. Our data suggest that in zygotes mtDNA movement may be separately controlled from the movement of bulk matrix constituents. Images PMID:8443407

  5. Pericentric inversion of chromosome 18 in parents leading to a phenotypically normal child with segmental uniparental disomy 18

    PubMed Central

    Kariminejad, Ariana; Kariminejad, Roxana; Moshtagh, Azadeh; Zanganeh, Maryam; Kariminejad, Mohammad Hassan; Neuenschwander, Stefan; Okoniewski, Michal; Wey, Eva; Schinzel, Albert; Baumer, Alessandra

    2011-01-01

    In this study, we report a familial inversion of chromosome 18, inv(18)(p11.31q21.33), in both members of a consanguineous couple. Their first child had inherited one balanced pericentric inversion along with a recombinant chromosome 18 resulting in dup(18q)/del(18p), and had mild dysmorphic features in the absence of mental and developmental retardation. The second child had received two recombinant chromosomes 18, from the mother a derivative chromosome 18 with dup(18p)/del(18q) and from the father a derivative chromosome 18 with dup(18q)/del(18p). The aberration was prenatally detected; however, as the two opposite aneuploidies were thought to compensate each other, the family decided to carry on with the pregnancy, knowing that uniparental disomy for the segments outside the inversion could have an adverse influence on the development of the child. Uniparental disomy was confirmed by SNP arrays. The child, who has been followed up until the age of 20 months, is healthy and normal. It seems to be the first reported case with two opposite recombinant chromosomes that compensate each other and lead to segmental uniparental disomy for two segments on the chromosome, one maternal and the other paternal. PMID:21326286

  6. Pericentric inversion of chromosome 18 in parents leading to a phenotypically normal child with segmental uniparental disomy 18.

    PubMed

    Kariminejad, Ariana; Kariminejad, Roxana; Moshtagh, Azadeh; Zanganeh, Maryam; Kariminejad, Mohammad Hassan; Neuenschwander, Stefan; Okoniewski, Michal; Wey, Eva; Schinzel, Albert; Baumer, Alessandra

    2011-05-01

    In this study, we report a familial inversion of chromosome 18, inv(18)(p11.31q21.33), in both members of a consanguineous couple. Their first child had inherited one balanced pericentric inversion along with a recombinant chromosome 18 resulting in dup(18q)/del(18p), and had mild dysmorphic features in the absence of mental and developmental retardation. The second child had received two recombinant chromosomes 18, from the mother a derivative chromosome 18 with dup(18p)/del(18q) and from the father a derivative chromosome 18 with dup(18q)/del(18p). The aberration was prenatally detected; however, as the two opposite aneuploidies were thought to compensate each other, the family decided to carry on with the pregnancy, knowing that uniparental disomy for the segments outside the inversion could have an adverse influence on the development of the child. Uniparental disomy was confirmed by SNP arrays. The child, who has been followed up until the age of 20 months, is healthy and normal. It seems to be the first reported case with two opposite recombinant chromosomes that compensate each other and lead to segmental uniparental disomy for two segments on the chromosome, one maternal and the other paternal.

  7. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  8. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  9. A Variant Form of the Nuclear Triiodothyronine Receptor c-ErbAα1 Plays a Direct Role in Regulation of Mitochondrial RNA Synthesis

    PubMed Central

    Casas, François; Rochard, Pierrick; Rodier, Anne; Cassar-Malek, Isabelle; Marchal-Victorion, Sophie; Wiesner, Rudolf J.; Cabello, Gérard; Wrutniak, Chantal

    1999-01-01

    In earlier research, we identified a 43-kDa c-ErbAα1 protein (p43) in the mitochondrial matrix of rat liver. In the present work, binding experiments indicate that p43 displays an affinity for triiodothyronine (T3) similar to that of the T3 nuclear receptor. Using in organello import experiments, we found that p43 is targeted to the organelle by an unusual process similar to that previously reported for MTF1, a yeast mitochondrial transcription factor. DNA-binding experiments demonstrated that p43 specifically binds to four mitochondrial DNA sequences with a high similarity to nuclear T3 response elements (mt-T3REs). Using in organello transcription experiments, we observed that p43 increases the levels of both precursor and mature mitochondrial transcripts and the ratio of mRNA to rRNA in a T3-dependent manner. These events lead to stimulation of mitochondrial protein synthesis. In transient-transfection assays with reporter genes driven by the mitochondrial D loop or two mt-T3REs located in the D loop, p43 stimulated reporter gene activity only in the presence of T3. All these effects were abolished by deletion of the DNA-binding domain of p43. Finally, p43 overexpression in QM7 cells increased the levels of mitochondrial mRNAs, thus indicating that the in organello influence of p43 was physiologically relevant. These data reveal a novel hormonal pathway functioning within the mitochondrion, involving a truncated form of a nuclear receptor acting as a potent mitochondrial T3-dependent transcription factor. PMID:10567517

  10. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  11. Alzheimer's Disease: From Mitochondrial Perturbations to Mitochondrial Medicine.

    PubMed

    Cardoso, Susana; Carvalho, Cristina; Correia, Sónia C; Seiça, Raquel M; Moreira, Paula I

    2016-09-01

    Age-related neurodegenerative diseases such as Alzheimer's disease (AD) are distressing conditions causing countless levels of suffering for which treatment is often insufficient or inexistent. Considered to be the most common cause of dementia and an incurable, progressive neurodegenerative disorder, the intricate pathogenic mechanisms of AD continue to be revealed and, consequently, an effective treatment needs to be developed. Among the diverse hypothesis that have been proposed to explain AD pathogenesis, the one concerning mitochondrial dysfunction has raised as one of the most discussed with an actual acceptance in the field. It posits that manipulating mitochondrial function and understanding the deficits that result in mitochondrial injury may help to control and/or limit the development of AD. To achieve such goal, the concept of mitochondrial medicine places itself as a promising gathering of strategies to directly manage the major insidious disturbances of mitochondrial homeostasis as well as attempts to directly or indirectly manage its consequences in the context of AD. The aim of this review is to summarize the evolution that occurred from the establishment of mitochondrial homeostasis perturbation as masterpieces in AD pathogenesis up until the development of mitochondrial medicine. Following a brief glimpse in the past and current hypothesis regarding the triad of aging, mitochondria and AD, this manuscript will address the major mechanisms currently believed to participate in above mentioned events. Both pharmacological and lifestyle interventions will also be reviewed as AD-related mitochondrial therapeutics.

  12. Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively.

    PubMed

    Bobba, A; Amadoro, G; Valenti, D; Corsetti, V; Lassandro, R; Atlante, A

    2013-07-01

    Here we investigate the effect of β-amyloid on mitochondrial respiratory function, i.e. mitochondrial oxygen consumption and membrane potential generation as well as the individual activities of both the mitochondrial Complexes I-IV, that compose mitochondrial electron transport chain, and the ATP synthase, by using homogenate from cerebellar granule cells, treated with low concentrations of β-amyloid, and Alzheimer synaptic-enriched brain samples. We found that β-amyloid caused both a selective defect in Complex I activity associated with an increase (5 fold) of intracellular reactive oxygen species and an impairment of Complex IV likely due to membrane lipid peroxidation. In addition, a 130% increase of the GSSG/GSH ratio was measured in Alzheimer brains with respect to age-matched controls. Knowing the mechanisms of action of β-amyloid could allow to mitigate or even to interrupt the toxic cascade that leads a cell to death. The results of this study represent an important innovation because they offer the possibility to act at mitochondrial level and on specific sites to protect cells, for example by preventing the interaction of β-amyloid with the identified targets, by stabilizing or by restoring mitochondrial function or by interfering with the energy metabolism. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  13. Delivery of germinal granules and localized RNAs via the messenger transport organizer pathway to the vegetal cortex of Xenopus oocytes occurs through directional expansion of the mitochondrial cloud.

    PubMed

    Wilk, Katarzyna; Bilinski, Szczepan; Dougherty, Matthew T; Kloc, Malgorzata

    2005-01-01

    During Xenopus oogenesis, the message transport organizer (METRO) pathway delivers germinal granules and localized RNAs to the vegetal cortex of the oocyte via the mitochondrial cloud (Balbiani body). According to the traditional model, the mitochondrial cloud is thought to break up at the onset of vitellogenesis and the germinal granules and METRO-localized RNAs are transported within the mitochondrial cloud fragments to the vegetal cortex of the oocyte. We used light and electron microscopy in situ hybridization and three-dimensional reconstruction to show that germinal granules and METRO-localized RNAs are delivered to the oocyte cortex before the onset of mitochondrial cloud fragmentation and that the delivery involves accumulation of localized RNAs and aggregation of germinal granules at the vegetal tip of the mitochondrial cloud and subsequent internal expansion of the mitochondrial cloud between its animal (nuclear) and vegetal tips, which drives the germinal granules and METRO-localized RNAs toward the vegetal cortex. Thus the fragmentation of the cloud that occurs later in oogenesis is irrelevant to the movement of METRO-localized RNAs and germinal granules. On the basis of these findings, we propose here a revised model of germinal granule and localized RNAs delivery to the oocyte vegetal cortex via the METRO pathway.

  14. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  15. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  16. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  17. Mitochondrial diseases: therapeutic approaches.

    PubMed

    DiMauro, Salvatore; Mancuso, Michelangelo

    2007-06-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is

  18. Mitochondrial genetics

    PubMed Central

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. PMID:23704099

  19. [Mitochondrial myopathies].

    PubMed

    Finsterer, J

    2009-11-01

    The organ most frequently affected in mitochondrial disorders is the skeletal muscle (mitochondrial myopathy). Mitochondrial myopathies may be part of syndromic as well as non-syndromic mitochondrial disorders. Involvement of the skeletal muscle may remain subclinical, may manifest as isolated elevation of the creatine-kinase, or as weakness and wasting of one or several muscle groups. The course of mitochondrial myopathies is usually slowly progressive and only rarely rapidly progressive leading to restriction of mobility and requirement of a wheel chair or even muscular respiratory insufficiency. Frequently reported symptoms of mitochondrial myopathies are permanent tiredness, easy fatigability, muscle aching at rest or already after moderate exercise, muscle cramps, muscle stiffness, fasciculations and muscle weakness. The diagnosis is based on the history, clinical neurologic examination, blood chemical investigations, lactate stress test, electromyography, magnetic resonance imaging, magnetic resonance spectroscopy, muscle biopsy, biochemical investigations of the skeletal muscles, and genetic investigations. Only symptomatic therapy is available and includes physiotherapy and orthopedic supportive devices, diet, symptomatic drug therapy (analgetics, cramp-releasing drugs, antioxidants, lactate-lowering drugs, alternative energy sources, co-factors), avoidance of mitochondrion-toxic drugs, surgery (correction of ptosis or orthopedic problems), and invasive or non-invasive mechanical ventilation. General anesthesia needs to be performed in the same way as in patients with susceptibility for malignant hyperthermia. Georg Thieme Verlag KG Stuttgart, New York.

  20. Pretransplant HLA mistyping in diagnostic samples of acute myeloid leukemia patients due to acquired uniparental disomy.

    PubMed

    Dubois, V; Sloan-Béna, F; Cesbron, A; Hepkema, B G; Gagne, K; Gimelli, S; Heim, D; Tichelli, A; Delaunay, J; Drouet, M; Jendly, S; Villard, J; Tiercy, J-M

    2012-09-01

    Although acquired uniparental disomy (aUPD) has been reported in relapse acute myeloid leukemia (AML), pretransplant aUPD involving chromosome 6 is poorly documented. Such events could be of interest because loss of heterozygosity (LOH) resulting from aUPD in leukemic cells may lead to erroneous results if HLA typing for hematopoietic stem cell donor searches is performed on blood samples drawn during blastic crisis. We report here six AML patients whose HLA typing was performed on DNA extracted from peripheral blood obtained at diagnosis. We observed LOH involving the entire HLA region (three patients), HLA-A, B, C (two patients) and HLA-A only (one patient). An array-comparative genomic hybridization showed that copy number was neutral for all loci, thus revealing partial aUPD of chromosome 6p21. When HLA typing was performed on remission blood samples both haplotypes were detected. A 3-4% LOH incidence was estimated in AML patients with high blast counts. Based on DNA mixing experiments, we determined by PCR sequence-specific oligonucleotide hybridization on microbeads arrays a detection threshold for HLA-A, B, DRB1 heterozygosity in blood samples with <80% blasts. Because aUPD may be partial, any homozygous HLA result should be confirmed by a second typing performed on buccal swabs or on blood samples from the patient in remission.

  1. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia.

    PubMed

    Gupta, Manu; Raghavan, Manoj; Gale, Rosemary E; Chelala, Claude; Allen, Christopher; Molloy, Gael; Chaplin, Tracy; Linch, David C; Cazier, Jean-Baptiste; Young, Bryan D

    2008-09-01

    The acquisition of uniparental disomy (aUPD) in acute myeloid leukemia (AML) results in homozygosity for known gene mutations. Uncovering novel regions of aUPD has the potential to identify previously unknown mutational targets. We therefore aimed to develop a map of the regions of aUPD in AML. Here, we have analyzed a large set of diagnostic AML samples (n = 454) from young adults (age: 15-55 years) using genotype arrays. Acquired UPD was found in 17% of the samples with a nonrandom distribution particularly affecting chromosome arms 13q, 11p, and 11q. Novel recurrent regions of aUPD were uncovered at 2p, 17p, 2q, 17q, 1p, and Xq. Overall, aUPDs were observed across all cytogenetic risk groups, although samples with aUPD13q (5.4% of samples) belonged exclusively to the intermediate-risk group as defined by cytogenetics. All cases with a high FLT3-ITD level, measured previously, had aUPD13q covering the FLT3 gene. Significantly, none of the samples with FLT3-ITD(-)/FLT3-TKD(+) mutation exhibited aUPD13q. Of the 119 aUPDs observed, the majority (87%) were due to mitotic recombination while only 13% were due to nondisjunction. This study demonstrates aUPD is a frequent and significant finding in AML and pinpoints regions that may contain novel mutational targets.

  2. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms.

    PubMed

    Grand, Francis H; Hidalgo-Curtis, Claire E; Ernst, Thomas; Zoi, Katerina; Zoi, Christine; McGuire, Carolann; Kreil, Sebastian; Jones, Amy; Score, Joannah; Metzgeroth, Georgia; Oscier, David; Hall, Andrew; Brandts, Christian; Serve, Hubert; Reiter, Andreas; Chase, Andrew J; Cross, Nicholas C P

    2009-06-11

    Recent evidence has demonstrated that acquired uniparental disomy (aUPD) is a novel mechanism by which pathogenetic mutations in cancer may be reduced to homozygosity. To help identify novel mutations in myeloproliferative neoplasms (MPNs), we performed a genome-wide single nucleotide polymorphism (SNP) screen to identify aUPD in 58 patients with atypical chronic myeloid leukemia (aCML; n = 30), JAK2 mutation-negative myelofibrosis (MF; n = 18), or JAK2 mutation-negative polycythemia vera (PV; n = 10). Stretches of homozygous, copy neutral SNP calls greater than 20Mb were seen in 10 (33%) aCML and 1 (6%) MF, but were absent in PV. In total, 7 different chromosomes were involved with 7q and 11q each affected in 10% of aCML cases. CBL mutations were identified in all 3 cases with 11q aUPD and analysis of 574 additional MPNs revealed a total of 27 CBL variants in 26 patients with aCML, myelofibrosis or chronic myelomonocytic leukemia. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. We conclude that acquired, transforming CBL mutations are a novel and widespread pathogenetic abnormality in morphologically related, clinically aggressive MPNs.

  3. Assessing the Clinical Utility of SNP Microarray for Prader-Willi Syndrome due to Uniparental Disomy.

    PubMed

    Santoro, Stephanie L; Hashimoto, Sayaka; McKinney, Aimee; Mihalic Mosher, Theresa; Pyatt, Robert; Reshmi, Shalini C; Astbury, Caroline; Hickey, Scott E

    2017-01-01

    Maternal uniparental disomy (UPD) 15 is one of the molecular causes of Prader-Willi syndrome (PWS), a multisystem disorder which presents with neonatal hypotonia and feeding difficulty. Current diagnostic algorithms differ regarding the use of SNP microarray to detect PWS. We retrospectively examined the frequency with which SNP microarray could identify regions of homozygosity (ROH) in patients with PWS. We determined that 7/12 (58%) patients with previously confirmed PWS by methylation analysis and microsatellite-positive UPD studies had ROH (>10 Mb) by SNP microarray. Additional assessment of 5,000 clinical microarrays, performed from 2013 to present, determined that only a single case of ROH for chromosome 15 was not caused by an imprinting disorder or identity by descent. We observed that ROH for chromosome 15 is rarely incidental and strongly associated with hypotonic infants having features of PWS. Although UPD microsatellite studies remain essential to definitively establish the presence of UPD, SNP microarray has important utility in the timely diagnostic algorithm for PWS. © 2017 S. Karger AG, Basel.

  4. A search for uniparental disomy associated with Cornelia de Lange syndrome and with spontaneous abortion

    SciTech Connect

    Smith, M.J.; Upadhyaya, M.; Clarke, A.

    1994-09-01

    Uniparental disomy (UPD) is the inheritance of a pair of homologous chromosomes from one parent with no corresponding homologue from the other, in an individual with an apparently normal karyotype. Polymorphic DNA markers for the appropriate chromosome will therefore lack alleles from the non-contributing parent. There may be pathological consequences of UPD if an imprinted gene(s) resides on the affected chromosome. A number of human developmental disorders of unknown etiology, including Cornelia de Lange syndrome (CdLS) and spontaneous abortion, may be caused by imprinted genes yet to be discovered. There are a number of reports of chromosome 3q rearrangements associated with CdLS, therefore excluding whole-chromosome 3 UPD as a cause in these patients. We are also examining DNA markers for all autosomes in a series of 42 karyotypically normal spontaneous abortions and their parents. To date, no UPD has been observed for chromosomes 3, 17, 20, 21 and 22. Further work is in progress, both here and using the DNA typing facilities at Geneathon, France.

  5. Comparison of phenotype in uniparental disomy and deletion Prader-Willi syndrome: Sex specific differences

    SciTech Connect

    Mitchell, J.; Langlois, S.; Robinson, W.P.

    1996-10-16

    Prader-Willi syndrome (PWS) results primarily from either a paternal deletion of 15q11-q13 or maternal uniparental disomy (UPD) 15. Birth parameters and clinical presentation of 79 confirmed UPD cases and 43 deletion patients were compared in order to test whether any manifestations differ between the two groups. There were no major clinical differences between the two classes analyzed as a whole, other than the presence of hypopigmentation predominantly in the deletion group. However, there was a significant bias in sex-ratio (P<.001) limited to the UPD group with a predominance (68%) of males. An equal number of males and females was observed in the deletion group. When analyzed by sex, several significant differences between the UPD and deletion groups were observed. Female UPD patients were found to be less severely affected than female deletion patients in terms of length of gavage feeding and a later onset of hyperphagia. Although these traits are likely to be influenced by external factors, they may reflect a milder presentation of female UPD patients which could explain the observed sex bias by causing under-ascertainment of female UPD. Alternatively, there may be an effect of sex on either early trisomy 15 survival or the probability of somatic loss of a chromosome from a trisomic conceptus. 26 refs., 1 tab.

  6. Prader-Willi syndrome and Tay-Sachs disease in association with mixed maternal uniparental isodisomy and heterodisomy 15 in a girl who also had isochromosome Xq.

    PubMed

    Zeesman, Susan; McCready, Elizabeth; Sadikovic, Bekim; Nowaczyk, Małgorzata Jm

    2015-01-01

    Malsegregation of chromosomes during reproduction can result in uniparental disomy when associated with trisomy rescue, monosomy rescue or gamete complementation. Pathogenicity stemming from uniparental disomy in liveborns results from imprinting disorders or autozygosity for autosomal recessive disorders. We report on a girl with Prader-Willi syndrome and Tay-Sachs disease resulting from maternal uniparental disomy of chromosome 15. The child also had an isochromosome Xq. To further characterize the etiology of the aberrant chromosome 15 and the isochromosome Xq, SNP loci from both chromosomes were assessed in the proband and parents, and genome-wide DNA methylation analysis was performed. SNP and DNA methylation analysis confirmed maternal uniparental heterodisomy around the Prader-Willi locus, while the region around the HEXA locus showed maternal uniparental isodisomy. This result is consistent with trisomy rescue of a maternal meiosis l error in a chromosome 15 with two meiotic recombinations. SNP analysis of the X chromosomes is consistent with a maternal origin for the isochromosome.

  7. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape.

    PubMed

    Bekada, Asmahan; Fregel, Rosa; Cabrera, Vicente M; Larruga, José M; Pestano, José; Benhamamouch, Soraya; González, Ana M

    2013-01-01

    North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.

  8. Introducing the Algerian Mitochondrial DNA and Y-Chromosome Profiles into the North African Landscape

    PubMed Central

    Bekada, Asmahan; Fregel, Rosa; Cabrera, Vicente M.; Larruga, José M.; Pestano, José; Benhamamouch, Soraya; González, Ana M.

    2013-01-01

    North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography. PMID:23431392

  9. Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained.

    PubMed

    Scott, Sidney V; Cassidy-Stone, Ann; Meeusen, Shelly L; Nunnari, Jodi

    2003-08-01

    The structure and integrity of the mitochondrial compartment are features essential for it to function efficiently. The maintenance of mitochondrial structure in cells ranging from yeast to humans has been shown to require both ongoing fission and fusion. Recent characterization of many of the molecular components that direct mitochondrial fission and fusion events have led to a more complete understanding of how these processes take place. Further, mitochondrial fragmentation observed when cells undergo apoptosis requires mitochondrial fission, underlying the importance of mitochondrial dynamics in cellular homeostasis. Mitochondrial structure also impacts mitochondrial DNA inheritance. Recent studies suggest that faithful transmission of mitochondrial DNA to daughter cells might require a mitochondrial membrane tethering apparatus.

  10. Mitochondrial dynamics in peripheral neuropathies.

    PubMed

    Sajic, Marija

    2014-08-01

    Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.

  11. Human chorionic gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion.

    PubMed

    Yuri, Takashi; Kinoshita, Yuichi; Emoto, Yuko; Yoshizawa, Katsuhiko; Tsubura, Airo

    2014-03-01

    The tumor-suppressive effects of human chorionic gonadotropin (hCG) against human breast cancer cells were examined. In cell viability assays, hCG inhibited the growth of three human breast cancer cell lines (estrogen receptor (ER)-positive KPL-1 and MCF-7, and ER-negative MKL-F cells), and the growth inhibition activity of hCG was most pronounced against KPL-1 cells (luteinizing hormone/chorionic gonadotropin receptor (LHCGR)-positive and luminal-A subtype). In hCG-treated KPL-1 cells, immunoblotting analysis revealed the expression of tumor suppressor protein p53 peaking at 12 h following treatment, followed by cleavage of caspase-9 and caspase-3 at 24 h and 48 h, respectively. KPL-1-transplanted athymic mice were divided into 3 groups: a sham-treated group that received an inoculation of KPL-1 cells at 6 weeks of age followed by daily intraperitoneal (i.p.) injection of saline; an in vitro hCG-treated KPL-1 group that received an inoculation of KPL-1 cells pre-treated with 100 IU/ml hCG in vitro for 48 h at 6 weeks of age, followed by daily i.p. injection of saline; and an in vivo hCG-treated group that received an KPL-1 cell inoculation at 6 weeks of age, followed by daily i.p. injection of 100 IU hCG. The daily injections of saline or hCG continued until the end of the experiment when mice reached 11 weeks of age. KPL-1 tumor growth was retarded in in vitro and in vivo hCG-treated mice compared to sham-treated controls, and the final tumor volume and tumor weight tended to be suppressed in the in vitro hCG-treated group and were significantly suppressed in the in vivo hCG-treated group. In vivo 100-IU hCG injections for 5 weeks elevated serum estradiol levels (35.7 vs. 23.5 pg/ml); thus, the mechanisms of hCG action may be directly coordinated via the p53-mediated mitochondrial apoptotic pathway and indirectly through ovarian steroid secretion that elevates estrogen levels. It is thus concluded that hCG may be an attractive agent for treating human breast

  12. Plasma mitochondrial DNA levels are inversely associated with HIV-RNA levels and directly with CD4 counts: potential role as a biomarker of HIV replication.

    PubMed

    Pernas, Berta; Rego-Pérez, Ignacio; Tabernilla, Andrés; Balboa, Vanesa; Relaño, Sara; Grandal, Marta; Crespo, Manuel; Mena, Álvaro; Castro-Iglesias, Ángeles; Blanco, Francisco J; Poveda, Eva

    2017-08-31

    To evaluate plasma mitochondrial DNA (mtDNA) levels among HIV-infected patients and its potential role as a biomarker of residual viral replication. HIV-infected patients on follow-up at a reference hospital in north-west Spain were selected. DNA was isolated from plasma samples and mtDNA levels were assessed using a quantitative real-time PCR assay. HIV-RNA levels and CD4+ cell counts were evaluated in the same blood samples used for plasma mtDNA quantification. Epidemiological and clinical variables were included for the analysis. A total of 235 HIV-infected patients were included. Mean plasma mtDNA levels were 217 ± 656 copies/μL for naive (31.9%) and 364 ± 939 copies/μL for HIV-infected patients receiving ART and with suppressed viraemia ( P  =   0.043). Among the latter, mean plasma mtDNA levels were 149 ± 440 copies/μL for those with low-level viraemia (LLV; HIV-RNA 20-200 copies/mL), 265 ± 723 copies/μL for those with detected-not-quantified (DNQ) viraemia (HIV-RNA <20 copies/mL) and 644 ± 1310 copies/μL for those with not-detected (ND) viraemia. Of note, a linear trend ( P  =   0.006) was observed among virologically suppressed (LLV, DNQ and ND) patients. ND patients had higher mtDNA levels compared with LLV patients ( P  =   0.057). Moreover, mtDNA levels were inversely associated with HIV-RNA levels (Spearman's rho -0.191, P  =   0.003) and directly associated with CD4+ counts (Spearman's rho 0.131, P  =   0.046). Increased plasma mtDNA levels are associated with lower HIV-RNA levels and higher CD4+ cell counts. Among ART-suppressed patients, mtDNA levels were significantly higher in those with complete virological suppression (ND) than in those with LLV. These data suggest that plasma mtDNA levels might serve as a biomarker of residual HIV replication.

  13. Disposable Amperometric Polymerase Chain Reaction-Free Biosensor for Direct Detection of Adulteration with Horsemeat in Raw Lysates Targeting Mitochondrial DNA.

    PubMed

    Ruiz-Valdepeñas Montiel, Víctor; Gutiérrez, María L; Torrente-Rodríguez, Rebeca M; Povedano, Eloy; Vargas, Eva; Reviejo, Á Julio; Linacero, Rosario; Gallego, Francisco J; Campuzano, Susana; Pingarrón, José M

    2017-09-05

    A novel electrochemical disposable nucleic acid biosensor for simple, rapid, and specific detection of adulterations with horsemeat is reported in this work. The biosensing platform involves immobilization of a 40-mer RNA probe specific for a characteristic fragment of the mitochondrial DNA D-loop region of horse onto the surface of magnetic microcarriers. In addition, signal amplification was accomplished by using a commercial antibody specific to RNA/DNA duplexes and a bacterial protein conjugated with a horseradish peroxidase homopolymer (ProtA-HRP40). Amperometric detection at -0.20 V vs Ag pseudoreference electrode was carried out at disposable screen-printed carbon electrodes. The methodology achieved a limit of detection (LOD) of 0.12 pM (3.0 attomoles) for the synthetic target and showed ability to discriminate between raw beef and horsemeat using just 50 ng of total extracted mitochondrial DNA (∼16 660 bp in length) without previous fragmentation. The biosensor also allowed discrimination between 100% raw beef and beef meat samples spiked with only 0.5% (w/w) horse meat (levels established by the European Commission) using raw mitochondrial lysates without DNA extraction or polymerase chain reaction (PCR) amplification in just 75 min. These interesting features made the developed methodology an extremely interesting tool for beef meat screening, and it can be easily adapted to the determination of other meat adulterations by selection of the appropriate specific fragments of the mitochondrial DNA region and capture probes.

  14. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  15. Novel targets for mitochondrial medicine

    PubMed Central

    Wang, Wang; Karamanlidis, Georgios; Tian, Rong

    2016-01-01

    Mitochondria—classically viewed as the powerhouses of the cell—have taken center stage in disease pathogenesis and resolution. Mitochondrial dysfunction, which originates from primary defects within the organelle or is induced by environmental stresses, plays a critical role in human disease. Despite their central role in human health and disease, there are no approved drugs that directly target mitochondria. We present possible new druggable targets in mitochondrial biology, including protein modification, calcium ion (Ca2+) transport, and dynamics, as we move into a new era of mitochondrial medicine. PMID:26888432

  16. Uniparental Disomy in Somatic Mosaicism 45,X/46,XY/46,XX Associated with Ambiguous Genitalia.

    PubMed

    Serra, Alexandre; Denzer, Friederike; Hiort, Olaf; Barth, Thomas F; Henne-Bruns, Doris; Barbi, Gotthold; Rettenberger, Günther; Wabitsch, Martin; Just, Walter; Leriche, Clothilde

    2015-01-01

    Disorders of sex development (DSD) affect the development of chromosomal, gonadal and/or anatomical sex. We analyzed a patient with ambiguous genitalia aiming to correlate the genetic findings with the phenotype. Blood and tissue samples from a male patient with penoscrotal hypospadias were analyzed by immunohistochemistry, karyotyping and FISH. DNA was sequenced for the AR, SRY and DHH genes, and further 26 loci in different sex chromosomes were analyzed by MLPA. The gonosomal origin was evaluated by simple tandem repeat (STR) analysis and SNP array. Histopathology revealed a streak gonad, a fallopian tube and a rudimentary uterus, positive for placental alkaline phosphatase, cytokeratin-7 and c-kit, and negative for estrogen, androgen and progesterone receptors, alpha-inhibin, alpha-1-fetoprotein, β-hCG, and oct-4. Karyotyping showed a 45,X/46,XY mosaicism, yet FISH showed both 46,XX/46,XY mosaicism (gonad and urethral plate), 46,XX (uterus and tube) and 46,XY karyotypes (rudimentary testicular tissue). DNA sequencing revealed intact sequences in SOX9, WNT4, NR0B1, NR5A1, CYP21A2, SRY, AR, and DHH. STR analysis showed only one maternal allele for all X chromosome markers (uniparental isodisomy, UPD), with a weaker SRY signal and a 4:1 ratio in the X:Y signal. Our findings suggest that the observed complex DSD phenotype is the result of somatic gonosomal mosaicism and UPD despite a normal blood karyotype. The presence of UPD warrants adequate genetic counseling for the family and frequent, lifelong, preventive follow-up controls in the patient.

  17. Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus

    PubMed Central

    Chase, A; Leung, W; Tapper, W; Jones, A V; Knoops, L; Rasi, C; Forsberg, L A; Guglielmelli, P; Zoi, K; Hall, V; Chiecchio, L; Eder-Azanza, L; Bryant, C; Lannfelt, L; Docherty, L; White, H E; Score, J; Mackay, D J G; Vannucchi, A M; Dumanski, J P; Cross, N C P

    2015-01-01

    Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n=7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P<0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r=0.76; P=0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n=11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change. PMID:26114957

  18. Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus.

    PubMed

    Chase, A; Leung, W; Tapper, W; Jones, A V; Knoops, L; Rasi, C; Forsberg, L A; Guglielmelli, P; Zoi, K; Hall, V; Chiecchio, L; Eder-Azanza, L; Bryant, C; Lannfelt, L; Docherty, L; White, H E; Score, J; Mackay, D J G; Vannucchi, A M; Dumanski, J P; Cross, N C P

    2015-10-01

    Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n=7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P<0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r=0.76; P=0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n=11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change.

  19. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

    PubMed Central

    Conlin, Laura K.; Thiel, Brian D.; Bonnemann, Carsten G.; Medne, Livija; Ernst, Linda M.; Zackai, Elaine H.; Deardorff, Matthew A.; Krantz, Ian D.; Hakonarson, Hakon; Spinner, Nancy B.

    2010-01-01

    Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms. PMID:20053666

  20. Maternal uniparental disomy for chromosome 14 by secondary nondisjunction of a initial trisomy

    SciTech Connect

    Morichon-Delvallez, N.; Segues, B.; Pinson, M.P.

    1994-09-01

    Three cases of maternal uniparental disomy for chromosome 14 (UD 14) have been described in the literature. In all three cases, the UD was found in carriers of Robertsonian translocations (13q14q or 14q and 14q). Here, we report on a new case of UD for chromosome 14 in a fetus in which the UD arose presumably by secondary nondisjunction of a trisomy 14. Prenatal diagnosis was performed on a 40-year-old woman by trans-abdominal chorionic villi sampling. Cytogenetic analysis showed a confined placental mosaicism (CPM) for trisomy 14 (100% of cells trisomic in short term preparations and 20% trisomic in cultured villi). The ultrasound examination was normal and after counselling the parents agreed to continue the pregnancy. Amniocentesis was performed and a normal 46,XX karyotype was found in the 70 cells examined. Molecular analysis of the parental origin of the fetus`s chromosome 14 was performed using microsatellite DNA markers evenly distributed on chromosome 14. Molecular results suggested a maternal heterodisomy. Another ultrasound examination was normal and after genetic counselling based on the small number of cases reported in the literature, the parents decided to keep the pregnancy. At birth, the clinical examination was normal. In conclusion, among the different mechanisms leading to UD, the correction of an initial trisomy by secondary nondisjunction might also be an important one. CPM is observed in about 2% of CVS studies and theoretically 1/3 of corrected trisomies could result in UD for the chromosomal pair that was originally trisomic. In order to provide adequate genetic counselling in these cases, it will be important to undergo molecular studies in the instances of confined placental mosaicism.

  1. Phenotypic spectrum in uniparental disomy: Low incidence or lack of study?

    PubMed Central

    Bhatt, Arpan D.; Liehr, Thomas; Bakshi, Sonal R.

    2013-01-01

    CONTEXT: Alterations in the human chromosomal complement are expressed phenotypically ranging from (i) normal, via (ii) frequent fetal loss in otherwise normal person, to (iii) sub-clinical to severe mental retardation and dysmorphism in live births. A subtle and microscopically undetectable chromosomal alteration is uniparental disomy (UPD), which is known to be associated with distinct birth defects as per the chromosome involved and parental origin. UPD can be evident due to imprinted genes and/or activation of recessive mutations. AIMS: The present study comprises of data mining of published UPD cases with a focus on associated phenotypes. The goal was to identify non-random and recurrent associations between UPD and various genetic conditions, which can possibly indicate the presence of new imprinted genes. SETTINGS AND DESIGN: Data mining was carried out using the homepage “http://www.fish.uniklinikum-jena.de/UPD.html.”, an online catalog of published cases with UPD. MATERIALS AND METHODS: The UPD cases having normal karyotype and with or without clinical findings were selected to analyze the associated phenotypes for each chromosome, maternal or paternal involved in UPD. RESULTS: Our results revealed many genetic conditions (other than the known UPD syndromes) to be associated with UPD. Even in cases of bad obstetric history as well as normal individuals chance detection of UPD has been reported. CONCLUSIONS: The role of UPD in human genetic disorders needs to be studied by involving larger cohorts of individuals with birth defects as well as normal population. The genetic conditions were scrutinized in terms of inheritance patterns; majority of these were autosomal recessive indicating the role of UPD as an underlying mechanism. PMID:24339543

  2. Trisomy 15 mosaicism and uniparental disomy (UPD) in a liveborn infant

    SciTech Connect

    Milunsky, J.M. |; Wyandt, H.E.; Amos, J.A.

    1994-09-01

    We describe a liveborn infant with UPD in association with trisomy 15 mosaicism. Third trimester amniocentesis was performed for suspected IUGR. Results revealed 46,XX/47,XX,+15. The infant initially had respiratory distress and fed poorly. Symmetrical growth retardation, craniofacial dysmorphism, excess nuchal folds, a heart murmur, hypermobile joints, minor limb abnormalities, absent spontaneous movement and an abnormal cry were noted. Further study showed complex heart defects, including VSD and PDA, a left choroid plexus cyst, 13 ribs bilaterally, abnormal optic discs, abnormal visual evoked potentials and abnormal auditory brain stem responses. The infant died at 6 weeks of life from cardio-respiratory complications. Blood chromosomes were normal, 46,XX in 100 cells. Parental blood chromosomes were normal. Skin biopsy revealed 46,XX/47,XX,+15 in 40/50 (80%) cells as did autopsy lung tissue. Molecular analysis of the infant`s blood revealed maternal uniparental heterodisomy for chromosome 15 in the 46,XX cell line. Microsatellite analysis demonstrated that the extra chromosome originated from a maternal meiosis I nondisjunction. To our knowledge, this is the first liveborn infant with mosaic trisomy 15 and UPD in the diploid cells. Trisomy 15, heretofore, has been regarded as nonviable, even in mosaic form. While maternal UPD is associated with the Prader-Willi syndrome phenotype, mosaicism for trisomy 15 has been reported only when confined to the placenta. UPD in this case generally complicated prediction of the phenotype and raises the question whether all cases with UPD 15 should have more than one tissue studied to determine undetected trisomy 15.

  3. Mosaic Uniparental Disomies and Aneuploidies as Large Structural Variants of the Human Genome

    PubMed Central

    Rodríguez-Santiago, Benjamín; Malats, Núria; Rothman, Nathaniel; Armengol, Lluís; Garcia-Closas, Montse; Kogevinas, Manolis; Villa, Olaya; Hutchinson, Amy; Earl, Julie; Marenne, Gaëlle; Jacobs, Kevin; Rico, Daniel; Tardón, Adonina; Carrato, Alfredo; Thomas, Gilles; Valencia, Alfonso; Silverman, Debra; Real, Francisco X.; Chanock, Stephen J.; Pérez-Jurado, Luis A.

    2010-01-01

    Mosaicism is defined as the coexistence of cells with different genetic composition within an individual, caused by postzygotic somatic mutation. Although somatic mosaicism for chromosomal abnormalities is a well-established cause of developmental and somatic disorders and has also been detected in different tissues, its frequency and extent in the adult normal population are still unknown. We provide here a genome-wide survey of mosaic genomic variation obtained by analyzing Illumina 1M SNP array data from blood or buccal DNA samples of 1991 adult individuals from the Spanish Bladder Cancer/EPICURO genome-wide association study. We found mosaic abnormalities in autosomes in 1.7% of samples, including 23 segmental uniparental disomies, 8 complete trisomies, and 11 large (1.5–37 Mb) copy-number variants. Alterations were observed across the different autosomes with recurrent events in chromosomes 9 and 20. No case-control differences were found in the frequency of events or the percentage of cells affected, thus indicating that most rearrangements found are not central to the development of bladder cancer. However, five out of six events tested were detected in both blood and bladder tissue from the same individual, indicating an early developmental origin. The high cellular frequency of the anomalies detected and their presence in normal adult individuals suggest that this type of mosaicism is a widespread phenomenon in the human genome. Somatic mosaicism should be considered in the expanding repertoire of inter- and intraindividual genetic variation, some of which may cause somatic human diseases but also contribute to modifying inherited disorders and/or late-onset multifactorial traits. PMID:20598279

  4. Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7

    PubMed Central

    Hannula-Jouppi, Katariina; Muurinen, Mari; Lipsanen-Nyman, Marita; Reinius, Lovisa E; Ezer, Sini; Greco, Dario; Kere, Juha

    2014-01-01

    DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites. PMID:24247273

  5. Morquio A syndrome due to maternal uniparental isodisomy of the telomeric end of chromosome 16.

    PubMed

    Catarzi, S; Giunti, L; Papadia, F; Gabrielli, O; Guerrini, R; Donati, M A; Genuardi, M; Morrone, A

    2012-03-01

    Morquio A syndrome (MPS IVA) is a recessive lysosomal storage disorder (LSD) caused by mutations in the GALNS gene leading to the deficiency of lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Patients show a broad spectrum of phenotypes ranging from classical severe type to mild forms. Classical forms are characterized by severe bone dysplasia and usually normal intelligence. So far, more than 170 unique mutations have been identified in the GALNS gene of MPS IVA patients. We report on a Morquio A patient with a classical phenotype who was found to be homozygous for a missense mutation (c.236 G>A; p.Cys79Tyr) in the GALNS gene. This alteration affects the highly conserved p.Cys79 that is transformed into formylglycine, the catalytic residue of the active site. The mutation was present in the proband's mother, but not in the father, whose paternity was confirmed by microsatellite analysis. In order to test the hypothesis of maternal uniparental disomy (UPD), we investigated the segregation of sixteen microsatellite markers from chromosome 16. The results showed a condition of maternal UPD due to an error in meiosis I. Maternal isodisomy of the 16q24 region led to homozygosity for the GALNS mutant allele, causing the patient's disease. These findings allow to add for the first time the LSD Morquio A syndrome to the list of conditions that can be caused by UPD. The possibility of UPD is relevant when giving genetic counseling to couples since the recurrent risk in future pregnancies is dramatically reduced.

  6. Uniparental disomy of chromosome 16 in offsprings of Familial Mediterranean Fever (FMF) patients treated with colchicine

    SciTech Connect

    Korenstein, A.; Avivi, L.; Ravia, Y.

    1994-09-01

    Uniparental disomy (UPD), an altered mode of Mendelian inheritance, may reveal expression of recessive alleles due to the loss of heterozygosity, as well as imprinted genes. The mechanism causing UPD can be best elucidated in offsprings of individuals at high risk for chromosomal non-disjunction. Such individuals are Familial Mediterranean Fever (FMF) patients, who are routinely treated with the antimitotic agent colchicine, and, therefore, are expected to be at an increased risk for aneuploidy. A dominant mode of inheritance was observed in four FMF offsprings having one parent exhibiting the FMF phenotype (homozygote recessive) while the other was free of the mutant allele (as assumed from his ethnic background). Out of these, two exhibited UPD of chromosome 16, which carries the FMF gene, as judged from four different RFLP markers along this chromosome. Since in both case the UPD was of maternal origin, it is suggested that the colchicine-treated FMF mothers contributed two doses of chromosome 16, presumably due to meiotic non-disjunction, followed by a somatic loss of the paternal chromosome 16 in the embryo. The somatic chromosome loss is also assumed to be caused by the antimitotic drug since the mother continued to receive it during pregnancy. Whether the UPD arises from the colchicine treatment, from the high tendency of chromosome 16 to maternal non-disjunction or from both remains to be elucidated. Our results highlighted the importance of taking UPD into account when counseling individuals who are either treated with antimitotic agents or are carriers of recessive mutant alleles which are mapped to chromosomes prone to aneuploidy.

  7. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals.

    PubMed

    Barr, Camille M; Neiman, Maurine; Taylor, Douglas R

    2005-10-01

    It is generally assumed that mitochondrial genomes are uniparentally transmitted, homoplasmic and nonrecombining. However, these assumptions draw largely from early studies on animal mitochondrial DNA (mtDNA). In this review, we show that plants, animals and fungi are all characterized by episodes of biparental inheritance, recombination among genetically distinct partners, and selfish elements within the mitochondrial genome, but that the extent of these phenomena may vary substantially across taxa. We argue that occasional biparental mitochondrial transmission may allow organisms to achieve the best of both worlds by facilitating mutational clearance but continuing to restrict the spread of selfish genetic elements. We also show that methodological biases and disproportionately allocated study effort are likely to have influenced current estimates of the extent of biparental inheritance, heteroplasmy and recombination in mitochondrial genomes from different taxa. Despite these complications, there do seem to be discernible similarities and differences in transmission dynamics and likelihood of recombination of mtDNA in plant, animal and fungal taxa that should provide an excellent opportunity for comparative investigation of the evolution of mitochondrial genome dynamics.

  8. The foundation of extranuclear inheritance: plastid and mitochondrial genetics.

    PubMed

    Hagemann, Rudolf

    2010-03-01

    In 1909 two papers by Correns and by Baur published in volume 1 of Zeitschrift für induktive Abstammungs- und Vererbungslehre (now Molecular Genetics and Genomics) reported on the non-Mendelian inheritance of chlorophyll deficiencies. These papers, reporting the very first cases of extranuclear inheritance, laid the foundation for a new field: non-Mendelian or extranuclear genetics. Correns observed a purely maternal inheritance (in Mirabilis), whereas Baur found a biparental inheritance (in Pelargonium). Correns suspected the non-Mendelian factors in the cytoplasm, while Baur believed that the plastids carry these extranuclear factors. In the following years, Baur's hypothesis was proved to be correct. Baur subsequently developed the theory of plastid inheritance. In many genera the plastids are transmitted only uniparentally by the mother, while in a few genera there is a biparental plastid inheritance. Commonly there is random sorting of plastids during ontogenetic development. Renner and Schwemmle as well as geneticists in other countries added additional details to this theory. Pioneering studies on mitochondrial inheritance in yeast started in 1949 in the group of Ephrussi and Slonimski; respiration-deficient cells (petites in yeast, poky in Neurospora) were demonstrated to be due to mitochondrial mutations. Electron microscopical and biochemical studies (1962-1964) showed that plastids and mitochondria contain organelle-specific DNA molecules. These findings laid the molecular basis for the two branches of extranuclear inheritance: plastid and mitochondrial genetics.

  9. Melatonin mitigates mitochondrial malfunction.

    PubMed

    León, Josefa; Acuña-Castroviejo, Darío; Escames, Germane; Tan, Dun-Xian; Reiter, Russel J

    2005-01-01

    Melatonin, or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinson's, Alzheimer's, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen-based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.

  10. Congenital afibrinogenaemia caused by uniparental isodisomy of chromosome 4 containing a novel 15-kb deletion involving fibrinogen Aalpha-chain gene.

    PubMed

    Spena, Silvia; Duga, Stefano; Asselta, Rosanna; Peyvandi, Flora; Mahasandana, Chularatana; Malcovati, Massimo; Tenchini, Maria Luisa

    2004-11-01

    Among rare inherited deficiencies of coagulation factors, congenital afibrinogenaemia is characterised by the lack of fibrinogen in plasma. In the last few years, several genetic defects underlying afibrinogenaemia (mostly point mutations) have been described in the fibrinogen gene cluster. In this study, the molecular basis responsible for afibrinogenaemia in a Thai proband was defined. Point mutation screening was accomplished by directly sequencing the three fibrinogen genes. The impossibility to amplify fibrinogen Aalpha-chain gene (FGA) exons 5 and 6 suggested the presence of a homozygous deletion. A specific long-range PCR assay enabled the identification of a novel 15-kb deletion, representing the largest afibrinogenaemia-causing deletion described so far. Direct sequencing of the deletion junction allowed mapping of the breakpoints in FGA intron 4 and in the intergenic region between Aalpha- and Bbeta-chain genes. Since the mutation was inherited only from the mother and nonpaternity was ruled out, a maternal uniparental disomy (UPD) was hypothesised. UPD test, carried out with markers covering the whole chromosome 4, revealed that maternal isodisomy was responsible for homozygosity of the 15-kb deletion in the proband. The apparently normal phenotype of the proband, except for afibrinogenaemia, suggests that UPD for chromosome 4 is clinically silent. This represents the first case of a documented complete isodisomy of chromosome 4 causing the phenotypic expression of a recessive disorder. In silico analyses of the regions surrounding the breakpoints suggested that the 15-kb deletion might have originated from an inappropriate repair of a double-strand break by the nonhomologous end joining mechanism.

  11. Direct mitochondrial dysfunction precedes reactive oxygen species production in amiodarone-induced toxicity in human peripheral lung epithelial HPL1A cells

    SciTech Connect

    Nicolescu, Adrian C. Ji, Yanbin; Comeau, Jeannette L.; Hill, Bruce C.; Takahashi, Takashi; Brien, James F.; Racz, William J.; Massey, Thomas E.

    2008-03-15

    Amiodarone (AM), a drug used in the treatment of cardiac dysrrhythmias, can produce severe pulmonary adverse effects, including fibrosis. Although the pathogenesis of AM-induced pulmonary toxicity (AIPT) is not clearly understood, several hypotheses have been advanced, including increased inflammatory mediator release, mitochondrial dysfunction, and free-radical formation. The hypothesis that AM induces formation of reactive oxygen species (ROS) was tested in an in vitro model relevant for AIPT. Human peripheral lung epithelial HPL1A cells, as surrogates for target cells in AIPT, were susceptible to the toxicity of AM and N-desethylamiodarone (DEA), a major AM metabolite. Longer incubations ({>=} 6 h) of HPL1A cells with 100 {mu}M AM significantly increased ROS formation. In contrast, shorter incubations (2 h) of HPL1A cells with AM resulted in mitochondrial dysfunction and cytoplasmic cytochrome c translocation. Preexposure of HPL1A cells to ubiquinone and {alpha}-tocopherol was more effective than that with Trolox C (registered) or 5,5-dimethylpyrolidine N-oxide (DMPO) at preventing AM cytotoxicity. These data suggest that mitochondrial dysfunction, rather than ROS overproduction, represents an early event in AM-induced toxicity in peripheral lung epithelial cells that may be relevant for triggering AIPT, and antioxidants that target mitochondria may potentially have beneficial effects in AIPT.

  12. Whole exome sequencing in congenital pain insensitivity identifies a novel causative intronic NTRK1-mutation due to uniparental disomy.

    PubMed

    Kurth, Ingo; Baumgartner, Manuela; Schabhüttl, Maria; Tomni, Cecilia; Windhager, Reinhard; Strom, Tim M; Wieland, Thomas; Gremel, Kurt; Auer-Grumbach, Michaela

    2016-09-01

    Congenital insensitivity to pain and anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN IV), is characterized by recurrent episodes of unexplained high fever, loss of pain perception and temperature sensation, absent sweating, repeated traumatic and thermal injuries, and mild mental retardation. After exclusion of obviously pathogenic mutations in NTRK1, the most common cause of CIPA, whole exome sequencing (WES) was carried out in a CIPA patient with unrelated parents. No mutations in known HSAN genes were identified. However, filtering for genes carrying two rare sequence variations detected 13 homozygous single nucleotide variants (SNV), all being located on chromosome 1. Further analysis strongly suggested that this finding might be best explained by uniparental disomy of chromosome 1. Because NTRK1 is also located on chromosome 1, we re-evaluated WES data and detected a novel intronic sequence variation at position c.2188-12 C>A, homozygously because of uniparental disomy. Subsequent analysis of NTRK1 transcripts in peripheral blood cells of the patient revealed an influence of the variant on mRNA splicing. The C>A transversion generated a novel splice-site, which led to the incorporation of 10 intronic bases into the NTRK1 mRNA and consequently to a non-functional gene product. © 2016 Wiley Periodicals, Inc.

  13. Coalescence with Background and Balancing Selection in Systems with Bi- and Uniparental Reproduction: Contrasting Partial Asexuality and Selfing

    PubMed Central

    Agrawal, Aneil F.; Hartfield, Matthew

    2016-01-01

    Uniparental reproduction in diploids, via asexual reproduction or selfing, reduces the independence with which separate loci are transmitted across generations. This is expected to increase the extent to which a neutral marker is affected by selection elsewhere in the genome. Such effects have previously been quantified in coalescent models involving selfing. Here we examine the effects of background selection and balancing selection in diploids capable of both sexual and asexual reproduction (i.e., partial asexuality). We find that the effect of background selection on reducing coalescent time (and effective population size) can be orders of magnitude greater when rates of sex are low than when sex is common. This is because asexuality enhances the effects of background selection through both a recombination effect and a segregation effect. We show that there are several reasons that the strength of background selection differs between systems with partial asexuality and those with comparable levels of uniparental reproduction via selfing. Expectations for reductions in Ne via background selection have been verified using stochastic simulations. In contrast to background selection, balancing selection increases the coalescence time for a linked neutral site. With partial asexuality, the effect of balancing selection is somewhat dependent upon the mode of selection (e.g., heterozygote advantage vs. negative frequency-dependent selection) in a manner that does not apply to selfing. This is because the frequency of heterozygotes, which are required for recombination onto alternative genetic backgrounds, is more dependent on the pattern of selection with partial asexuality than with selfing. PMID:26584901

  14. Altered Mating-Type Identity in the Fungus Podospora Anserina Leads to Selfish Nuclei, Uniparental Progeny, and Haploid Meiosis

    PubMed Central

    Zickler, D.; Arnaise, S.; Coppin, E.; Debuchy, R.; Picard, M.

    1995-01-01

    In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation. PMID:7498731

  15. The dual origin of Tati-speakers from Dagestan as written in the genealogy of uniparental variants.

    PubMed

    Bertoncini, Stefania; Bulayeva, Kazima; Ferri, Gianmarco; Pagani, Luca; Caciagli, Laura; Taglioli, Luca; Semyonov, Igor; Bulayev, Oleg; Paoli, Giorgio; Tofanelli, Sergio

    2012-01-01

    Tat language is classified in an Iranian subbranch of the Indo-European family. It is spoken in the Caucasus and in the West Caspian region by populations with heterogeneous cultural traditions and religion whose ancestry is unknown. The aim of this study is to get a first insight about the genetic history of this peculiar linguistic group. We investigated the uniparental gene pools, defined by NRY and mtDNA high-resolution markers, in two Tati-speaking communities from Dagestan: Mountain Jews or Juhur, who speak the Judeo-Tat dialect, and the Tats, who speak the Muslim-Tat dialect. The samples have been collected in monoethnic rural villages and selected on the basis of genealogical relationships. A novel approach aimed at resolving cryptic cases in the recent history of human populations, which combines the properties of uniparental genetic markers with the potential of "forward-in-time" computer simulations, is presented. Judeo-Tats emerged as a group with tight matrilineal genetic legacy who separated early from other Jewish communities. Tats exhibited genetic signals of a much longer in situ evolution, which appear as substantially unlinked with other Indo-Iranian enclaves in the Caucasus. The independent demographic histories of the two samples, with mutually reversed profiles at paternally and maternally transmitted genetic systems, suggest that geographic proximity and linguistic assimilation of Tati-speakers from Dagestan do not reflect a common ancestry. Copyright © 2012 Wiley Periodicals, Inc.

  16. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system.

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Guerra, Davide; Chang, Peter L; Breton, Sophie; Nuzhdin, Sergey V; Passamonti, Marco

    2013-01-01

    Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.

  17. Structure, Transcription, and Variability of Metazoan Mitochondrial Genome: Perspectives from an Unusual Mitochondrial Inheritance System

    PubMed Central

    Ghiselli, Fabrizio; Milani, Liliana; Guerra, Davide; Chang, Peter L.; Breton, Sophie; Nuzhdin, Sergey V.; Passamonti, Marco

    2013-01-01

    Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function. PMID:23882128

  18. The Mitochondrial Genome of Arctica islandica; Phylogeny and Variation

    PubMed Central

    Glöckner, Gernot; Heinze, Ivonne; Platzer, Matthias; Held, Christoph; Abele, Doris

    2013-01-01

    Arctica islandica is known as the longest-lived non-colonial metazoan species on earth and is therefore increasingly being investigated as a new model in aging research. As the mitochondrial genome is associated with the process of aging in many species and bivalves are known to possess a peculiar mechanism of mitochondrial genome inheritance including doubly uniparental inheritance (DUI), we aimed to assess the genomic variability of the A. islandica mitochondrial DNA (mtDNA). We sequenced the complete mitochondrial genomes of A. islandica specimens from three different sites in the Western Palaearctic (Iceland, North Sea, Baltic Sea). We found the A. islandica mtDNA to fall within the normal size range (18 kb) and exhibit similar coding capacity as other animal mtDNAs. The concatenated protein sequences of all currently known Veneroidea mtDNAs were used to robustly place A. islandica in a phylogenetic framework. Analysis of the observed single nucleotide polymorphism (SNP) patterns on further specimen revealed two prevailing haplotypes. Populations in the Baltic and the North Sea are very homogenous, whereas the Icelandic population, from which exceptionally old individuals have been collected, is the most diverse one. Homogeneity in Baltic and North Sea populations point to either stronger environmental constraints or more recent colonization of the habitat. Our analysis lays the foundation for further studies on A. islandica population structures, age research with this organism, and for phylogenetic studies. Accessions for the mitochondrial genome sequences: KC197241 Iceland; KF363951 Baltic Sea; KF363952 North Sea; KF465708 to KF465758 individual amplified regions from different speciemen PMID:24312674

  19. Plant mitochondrial carriers: an overview.

    PubMed

    Laloi, M

    1999-12-01

    In the two last decades, biochemical studies using mitochondrial swelling experiments or direct solute uptake in isolated mitochondria have lead to the identification of different transport systems at the level of the plant mitochondrial inner membrane. Although most of them have been found to have similar features to those identified in animal mitochondria, some differences have been observed between plant and animal transporters. More recently, molecular biology studies have revealed that most of the mitochondrial exchanges are performed by nuclear encoded proteins, which form a superfamily. Members of this family have been reported in animals, yeast as well as plants. This review attempts to give an overview of the present knowledge concerning the biochemical and molecular characterisation of plant members of the mitochondrial carrier family and, when possible, a comparison with carriers from other organisms.

  20. Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer.

    PubMed

    Tuna, Musaffe; Smid, Marcel; Martens, John W M; Foekens, John A

    2012-02-01

    Many studies have examined DNA copy number changes or gene expression profiling and their association with clinical outcomes in breast cancer. However, until now no study has investigated whether acquired uniparental disomy (aUPD), in which both chromosomes in a pair are derived from the same parent, may have an association with clinical outcome including initiation and recurrence of breast cancer. In this study, we used high-density SNP and expression microarrays data from primary tumors of 313 lymph node-negative breast cancer patients who had not received adjuvant systemic therapy to evaluate the association of aUPD with metastasis-free survival (MFS) and overall survival (OS). In 55.9% (175/313) of the tumors, we defined aUPD, which was most frequent in the regions at chr17q (30.3%) and chr13q (19.4%). In Cox univariate regression analysis including all patients, aUPD at four regions at chr17q, ranging in size from 2.9 to 4.0 Mb, were associated with a poor OS. Only aUPD at one region, region B, on chr17q was associated with a poor MFS. Similarly, aUPD at two regions, A and B, on chr13q, with sizes of 3.5 and 3.1 Mb, were associated with a poor OS, but not with MFS. In ER-subgroup analyses, regions B and D at 17q were associated with poor MFS and OS in ER-negative patients. Various differentially expressed genes within the identified aUPD regions at chr17q were associated with MFS and OS in all patients (PPM1D, C17orf71, and TRIM37) and/or in the ER-negative patients (PPM1D, PPM1E, and SLCA3R1). We thus conclude that aUPD is a frequent event in breast cancer and that aUPD at specific regions in the genome has implications in this disease.

  1. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    SciTech Connect

    Zhao, Lantao; Li, Shuhong; Wang, Shilei Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  2. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  3. Mitochondrial aspartate aminotransferase: direction of a single protein with two distinct functions to two subcellular sites does not require alternative splicing of the mRNA.

    PubMed Central

    Bradbury, M W; Berk, P D

    2000-01-01

    During differentiation of mouse 3T3-L1 fibroblasts to an adipocyte phenotype, the mitochondrial isoform of aspartate aminotransferase accumulates on the plasma membrane. The determination of whether this reflects translation of an alternatively spliced message lacking the mitochondrial leader sequence required cloning of the enzyme's uncommon a allele, for which these cells are homozygous. The 1.4-kb cDNA sequence of the a allele was obtained from oligo-dT-primed reverse-transcriptase PCR products amplified from FVB mouse RNA. It differed from the b allele at only 2 bp and one amino acid. By contrast, gene-specific primers generated an additional 1.4-kb fragment that differed from the b allele by approximately 1% of nucleotides, encoding four amino acid substitutions. This sequence proved to represent a recently diverged processed pseudogene. The presence of such pseudogenes can complicate interpretation of expressed-sequence-tag data and single-nucleotide-polymorphism genotyping studies. Using probes derived from the a allele, RNase protection analyses indicated that only a single message for the enzyme was present in 3T3-L1 fibroblasts and adipocytes, despite differences in subcellular protein distribution. PMID:10642497

  4. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice.

    PubMed

    Brabant, Magali; Baux, Ludwig; Casimir, Richard; Briand, Jean Paul; Chaloin, Olivier; Porceddu, Mathieu; Buron, Nelly; Chauvier, David; Lassalle, Myriam; Lecoeur, Hervé; Langonné, Alain; Dupont, Sylvie; Déas, Olivier; Brenner, Catherine; Rebouillat, Dominique; Muller, Sylviane; Borgne-Sanchez, Annie; Jacotot, Etienne

    2009-10-01

    Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.

  5. Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.

    PubMed

    Karbowski, Mariusz; Cleland, Megan M; Roelofs, Brian A

    2014-01-01

    Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.

  6. Mitochondrial morphology-emerging role in bioenergetics.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Yoon, Yisang

    2012-12-15

    Dynamic change in mitochondrial shape is a cellular process mediated mainly by fission and fusion of mitochondria. Studies have shown that mitochondrial fission and fusion are directly and indirectly associated with mitochondrial maintenance, bioenergetic demand, and cell death. Changes in mitochondrial morphology are frequently observed in response to changes in the surrounding cellular milieu, such as metabolic flux, that influence cellular bioenergetics. Connections between morphological regulation and the bioenergetic status of mitochondria are emerging as reciprocally responsive processes, though the nature of the signaling remains to be defined. Given the pivotal role mitochondria play in cellular fate, tight regulation of fission and fusion is therefore critical to preserving normal cellular physiology. Here we describe recent advancements in the understanding of the mechanisms governing mitochondrial morphology and their emerging role in mitochondrial bioenergetics.

  7. Mitochondrial biosensors.

    PubMed

    De Michele, Roberto; Carimi, Francesco; Frommer, Wolf B

    2014-03-01

    Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mitochondrial ataxias.

    PubMed

    Finsterer, Josef

    2009-09-01

    Mitochondrial disorders (MIDs) are an increasingly recognized condition. The second most frequently affected organ in MIDs is the central nervous system. One of the most prevalent clinical CNS manifestations of MIDs is ataxia. Ataxia may be even the dominant manifestation of a MID. This is why certain MIDs should be included in the classification of heredoataxias or at least considered as differentials of classical heredoataxias. MIDs due to mutations of the mitochondrial DNA, which develop ataxia include the MERRF, NARP, MILS, or KSS syndrome. More rarely, ataxia may be a feature of MELAS, LHON, PS, MIDD, or MSL. MIDs due to mutations of the nuclear DNA, which develop ataxia include LS, SANDO, SCAE, AHS, XSLA/A, IOSCA, MIRAS, MEMSA, or LBSL syndrome. More rarely ataxia can be found in AD-CPEO, AR-CPEO, MNGIE, DIDMOAD, CoQ-deficiency, ADOAD, DCMA, or PDC-deficiency. MIDs most frequently associated with ataxia are the non-syndromic MIDs. Syndromic and non-syndromic MIDs with ataxia should be delineated from classical heredoataxias to initiate appropriate symptomatic or supportive treatment.

  9. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib).

    PubMed

    Bastepe, Murat; Altug-Teber, Ozge; Agarwal, Chhavi; Oberfield, Sharon E; Bonin, Michael; Jüppner, Harald

    2011-03-01

    Pseudohypoparathyoridism type Ib (PHP-Ib) typically defines the presence of end-organ resistance to parathyroid hormone in the absence of Albright's hereditary osteodystrophy. Patients affected by this disorder present with imprinting defects in the complex GNAS locus. Microdeletions within STX16 or GNAS have been identified in familial cases with PHP-Ib, but the molecular cause of the GNAS imprinting defects in sporadic PHP-Ib cases remains poorly defined. We now report a case with sporadic PHP-Ib for whom a SNPlex analysis revealed loss of the maternal GNAS allele. Further analysis of the entire genome with a 100K SNP chip identified a paternal uniparental isodisomy affecting the entire chromosome 20 without evidence for another chromosomal abnormality. Our findings explain the observed GNAS methylation changes and the patient's hormone resistance, and furthermore suggest that chromosome 20 harbors, besides GNAS, no additional imprinted region that contributes to the clinical and laboratory phenotype.

  10. Uniparental Isodisomy of Chromosome 1 Unmasking an Autosomal Recessive 3-Beta Hydroxysteroid Dehydrogenase Type II-Related Congenital Adrenal Hyperplasia

    PubMed Central

    Panzer, Karin; Ekhaguere, Osayame A.; Darbro, Benjamin; Cook, Jennifer; Shchelochkov, Oleg A.

    2017-01-01

    Steroid 3-beta hydroxysteroid dehydrogenase type II (3β-HSD2) deficiency is a rare autosomal recessive form of congenital adrenal hyperplasia (CAH). We report the genetic basis of 3β-HSD2 deficiency arising from uniparental isodisomy (UPD) of chromosome 1. We describe a term undervirilized male whose newborn screen indicated borderline CAH. The patient presented on the 7th day of life in salt-wasting adrenal crisis. Steroid hormone testing revealed a complex pattern suggestive of 3β-HSD deficiency. Chromosomal microarray and single nucleotide polymorphism analysis revealed complete UPD of chromosome 1. Sanger sequencing of HSD3B2 revealed a previously described missense mutation, c.424G>A (p.E142K) in homozygous state, thus confirming the diagnosis of 3β-HSD2 deficiency. We provide evidence of the existence of an uncommon mechanism for HSD3B2 gene-related CAH arising from UPD of chromosome 1. PMID:27796263

  11. Paternal Uniparental Isodisomy of the Entire Chromosome 20 as a Molecular Cause of Pseudohypoparathyroidism Type Ib (PHP-Ib)

    PubMed Central

    Bastepe, Murat; Altug-Teber, Özge; Agarwal, Chhavi; Oberfield, Sharon E.; Bonin, Michael; Jüppner, Harald

    2010-01-01

    Pseudohypoparathyoridism type Ib (PHP-Ib) typically defines the presence of end-organ resistance to parathyroid hormone in the absence of Albright's hereditary osteodystrophy. Patients affected by this disorder present with imprinting defects in the complex GNAS locus. Microdeletions within STX16 or GNAS have been identified in familial cases with PHP-Ib, but the molecular cause of the GNAS imprinting defects in sporadic PHP-Ib cases remains poorly defined. We now report a case with sporadic PHP-Ib for whom a SNPlex analysis revealed loss of the maternal GNAS allele. Further analysis of the entire genome with a 100K SNP chip identified a paternal uniparental isodisomy affecting the entire chromosome 20 without evidence for another chromosomal abnormality. Our findings explain the observed GNAS methylation changes and the patient's hormone resistance, and furthermore suggest that chromosome 20 harbors, besides GNAS, no additional imprinted region that contributes to the clinical and laboratory phenotype. PMID:20965295

  12. Mitochondrial fusion, fission, and mitochondrial toxicity.

    PubMed

    Meyer, Joel N; Leuthner, Tess C; Luz, Anthony L

    2017-08-05

    Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  14. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury.

    PubMed

    Zhao, Lantao; Li, Shuhong; Wang, Shilei; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca(2+) into the mitochondrial matrix, maintaining Ca(2+) homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca(2+) concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca(2+) transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cuba: Exploring the History of Admixture and the Genetic Basis of Pigmentation Using Autosomal and Uniparental Markers

    PubMed Central

    Fuentes-Smith, Evelyn; Salas, Antonio; Buttenschøn, Henriette N.; Demontis, Ditte; Torres-Español, María; Marín-Padrón, Lilia C.; Gómez-Cabezas, Enrique J.; Álvarez-Iglesias, Vanesa; Mosquera-Miguel, Ana; Martínez-Fuentes, Antonio; Carracedo, Ángel; Børglum, Anders D.; Mors, Ole

    2014-01-01

    We carried out an admixture analysis of a sample comprising 1,019 individuals from all the provinces of Cuba. We used a panel of 128 autosomal Ancestry Informative Markers (AIMs) to estimate the admixture proportions. We also characterized a number of haplogroup diagnostic markers in the mtDNA and Y-chromosome in order to evaluate admixture using uniparental markers. Finally, we analyzed the association of 16 single nucleotide polymorphisms (SNPs) with quantitative estimates of skin pigmentation. In the total sample, the average European, African and Native American contributions as estimated from autosomal AIMs were 72%, 20% and 8%, respectively. The Eastern provinces of Cuba showed relatively higher African and Native American contributions than the Western provinces. In particular, the highest proportion of African ancestry was observed in the provinces of Guantánamo (40%) and Santiago de Cuba (39%), and the highest proportion of Native American ancestry in Granma (15%), Holguín (12%) and Las Tunas (12%). We found evidence of substantial population stratification in the current Cuban population, emphasizing the need to control for the effects of population stratification in association studies including individuals from Cuba. The results of the analyses of uniparental markers were concordant with those observed in the autosomes. These geographic patterns in admixture proportions are fully consistent with historical and archaeological information. Additionally, we identified a sex-biased pattern in the process of gene flow, with a substantially higher European contribution from the paternal side, and higher Native American and African contributions from the maternal side. This sex-biased contribution was particularly evident for Native American ancestry. Finally, we observed that SNPs located in the genes SLC24A5 and SLC45A2 are strongly associated with melanin levels in the sample. PMID:25058410

  16. Cuba: exploring the history of admixture and the genetic basis of pigmentation using autosomal and uniparental markers.

    PubMed

    Marcheco-Teruel, Beatriz; Parra, Esteban J; Fuentes-Smith, Evelyn; Salas, Antonio; Buttenschøn, Henriette N; Demontis, Ditte; Torres-Español, María; Marín-Padrón, Lilia C; Gómez-Cabezas, Enrique J; Alvarez-Iglesias, Vanesa; Mosquera-Miguel, Ana; Martínez-Fuentes, Antonio; Carracedo, Angel; Børglum, Anders D; Mors, Ole

    2014-07-01

    We carried out an admixture analysis of a sample comprising 1,019 individuals from all the provinces of Cuba. We used a panel of 128 autosomal Ancestry Informative Markers (AIMs) to estimate the admixture proportions. We also characterized a number of haplogroup diagnostic markers in the mtDNA and Y-chromosome in order to evaluate admixture using uniparental markers. Finally, we analyzed the association of 16 single nucleotide polymorphisms (SNPs) with quantitative estimates of skin pigmentation. In the total sample, the average European, African and Native American contributions as estimated from autosomal AIMs were 72%, 20% and 8%, respectively. The Eastern provinces of Cuba showed relatively higher African and Native American contributions than the Western provinces. In particular, the highest proportion of African ancestry was observed in the provinces of Guantánamo (40%) and Santiago de Cuba (39%), and the highest proportion of Native American ancestry in Granma (15%), Holguín (12%) and Las Tunas (12%). We found evidence of substantial population stratification in the current Cuban population, emphasizing the need to control for the effects of population stratification in association studies including individuals from Cuba. The results of the analyses of uniparental markers were concordant with those observed in the autosomes. These geographic patterns in admixture proportions are fully consistent with historical and archaeological information. Additionally, we identified a sex-biased pattern in the process of gene flow, with a substantially higher European contribution from the paternal side, and higher Native American and African contributions from the maternal side. This sex-biased contribution was particularly evident for Native American ancestry. Finally, we observed that SNPs located in the genes SLC24A5 and SLC45A2 are strongly associated with melanin levels in the sample.

  17. Identification and uniparental expression of a novel gene from the Prader-Willi region of chromosome 15

    SciTech Connect

    Wevrick, R.; Kerns, J.A.; Francke, U.

    1994-09-01

    The Prader-Willi syndrome (PWS) is a neurobehavioral disorder which occurs at a frequency of about 1/25,000. Most patients ({approximately}70%) have a cytogentic deletion of their paternal 15q11-q13 region, while {approximately}30% have uniparental maternal disomy. The parent of origin dependence of the phenotype is thought to be reflective of the uniparental pattern of expression of genes in the region, a phenomenon known as genomic imprinting. A small subset of PWS patient with a typical cytogenetic rearrangements has defined a critical region for genes involved in PWS. We have used STSs from the region to construct a YAC contig including the entire PWS critical region, which is about 350 kb considering presently characterized deletions. We are now using these YACs to isolate and characterize novel genes potentially involved in PWS. Overlapping YACs from the critical region were subjected to the technique of cDNA selection. Gel-purified YAC DNA was biotinylated during PCR amplification and annealed in solution to amplified cDNA. cDNAs remaining after hybridization washing, and denaturation of the hybrids were tested for localization within the YAC contig. One such cDNA mapped back to the YAC contig and was further analyzed. A full length cDNA clone was isolated from a fetal brain library and sequenced. The pattern of expression was determined in cell lines derived from Prader-Willi and Angelman patients and in normal individuals. The gene was found to have monoallelic, paternal expression in normal individuals and is marginally or not expressed in cell lines derived form Prader-Willi individuals. Expression in cell lines from Angelman patients, who are deleted for the same region on the maternal chromosome 15, was normal. Thus this apparently maternally imprinted gene is a candidate for involvement in the Prader-Willi phenotype.

  18. Coalescence with Background and Balancing Selection in Systems with Bi- and Uniparental Reproduction: Contrasting Partial Asexuality and Selfing.

    PubMed

    Agrawal, Aneil F; Hartfield, Matthew

    2016-01-01

    Uniparental reproduction in diploids, via asexual reproduction or selfing, reduces the independence with which separate loci are transmitted across generations. This is expected to increase the extent to which a neutral marker is affected by selection elsewhere in the genome. Such effects have previously been quantified in coalescent models involving selfing. Here we examine the effects of background selection and balancing selection in diploids capable of both sexual and asexual reproduction (i.e., partial asexuality). We find that the effect of background selection on reducing coalescent time (and effective population size) can be orders of magnitude greater when rates of sex are low than when sex is common. This is because asexuality enhances the effects of background selection through both a recombination effect and a segregation effect. We show that there are several reasons that the strength of background selection differs between systems with partial asexuality and those with comparable levels of uniparental reproduction via selfing. Expectations for reductions in Ne via background selection have been verified using stochastic simulations. In contrast to background selection, balancing selection increases the coalescence time for a linked neutral site. With partial asexuality, the effect of balancing selection is somewhat dependent upon the mode of selection (e.g., heterozygote advantage vs. negative frequency-dependent selection) in a manner that does not apply to selfing. This is because the frequency of heterozygotes, which are required for recombination onto alternative genetic backgrounds, is more dependent on the pattern of selection with partial asexuality than with selfing. Copyright © 2016 by the Genetics Society of America.

  19. Concurrent triplication and uniparental isodisomy: evidence for microhomology-mediated break-induced replication model for genomic rearrangements.

    PubMed

    Sahoo, Trilochan; Wang, Jia-Chi; Elnaggar, Mohamed M; Sanchez-Lara, Pedro; Ross, Leslie P; Mahon, Loretta W; Hafezi, Katayoun; Deming, Abigail; Hinman, Lynne; Bruno, Yovana; Bartley, James A; Liehr, Thomas; Anguiano, Arturo; Jones, Marilyn

    2015-01-01

    Whole-genome oligonucleotide single-nucleotide polymorphism (oligo-SNP) arrays enable simultaneous interrogation of copy number variations (CNVs), copy neutral regions of homozygosity (ROH) and uniparental disomy (UPD). Structural variation in the human genome contributes significantly to genetic variation, and often has deleterious effects leading to disease causation. Co-occurrence of CNV and regions of allelic homozygosity in tandem involving the same chromosomal arm are extremely rare. Replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) are recent models predicted to induce structural rearrangements and gene dosage aberrations; however, supportive evidence in humans for one-ended DNA break repair coupled with MMBIR giving rise to interstitial copy number gains and distal loss of heterozygosity has not been documented. We report on the identification and characterization of two cases with interstitial triplication followed by uniparental isodisomy (isoUPD) for remainder of the chromosomal arm. Case 1 has a triplication at 9q21.11-q21.33 and segmental paternal isoUPD for 9q21.33-qter, and presented with citrullinemia with a homozygous mutation in the argininosuccinate synthetase gene (ASS1 at 9q34.1). Case 2 has a triplication at 22q12.1-q12.2 and segmental maternal isoUPD 22q12.2-qter, and presented with hearing loss, mild dysmorphic features and bilateral iris coloboma. Interstitial triplication coupled with distal segmental isoUPD is a novel finding that provides human evidence for one-ended DNA break and replication-mediated repair. Both copy number gains and isoUPD may contribute to the phenotype. Significantly, these cases represent the first detailed genomic analysis that provides support for a MMBIR mechanism inducing copy number gains and segmental isoUPD in tandem.

  20. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells

    PubMed Central

    Luo, Yumei; Zhu, Detu; Du, Rong; Gong, Yu; Xie, Chun; Xu, Xiangye; Fan, Yong; Yu, Bolan; Sun, Xiaofang; Chen, Yaoyong

    2015-01-01

    The human induced pluripotent stem cell (iPSC) technique promises to provide an unlimited, reliable source of genetically matched pluripotent cells for personalized therapy and disease modeling. Recently, it is observed that cells with ring chromosomes 13 or 17 autonomously correct the defects via compensatory uniparental disomy during cellular reprogramming to iPSCs. This breakthrough finding suggests a potential therapeutic approach to repair large-scale chromosomal aberrations. However, due to the scarceness of ring chromosome samples, the reproducibility of this approach in different individuals is not carefully evaluated yet. Moreover, the underlying mechanism and the applicability to other types of chromosomal aberrations remain unknown. Here we generated iPSCs from four 45,X chorionic villous fibroblast lines and found that only one reprogrammed line acquired 46,XX karyotype via uniparental disomy of the entire X chromosome. The karyotype correction was reproducible in the same cell line by either retroviral or episomal reprogramming. The karyotype-corrected iPSCs were subject to X chromosome inactivation and obtained better colony morphology and higher proliferation rate than other uncorrected ones. Further transcriptomic comparison among the fibroblast lines identified a distinct expression pattern of cell cycle regulators in the uncorrectable ones. These findings demonstrate that the iPSC technique holds the potential to correct X monosomy, but the correction rate is very low, probably due to differential regulation of cell cycle genes between individuals. Our data strongly suggest that more systematic investigations are needed before defining the iPSC technique as a novel means of chromosome therapy. PMID:27462421

  1. Paternal uniparental disomy with segmental loss of heterozygosity of chromosome 11 are hallmark characteristics of syndromic and sporadic embryonal rhabdomyosarcoma.

    PubMed

    Robbins, Katherine M; Stabley, Deborah L; Holbrook, Jennifer; Sahraoui, Rebecca; Sadreameli, Alexa; Conard, Katrina; Baker, Laura; Gripp, Karen W; Sol-Church, Katia

    2016-12-01

    Costello syndrome (CS) arises from a typically paternally derived germline mutation in the proto-oncogene HRAS, and is considered a rasopathy. CS results in failure-to-thrive, intellectual disabilities, short stature, coarse facial features, skeletal abnormalities, congenital heart disease, and a predisposition for cancer, most commonly embryonal rhabdomyosarcoma (ERMS). The goal of this study was to characterize CS ERMS at the molecular level and to determine how divergent it is from sporadic ERMS. We characterized eleven ERMS tumors from eight unrelated CS patients, carrying paternally derived HRAS c.34G>A (p.Gly12Ser; 6) or c.35G>C (p.Gly12Ala; 2) mutations. Loss of heterozygosity (LOH) was evaluated in all CS ERMS by microarray and/or short tandem repeat (STR) markers spanning the entire chromosome 11. Eight CS ERMS tumors displayed complete paternal uniparental disomy of chromosome 11 (pUPD11), whereas two displayed UPD only at 11p and a second primary ERMS tumor showed UPD limited to 11p15.5, the classical hallmark for ERMS. Three sporadic ERMS cell lines (RD, Rh36, Rh18) and eight formalin fixed paraffin embedded (FFPE) ERMS tumors were also analyzed for RAS mutations and LOH status. We found a higher than anticipated frequency of RAS mutations (HRAS or NRAS; 50%) in sporadic ERMS cell lines/tumors. Unexpectedly, complete uniparental disomy (UPD11) was observed in five specimens, while the other six showed LOH extending across the p and q arms of chromosome 11. In this study, we are able to clearly demonstrate complete UPD11 in both syndromic and sporadic ERMS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Paternal Uniparental Disomy with Segmental Loss of Heterozygosity of Chromosome 11 are Hallmark Characteristics of Syndromic and Sporadic Embryonal Rhabdomyosarcoma

    PubMed Central

    Robbins, Katherine M.; Stabley, Deborah L.; Holbrook, Jennifer; Sahraoui, Rebecca; Sadreameli, Alexa; Conard, Katrina; Baker, Laura; Gripp, Karen W.; Sol-Church, Katia

    2016-01-01

    Costello syndrome (CS) arises from a typically paternally derived germline mutation in the proto-oncogene HRAS, and is considered a rasopathy. CS results in failure-to-thrive, intellectual disabilities, short stature, coarse facial features, skeletal abnormalities, congenital heart disease, and a predisposition for cancer, most commonly embryonal rhabdomyosarcoma (ERMS). The goal of this study was to characterize CS ERMS at the molecular level and to determine how divergent it is from sporadic ERMS. We characterized eleven ERMS tumors from eight unrelated CS patients, carrying paternally derived HRAS c.34G>A (p.Gly12Ser; 6) or c.35G>C (p.Gly12Ala; 2) mutations. Loss of heterozygosity (LOH) was evaluated in all CS ERMS by microarray and/or short tandem repeat (STR) markers spanning the entire chromosome 11. Eight CS ERMS tumors displayed complete paternal uniparental disomy of chromosome 11 (pUPD11), whereas two displayed UPD only at 11p and a second primary ERMS tumor showed UPD limited to 11p15.5, the classical hallmark for ERMS. Three sporadic ERMS cell lines (RD, Rh36, Rh18) and eight formalin fixed paraffin embedded (FFPE) ERMS tumors were also analyzed for RAS mutations and LOH status. We found a higher than anticipated frequency of RAS mutations (HRAS or NRAS; 50%) in sporadic ERMS cell lines/tumors. Unexpectedly, complete uniparental disomy (UPD11) was observed in five specimens, while the other six showed LOH extending across the p and q arms of chromosome 11. In this study, we are able to clearly demonstrate complete UPD11 in both syndromic and sporadic ERMS. PMID:27589201

  3. Mitochondrial membrane potential: a trait involved in organelle inheritance?

    PubMed

    Milani, Liliana

    2015-10-01

    Which mitochondria are inherited across generations? Are transmitted mitochondria functionally silenced to preserve the integrity of their genetic information, or rather are those mitochondria with the highest levels of function (as indicated by membrane potential Δψm) preferentially transmitted? Based on observations of the unusual system of doubly uniparental inheritance of mitochondria and of the common strictly maternal inheritance mode, I formulate a general hypothesis to explain which mitochondria reach the primordial germ cells (PGCs), and how this happens. Several studies indicate that mitochondrial movements are driven by microtubules and that mitochondria with high Δψm are preferentially transported. This can be applied also to the mitochondria that eventually populate embryonic PGCs, so I propose that Δψm may be a trait that allows for the preferential transmission of the most active (and healthy) mitochondria. The topics discussed here are fundamental in cell biology and genetics but remain controversial and a subject of heated debate; I propose an explanation for how a Δψm-dependent mechanism can cause the observed differences in mitochondrial transmission.

  4. Complete male mitochondrial genome of Anodonta anatina (Mollusca: Unionidae).

    PubMed

    Soroka, Marianna; Burzyński, Artur

    2016-05-01

    Anodonta anatina is a freshwater mussel of the family Unionidae. These mussels have a unique mitochondria inheritance system named doubly uniparental inheritance (DUI). Under DUI males have two, potentially very divergent mitochondrial genomes: F-type inherited from mother and M-type inherited from father. F-type is present in soma whereas M-type is present in gonadal tissues and sperm. Here we report two M-type sequences of complete mitochondrial genomes from Anodonta anatina. They are 16,906 bp long and their sequences are similar (0.1% divergence). The genome organization is identical to the other Unionidean M-type genomes published to date. There are 38 genes, including the recently described M-type specific M ORF. The presence of tRNA-like repeat in one of the noncoding regions, suggests that the control region is located in this area. Nucleotide composition is quite extreme, with AT content (66.2%) higher than in any other of the six published Unionidean M genomes.

  5. Mitochondrial DNA polymorphism in mitochondrial myopathy.

    PubMed

    Holt, I J; Harding, A E; Morgan-Hughes, J A

    1988-05-01

    In order to test the hypothesis that mitochondrial myopathy may be caused by mutation of the mitochondrial (mt) genome, restriction fragment length polymorphism in leucocyte mt DNA has been studied in 38 patients with mitochondrial myopathy, 44 of their unaffected matrilineal relatives, and 35 normal control subjects. Previously unreported mt DNA polymorphisms were identified in both patients and controls. No differences in restriction fragment patterns were observed between affected and unaffected individuals in the same maternal line, and there was no evidence of major deletion of mt DNA in patients. This study provides no positive evidence of mitochondrial inheritance in mitochondrial myopathy, but this has not been excluded.

  6. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    PubMed

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy.

  7. Mitochondrial Aging: Is There a Mitochondrial Clock?

    PubMed

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Intracellular Population Genetics: Evidence for Random Drift of Mitochondrial Allele Frequencies in SACCHAROMYCES CEREVISIAE and SCHIZOSACCHAROMYCES POMBE

    PubMed Central

    Thrailkill, Kathryn M.; Birky, C. William; Lückemann, Gudrun; Wolf, Klaus

    1980-01-01

    We report evidence for random drift of mitochondrial allele frequencies in zygote clones of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Monofactorial and bifactorial crosses were done, using strains resistant or sensitive to erythromycin (alleles ER, ES), oligomycin (OR, OS), or diuron (DR, DS). The frequencies of resistant and sensitive cells (and thus the frequencies of the resistant and sensitive alleles) were determined for each of a number of clones of diploid cells arising from individual zygotes. Allele frequencies were extremely variable among these zygote clones; some clones were "uniparental," with mitochondrial alleles from only one parent present. These observations suggest random drift of the allele frequencies in the population of mitochondrial genes within an individual zygote and its diploid progeny. Drift would cease when all the cells in a clone become homoplasmic, due to segregation of the mitochondrial genomes during vegetative cell divisions. To test this, we delayed cell division (and hence segregation) for varying times by starving zygotes in order to give drift more time to operate. As predicted, delaying cell division resulted in an increase in the variance of allele frequencies among the zygote clones and an increase in the proportion of uniparental zygote clones. The changes in form of the allele frequency distributions resembled those seen during random drift in finite Mendelian populations. In bifactorial crosses, genotypes as well as individual alleles were fixed or lost in some zygote clones. However, the mean recombination frequency for a large number of clones did not increase when cell division was delayed. Several possible molecular mechanisms for intracellular random drift are discussed. PMID:7009322

  9. Mitochondrial Plasticity in Obesity and Diabetes Mellitus

    PubMed Central

    Jelenik, Tomas

    2013-01-01

    Abstract Significance: Insulin resistance and its related diseases, obesity and type 2 diabetes mellitus (T2DM), have been linked to changes in aerobic metabolism, pointing to a possible role of mitochondria in the development of insulin resistance. Recent Advances: Refined methodology of ex vivo high-resolution respirometry and in vivo magnetic resonance spectroscopy now allows describing several features of mitochondria in humans. In addition to measuring mitochondrial function at baseline and after exercise-induced submaximal energy depletion, the response of mitochondria to endocrine and metabolic challenges, termed mitochondrial plasticity, can be assessed using hyperinsulinemic clamp tests. While insulin resistant states do not uniformly relate to baseline and post-exercise mitochondrial function, mitochondrial plasticity is typically impaired in insulin resistant relatives of T2DM, in overt T2DM and even in type 1 diabetes mellitus (T1DM). Critical Issues: The variability of baseline mitochondrial function in the main target tissue of insulin action, skeletal muscle and liver, may be attributed to inherited and acquired changes in either mitochondrial quantity or quality. In addition to certain gene polymorphisms and aging, circulating glucose and lipid concentrations correlate with both mitochondrial function and plasticity. Future Directions: Despite the associations between features of mitochondrial function and insulin sensitivity, the question of a causal relationship between compromised mitochondrial plasticity and insulin resistance in the development of obesity and T2DM remains to be resolved. Antioxid. Redox Signal. 19, 258–268. PMID:22938510

  10. Drug-induced mitochondrial dysfunction and cardiotoxicity

    PubMed Central

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas

    2015-01-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  11. Unravelling mitochondrial pathways to Parkinson's disease

    PubMed Central

    Celardo, I; Martins, L M; Gandhi, S

    2014-01-01

    Mitochondria are essential for cellular function due to their role in ATP production, calcium homeostasis and apoptotic signalling. Neurons are heavily reliant on mitochondrial integrity for their complex signalling, plasticity and excitability properties, and to ensure cell survival over decades. The maintenance of a pool of healthy mitochondria that can meet the bioenergetic demands of a neuron, is therefore of critical importance; this is achieved by maintaining a careful balance between mitochondrial biogenesis, mitochondrial trafficking, mitochondrial dynamics and mitophagy. The molecular mechanisms that underlie these processes are gradually being elucidated. It is widely recognized that mitochondrial dysfunction occurs in many neurodegenerative diseases, including Parkinson's disease. Mitochondrial dysfunction in the form of reduced bioenergetic capacity, increased oxidative stress and reduced resistance to stress, is observed in several Parkinson's disease models. However, identification of the recessive genes implicated in Parkinson's disease has revealed a common pathway involving mitochondrial dynamics, transport, turnover and mitophagy. This body of work has led to the hypothesis that the homeostatic mechanisms that ensure a healthy mitochondrial pool are key to neuronal function and integrity. In this paradigm, impaired mitochondrial dynamics and clearance result in the accumulation of damaged and dysfunctional mitochondria, which may directly induce neuronal dysfunction and death. In this review, we consider the mechanisms by which mitochondrial dysfunction may lead to neurodegeneration. In particular, we focus on the mechanisms that underlie mitochondrial homeostasis, and discuss their importance in neuronal integrity and neurodegeneration in Parkinson's disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph

  12. A Distinct Mitochondrial Genome with DUI-Like Inheritance in the Ocean Quahog Arctica islandica.

    PubMed

    Dégletagne, Cyril; Abele, Doris; Held, Christoph

    2016-02-01

    Mitochondrial DNA (mtDNA) is strictly maternally inherited in metazoans. The major exception to this rule has been found in many bivalve species which allow the presence of different sex-linked mtDNA molecules. This mechanism, named doubly uniparental inheritance (DUI), is characterized by the presence of two mtDNAs: The female mtDNA is found in somatic tissue and female gonads, whereas the male mtDNA is usually found in male gonads and sperm. In this study we highlight the existence of two divergent mitochondrial haplotypes with a low genetic difference around 6-8% in Arctica islandica, a long-lived clam belonging to the Arcticidae, a sister group to the Veneridae in which DUI has been found. Phylogenetic analysis on cytochrome b and 16S sequences from somatic and gonadic tissues of clams belonging to different populations reveals the presence of the "divergent" type in male gonads only and the "normal" type in somatic tissues and female gonads. This peculiar segregation of divergent mtDNA types speaks for the occurrence of the DUI mechanism in A. islandica. This example also highlights the difficulties to assess the presence of such particular mitochondrial inheritance system and underlines the possible misinterpretations in phylogeographic and phylogenetic studies of bivalve species linked to the presence of two poorly differentiated mitochondrial genomes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes.

    PubMed

    Hadjivasiliou, Zena; Lane, Nick; Seymour, Robert M; Pomiankowski, Andrew

    2013-10-22

    The uniparental inheritance (UPI) of mitochondria is thought to explain the evolution of two mating types or even true sexes with anisogametes. However, the exact role of UPI is not clearly understood. Here, we develop a new model, which considers the spread of UPI mutants within a biparental inheritance (BPI) population. Our model explicitly considers mitochondrial mutation and selection in parallel with the spread of UPI mutants and self-incompatible mating types. In line with earlier work, we find that UPI improves fitness under mitochondrial mutation accumulation, selfish conflict and mitonuclear coadaptation. However, we find that as UPI increases in the population its relative fitness advantage diminishes in a frequency-dependent manner. The fitness benefits of UPI 'leak' into the biparentally reproducing part of the population through successive matings, limiting the spread of UPI. Critically, while this process favours some degree of UPI, it neither leads to the establishment of linked mating types nor the collapse of multiple mating types to two. Only when two mating types exist beforehand can associated UPI mutants spread to fixation under the pressure of high mitochondrial mutation rate, large mitochondrial population size and selfish mutants. Variation in these parameters could account for the range of UPI actually observed in nature, from strict UPI in some Chlamydomonas species to BPI in yeast. We conclude that UPI of mitochondria alone is unlikely to have driven the evolution of two mating types in unicellular eukaryotes.

  14. Mitochondrial Protein Quality Control: The Mechanisms Guarding Mitochondrial Health

    PubMed Central

    Bohovych, Iryna; Chan, Sherine S.L.

    2015-01-01

    Abstract Significance: Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. Recent Advances: Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. Critical Issues: While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. Future Directions: Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases. Antioxid. Redox Signal. 22, 977–994. PMID:25546710

  15. The Neuro-Ophthalmology of Mitochondrial Disease

    PubMed Central

    Fraser, J. Alexander; Biousse, Valérie; Newman, Nancy J.

    2010-01-01

    Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling. PMID:20471050

  16. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises.

    PubMed

    Freyssenet, D; Berthon, P; Denis, C

    1996-01-01

    Repeated bouts of endurance exercise stimulates mitochondrial biogenesis in skeletal muscle. The synthesis of mitochondrial proteins involves a coordinated expression of both nuclear and mitochondrial genes. During this process, multiples sites of regulation have been identified at the transcriptional and translational levels. After their synthesis, mitochondrial proteins originating from the nuclear genome are imported into newly synthesized preexisting membranes and directed to one of the four mitochondrial subcompartments. The detailed mechanisms of the endurance training-induced mitochondrial biogenesis are still poorly understood. In particular, much work is needed to identify the molecular signals able to stimulate and coordinate the expression of mitochondrial proteins in response to endurance training. This will be a great help in the future to understand clearly the intimate mechanisms of mitochondrial biogenesis in skeletal muscle and the factors involved in endurance exercise performance.

  17. The Mitochondrial Basis of Aging

    PubMed Central

    Sun, Nuo; Youle, Richard J.; Finkel, Toren

    2016-01-01

    A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in mitochondria function contributes to aging. In particular, we discuss how mitochondria contribute to specific aspects of the aging process including cellular senescence, chronic inflammation and the age-dependent decline in stem cell activity. Signaling pathways regulating the mitochondrial unfolded protein response and mitophagy are also reviewed with particular emphasis placed on how these pathways might in turn regulate longevity. Taken together, these observations suggest that mitochondria influence or regulate a number of key aspects of aging, and suggest that strategies directed at improving mitochondrial quality and function might have far-reaching beneficial effects. PMID:26942670

  18. Mitochondrial RNA processing in trypanosomes.

    PubMed

    Aphasizhev, Ruslan; Aphasizheva, Inna

    2011-09-01

    The mitochondrial genome of trypanosomes is composed of ∼50 maxicircles and thousands of minicircles. Maxi-(∼25 kb) and mini-(∼1 kb)circles are catenated and packed into a dense structure called a kinetoplast. Both types of circular DNA are transcribed by a phage-like RNA polymerase: maxicircles yield multicistronic rRNA and mRNA precursors, while guide RNA (gRNA) precursors are produced from minicircles. To function in mitochondrial translation, pre-mRNAs must undergo a nucleolytic processing and 3' modifications, and often uridine insertion/deletion editing. gRNAs, which represent short (50-60 nt) RNAs directing editing reactions, are produced by 3' nucleolytic processing of a much longer precursor followed by 3' uridylation. Ribosomal RNAs are excised from precursors and their 3' ends are also trimmed and uridylated. All tRNAs are imported from the cytoplasm and some are further modified and edited in the mitochondrial matrix. Historically, the fascinating phenomenon of RNA editing has been extensively studied as an isolated pathway in which nuclear-encoded proteins mediate interactions of maxi- and minicircle transcripts to create open reading frames. However, recent studies unraveled a highly integrated network of mitochondrial genome expression including critical pre- and post-editing 3' mRNA processing, and gRNA and rRNA maturation steps. Here we focus on RNA 3' adenylation and uridylation as processes essential for biogenesis, stability and functioning of mitochondrial RNAs.

  19. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2016-07-25

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology.

  20. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.

    PubMed

    Crawford, Andrew J; Smith, Eric N

    2005-06-01

    We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of

  1. Complete mitochondrial genome of the brown mussel Perna perna (Bivalve, Mytilidae).

    PubMed

    Uliano-Silva, Marcela; Americo, Juliana; Bastos, Alex Schomaker; Furtado, Carolina; Rebelo, Mauro de Freitas; Prosdocimi, Francisco

    2016-11-01

    The complete sequence of the brown mussel Perna perna mitochondrial genome is described in this article. It was sequenced in 1/11 of an Illumina HiSeq lane using Nextera multiplexing kit. The mitogenome was assembled using both (i) de novo assembly and (ii) referenced-based strategies with mitoMaker software. Perna perna mitogenome is a circular molecule of 18,415 bp in size, containing 12 protein-coding genes, 23 transfer RNAs, 2 ribossomal RNAs and several non-coding regions. As shown in the previous studies, Perna perna does not present the doubly uniparental inheritance system (DUI) of mitochondria and does not encode the ATPase8 gene, in accordance with other Mytilidae data.

  2. Mitochondrial inheritance in a mitochondrially mediated disease.

    PubMed

    Egger, J; Wilson, J

    1983-07-21

    Mendelian inheritance involves the transmission to successive generations of DNA contained in genes in the nucleus, but DNA is also contained in mitochondria, where it is believed to be responsible for the encoding of certain mitochondrial enzymes. Since nearly all mitochondrial DNA is maternally transmitted, one might expect a nonmendelian pattern of inheritance in mitochondrial cytopathy, a syndrome in which there are abnormalities in mitochondrial structure and deficiencies in a variety of mitochondrial enzymes. We studied the pedigrees of 6 affected families whose members we had examined personally and of 24 families described in the literature. In 27 families, exclusively maternal transmission occurred; in 3 there was also paternal transmission in one generation. Altogether, 51 mothers but only 3 fathers had transmitted the condition. These results are consistent with mitochondrial transmission of mitochondrial cytopathy; the inheritance and enzyme defects of mitochondrial cytopathy can be considered in the light of recent evidence that subunits of respiratory-enzyme complexes are encoded solely by mitochondrial DNA. The occasional paternal transmission may be explained if certain enzyme subunits that are encoded by nuclear DNA are affected.

  3. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mitochondrial fusion and fission in cell life and death.

    PubMed

    Westermann, Benedikt

    2010-12-01

    Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.

  5. Mitochondrial dysfunction in neurological disorders with epileptic phenotypes.

    PubMed

    Zsurka, Gábor; Kunz, Wolfram S

    2010-12-01

    A broad variety of mutations of the mitochondrial DNA or nuclear genes that lead to the impairment of mitochondrial respiratory chain or mitochondrial ATP synthesis have been associated with epileptic phenotypes. Additionally, evidence for an impaired mitochondrial function in seizure focus of patients with temporal lobe epilepsy and Ammon's horn sclerosis, as well as, animal models of temporal lobe epilepsy has been accumulated. This implies a direct pathogenic role of mitochondrial dysfunction in the process of epileptogenesis and seizure generation in certain forms of epilepsy.

  6. Deconstructing mitochondrial dysfunction in Alzheimer disease.

    PubMed

    García-Escudero, Vega; Martín-Maestro, Patricia; Perry, George; Avila, Jesús

    2013-01-01

    There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  7. Mitochondrial Disease: Possible Symptoms

    MedlinePlus

    ... Mitochondrial Medical & Scientific Meetings Grand Rounds Researcher Education Research Grants Funded Projects Patient Evaluation for Professionals Energy Metabolism Review Mitochondrial Structure, Function and Diseases Review Cell Biology of Diagnosis ...

  8. Mitochondrial biogenesis and turnover.

    PubMed

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  9. Isolation of Mitochondrial Ribosomes.

    PubMed

    Carroll, Adam J

    2017-01-01

    Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

  10. The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids

    PubMed Central

    Rigoulet, Michel; Salin, Benedicte; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Sicard, Delphine; Bely, Marina; Marullo, Philippe

    2013-01-01

    In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA. PMID:24086452

  11. Primary mitochondrial arteriopathy.

    PubMed

    Finsterer, J; Mahjoub, S Zarrouk

    2012-05-01

    Whether arteries are affected in mitochondrial disorders (MIDs) was under debate for years but meanwhile there are strong indications that large and small arteries are primarily or secondarily affected in MIDs. When reviewing the literature for appropriate studies it turned out that vascular involvement in MIDs includes primary or secondary micro- or macroangiopathy of the cerebral, cervical, and retinal arteries, the aorta, the iliac arteries, the brachial arteries, or the muscular arteries. Arteriopathy in MIDs manifests as atherosclerosis, stenosis, occlusion, dissection, ectasia, aneurysm formation, or arteriovenous malformation. Direct evidence for primary cerebral microangiopathy comes from histological studies and indirect evidence from imaging and perfusion studies of the brain. Microangiopathy of the retina is highly prevalent in Leber's hereditary optic neuropathy. Macroangiopathy of the carotid arteries may be complicated by stroke. Arteriopathy of the aorta may result in ectasia, aneurysm formation, or even rupture. Further evidence for arteriopathy in MIDs comes from the frequent association of migraine with MIDs and the occurrence of premature atherosclerosis in MID patients without classical risk factors. Mitochondrial arteriopathy most frequently concerns the cerebral arteries and may result from the underlying metabolic defect or secondary from associated vascular risk factors. Vascular involvement in MIDs has a strong impact on the prognosis and outcome of these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Mitochondrial dynamics in the mouse liver infected by Schistosoma mansoni.

    PubMed

    Chen, Tina Tu-Wen; Wu, Lawrence Shih Hsin; Hsu, Paul Wei-Che; Pang, Cheng-Yoong; Lee, Kin-Mu; Cheng, Po-Ching; Peng, Shih-Yi

    2015-08-01

    Mitochondrial dynamics is crucial for regulation of cell homeostasis. Schistosoma mansoni is one of the most common parasites known to cause liver disease. Mice infected by S. mansoni show acute symptoms of schistosomiasis after 8 weeks. Hence, in this study, we attempted to assess the direct effects of S. mansoni infection on mice liver, and to explore the expression of mitochondrial morphology, dynamics, and function. Our recent findings show that S. mansoni infection changes mitochondrial morphology and affects mitochondrial functions, which attenuates mitochondrial membrane potential and ATP generation. S. mansoni-infected mice increases mitochondrial numbers by upregulating of genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor c co-activator 1α (PGC1α) and mitochondrial transcription factor A (Tfam). This may promote mitochondria generation for accelerating the recovery of mitochondrial functions. Moreover, S. mansoni would disrupt mitochondrial dynamics including induced mitochondrial fission and promoted mitochondrial fragmentation in mice liver. More importantly, S. mansoni further stimulated upregulation both extrinsic and intrinsic apoptosis pathway in infected mice liver. The intrinsic pathway was triggered by cytochrome c release. Additionally, NFκB (nuclear factor-kappa B, p65) could play a protective role to inhibit apoptosis through reducing active caspase-3 expression. Therefore, our results confirmed the liver damage mechanism of experimental schistosomiasis in mice model.

  13. Uniparental disomy of chromosome 8 leading to homozygosity of a CYP11B1 mutation in a patient with congenital adrenal hyperplasia: implication for a rare etiology of an autosomal recessive disorder.

    PubMed

    Matsubara, Keiko; Kataoka, Naoki; Ogita, Satoko; Sano, Shinichiro; Ogata, Tsutomu; Fukami, Maki; Katsumata, Noriyuki

    2014-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder that usually results from paternally and maternally transmitted mutations in genes for steroidogenic enzymes. Recent studies on steroid 21-hydroxylase deficiency, the most common form of CAH, have revealed that a small percentage of patients have a non-carrier parent; uniparental disomy (UPD) and de novo mutations were reported as disease-causing mechanisms in these patients. However, it remains unknown whether UPD and de novo mutations underlie other forms of CAH. Here, we report a male patient with steroid 11β-hydroxylase deficiency (11OHD) born to a non-carrier mother. The patient was identified by an elevated 17-hydroxyprogesterone level at a neonatal mass-screening test. His clinical features were comparable to those of previously reported patients with 11OHD. Direct sequencing of CYP11B1 identified a homozygous IVS7+1G>A mutation in the patient, which was not shared by his mother. Comparative genomic hybridization of the patient detected UPD of chromosome 8 [UPD(8)]. Microsatellite analysis indicated non-maternal origin of the UPD(8) and confirmed parentage of other chromosomes. This study shows for the first time that 11OHD can be caused by UPD in the presence of a non-carrier parent. Awareness of such rare cases should improve the accuracy of genetic counseling for families with CAH. Our data support the importance of UPD as an underlying mechanism of autosomal recessive disorders.

  14. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation

    PubMed Central

    O'Riain, Ciarán; Gupta, Manu; Waters, Rachel; Yang, Youwen; Wrench, David; Gribben, John; Rosenwald, Andreas; Ott, German; Rimsza, Lisa M.; Holte, Harald; Cazier, Jean-Baptiste; Johnson, Nathalie A.; Campo, Elias; Chan, Wing C.; Gascoyne, Randy D.; Young, Bryan D.; Staudt, Louis M.; Lister, T. Andrew; Fitzgibbon, Jude

    2009-01-01

    Acquired homozygosity in the form of segmental acquired uniparental disomy (aUPD) has been described in follicular lymphoma (FL) and is usually due to mitotic recombination. SNP array analysis was performed with the use of the Affymetrix 10K 2.0 Gene-chip array on DNA from 185 diagnostic FL patients to assess the prognostic relevance of aUPD. Genetic abnormalities were detected in 118 (65%) of 182 patients. Number of abnormalities was predictive of outcome; more than 3 abnormalities was associated with inferior overall survival (OS; P < .03). Sites of recurrent aUPD were detected on 6p (n = 25), 16p (n = 22), 12q (n = 17), 1p36 (n = 14), 10q (n = 8), and 6q (n = 8). On multivariate analysis aUPD on 1p36 correlated with shorter OS (P = .05). aUPD on 16p was predictive of transformation (P = .03) and correlated with poorer progression-free survival (P = .02). aUPD is frequent at diagnosis of FL and affects probability of disease transformation and clinical outcome. PMID:19141865

  15. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation.

    PubMed

    O'Shea, Derville; O'Riain, Ciarán; Gupta, Manu; Waters, Rachel; Yang, Youwen; Wrench, David; Gribben, John; Rosenwald, Andreas; Ott, German; Rimsza, Lisa M; Holte, Harald; Cazier, Jean-Baptiste; Johnson, Nathalie A; Campo, Elias; Chan, Wing C; Gascoyne, Randy D; Young, Bryan D; Staudt, Louis M; Lister, T Andrew; Fitzgibbon, Jude

    2009-03-05

    Acquired homozygosity in the form of segmental acquired uniparental disomy (aUPD) has been described in follicular lymphoma (FL) and is usually due to mitotic recombination. SNP array analysis was performed with the use of the Affymetrix 10K 2.0 Gene-chip array on DNA from 185 diagnostic FL patients to assess the prognostic relevance of aUPD. Genetic abnormalities were detected in 118 (65%) of 182 patients. Number of abnormalities was predictive of outcome; more than 3 abnormalities was associated with inferior overall survival (OS; P < .03). Sites of recurrent aUPD were detected on 6p (n = 25), 16p (n = 22), 12q (n = 17), 1p36 (n = 14), 10q (n = 8), and 6q (n = 8). On multivariate analysis aUPD on 1p36 correlated with shorter OS (P = .05). aUPD on 16p was predictive of transformation (P = .03) and correlated with poorer progression-free survival (P = .02). aUPD is frequent at diagnosis of FL and affects probability of disease transformation and clinical outcome.

  16. Genome-wide acquired uniparental disomy as well as chromosomal gains and losses in an uterine epithelioid leiomyoma

    PubMed Central

    2014-01-01

    Background Epitheloid leiomyoma is a rare subtype of benign smooth muscle tumors. Results Herein, we present the results of classical cytogenetics, MED12 mutation analysis, and copy number variation array evaluation in one such case. Whereas cytogenetic did not show evidence for clonal chromosome abnormalities and no MED12 mutation in the “fibroid hot spot” region was detected, array hybridization revealed multiple abnormalities. Most noteworthy, almost all chromosomes showed copy-number neutral loss of heterozygosity. As examples of further abnormalities, trisomies of chromosomes 8, 12, 20, and X were noted. Discussion The data presented suggest a near-haploid karyotype of the tumor as the initial genetic alteration followed by secondary duplications of large parts of the genome. The absence of any clonal karyotypic alterations after performing classical cytogenetics is likely explained by a reduced ability of the tumor cells to proliferate in vitro. However, to the best of our knowledge this is the first report of an uterine leiomyoma showing extended uniparental disomy. It remains to be determined if this is a more common phenomenon in epithelioid leiomyomas or even subsets of “ordinary” leiomyomas. PMID:24593849

  17. Mosaic segmental uniparental isodisomy and progressive clonal selection: a common mechanism of late onset β-thalassemia major

    PubMed Central

    Harteveld, Cornelis L.; Refaldi, Chiara; Giambona, Antonino; Ruivenkamp, Claudia A. L.; Hoffer, Mariëtte J. V.; Pijpe, Jeroen; De Knijff, Peter; Borgna-Pignatti, Caterina; Maggio, Aurelio; Cappellini, Maria D.; Giordano, Piero C.

    2013-01-01

    Genomic DNA of 3 patients, born as healthy carriers and developing a late-onset severe transfusion-dependent beta-thalassemia major was studied by high-density genome wide SNP array analysis. A mosaic loss of heterozygosity for almost the entire 11p was found, not attributable to deletions but involving mosaicism for segmental paternal isodisomy of 11p. Mitotic recombination leading to mosaic segmental uniparental isodisomy on chromosome 11p in multiple tissues has been described as a molecular disease mechanism for a subset of sporadic Beckwith-Wiedemann syndrome cases. A similar mechanism also seems to be involved in causing late-onset disease in carriers of recessive mutations in other genes located in 11p, such as late-onset beta-thalassemia major and sickle cell disease. We suggest that the loss of maternally imprinted IGF-2 and H19 genes may account for the selective advantage of hematopoietic cells containing this segmental paternal isodisomy of 11p carrying the β-thalassemia mutation. PMID:22983591

  18. Maternal uniparental disomy 14 and mosaic trisomy 14 in a Chinese boy with moderate to severe intellectual disability.

    PubMed

    Zhang, Shujie; Qin, Haisong; Wang, Jin; OuYang, Luping; Luo, Shiyu; Fu, Chunyun; Fan, Xin; Su, Jiasun; Chen, Rongyu; Xie, Bobo; Hu, Xuyun; Chen, Shaoke; Shen, Yiping

    2016-01-01

    Both maternal uniparental disomy 14 (UPD(14)mat) and mosaic trisomy 14 are rare events in live individuals. A combination of the two events in one individual is rarely encountered. Only six live-born cases have so far been reported. Here we reported a case of concomitant UPD(14)mat and mosaic trisomy 14 in a 10-year-old Chinese patient. Most clinical features of our patient were consistent with those previous reported for UPD(14)mat cases, which include prenatal and postnatal growth retardation, neonatal hypotonia, feeding difficulty, intellectual disability, truncal obesity, small hands and feet, short stature, and mild facial dysmorphism, but our patient showed more severe intellectual disability and no sign of precocious puberty. SNP array analysis revealed a mixture of chromosome 14 maternal isodisomy with heterodisomy and a low level trisomy mosaicism of whole chromsome 14 in blood and hyperpigmented skin samples, whereas only UPD(14)mat was detected in normal skin sample. Cytogenetic analysis identified one trisomy 14 cell in 100 metaphase of peripheral blood lymphocytes (47,XX, +14[1]/46,XX[99]). To our knowledge, this is the first case of a patient with UPD(14)mat and mosaic trisomy 14 reported in a Chinese patient. The definitive genetic diagnosis is beneficial for genetic counseling and clinical management of our patient, and for improving our understanding of the genotype-phenotype correlations of concomitant UPD(14)mat and mosaic trisomy 14.

  19. First Genetic Screening for Maternal Uniparental Disomy of Chromosome 7 in Turkish Silver-Russell Syndrome Patients

    PubMed Central

    Karaca, Emin; Tuysuz, Beyhan; Pehlivan, Sacide; Ozkinay, Ferda

    2012-01-01

    Objective Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous syndrome which is characterized by severe intrauterine and postnatal growth retardation, and typical characteristic facial dysmorphisms. It has been associated with maternal uniparental disomy (UPD) for chromosome 7 and hypomethylation of imprinting control region 1 (IGF2/H19) in 11p15. UPD refers to the situation in which both copies of a chromosome pair have originated from one parent. UPD can be presented both as partial heterodisomy and isodisomy. The aim of this study was to determine the maternal UPD7 (matUPD7) in 13 Turkish SRS patients. Methods Genotyping for matUPD7 was performed with microsatellite markers by polymerase chain reaction. Findings The maternal UPD7 including the entire chromosome was identified in 1/13 (7.6%) of individuals within SRS patients. There were no significant differences between clinical features of matUPD7 case and other SRS cases except congenital heart defects. Conclusion It is often difficult to establish diagnosis of a child with intrauterine growth retardation (IUGR), growth failure and dysmorphic features. Thus, screening for matUPD7 in IUGR children with growth failure and mild SRS features might be a valuable diagnostic tool. PMID:23429302

  20. 'Deletion rescue' by mitotic 11q uniparental disomy in a family with recurrence of 11q deletion Jacobsen syndrome.

    PubMed

    Johnson, J P; Haag, M; Beischel, L; McCann, C; Phillips, S; Tunby, M; Hansen, J; Schwanke, C; Reynolds, J F

    2014-04-01

    We describe a family with recurrent 11q23-qter deletion Jacobsen syndrome in two affected brothers, with unique mosaic deletion 'rescue' through development of uniparental disomy (UPD) in the mother and one of the brothers. Inheritance studies show that the deleted chromosome is of maternal origin in both boys, and microarray shows a break near the ASAM gene. Parental lymphocyte chromosomes were normal. However, the mother is homozygous in lymphocytes for all loci within the deleted region in her sons, and presumably has UPD for this region. In addition, she is mosaic for the 11q deletion seen in her sons at a level of 20-30% in skin fibroblasts. We hypothesize that one of her #11 chromosomes shows fragility, that breakage at 11q23 occurred with telomeric loss in some cells, but 'rescue' from the deletion occurred in most cells by the development of mitotic UPD. She apparently carries the 11q deletion in her germ line resulting in recurrence of the syndrome. The older son is mosaic for the 11q cell line (70-88%, remainder 46,XY), and segmental UPD11 'rescue' apparently also occurred in his cytogenetically normal cells. This is a novel phenomenon restoring disomy to an individual with a chromosomal deletion.

  1. Maternal uniparental isodisomy and heterodisomy on chromosome 6 encompassing a CUL7 gene mutation causing 3M syndrome.

    PubMed

    Sasaki, K; Okamoto, N; Kosaki, K; Yorifuji, T; Shimokawa, O; Mishima, H; Yoshiura, K-i; Harada, N

    2011-11-01

    We report a case of segmental uniparental maternal hetero- and isodisomy involving the whole of chromosome 6 (mat-hUPD6 and mat-iUPD6) and a cullin 7 (CUL7) gene mutation in a Japanese patient with 3M syndrome. 3M syndrome is a rare autosomal recessive disorder characterized by severe pre- and postnatal growth retardation that was recently reported to involve mutations in the CUL7 or obscurin-like 1 (OBSL1) genes. We encountered a patient with severe growth retardation, an inverted triangular gloomy face, an inverted triangle-shaped head, slender long bones, inguinal hernia, hydrocele testis, mild ventricular enlargement, and mild mental retardation. Sequence analysis of the CUL7 gene of the patient revealed a homozygous missense mutation, c.2975G>C. Genotype analysis using a single nucleotide polymorphism array revealed two mat-hUPD and two mat-iUPD regions involving the whole of chromosome 6 and encompassing CUL7. 3M syndrome caused by complete paternal iUPD of chromosome 6 involving a CUL7 mutation has been reported, but there have been no reports describing 3M syndrome with maternal UPD of chromosome 6. Our results represent a combination of iUPDs and hUPDs from maternal chromosome 6 involving a CUL7 mutation causing 3M syndrome.

  2. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML

    PubMed Central

    Gondek, Lukasz P.; Tiu, Ramon; O'Keefe, Christine L.; Sekeres, Mikkael A.; Theil, Karl S.

    2008-01-01

    Using metaphase cytogenetics (MC), chromosomal abnormalities are found in only a proportion of patients with myelodysplastic syndrome (MDS). We hypothesized that with new precise methods more cryptic karyotypic lesions can be uncovered that may show important clinical implications. We have applied 250K single nucleotide polymorphisms (SNP) arrays (SNP-A) to study chromosomal lesions in samples from 174 patients (94 MDS, 33 secondary acute myeloid leukemia [sAML], and 47 myelodysplastic/myeloproliferative disease [MDS/MPD]) and 76 controls. Using SNP-A, aberrations were found in around three-fourths of MDS, MDS/MPD, and sAML (vs 59%, 37%, 53% by MC; in 8% of patients MC was unsuccessful). Previously unrecognized lesions were detected in patients with normal MC and in those with known lesions. Moreover, segmental uniparental disomy (UPD) was found in 20% of MDS, 23% of sAML, and 35% of MDS/MPD patients, a lesion resulting in copy-neutral loss of heterozygosity undetectable by MC. The potential clinical significance of abnormalities detected by SNP-A, but not seen on MC, was demonstrated by their impact on overall survival. UPD involving chromosomes frequently affected by deletions may have prognostic implications similar to the deletions visible by MC. SNP-A–based karyotyping shows superior resolution for chromosomal defects, including UPD. This technique further complements MC to improve clinical prognosis and targeted therapies. PMID:17954704

  3. Dynamics of Mitochondrial Transport in Axons

    PubMed Central

    Niescier, Robert F.; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T.; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  4. The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1.

    PubMed

    Sabouny, Rasha; Fraunberger, Erik; Geoffrion, Michèle; Ng, Andy Cheuk-Him; Baird, Stephen D; Screaton, Robert A; Milne, Ross; McBride, Heidi M; Shutt, Timothy E

    2017-07-07

    Mitochondrial function is coupled to metabolic and survival pathways through both direct signaling cascades and dynamic changes in mitochondrial morphology. For example, a hyperfused mitochondrial reticulum is activated upon cellular stress and is protective against cell death. As part of a genome-wide small inhibitory ribonucleic acid screen, we identified the central redox regulator, Keap1, as a novel regulator of mitochondrial morphology. Here, we aimed to determine the mechanism through which redox signaling and Keap1 mediate changes in mitochondrial morphology. We found that the Nrf2 transcription factor is required for mitochondrial hyperfusion induced by knockdown of Keap1. Nrf2, which is negatively regulated by Keap1, mediates the cell's response to stress by controlling the expression of several hundred genes, including proteasome expression. We next showed that increased proteasome activity, a result of increased Nrf2 activity, is responsible for the degradation of the mitochondrial fission protein Drp1, which occurs in an ubiquitin-independent manner. Our study described a novel pathway by which Nrf2 activation, known to occur in response to increased oxidative stress, decreases mitochondrial fission and contributes to a hyperfused mitochondrial network. This study has identified the Keap1-Nrf2 nexus and modulation of proteasomal activity as novel avenues to inhibit mitochondrial fission. These findings are important, because inhibiting mitochondrial fission is a promising therapeutic approach to restore the balance between fission and fusion, which is attractive for an increasing number of disorders linked to mitochondrial dysfunction. Antioxid. Redox Signal. 00, 000-000.

  5. Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii.

    PubMed

    Nishimura, Yoshiki; Shikanai, Toshiharu; Nakamura, Soichi; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2012-06-01

    The isogamous green alga Chlamydomonas reinhardtii has emerged as a premier model for studying the genetic regulation of fertilization and sexual development. A key regulator is known to be a homeoprotein gene, GAMETE-SPECIFIC PLUS1 (GSP1), which triggers the zygotic program. In this study, we isolated a mutant, biparental31 (bp31), which lacks GSP1. bp31 mt+ gametes fuse normally to form zygotes, but the sexual development of the resulting diploid cell is arrested and pellicle/zygospore/tetrad formation is abolished. The uniparental inheritance of chloroplast (cp) and mitochondrial (mt) DNA (cytoplasmic inheritance) was also impaired. bp31 has a deletion of ∼60 kb on chromosome 2, including GSP1. The mutant phenotype was not rescued by transformation with GSP1 alone but could be rescued by the cotransformation with GSP1 and another gene, INOSITOL MONOPHOSPHATASE-LIKE1, which is involved in various cellular processes, including the phosphatidylinositol signaling pathway. This study confirms the importance of Gsp1 in mediating the zygotic program, including the uniparental inheritance of cp/mtDNA. Moreover, the results also suggest a role for inositol metabolism in the sexual developmental program.

  6. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  7. Mitochondrial Diseases and Cardiomyopathies.

    PubMed

    Brunel-Guitton, Catherine; Levtova, Alina; Sasarman, Florin

    2015-11-01

    Mitochondrial cardiomyopathies are clinically and genetically heterogeneous. An integrative approach encompassing clinical, biochemical, and molecular investigations is required to reach a specific diagnosis. In this review we summarize the clinical and genetic aspects of mitochondrial disorders associated with cardiomyopathy, including disorders of oxidative phosphorylation. It also describes groups of disorders that, although not usually classified as mitochondrial disorders, stem from defects in mitochondrial function (eg, disorders of β-oxidation and the carnitine cycle), are associated with secondary mitochondrial impairment (eg, organic acidurias), and are important diagnostically because they are treatable. Current biochemical and molecular techniques for the diagnosis of mitochondrial cardiomyopathies are described, and a diagnostic algorithm is proposed, to help clinicians in their approach to cardiomyopathies in the context of mitochondrial diseases.

  8. Natural Compounds Modulating Mitochondrial Functions

    PubMed Central

    Gibellini, Lara; Bianchini, Elena; De Biasi, Sara; Nasi, Milena; Cossarizza, Andrea; Pinti, Marcello

    2015-01-01

    Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications. PMID:26167193

  9. PERFORMANCE OF CONVENTIONAL PCRs BASED ON PRIMERS DIRECTED TO NUCLEAR AND MITOCHONDRIAL GENES FOR THE DETECTION AND IDENTIFICATION OF Leishmania spp.

    PubMed Central

    LOPES, Estela Gallucci; GERALDO, Carlos Alberto; MARCILI, Arlei; SILVA, Ricardo Duarte; KEID, Lara Borges; OLIVEIRA, Trícia Maria Ferreira da Silva; SOARES, Rodrigo Martins

    2016-01-01

    In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs. PMID:27253743

  10. PERFORMANCE OF CONVENTIONAL PCRs BASED ON PRIMERS DIRECTED TO NUCLEAR AND MITOCHONDRIAL GENES FOR THE DETECTION AND IDENTIFICATION OF Leishmania spp.

    PubMed

    Lopes, Estela Gallucci; Geraldo Junior, Carlos Alberto; Marcili, Arlei; Silva, Ricardo Duarte; Keid, Lara Borges; Oliveira, Trícia Maria Ferreira da Silva; Soares, Rodrigo Martins

    2016-01-01

    In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs.

  11. Mitochondrial DNA and Y-chromosome microstructure in Tunisia.

    PubMed

    Ennafaa, Hajer; Fregel, Rosa; Khodjet-El-Khil, Houssein; González, Ana M; Mahmoudi, Hejer Abdallah El; Cabrera, Vicente M; Larruga, José M; Benammar-Elgaaïed, Amel

    2011-10-01

    Mitochondrial DNA (mtDNA) and Y-chromosome variation has been studied in Bou Omrane and Bou Saâd, two Tunisian Berber populations. In spite of their close geographic proximity, genetic distances between them were high and significant with both uniparental markers. A global analysis, including all previously studied Tunisian samples, confirmed the existence of a high female and male population structure in this country. Analyses of molecular variance analysis evidenced that this differentiation was not attributable to ethnic differences. Mantel test showed that, in all cases, Y-chromosome haplotypic distances correlated poorly with geography, whereas after excluding the more isolated samples of Bou Omrane and Bou Saâd, the mtDNA pattern of variation is significantly correlated with geography. Congruently, the N(m) ratio of males versus females pointed to a significant excess of female migration rate across localities, which could be explained by patrilocality, a common marriage system in rural Tunisia. In addition, it has been observed that cultural isolation in rural communities promotes, by the effect of genetic drift, stronger loss of diversity and larger genetic differentiation levels than those observed in urban areas as deduced from comparisons of their respective mean genetic diversity and their respective mean genetic distances among populations. It is likely that the permanent exodus from rural to urban areas will have important repercussions in the future genetic structure of this country.

  12. Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes.

    PubMed Central

    Bergstrom, C T; Pritchard, J

    1998-01-01

    Several features of the biology of mitochondria suggest that mitochondria might be susceptible to Muller's ratchet and other forms of evolutionary degradation: Mitochondria have predominantly uniparental inheritance, appear to be nonrecombining, and have high mutation rates producing significant deleterious variation. We demonstrate that the persistence of mitochondria may be explained by recent data that point to a severe "bottleneck" in the number of mitochondria passing through the germline in humans and other mammals. We present a population-genetic model in which deleterious mutations arise within individual mitochondria, while selection operates on assemblages of mitochondria at the level of their eukaryotic hosts. We show that a bottleneck increases the efficacy of selection against deleterious mutations by increasing the variance in fitness among eukaryotic hosts. We investigate both the equilibrium distribution of deleterious variation in large populations and the dynamics of Muller's ratchet in small populations. We find that in the absence of the ratchet, a bottleneck leads to improved mitochondrial performance and that, over a longer time scale, a bottleneck acts to slow the progression of the ratchet. PMID:9691064

  13. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

  14. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  15. Mitochondrial dysfunction in ataxia-telangiectasia

    PubMed Central

    Valentin-Vega, Yasmine A.; MacLean, Kirsteen H.; Tait-Mulder, Jacqueline; Milasta, Sandra; Steeves, Meredith; Dorsey, Frank C.; Cleveland, John L.; Green, Douglas R.

    2012-01-01

    Ataxia-telangiectasia mutated (ATM) plays a central role in DNA damage responses, and its loss leads to development of T-cell malignancies. Here, we show that ATM loss also leads to intrinsic mitochondrial abnormalities in thymocytes, including elevated reactive oxygen species, increased aberrant mitochondria, high cellular respiratory capacity, and decreased mitophagy. A fraction of ATM protein is localized in mitochondria, and it is rapidly activated by mitochondrial dysfunction. Unexpectedly, allelic loss of the autophagy regulator Beclin-1 significantly delayed tumor development in ATM-null mice. This effect was not associated with rescue of DNA damage signaling but rather with a significant reversal of the mitochondrial abnormalities. These data support a model in which ATM plays direct roles in modulating mitochondrial homeostasis and suggest that mitochondrial dysfunction and associated increases in mitochondrial reactive oxygen species contribute to the cancer-prone phenotype observed in organisms lacking ATM. Thus, ataxia-telangiectasia should be considered, at least in part, as a mitochondrial disease. PMID:22144182

  16. Mitochondrial dysfunction in ataxia-telangiectasia.

    PubMed

    Valentin-Vega, Yasmine A; Maclean, Kirsteen H; Tait-Mulder, Jacqueline; Milasta, Sandra; Steeves, Meredith; Dorsey, Frank C; Cleveland, John L; Green, Douglas R; Kastan, Michael B

    2012-02-09

    Ataxia-telangiectasia mutated (ATM) plays a central role in DNA damage responses, and its loss leads to development of T-cell malignancies. Here, we show that ATM loss also leads to intrinsic mitochondrial abnormalities in thymocytes, including elevated reactive oxygen species, increased aberrant mitochondria, high cellular respiratory capacity, and decreased mitophagy. A fraction of ATM protein is localized in mitochondria, and it is rapidly activated by mitochondrial dysfunction. Unexpectedly, allelic loss of the autophagy regulator Beclin-1 significantly delayed tumor development in ATM-null mice. This effect was not associated with rescue of DNA damage signaling but rather with a significant reversal of the mitochondrial abnormalities. These data support a model in which ATM plays direct roles in modulating mitochondrial homeostasis and suggest that mitochondrial dysfunction and associated increases in mitochondrial reactive oxygen species contribute to the cancer-prone phenotype observed in organisms lacking ATM. Thus, ataxia-telangiectasia should be considered, at least in part, as a mitochondrial disease.

  17. The little big genome: the organization of mitochondrial DNA

    PubMed Central

    Garcia, Iraselia; Jones, Edith; Ramos, Manuel; Innis-Whitehouse, Wendy; Gilkerson, Robert

    2017-01-01

    The small (16,569 base pair) human mitochondrial genome plays a significant role in cell metabolism and homeostasis. Mitochondrial DNA (mtDNA) contributes to the generation of complexes which are essential to oxidative phosphorylation (OXPHOS). As such, mtDNA is directly integrated into mitochondrial biogenesis and signaling and regulates mitochondrial metabolism in concert with nuclear-encoded mitochondrial factors. Mitochondria are a highly dynamic, pleiomorphic network that undergoes fission and fusion events. Within this network, mtDNAs are packaged into structures called nucleoids which are actively distributed in discrete foci within the network. This sensitive organelle is frequently disrupted by insults such as oxidants and inflammatory cytokines, and undergoes genomic damage with double- and single-strand breaks that impair its function. Collectively, mtDNA is emerging as a highly sensitive indicator of cellular stress, which is directly integrated into the mitochondrial network as a contributor of a wide range of critical signaling pathways. PMID:27814641

  18. A direct study of the relative synthesis of petite and grande mitochondrial DNA in zygotes from crosses involving suppressive petite mutants of Saccharomyces cerevisiae.

    PubMed

    Chambers, P; Gingold, E

    1986-01-01

    Work in recent years has produced indirect evidence to support the view that the phenomenon of suppressiveness in yeast is the result of the ability of the petite mtDNA to out-replicate the wild-type genome. We have developed a method, based on fluorography of gels containing restriction fragments of radioactively labelled zygotic mtDNA, by which it has been possible to follow directly the incorporation of label into the two mtDNA species and hence their relative synthesis. Four petite isolates of 70%, 43%, 23% and 12% suppressiveness were tested by this method in crosses with a grande strain. Only the mtDNA from the 70% suppressive petite showed a replicative advantage over the grande mtDNA. The mtDNA from the 43% and 23% suppressive actually appeared to undergo, if anything, less replication in the zygote than the grande mtDNA. It is concluded that while some petites may exhibit suppressiveness as a result of enhanced replicative efficiency of their mtDNA, this cannot be the explanation for all suppressive petite strains.

  19. Matrilineal genetic structure and female-mediated gene flow in red grouse (Lagopus lagopus scoticus): an analysis using mitochondrial DNA.

    PubMed

    Piertney, S B; MacColl, A D; Bacon, P J; Racey, P A; Lambin, X; Dallas, J F

    2000-02-01

    DNA sequence variation at the hypervariable 5' end of the mitochondrial control region was examined in 247 individuals to detect genetic divergence among 14 populations of red grouse (Lagopus lagopus scoticus) in northeastern Scotland. Ten haplotypes were resolved, several of which were shared among populations. Analysis of molecular variance, Nei's gamma ST, and a cladistic estimate of the amount of gene flow indicated a lack of overall population differentiation. Patterns of overall panmixia are in stark contrast to previous reports of localized subdivision among the same set of populations detected using hypervariable microsatellite markers. Because grouse cocks are territorial and show extreme natal philopatry and females are the dispersing sex, such discordance could be explained by sex-biased dispersal, with extensive female-mediated gene flow preventing mitochondrial DNA divergence. However, it is difficult to reconcile how effective dispersal of females would not homogenize both mitochondrial and nuclear structure simultaneously. We use a model that examines the spatial and temporal dynamics of diparentally and uniparentally inherited genes to show that, under realistic ecological scenarios and with specific differences in the dispersal of males and females, the local effective size of the nuclear genome can be less than that of the mitochondrial and the patterns of structuring we observe are meaningful.

  20. The largest unassigned regions of the male- and female-transmitted mitochondrial DNAs in Musculista senhousia (Bivalvia Mytilidae).

    PubMed

    Guerra, Davide; Ghiselli, Fabrizio; Passamonti, Marco

    2014-02-25

    Musculista senhousia is a marine mussel with doubly uniparental inheritance (DUI) of mitochondria. In this study we analyzed the largest unassigned region (LUR) of its female- and male-transmitted mitochondrial genomes, described their fine characteristics and searched for shared features. Our results suggest that both LURs contain the control region of their respective mitochondrial genomes. The female-transmitted control region is duplicated in tandem, with the two copies evolving in concert. This makes the F-mtDNA of M. senhousia the first Bivalve mitochondrial genome with this feature. We also compared M. senhousia control regions to that of other Mytilidae, and demonstrated that signals for basic mtDNA functions are retained over evolutionary times even among the fast-evolving mitochondrial genomes of DUI species. Finally, we discussed how similarities between female and male LURs may be explained in the context of DUI evolution and if the duplicated female control region might have influenced the DUI system in this species.

  1. Diversity of mitochondrial Ca²⁺ signaling in rat neonatal cardiomyocytes: evidence from a genetically directed Ca²⁺ probe, mitycam-E31Q.

    PubMed

    Haviland, Sarah; Cleemann, Lars; Kettlewell, Sarah; Smith, Godfrey L; Morad, Martin

    2014-09-01

    I(Ca)-gated Ca(2+) release (CICR) from the cardiac SR is the main mechanism mediating the rise of cytosolic Ca(2+), but the extent to which mitochondria contribute to the overall Ca(2+) signaling remains controversial. To examine the possible role of mitochondria in Ca(2+) signaling, we developed a low affinity mitochondrial Ca(2+) probe, mitycam-E31Q (300-500 MOI, 48-72h) and used it in conjunction with Fura-2AM to obtain simultaneous TIRF images of mitochondrial and cytosolic Ca(2+) in cultured neonatal rat cardiomyocytes. Mitycam-E31Q staining of adult feline cardiomyocytes showed the typical mitochondrial longitudinal fluorescent bandings similar to that of TMRE staining, while neonatal rat cardiomyocytes had a disorganized tubular or punctuate appearance. Caffeine puffs produced rapid increases in cytosolic Ca(2+) while simultaneously measured global mitycam-E31Q signals decreased more slowly (increased mitochondrial Ca(2+)) before decaying to baseline levels. Similar, but oscillating mitycam-E31Q signals were seen in spontaneously pacing cells. Withdrawal of Na(+) increased global cytosolic and mitochondrial Ca(2+) signals in one population of mitochondria, but unexpectedly decreased it (release of Ca(2+)) in another mitochondrial population. Such mitochondrial Ca(2+) release signals were seen not only during long lasting Na(+) withdrawal, but also when Ca(2+) loaded cells were exposed to caffeine-puffs, and during spontaneous rhythmic beating. Thus, mitochondrial Ca(2+) transients appear to activate with a delay following the cytosolic rise of Ca(2+) and show diversity in subpopulations of mitochondria that could contribute to the plasticity of mitochondrial Ca(2+) signaling.

  2. Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons.

    PubMed

    de la Bastide, Paul Y; Horgen, Paul A

    2003-04-01

    This study evaluates mtDNA transmission in Agaricus bisporus, as well as the occurrence of non-parental haplotypes in heterokaryons produced by controlled crosses. Sixteen crosses were performed with blended liquid cultures, using different combinations of 13 homokaryotic strains. For each cross, different mtDNA haplotypes were present in each homokaryon. Heterokaryons generated from these crosses were subject to genetic analysis with RFLP markers to identify (i). karyotic status, (ii). mtDNA haplotype, and (iii). the occurrence of non-parental mtDNA haplotypes. These analyses generally supported the occurrence of uniparental mitochondrial (mt) inheritance in A. bisporus, with one mtDNA haplotype usually favoured in the new heterokaryon. The preponderance of one mtDNA haplotype in a new heterokaryon did not necessarily show a correlation with a greater mycelial growth rate for the parent homokaryon possessing that haplotype. Mixed mtDNA haplotypes and non-parental haplotypes were also identified in the heterokaryons from some crosses. Evidence for the occurrence of two mtDNA haplotypes in one heterokaryotic mycelium was observed in 8 of 16 crosses, suggesting the maintenance of true heteroplasmons after three successive subculturing steps. Non-parental mtDNA haplotypes were seen in heterokaryons produced from 7 of 16 crosses. The mating protocol described can be utilized to generate novel mtDNA haplotypes for strain improvement and the development of strain-specific markers. Mechanisms of mt selection and inheritance are discussed.

  3. Genome-Wide Uniparental Disomy and Copy Number Variations in Renal Cell Carcinomas Associated with Birt-Hogg-Dubé Syndrome.

    PubMed

    Iribe, Yasuhiro; Yao, Masahiro; Tanaka, Reiko; Kuroda, Naoto; Nagashima, Yoji; Nakatani, Yukio; Furuya, Mitsuko

    2016-02-01

    Birt-Hogg-Dubé syndrome is an inherited disorder caused by germline mutations of the folliculin gene (FLCN). The affected patients are prone to developing renal cell carcinomas (RCCs). Most mutant FLCN-associated RCCs (mFLCN-RCCs) are histologically chromophobe RCCs and hybrid oncocytic/chromophobe tumors. It is incompletely understood whether mFLCN-RCCs have different chromosomal abnormalities compared with their sporadic histological counterparts. Herein, we describe somatic mutations of FLCN and DNA-copy number abnormalities using a high-density, whole-genome, single-nucleotide polymorphism array. The histological types included chromophobe RCC (n = 12), hybrid oncocytic/chromophobe tumor (n = 5), and clear-cell RCC (n = 2). Of 19 tumors, 8 had pathological somatic mutations of FLCN. Among 11 mFLCN-RCCs investigated by single-nucleotide polymorphism array, 8 showed balanced genomic profiles, 2 had gains in chromosome 3q, and 1 had gains in chromosomes 1q and 7. All had copious numbers of loss of heterozygosity in a wide range of chromosomes. The common loss-of-heterozygosity regions were chromosomes 3p24, 8q11, 16q11, Xp22-21, Xp11, Xq11, Xq13, and Xq23. Most of the loss of heterozygosity was because of uniparental disomy. Common uniparental disomy patterns in chromophobe RCCs and hybrid oncocytic/chromophobe tumors indicated that these types were relatively similar in cytogenetic events. Two clear-cell RCCs also shared several uniparental disomy regions with chromophobe RCCs and hybrid oncocytic/chromophobe tumors. mFLCN-RCCs may have common therapeutic targets among different histological types.

  4. Mitochondrial helicases and mitochondrial genome maintenance

    PubMed Central

    de Souza-Pinto, Nadja C.; Aamann, Maria D.; Kulikowicz, Tomasz; Stevnsner, Tinna V.; Bohr, Vilhelm A.

    2010-01-01

    Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus. PMID:20576512

  5. Mitochondrial metabolism in cancer metastasis

    PubMed Central

    Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E; Flomenberg, Neal; Birbe, Ruth C; Witkiewicz, Agnieszka K; Howell, Anthony; Philp, Nancy J; Pestell, Richard G

    2012-01-01

    We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the “reverse Warburg effect,” because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TOMM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the “reverse Warburg effect,” our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TOMM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally “fuels” tumor progression and metastatic dissemination, by “feeding” mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TOMM20(-) “glycolytic” cancer cells were rarely observed, indicating that the conventional “Warburg effect” does not frequently occur in cancer-positive lymph node metastases. PMID:22395432

  6. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome.

    PubMed

    Joshi, Ricky S; Garg, Paras; Zaitlen, Noah; Lappalainen, Tuuli; Watson, Corey T; Azam, Nidha; Ho, Daniel; Li, Xin; Antonarakis, Stylianos E; Brunner, Han G; Buiting, Karin; Cheung, Sau Wai; Coffee, Bradford; Eggermann, Thomas; Francis, David; Geraedts, Joep P; Gimelli, Giorgio; Jacobson, Samuel G; Le Caignec, Cedric; de Leeuw, Nicole; Liehr, Thomas; Mackay, Deborah J; Montgomery, Stephen B; Pagnamenta, Alistair T; Papenhausen, Peter; Robinson, David O; Ruivenkamp, Claudia; Schwartz, Charles; Steiner, Bernhard; Stevenson, David A; Surti, Urvashi; Wassink, Thomas; Sharp, Andrew J

    2016-09-01

    Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Beckwith–Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques

    PubMed Central

    Romanelli, Valeria; Meneses, Heloisa N M; Fernández, Luis; Martínez-Glez, Victor; Gracia-Bouthelier, Ricardo; F Fraga, Mario; Guillén, Encarna; Nevado, Julián; Gean, Esther; Martorell, Loreto; Marfil, Victoria Esteban; García-Miñaur, Sixto; Lapunzina, Pablo

    2011-01-01

    Beckwith–Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10–20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder. PMID:21248736

  8. Mosaicism for maternal uniparental disomy 15 in a boy with some clinical features of Prader-Willi syndrome.

    PubMed

    Zilina, Olga; Kahre, Tiina; Talvik, Inga; Oiglane-Shlik, Eve; Tillmann, Vallo; Ounap, Katrin

    2014-01-01

    Prader-Willi syndrome (PWS) is caused by the lack of paternal expression of imprinted genes in the human chromosomal region 15q11.2-q13.2, which can be due to an interstitial deletion at 15q11.2-q13 of paternal origin (65-75%), maternal uniparental disomy (matUPD) of chromosome 15 (20-30%), or an imprinting defect (1-3%). The majority of PWS-associated matUPD15 cases represent a complete heterodisomy of chromosome 15 or a mixture of hetero- and isodisomic regions across the chromosome 15. Pure maternal isodisomy is observed in only a few matUPD15 patients. Here we report a case of an 18-year-old boy with some clinical features of Prader-Willi syndrome, such as overweight, muscular hypotonia, facial dysmorphism and psychiatric problems, but there was no reason to suspect PWS in the patient based solely on the phenotype estimation. However, chromosomal microarray analysis (CMA) revealed mosaic loss of heterozygosity of the entire chromosome 15. Methylation-specific multiplex ligation-dependant probe amplification (MS-MLPA) analysis showed hypermethylation of the SNRPN and NDN genes in the PWS/AS critical region of chromosome 15 in this patient. Taking into consideration the MS-MLPA results and the presence of PWS features in the patient, we concluded that it was matUPD15, although the patient's parents were not enrolled in the study. According to CMA and karyotyping, no trisomic or monosomic cells were present. To the best of our knowledge, only two PWS cases with mosaic maternal isodisomy 15 and without trisomic/monosomic cell lines have been reported so far.

  9. An Ancient Mediterranean Melting Pot: Investigating the Uniparental Genetic Structure and Population History of Sicily and Southern Italy

    PubMed Central

    Sarno, Stefania; Boattini, Alessio; Carta, Marilisa; Ferri, Gianmarco; Alù, Milena; Yao, Daniele Yang; Ciani, Graziella; Pettener, Davide; Luiselli, Donata

    2014-01-01

    Due to their strategic geographic location between three different continents, Sicily and Southern Italy have long represented a major Mediterranean crossroad where different peoples and cultures came together over time. However, its multi-layered history of migration pathways and cultural exchanges, has made the reconstruction of its genetic history and population structure extremely controversial and widely debated. To address this debate, we surveyed the genetic variability of 326 accurately selected individuals from 8 different provinces of Sicily and Southern Italy, through a comprehensive evaluation of both Y-chromosome and mtDNA genomes. The main goal was to investigate the structuring of maternal and paternal genetic pools within Sicily and Southern Italy, and to examine their degrees of interaction with other Mediterranean populations. Our findings show high levels of within-population variability, coupled with the lack of significant genetic sub-structures both within Sicily, as well as between Sicily and Southern Italy. When Sicilian and Southern Italian populations were contextualized within the Euro-Mediterranean genetic space, we observed different historical dynamics for maternal and paternal inheritances. Y-chromosome results highlight a significant genetic differentiation between the North-Western and South-Eastern part of the Mediterranean, the Italian Peninsula occupying an intermediate position therein. In particular, Sicily and Southern Italy reveal a shared paternal genetic background with the Balkan Peninsula and the time estimates of main Y-chromosome lineages signal paternal genetic traces of Neolithic and post-Neolithic migration events. On the contrary, despite showing some correspondence with its paternal counterpart, mtDNA reveals a substantially homogeneous genetic landscape, which may reflect older population events or different demographic dynamics between males and females. Overall, both uniparental genetic structures and TMRCA

  10. An ancient Mediterranean melting pot: investigating the uniparental genetic structure and population history of sicily and southern Italy.

    PubMed

    Sarno, Stefania; Boattini, Alessio; Carta, Marilisa; Ferri, Gianmarco; Alù, Milena; Yao, Daniele Yang; Ciani, Graziella; Pettener, Davide; Luiselli, Donata

    2014-01-01

    Due to their strategic geographic location between three different continents, Sicily and Southern Italy have long represented a major Mediterranean crossroad where different peoples and cultures came together over time. However, its multi-layered history of migration pathways and cultural exchanges, has made the reconstruction of its genetic history and population structure extremely controversial and widely debated. To address this debate, we surveyed the genetic variability of 326 accurately selected individuals from 8 different provinces of Sicily and Southern Italy, through a comprehensive evaluation of both Y-chromosome and mtDNA genomes. The main goal was to investigate the structuring of maternal and paternal genetic pools within Sicily and Southern Italy, and to examine their degrees of interaction with other Mediterranean populations. Our findings show high levels of within-population variability, coupled with the lack of significant genetic sub-structures both within Sicily, as well as between Sicily and Southern Italy. When Sicilian and Southern Italian populations were contextualized within the Euro-Mediterranean genetic space, we observed different historical dynamics for maternal and paternal inheritances. Y-chromosome results highlight a significant genetic differentiation between the North-Western and South-Eastern part of the Mediterranean, the Italian Peninsula occupying an intermediate position therein. In particular, Sicily and Southern Italy reveal a shared paternal genetic background with the Balkan Peninsula and the time estimates of main Y-chromosome lineages signal paternal genetic traces of Neolithic and post-Neolithic migration events. On the contrary, despite showing some correspondence with its paternal counterpart, mtDNA reveals a substantially homogeneous genetic landscape, which may reflect older population events or different demographic dynamics between males and females. Overall, both uniparental genetic structures and TMRCA

  11. Increased body mass in infancy and early toddlerhood in Angelman syndrome patients with uniparental disomy and imprinting center defects.

    PubMed

    Brennan, Marie-Luise; Adam, Margaret P; Seaver, Laurie H; Myers, Angela; Schelley, Susan; Zadeh, Neda; Hudgins, Louanne; Bernstein, Jonathan A

    2015-01-01

    The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity.

  12. Structural rearrangements of chromosome 15 satellites resulting in Prader-Willi syndrome suggest a complex mechanism for uniparental disomy

    SciTech Connect

    Toth-Fijel, S.; Gunter, K.; Olson, S.

    1994-09-01

    We report two cases of PWS in which there was abnormal meiosis I segregation of chromosome 15 following a rare translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and an apparent meiotic recombination in the unstable region of 15q11.2. PWS and normal appearing chromosomes in case one prompted a chromosome 15 origin analysis. PCR analysis indicated maternal isodisomy for the long arm of chromosome. However, only one chromosome 15 had short arm heteromorphisms consistent with either paternal or maternal inheritance. VNTR DNA analysis and heteromorphism data suggest that a maternal de novo translocation between chromosome 14 and 15 occurred prior to meiosis I. This was followed by recombination between D15Z1 and D15S11 and subsequent meiosis I nondisjunction. Proband and maternal karyotype display a distamycin A-DAPI positive region on the chromosome 14 homolog involved in the translocation. Fluorescent in situ hybridization (FISH) analyses of ONCOR probes D15S11, SNRPN, D15S11 and GABRB 3 were normal, consistent with the molecular data. Case two received a Robertsonian translocation t(14;15)(p13;p13) of maternal origin. Chromosome analysis revealed a meiosis I error producing UPD. FISH analysis of the proband and parents showed normal hybridization of ONCOR probes D15Z1, D15S11, SNRPN, D15S10 and GABRB3. In both cases the PWS probands received a structurally altered chromosome 15 that had rearranged with chromosome 14 prior to meiosis. If proper meiotic segregation is dependent on the resolution of chiasmata and/or the binding to chromosome-specific spindle fibers, then it may be possible that rearrangements of pericentric or unstable regions of the genome disrupt normal disjunction and lead to uniparental disomy.

  13. Methods for Assessing Mitochondrial Function in Diabetes

    PubMed Central

    Kane, Daniel A.; Lanza, Ian R.; Neufer, P. Darrell

    2013-01-01

    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes. PMID:23520284

  14. Methods for assessing mitochondrial function in diabetes.

    PubMed

    Perry, Christopher G R; Kane, Daniel A; Lanza, Ian R; Neufer, P Darrell

    2013-04-01

    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes.

  15. Mitochondrial transplantation for therapeutic use.

    PubMed

    McCully, James D; Levitsky, Sidney; Del Nido, Pedro J; Cowan, Douglas B

    2016-03-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body's cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium is restored, and significantly decrease myocardial contractile function and myocardial cell survival. We hypothesized that the augmentation or replacement of mitochondria damaged by ischemia would provide a mechanism to enhance cellular function and cellular rescue following the restoration of blood flow. To test this hypothesis we have used a model of myocardial ischemia and reperfusion. Our studies demonstrate that the transplantation of autologous mitochondria, isolated from the patient's own body, and then directly injected into the myocardial during early reperfusion augment the function of native mitochondria damaged during ischemia and enhances myocardial post-ischemic functional recovery and cellular viability. The transplanted mitochondria act both extracellularly and intracellularly. Extracellularly, the transplanted mitochondria enhance high energy synthesis and cellular adenosine triphosphate stores and alter the myocardial proteome. Once internalized the transplanted mitochondria rescue cellular function and replace damaged mitochondrial DNA. There is no immune or auto-immune reaction and there is no pro-arrhythmia as a result of the transplanted mitochondria. Our studies and those of others demonstrate that mitochondrial transplantation can be effective in a number of cell types and diseases. These include cardiac and skeletal muscle, pulmonary and hepatic tissue and cells and in neuronal tissue. In this review we discuss the mechanisms leading to mitochondrial

  16. Mitochondrial protein import under kinase surveillance

    PubMed Central

    Opalińska, Magdalena; Meisinger, Chris

    2014-01-01

    Despite the simplicity of the yeast Saccharomyces cerevisiae, its basic cellular machinery tremendously mirrors that of higher eukaryotic counterparts. Thus, this unicellular organism turned out to be an invaluable model system to study the countless mechanisms that govern life of the cell. Recently, it has also enabled the deciphering of signalling pathways that control flux of mitochondrial proteins to the organelle according to metabolic requirements. For decades mitochondria were considered autonomous organelles that are only partially incorporated into cellular signalling networks. Consequently, only little has been known about the role of reversible phosphorylation as a meaningful mechanism that orchestrates mitochondrial biology accordingly to cellular needs. Therefore, research in this direction has been vastly neglected. However, findings over the past few years have changed this view and new exciting fields in mitochondrial biology have emerged. Here, we summarize recent discoveries in the yeast model system that point towards a vital role of reversible phosphorylation in regulation of mitochondrial protein import. PMID:28357222

  17. Mitochondrial Calcium Handling in Physiology and Disease.

    PubMed

    Granatiero, Veronica; De Stefani, Diego; Rizzuto, Rosario

    2017-01-01

    Calcium (Ca(2+)) accumulation inside mitochondria represents a pleiotropic signal controlling a wide range of cellular functions, including key metabolic pathways and life/death decisions. This phenomenon has been first described in the 1960s, but the identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca(2+) uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic models to directly test the contribution of mitochondrial Ca(2+) homeostasis to cellular functions. Here we summarize our current understanding of the molecular machinery that controls mitochondrial Ca(2+) handling and critically evaluate the physiopathological role of mitochondrial Ca(2+) signaling, based on recent evidences obtained through in vitro and in vivo models.

  18. Accessorizing the human mitochondrial transcription machinery.

    PubMed

    Bestwick, Megan L; Shadel, Gerald S

    2013-06-01

    The human genome comprises large chromosomes in the nucleus and mitochondrial DNA (mtDNA) housed in the dynamic mitochondrial network. Human cells contain up to thousands of copies of the double-stranded, circular mtDNA molecule that encodes essential subunits of the oxidative phosphorylation complexes and the rRNAs and tRNAs needed to translate these in the organelle matrix. Transcription of human mtDNA is directed by a single-subunit RNA polymerase, POLRMT, which requires two primary transcription factors, TFB2M (transcription factor B2, mitochondrial) and TFAM (transcription factor A, mitochondrial), to achieve basal regulation of the system. Here, we review recent advances in understanding the structure and function of the primary human transcription machinery and the other factors that facilitate steps in transcription beyond initiation and provide more intricate control over the system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Phospholipids in mitochondrial dysfunction during hemorrhagic shock.

    PubMed

    Leskova, Galina F

    2016-12-20

    Energy deficiency plays a key role in the development of irreversible shock conditions. Therefore, identifying mitochondrial functional disturbances during hemorrhagic shock should be considered a prospective direction for studying its pathogenesis. Phospholipid (PL)-dependent mechanisms of mitochondrial dysfunction in the brain (i.e., in the frontal lobes of the cerebral hemispheres and medulla oblongata) and liver, which, when damaged, leads to an encephalopathy, are examined in this review. These mechanisms show strong regional specificity. Analyzing the data presented in this review suggests that the basis for mitochondrial functional disturbances is cholinergic hyperactivation, accompanied by a choline deficiency and membrane phosphatidylcholine (PC) depletion. Stabilization of the PL composition in mitochondrial membranes using "empty" PC liposomes could be one of the most important methods for eliminating energy deficiency during massive blood loss.

  20. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  1. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H.

    PubMed

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus; Ara, Ignacio; Dela, Flemming; Helge, Jørn W

    2014-02-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present. © 2013.

  2. Progress in mitochondrial epigenetics.

    PubMed

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  3. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  4. [Mitochondrial and oocyte development].

    PubMed

    Deng, Wei-Ping; Ren, Zhao-Rui

    2007-12-01

    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  5. Evolution of Buchloë dactyloides based on cloning and sequencing of matK, rbcL, and cob genes from plastid and mitochondrial genomes.

    PubMed

    Budak, Hikmet; Shearman, Robert C; Dweikat, Ismail

    2005-06-01

    Buffalograss (Buchloë dactyloides (Nutt.) Englem), a C4 turfgrass species, is native to the Great Plains region of North America. The evolutionary implications of buffalograss are unclear. Sequencing of rbcL and matK genes from plastid and the cob gene from mitochondrial genomes was examined to elucidate buffalo grass evolution. This study is the first to report sequencing of these genes from organelle genomes in the genus Buchloë. Comparisons of sequence data from the mitochondrial and plastid genome revealed that all genotypes contained the same cytoplasmic origin. There were some rearrangements detected in mitochondrial genome. The buffalograss genome appears to have evolved through the rearrangements of convergent subgenomic domains. Combined analyses of plastid genes suggest that the evolutionary process in Buchloë accessions studied was monophyletic rather than polyphyletic. However, since plastid and mitochondrial genomes are generally uniparentally inherited, the evolutionary history of these genomes may not reflect the evolutionary history of the organism, especially in a species in which out-crossing is common. The sequence information obtained from this study can be used as a genome-specific marker for investigation of the buffalograss polyploidy complex and testing of the mode of plastid and mitochondrial transmission in genus Buchloë.

  6. Alteration of dark respiration and reduction of phototrophic growth in a mitochondrial DNA deletion mutant of Chlamydomonas lacking cob, nd4, and the 3' end of nd5.

    PubMed Central

    Duby, F; Matagne, R F

    1999-01-01

    We describe here a new type of mitochondrial mutation (dum24; for dark uniparental minus inheritance) of the unicellular photosynthetic alga Chlamydomonas reinhardtii. The mutant fails to grow under heterotrophic conditions and displays reduced growth under both photoautotrophic and mixotrophic conditions. In reciprocal crosses between mutant and wild-type cells, the meiotic progeny only inherit the phenotype of the mating-type minus parent, indicating that the dum24 mutation exclusively affects the mitochondrial genome. Digestion with various restriction enzymes followed by DNA gel blot hybridizations with specific probes demonstrated that dum24 cells contain four types of altered mitochondrial genomes: deleted monomers lacking cob, nd4, and the 3' end of the nd5 gene; deleted monomers deprived of cob, nd4, nd5, and the 5' end of the cox1 coding sequence; and two types of dimers produced by end-to-end fusions between monomers similarly or differently deleted. Due to these mitochondrial DNA alterations, complex I activity, the cytochrome pathway of respiration, and presumably, the three phosphorylation sites associated with these enzyme activities are lacking in the mutant. The low respiratory rate of the dum24 cells results from the activities of rotenone-resistant NADH dehydrogenase, complex II, and alternative oxidase, with none of these enzymes being coupled to ATP production. To our knowledge, this type of mitochondrial mutation has never been described for photosynthetic organisms or more generally for obligate aerobes. PMID:9878636

  7. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage

    PubMed Central

    Jiang, Dan; Gao, Fei; Zhang, Yuelin; Wong, David Sai Hung; Li, Qing; Tse, Hung-fat; Xu, Goufeng; Yu, Zhendong; Lian, Qizhou

    2016-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) can donate mitochondria to airway epithelial cells and rescue mitochondrial damage in lung injury. We sought to determine whether MSCs could donate mitochondria and protect against oxidative stress-induced mitochondrial dysfunction in the cornea. Co-culturing of MSCs and corneal epithelial cells (CECs) indicated that the efficiency of mitochondrial transfer from MSCs to CECs was enhanced by Rotenone (Rot)-induced oxidative stress. The efficient mitochondrial transfer was associated with increased formation of tunneling nanotubes (TNTs) between MSCs and CECs, tubular connections that allowed direct intercellular communication. Separation of MSCs and CECs by a transwell culture system revealed no mitochiondrial transfer from MSCs to CECs and mitochondrial function was impaired when CECs were exposed to Rot challenge. CECs with or without mitochondrial transfer from MSCs displayed a distinct survival capacity and mitochondrial oxygen consumption rate. Mechanistically, increased filopodia outgrowth in CECs for TNT formation was associated with oxidative inflammation-activated NFκB/TNFαip2 signaling pathways that could be attenuated by reactive oxygen species scavenger N-acetylcysteine (NAC) treatment. Furthermore, MSCs grown on a decellularized porcine corneal scaffold were transplanted onto an alkali-injured eye in a rabbit model. Enhanced corneal wound healing was evident following healthy MSC scaffold transplantation. And transferred mitochondria was detected in corneal epithelium. In conclusion, mitochondrial transfer from MSCs provides novel protection for the cornea against oxidative stress-induced mitochondrial damage. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases. PMID:27831562

  8. Causal variants screened by whole exome sequencing in a patient with maternal uniparental isodisomy of chromosome 10 and a complicated phenotype

    PubMed Central

    LI, NIU; DING, YU; YU, TINGTING; LI, JUAN; SHEN, YONGNIAN; WANG, XIUMIN; FU, QIHUA; SHEN, YIPING; HUANG, XIAODONG; WANG, JIAN

    2016-01-01

    Uniparental disomy (UPD), which is the abnormal situation in which both copies of a chromosomal pair have been inherited from one parent, may cause clinical abnormalities by affecting genomic imprinting or causing autosomal recessive variation. Whole Exome Sequencing (WES) and chromosomal microarray analysis (CMA) are powerful technologies used to search for underlying causal variants. In the present study, WES was used to screen for candidate causal variants in the genome of a Chinese pediatric patient, who had been shown by CMA to have maternal uniparental isodisomy of chromosome 10. This was associated with numerous severe medical problems, including bilateral deafness, binocular blindness, stunted growth and leukoderma. A total of 13 rare homozygous variants of these genes were identified on chromosome 10. These included a classical splice variant in the HPS1 gene (c.398+5G>A), which causes Hermansky-Pudlak syndrome type 1 and may explain the patient's ocular and dermal disorders. In addition, six likely pathogenic genes on other chromosomes were found to be associated with the subject's ocular and aural disorders by phenotypic analysis. The results of the present study demonstrated that WES and CMA may be successfully combined in order to identify candidate causal genes. Furthermore, a connection between phenotype and genotype was established in this patient. PMID:27284308

  9. Mosaic isochromosome 15q and maternal uniparental isodisomy for chromosome 15 in a patient with morbid obesity and variant PWS-like phenotype.

    PubMed

    Wang, Jia-Chi; Vaccarello-Cruz, Mary; Ross, Leslie; Owen, Renius; Pratt, Victoria M; Lightman, Katherine; Liu, Yan; Hafezi, Katayoun; Cherif, Dhia; Sahoo, Trilochan

    2013-07-01

    Angelman and Prader-Willi syndromes are reciprocal imprinting disorders caused by loss of maternally or paternally expressed genes, respectively, within 15q11.2-q13. Angelman syndrome (AS; OMIM 105830) is a neurodevelopmental disorder and is due to the loss of maternally expressed UBE3A gene. Prader-Willi syndrome (PWS; OMIM 176270) is a clinically distinct disorder caused by the loss of paternally expressed genes in the human chromosome region 15q11.2-q13. Recently published data strongly suggest a role for the paternally expressed small nucleolar RNA (snoRNA) cluster, SNORD116, in PWS etiology. Uniparental disomy (UPD) 15 is one of the important causes of PWS and AS. Interestingly, balanced and unbalanced chromosomal aberrations in the form of Robertsonian translocation, isochromosomes, supernumerary marker chromosomes and copy number variations have been strongly linked with the occurrence of UPD. Here we report on a very unique case with a mosaic isochromosome for the entire long arm of 15, that is, i(15)(q10), resulting in mosaic uniparental isodisomy for 15q and with no copy number alterations. This is the first report of UPD15 constituted by a mosaic, but copy number neutral chromosomal rearrangement in a patient with a variant PWS-like phenotype. Copyright © 2013 Wiley Periodicals, Inc.

  10. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  11. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhang, Yanmin; Marsboom, Glenn; Toth, Peter T; Rehman, Jalees

    2013-01-01

    Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.

  12. Drug-induced mitochondrial neuropathy in children: a conceptual framework for critical windows of development.

    PubMed

    Wallace, Kendall B

    2014-09-01

    Mitochondrial disease arises from genetic or nongenetic events that interfere either directly or indirectly with the bioenergetic function of the mitochondrion and manifest clinically in some form of metabolic disorder. In primary mitochondrial disease, the critical molecular target is one or more of the individual subunits of the respiratory complexes or their assembly and incorporation into the inner mitochondrial membrane, whereas with secondary mitochondrial disease the bioenergetic deficits are secondary to effects on targets other than the electron transport chain and oxidative phosphorylation. Primary genetic events include mutations to or altered expression of proteins targeted to the mitochondrial compartment, whether they are encoded by the nuclear or mitochondrial genome. In this review, we emphasize the occurrence of nongenetic mitochondrial disease resulting from therapeutic drug administration, review the broad scope of drugs implicated in affecting specific primary mitochondrial targets, and describe evidence demonstrating critical windows of risk for the developing neonate to drug-induced mitochondrial disease and neuropathy.

  13. Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine.

    PubMed

    Strasberg, P M; Callahan, J W

    1988-12-01

    Psychosine, sphingosylphosphorylcholine (52-104 microM), and other glycosphingolipids stimulate mitochondrial respiration (up to 500%) and inhibit oxidative phosphorylation to varying degrees. Above 104 microM these functions as well as uptake of Ca2+ are prevented. At 104 microM sphingosylphosphorylcholine inhibits the mitochondrial ATPase reaction in submitochondrial particles by 48%. Both sphingosylphosphorylcholine and psychosine enhance the active phosphate-dependent swelling of mitochondria. Passive swelling occurs in the presence of rotenone (when swelling does not normally occur) and under hypotonic conditions. A direct interaction of sphingosylphosphorylcholine with membranes is demonstrated by a discharge of the proton gradient across mitochondrial membranes, hemolysis of red blood cells, and binding to inner and outer mitochondrial membranes. Thus lysosphingolipids bind strongly to mitochondrial membranes and markedly alter mitochondrial function. This alteration would affect the ATP levels, thereby altering a wide range of ATP-dependent cellular functions. These results offer a partial explanation for the pathogenesis of representative lysosomal storage diseases.

  14. [What we don't know about mitochondrial potassium channels?

    PubMed

    Augustynek, Bartłomiej; Wrzosek, Antoni; Koprowski, Piotr; Kiełbasa, Agnieszka; Bednarczyk, Piotr; Łukasiak, Agnieszka; Dołowy, Krzysztof; Szewczyk, Adam

    2016-01-01

    In the current work the authors present the most interesting, yet not fully understood issues regarding origin, function and pharmacology of the mitochondrial potassium channels. There are eight potassium channels known to contribute to the potassium permeability of the inner mitochondrial membrane: ATP-regulated channel, calcium-regulated channels of large, intermediate and small conductance, voltage-regulated Kv1.3 and Kv7.4 channels, two-pore-domain TASK-3 channel and SLO2 channel. The primary function of the mitochondrial potassium channels is regulation of the mitochondrial membrane potential. Additionally, mitochondrial potassium channels alter cellular respiration, regulation of the mitochondrial volume and ROS synthesis. However, mechanisms underlying these processes are not fully understood yet. In this work, the authors not only present available knowledge about this topic, but also put certain hypotheses that may set the direction for the future research on these proteins.

  15. Mitophagy: a complex mechanism of mitochondrial removal.

    PubMed

    Novak, Ivana

    2012-09-01

    Mitochondrial dynamics and turnover are crucial for cellular homeostasis and differentiation. The removal of damaged mitochondria that could contribute to cellular dysfunction or death is achieved through the process of mitochondrial autophagy, i.e., mitophagy. Moreover, mitophagy is responsible for removal of mitochondria during terminal differentiation of red blood cells and T cells. Recent work is elucidating how mitochondria are recognized for selective mitophagy either by PINK1 and Parkin or mitophagic receptors Nix and Bnip3 and their accompanying modulators. PINK1/Parkin-mediated mitophagy reveals their role of cargo recognition through polyubiquitination of mitochondrial proteins, while Nix functions as a regulated mitophagy receptor. These recognized modes of capture by the autophagy machinery operate at different efficiencies, from partial to complete elimination of mitochondria. It is critical to understand that the distinct regulatory mechanisms involve not only autophagy machinery, but also proteins associated with mitochondrial fusion and fission and therefore, regulation of mitochondrial morphology. The end result is either finely tuned quality control of damaged mitochondria, or mitochondrial clearance during development- induced mitophagy. In this article, known mechanisms and future directions for deciphering the challenge of mitophagy regulation will be discussed.

  16. Effects of cadmium on heart mitochondrial respiration

    SciTech Connect

    Kisling, G.M.; Kopp, S.J.; Paulson, D.J.; Tow, J.P.

    1986-03-01

    The purpose of this study was to determine the direct effect of cadmium on isolated heart mitochondrial respiration. Mitochondria were rapidly prepared by polytroning hearts from male Sprague-Dawley rats in a 0.25 M Sucrose, 4 mM Tris, 1 mM EGTA, 0.2% BSA buffer (pH 7.4), followed by a two-part differential centrifugation. Mitochondria were resuspended in this same Tris-sucrose-BSA buffer minus EGTA and mitochondrial respiration was assayed using a Clark oxygen electrode system at a concentration of 0.5 mg total mitochondrial protein/ml assay buffer. At 5 x 10/sup -6/ M cadmium, mitochondrial state 3 respiration (pyruvate plus malate) was reduced to a level 74.8% of the control value. A 50% reduction in state 3 respiratory rate was achieved at a cadmium concentration of 8.75 x 10/sup -6/ M. The respiratory control ratio did not change significantly but at higher cadmium concentrations (< greater than or equal to 1.25 x 10/sup -5/ M) the ADP/O ratio was increased. None of the cadmium concentrations tested, from 10/sup -8/ to 10/sup -4/ M, demonstrated an uncoupling response. These data suggest that cadmium acts strictly as an inhibitor of heart mitochondrial oxidative phosphorylation. These results contrast those of earlier work involving liver mitochondria in which cadmium was reported to uncouple mitochondrial respiration.

  17. Development of mitochondrial gene replacement therapy.

    PubMed

    Khan, Shaharyar M; Bennett, James P

    2004-08-01

    Many "classic" mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype-phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology ("protofection") that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.

  18. Mitochondrial oxidative stress and mitochondrial DNA.

    PubMed

    Kang, Dongchon; Hamasaki, Naotaka

    2003-10-01

    Mitochondria produce reactive oxygen species (ROS) under physiological conditions in association with activity of the respiratory chain in aerobic ATP production. The production of ROS is essentially a function of O2 consumption. Hence, increased mitochondrial activity per se can be an oxidative stress to cells. Furthermore, production of ROS is markedly enhanced in many pathological conditions in which the respiratory chain is impaired. Because mitochondrial DNA, which is essential for execution of normal oxidative phosphorylation, is located in proximity to the ROS-generating respiratory chain, it is more oxidatively damaged than is nuclear DNA. Cumulative damage of mitochondrial DNA is implicated in the aging process and in the progression of such common diseases as diabetes, cancer, and heart failure.

  19. Mitochondrial Dysfunction in Depression

    PubMed Central

    Bansal, Yashika; Kuhad, Anurag

    2016-01-01

    Abstract: Background Depression is the most debilitating neuropsychiatric disorder with significant impact on socio-occupational and well being of individual. The exact pathophysiology of depression is still enigmatic though various theories have been put forwarded. There are evidences showing that mitochondrial dysfunction in various brain regions is associated with depression. Recent findings have sparked renewed appreciation for the role of mitochondria in many intracellular processes coupled to synaptic plasticity and cellular resilience. New insights in depression pathophysiology are revolving around the impairment of neuroplasticity. Mitochondria have potential role in ATP production, intracellular Ca2+ signalling to establish membrane stability, reactive oxygen species (ROS) balance and to execute the complex processes of neurotransmission and plasticity. So understanding the various concepts of mitochondrial dysfunction in pathogenesis of depression indubitably helps to generate novel and more targeted therapeutic approaches for depression treatment. Objective The review was aimed to give a comprehensive insight on role of mitochondrial dysfunction in depression. Result Targeting mitochondrial dysfunction and enhancing the mitochondrial functions might act as potential target for the treatment of depression. Conclusion Literature cited in this review highly supports the role of mitochondrial dysfunction in depression. As impairment in the mitochondrial functions lead to the generation of various insults that exaggerate the pathogenesis of depression. So, it is useful to study mitochondrial dysfunction in relation to mood disorders, synaptic plasticity, neurogenesis and enhancing the functions of mitochondria might show promiscuous effects in the treatment of depressed patients. PMID:26923778

  20. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells.

    PubMed

    Otera, Hidenori; Wang, Chunxin; Cleland, Megan M; Setoguchi, Kiyoko; Yokota, Sadaki; Youle, Richard J; Mihara, Katsuyoshi

    2010-12-13

    The cytoplasmic dynamin-related guanosine triphosphatase Drp1 is recruited to mitochondria and mediates mitochondrial fission. Although the mitochondrial outer membrane (MOM) protein Fis1 is thought to be a Drp1 receptor, this has not been confirmed. To analyze the mechanism of Drp1 recruitment, we manipulated the expression of mitochondrial fission and fusion proteins and demonstrated that (a) mitochondrial fission factor (Mff) knockdown released the Drp1 foci from the MOM accompanied by network extension, whereas Mff overexpression stimulated mitochondrial recruitment of Drp1 accompanied by mitochondrial fission; (b) Mff-dependent mitochondrial fission proceeded independent of Fis1; (c) a Mff mutant with the plasma membrane-targeted CAAX motif directed Drp1 to the target membrane; (d) Mff and Drp1 physically interacted in vitro and in vivo; (e) exogenous stimuli-induced mitochondrial fission and apoptosis were compromised by knockdown of Drp1 and Mff but not Fis1; and (f) conditional knockout of Fis1 in colon carcinoma cells revealed that it is dispensable for mitochondrial fission. Thus, Mff functions as an essential factor in mitochondrial recruitment of Drp1.

  1. An unusual case of gender-associated mitochondrial DNA heteroplasmy: the mytilid Musculista senhousia (Mollusca Bivalvia)

    PubMed Central

    Passamonti, Marco

    2007-01-01

    Background Doubly Uniparental Inheritance (DUI) represents the most outstanding exception to matrilinear inheritance of mitochondrial DNA (mtDNA), typical of Metazoa. In a few bivalve mollusks, two sex-linked mtDNAs (the so-called M and F) are inherited in a peculiar way: both daughters and sons receive their F from the mother, whereas sons inherit M from the father (males do not transmit F to their progeny). This realizes a double mechanism of transmission, in which M and F mtDNAs are inherited uniparentally. DUI systems represent a unique experimental model for testing the evolutionary mechanisms that apply to mitochondrial genomes and their transmission patterns as well as to mtDNA recombination. Results A new case of DUI is described in Musculista senhousia (Mollusca: Bivalvia: Mytilidae). Its heteroplasmy pattern is in line with standard DUI. Sequence variability analysis evidenced two main results: F haplotypes sequence variability is higher than that of M haplotypes, and F mitochondrial haplotypes experience a higher mutation rate in males' somatic tissues than in females' ones. Phylogenetic analysis revealed also that M. senhousia M and F haplotypes cluster separately from that of the other mytilids. Conclusion Sequence variability analysis evidenced some unexpected traits. The inverted variability pattern (the F being more variable than M) was new and it challenges most of the rationales proposed to account for sex-linked mtDNA evolution. We tentatively related this to the history of the Northern Adriatic populations analyzed. Moreover, F sequences evidenced a higher mutation level in male's soma, this variability being produced de novo each generation. This suggests that mechanisms evolved to protect mtDNA in females (f.i. antioxidant gene complexes) might be under relaxed selection in males. Phylogenetic analysis of sex-linked haplotypes confirmed that they have switched their roles during the evolutionary history of mytilids, at variance to what has

  2. Mitochondrial Permeability Transition in Pathogenesis of Hemorrhagic Injury: Targeted Therapy with Minocycline

    DTIC Science & Technology

    2012-03-01

    minocy- cline treatment (Figures 1-4). Minocycline also improved mitochondrial function as assessed by intravital multiphoton imaging of the...will make direct measurements by intravital multiphoton microscopy to determine whether onset of the mitochondrial permeability transition and...oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization were assessed by intravital microscopy. After H/R with vehicle or

  3. Mitochondrial inheritance in yeast.

    PubMed

    Westermann, Benedikt

    2014-07-01

    Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  4. Mitochondrial Dynamics in Diabetes

    PubMed Central

    Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Abstract Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism–secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications. Antioxid. Redox Signal. 14, 439–457. PMID:20518704

  5. Mitochondrial trafficking in neurons.

    PubMed

    Schwarz, Thomas L

    2013-06-01

    Neurons, perhaps more than any other cell type, depend on mitochondrial trafficking for their survival. Recent studies have elucidated a motor/adaptor complex on the mitochondrial surface that is shared between neurons and other animal cells. In addition to kinesin and dynein, this complex contains the proteins Miro (also called RhoT1/2) and milton (also called TRAK1/2) and is responsible for much, although not necessarily all, mitochondrial movement. Elucidation of the complex has permitted inroads for understanding how this movement is regulated by a variety of intracellular signals, although many mysteries remain. Regulating mitochondrial movement can match energy demand to energy supply throughout the extraordinary architecture of these cells and can control the clearance and replenishing of mitochondria in the periphery. Because the extended axons of neurons contain uniformly polarized microtubules, they have been useful for studying mitochondrial motility in conjunction with biochemical assays in many cell types.

  6. Mitochondrial shaping cuts.

    PubMed

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  7. Mitochondrial divergence between slow- and fast-aging garter snakes.

    PubMed

    Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M

    2015-11-01

    Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). Copyright © 2015

  8. Cardiolipin and mitochondrial cristae organization.

    PubMed

    Ikon, Nikita; Ryan, Robert O

    2017-03-20

    A fundamental question in cell biology, under investigation for over six decades, is the structural organization of mitochondrial cristae. Long known to harbor electron transport chain proteins, crista membrane integrity is key to establishment of the proton gradient that drives oxidative phosphorylation. Visualization of cristae morphology by electron microscopy/tomography has provided evidence that cristae are tube-like extensions of the mitochondrial inner membrane (IM) that project into the matrix space. Reconciling ultrastructural data with the lipid composition of the IM provides support for a continuously curved cylindrical bilayer capped by a dome-shaped tip. Strain imposed by the degree of curvature is relieved by an asymmetric distribution of phospholipids in monolayer leaflets that comprise cristae membranes. The signature mitochondrial lipid, cardiolipin (~18% of IM phospholipid mass), and phosphatidylethanolamine (34%) segregate to the negatively curved monolayer leaflet facing the crista lumen while the opposing, positively curved, matrix-facing monolayer leaflet contains predominantly phosphatidylcholine. Associated with cristae are numerous proteins that function in distinctive ways to establish and/or maintain their lipid repertoire and structural integrity. By combining unique lipid components with a set of protein modulators, crista membranes adopt and maintain their characteristic morphological and functional properties. Once established, cristae ultrastructure has a direct impact on oxidative phosphorylation, apoptosis, fusion/fission as well as diseases of compromised energy metabolism.

  9. Targeted Nanoparticles in Mitochondrial Medicine

    PubMed Central

    Pathak, Rakesh K.; Kolishetti, Nagesh; Dhar, Shanta

    2014-01-01

    Mitochondria, the so-called “energy factory of cells” not only produce energy but also contribute immensely in cellular mortality management. Mitochondrial dysfunctions result in various diseases including but not limited to cancer, atherosclerosis, and neurodegenerative diseases. In the recent years, targeting mitochondria emerged as an attractive strategy to control mitochondrial dysfunction related diseases. Despite the desire to direct therapeutics to the mitochondria, the actual task is more difficult due to the highly complex nature of the mitochondria. The potential benefits of integrating nanomaterials with properties such as biodegradability, magnetization, fluorescence, and near-infrared absorption into a single object of nanoscale dimensions can lead to the development of hybrid nano-medical platforms for targeting therapeutics to the mitochondria. Only a handful of nanoparticles based on metal oxides, gold nanoparticles, dendrons, carbon nanotubes, and liposomes were recently engineered to target mitochondria. Most of these materials face tremendous challenges when administered in vivo due to their limited biocompatibility. Biodegradable polymeric nanoparticles emerged as eminent candidates for effective drug delivery. In this review we highlight the current advancements in the development of biodegradable nanoparticle platforms as effective targeting tools for mitochondrial medicine. PMID:25348382

  10. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell.

    PubMed

    Gan, Xueqi; Huang, Shengbin; Wu, Long; Wang, Yongfu; Hu, Gang; Li, Guangyue; Zhang, Hongju; Yu, Haiyang; Swerdlow, Russell Howard; Chen, John Xi; Yan, Shirley ShiDu

    2014-02-01

    Mitochondrial dysfunction is an early pathological feature of Alzheimer's disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.

  11. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell

    PubMed Central

    Gan, Xueqi; Huang, Shengbin; Wu, Long; Wang, Yongfu; Hu, Gang; Li, Guangyue; Zhang, Hongju; Yu, Haiyang; Swerdlow, Russell Howard; Chen, John Xi; Yan, Shirley ShiDu

    2014-01-01

    Mitochondrial dysfunction is an early pathological feature of Alzheimer’s disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1K38A), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD. PMID:24252614

  12. Mitochondrial inheritance in haploid x non-haploid crosses in Cryptococcus neoformans.

    PubMed

    Skosireva, Irina; James, Timothy Y; Sun, Sheng; Xu, Jianping

    2010-04-01

    In the basidiomycetous yeast Cryptococcus neoformans, fusants and meiotic progeny from haploid-haploid (HH) crosses between strains of mating type a (MAT a) and mating type alpha (MATalpha) typically inherit mitochondrial DNA (mtDNA) from the MAT a parent. In this study, we investigated the mtDNA inheritance pattern in haploid x non-haploid crosses. A total of 420 meiotic progeny and 173 fusants were obtained from five crosses and analyzed for two polymorphic mitochondrial markers. The percentage of meiotic progeny and fusants inheriting mtDNA from MATalpha or MATalpha/alpha parents ranged from 8 to 50%. The leakage was significantly greater than those observed in HH crosses, indicating that mtDNA inheritance is not uniparental in haploid x non-haploid crosses in C. neoformans. In addition, mtDNA leakage in the fusants, but not the meiotic progeny, of the MATalpha/alpha x MAT a cross was significantly higher than that in the MAT a/a x MATalpha cross, suggesting that the diploid parents with different mating types contribute differently in determining fusant mtDNA genotype in these crosses. Flow cytometry analysis revealed that meiotic progeny population of each cross was of mixed ploidy while the ploidy level of the selected fusants ranged from diploid to triploid.

  13. A Unique Mutational Spectrum of MLC1 in Korean Patients With Megalencephalic Leukoencephalopathy With Subcortical Cysts: p.Ala275Asp Founder Mutation and Maternal Uniparental Disomy of Chromosome 22.

    PubMed

    Choi, Sun Ah; Kim, Soo Yeon; Yoon, Jihoo; Choi, Joongmoon; Park, Sung Sup; Seong, Moon Woo; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Chae, Jong Hee; Kim, Ki Joong; Kim, Seunghyo; Lee, Yun Jin; Nam, Sang Ook; Lim, Byung Chan

    2017-11-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare inherited disorder characterized by infantile-onset macrocephaly, slow neurologic deterioration, and seizures. Mutations in the causative gene, MLC1, are found in approximately 75% of patients and are inherited in an autosomal recessive manner. We analyzed MLC1 mutations in five unrelated Korean patients with MLC. Direct Sanger sequencing was used to identify MLC1 mutations. A founder effect of the p.Ala275Asp variant was demonstrated by haplotype analysis using single-nucleotide polymorphic (SNP) markers. Multiple ligation-dependent probe amplification (MLPA) and comparative genomic hybridization plus SNP array were used to detect exonic deletions or uniparental disomy (UPD). The most prevalent pathogenic variant was c.824C>A (p.Ala275Asp) found in 7/10 (70%) alleles. Two pathogenic frameshift variants were found: c.135delC (p.Cys46Alafs*12) and c.337_353delinsG (p.Ile113Glyfs*4). Haplotype analysis suggested that the Korean patients with MLC harbored a founder mutation in p.Ala275Asp. The p.(Ile113Glyfs*4) was identified in a homozygous state, and a family study revealed that only the mother was heterozygous for this variant. Further analysis of MLPA and SNP arrays for this patient demonstrated loss of heterozygosity of chromosome 22 without any deletion, indicating UPD. The maternal origin of both chromosomes 22 was demonstrated by haplotype analysis. This study is the first to describe the mutational spectrum of Korean patients with MLC, demonstrating a founder effect of the p.Ala275Asp variant. This study also broadens our understanding of the mutational spectrum of MLC1 by demonstrating a homozygous p.(Ile113Glyfs*4) variant resulting from UPD of chromosome 22.

  14. A protein binding site in the M mitochondrial genome of Mytilus galloprovincialis may be responsible for its paternal transmission.

    PubMed

    Kyriakou, Eleni; Kravariti, Lara; Vasilopoulos, Themistoklis; Zouros, Eleftherios; Rodakis, George C

    2015-05-10

    Sea mussels (genus Mytilus) have two mitochondrial genomes in obligatory co-existence, one that is transmitted through the egg and the other through the sperm. The phenomenon, known as Doubly Uniparental Inheritance (DUI) of mitochondrial DNA (mtDNA), is presently known to occur in more than 40 molluscan bivalve species. Females and the somatic tissues of males contain mainly the maternal (F) genome. In contrast, the sperm contains only the paternal (M) genome. Through electrophoretic mobility shift assay (EMSA) experiments we have identified a sequence element in the control region (CR) of the M genome that acts as a binding site for the formation of a complex with a protein factor that occurs in the male gonad. An adenine tract upstream to the element is also essential for the formation of the complex. The reaction is highly specific. It does not occur with protein extracts from the female gonad or from a male or female somatic tissue. Further experiments showed that the interaction takes place in mitochondria surrounding the nucleus of the cells of male gonads, suggesting a distinct role of perinuclear mitochondria. We propose that at a certain point during spermatogenesis mitochondria are subject to degradation and that perinuclear mitochondria with the M mtDNA-protein complex are protected from this degradation with the result that mature spermatozoa contain only the paternal mitochondrial genome.

  15. Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula.

    PubMed

    Santos, Cristina; Fregel, Rosa; Cabrera, Vicente M; Alvarez, Luis; Larruga, Jose M; Ramos, Amanda; López, Miguel A; Pilar Aluja, María; González, Ana M

    2014-01-01

    The aim of this study is to analyze mitochondrial DNA and Y-chromosome lineages in a range of Atlantic and Mediterranean populations of the Iberian Peninsula in search of genetic differences between both façades and to uncover the most probable geographic origin and coalescence ages of lineages. The control region of mitochondrial DNA and haplogroup diagnostic positions were analyzed in 575 subjects and Y-chromosome markers were typed in 260 unrelated males. Moreover, previously published data were compiled and used in the analyses. The level of genetic structure deduced from uniparental markers for the Iberian Peninsula was weak, with stronger Atlantic versus Mediterranean than North to South differentiation and larger diversities in the South. In general, mitochondrial DNA haplogroups had mainly Paleolithic and Mesolithic coalescences in Europe, although some of them, ruling out drift effects, seem to have younger implantation in Central Europe and the Atlantic areas than in the Mediterranean (I, J, J2a, T1, and W) while others as N1 and X could have reached the Iberian Peninsula at the Neolithic transition. On the other hand, younger coalescence ages are being proposed for the arriving or spread of the bulk of Y-chromosome lineages in Europe. The major haplotypic affinities found for all the Iberian Peninsula regions were always with North Africa and the Atlantic Islands. These results draw an Atlantic network that clearly resembles those of the Megalithic Copper and Bronze cultures at this part of Europe. Copyright © 2013 Wiley Periodicals, Inc.

  16. Mitochondrial ion circuits.

    PubMed

    Nicholls, David G

    2010-01-01

    Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact cells and, for the primary proton circuit techniques, exist to follow both the proton current and proton electrochemical potential components of the circuit in parallel experiments, providing a quantitative means of assessing mitochondrial function and, equally importantly, dysfunction.

  17. Overview of mitochondrial bioenergetics.

    PubMed

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  18. Synchronized translation programs across compartments during mitochondrial biogenesis

    PubMed Central

    Couvillion, Mary T.; Soto, Iliana C.; Shipkovenska, Gergana; Churchman, L. Stirling

    2016-01-01

    Oxidative phosphorylation (OXPHOS) is fundamental for life. OXPHOS complexes pose a unique challenge for the cell, because their subunits are encoded on two different genomes, the nuclear genome and the mitochondrial genome. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to the mitochondrial system; thus the co-regulation of OXPHOS genes remains largely unexplored. Here we globally monitored mitochondrial and nuclear gene expression processes in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. Nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, we observe that mitochondrial and cytosolic translation are rapidly and dynamically regulated in a strikingly synchronous fashion. Furthermore, the coordinated translation programs are controlled unidirectionally through the intricate and dynamic control of cytosolic translation. Thus the nuclear genome carefully directs the coordination of mitochondrial and cytosolic translation to orchestrate the timely synthesis of each OXPHOS complex, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for global gene regulatory studies of mitochondrial biology. PMID:27225121

  19. In vitro inhibition of mitochondrial respiratory rate by antidepressants.

    PubMed

    Hroudová, Jana; Fišar, Zdeněk

    2012-09-18

    Mitochondria represent a possible drug target with unexplored therapeutic and toxicological potential. The possibility was suggested that antidepressants, mood stabilizers and other drugs may show some therapeutic and/or toxic effects through their action on mitochondrial functions. There are no sufficient data about the effect of these drugs on mitochondrial respiration in the brain. We investigated the in vitro effects of amitriptyline, fluoxetine, tianeptine, ketamine, lithium, valproate, olanzapine, chlorpromazine and propranolol on mitochondrial respiration in crude mitochondrial fractions of pig brains. Respiration was energized using substrates of complex I or complex II and dose dependent drug-induced changes in mitochondrial respiratory rate were measured by high-resolution respirometry. Antidepressants, but not mood stabilizers, ketamine and propranolol were found to inhibit mitochondrial respiratory rate. The effective dose of antidepressants reaching half the maximal respiratory rate was in the range of 0.07-0.46 mmol/L. Partial inhibition was found for all inhibitors. Differences between individual drugs with similar physicochemical properties indicate selectivity of drug-induced changes in mitochondrial respiratory rate. Our findings suggest that mood stabilizers do not interfere with brain mitochondrial respiration, whereas direct mitochondrial targeting is involved in mechanisms of action of pharmacologically different antidepressants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. FUS Interacts with HSP60 to Promote Mitochondrial Damage

    PubMed Central

    Deng, Jianwen; Yang, Mengxue; Chen, Yanbo; Chen, Xiaoping; Liu, Jianghong; Sun, Shufeng; Cheng, Haipeng; Li, Yang; Bigio, Eileen H.; Mesulam, Marsel; Xu, Qi; Du, Sidan; Fushimi, Kazuo; Zhu, Li; Wu, Jane Y.

    2015-01-01

    FUS-proteinopathies, a group of heterogeneous disorders including ALS-FUS and FTLD-FUS, are characterized by the formation of inclusion bodies containing the nuclear protein FUS in the affected patients. However, the underlying molecular and cellular defects remain unclear. Here we provide evidence for mitochondrial localization of FUS and its induction of mitochondrial damage. Remarkably, FTLD-FUS brain samples show increased FUS expression and mitochondrial defects. Biochemical and genetic data demonstrate that FUS interacts with a mitochondrial chaperonin, HSP60, and that FUS translocation to mitochondria is, at least in part, mediated by HSP60. Down-regulating HSP60 reduces mitochondrially localized FUS and partially rescues mitochondrial defects and neurodegenerative phenotypes caused by FUS expression in transgenic flies. This is the first report of direct mitochondrial targeting by a nuclear protein associated with neurodegeneration, suggesting that mitochondrial impairment may represent a critical event in different forms of FUS-proteinopathies and a common pathological feature for both ALS-FUS and FTLD-FUS. Our study offers a potential explanation for the highly heterogeneous nature and complex genetic presentation of different forms of FUS-proteinopathies. Our data also suggest that mitochondrial damage may be a target in future development of diagnostic and therapeutic tools for FUS-proteinopathies, a group of devastating neurodegenerative diseases. PMID:26335776

  1. Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    PubMed

    Mao, Kai; Klionsky, Daniel J

    2013-11-01

    As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the significance of mitophagy in cellular physiology and pathophysiologies, the underlying mechanism of this process is far from clear. In this report, we studied the role of mitochondrial fission during mitophagy, and uncover a direct link between the fission complex and mitophagy machinery in Saccharomyces cerevisiae.

  2. A Mitochondrial Story: Mitochondrial Replacement, Identity and Narrative.

    PubMed

    Scully, Jackie Leach

    2017-01-01

    Mitochondrial replacement techniques (MRT) are intended to avoid the transmission of mitochondrial diseases from mother to child. MRT represent a potentially powerful new biomedical technology with ethical, policy, economic and social implications. Among other ethical questions raised are concerns about the possible effects on the identity of children born from MRT, their families, and the providers or donors of mitochondria. It has been suggested that MRT can influence identity (i) directly, through altering the genetic makeup and physical characteristics of the child, or (ii) indirectly through changing the child's experience of disease, and by generating novel intrafamilial relationships that shape the sense of self. In this article I consider the plausibility and ethical implications of these proposed identity effects, but I focus instead on a third way in which identity may be affected, through the mediating influence of the wider social world on MRT effects on identity. By taking a narrative approach, and examining the nature and availability of identity narratives, I conclude that while neither direct genetic nor indirect experiential effects can be excluded, social responses to MRT are more likely to have a significant and potentially damaging influence on the generation of MRT children's narratives of identity. This conclusion carries some implications for the collective moral responsibility we hold to ensure that MRT, if implemented, are practised in ethically justifiable ways.

  3. Mitochondrial protection by resveratrol.

    PubMed

    Ungvari, Zoltan; Sonntag, William E; de Cabo, Rafael; Baur, Joseph A; Csiszar, Anna

    2011-07-01

    Mitochondrial dysfunction and oxidative stress are thought to play important roles in mammalian aging. Resveratrol is a plant-derived polyphenol that exerts diverse antiaging activities, mimicking some of the molecular and functional effects of dietary restriction. This review focuses on the molecular mechanisms underlying the mitochondrial protective effects of resveratrol, which could be exploited for the prevention or amelioration of age-related diseases in the elderly.

  4. [Familial neural mitochondrial deafness].

    PubMed

    Marangos, N; Mausolf, A

    1990-09-01

    Mitochondrial abnormalities are known to cause several neurological syndromes that often include hearing loss as one of their features. We present two brothers with mitochondrial cytopathy and hearing loss. The audiological and electrocochleographic findings suggest a neural origin for the hearing impairment. Muscle biopsy is an important tool for the diagnosis of these syndromes in patients with audiological evidence of a bilateral neural hearing loss and neurological abnormalities.

  5. Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue.

    PubMed

    Pan, Min; Li, Fa Tao; Li, Yan; Jiang, Fu Man; Li, Dong Zhi; Lau, Tze Kin; Liao, Can

    2013-06-01

    Uniparental disomy (UPD) is an uncommon chromosome condition, but UPD involving chromosome 21 is rarely reported. We reported here a case who had first trimester screening test for Down syndrome, chorionic villus sampling for fetal karyotyping, quantitative fluorescence polymerase chain reaction (QF-PCR), as well as non-invasive prenatal testing (NIPT) by maternal plasma sequencing. There were discordant results between fetal karyotyping and NIPT due to UPD 21combined with confined placental mosaicism of trisomy 21. This demonstrated that it is possible to detect placental mosaicism by NIPT, but further studies are required to confirm its sensitivity. Therefore, all positive NIPT results must be confirmed by conventional invasive test and karyotyping. QF-PCR has the additional benefit in diagnosing UPD. © 2013 John Wiley & Sons, Ltd.

  6. A paternity case with three genetic incompatibilities between father and child due to maternal uniparental disomy 21 and a mutation at the Y chromosome.

    PubMed

    Mansuet-Lupo, Audrey; Henke, Jurgen; Henke, Lotte; Blank, Cornelia; Ernsting, Anette; Kozlowski, Peter; Rouger, Philippe; Van Huffel, Veronique

    2009-03-01

    A parentage case is described that revealed a potentially erroneous exclusion from paternity in three systems, two on chromosome 21 and one on chromosome Y. Follow-up tests, especially of chromosome 21, were subsequently performed. Actually, the child's chromosome 21 showed alleles of maternal but not of paternal origin being consistent with a maternal uniparental disomy of chromosome 21. The third genetic incompatibility was observed at the Y chromosome and attributed to a usual one-step de novo mutation. This case is emphasizing the (generally adopted) requirement that an exclusion from paternity must not be based on the absence of paternal alleles at genetic systems all located on the same chromosome. In fact, the need for extended typing programmes is demonstrated.

  7. Mitochondrial approaches for neuroprotection

    PubMed Central

    Chaturvedi, Rajnish K.; Beal, M. Flint

    2008-01-01

    A large body of evidence from post-mortem brain tissue and genetic analysis in man and biochemical and pathological studies in animal models (transgenic and toxin) of neurodegeneration suggest that mitochondrial dysfunction is a common pathological mechanism. Mitochondrial dysfunction due to oxidative stress, mitochondrial DNA deletions, pathological mutations, altered mitochondrial morphology and interaction of pathogenic proteins with mitochondria leads to neuronal demise. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. This review discusses the potential therapeutic efficacy of creatine, coenzyme Q10, idebenone, synthetic triterpenoids, and mitochondrial targeted antioxidants (MitoQ) and peptides (SS-31) in in vitro studies and in animal models of Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We have also reviewed the current status of clinical trials of creatine, coenzyme Q10, idebenone and MitoQ in neurodegenerative disorders. Further, we discuss newly identified therapeutic targets including PGC-1α and Sirtuins, which provide promise for future therapeutic developments in neurodegenerative disorders. PMID:19076459

  8. Inherited mitochondrial neuropathies.

    PubMed

    Finsterer, Josef

    2011-05-15

    Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects

    PubMed Central

    Acin-Perez, Rebeca; Salazar, Eric; Brosel, Sonja; Yang, Hua; Schon, Eric A; Manfredi, Giovanni

    2009-01-01

    Phosphorylation of respiratory chain components has emerged as a mode of regulation of mitochondrial energy metabolism, but its mechanisms are still largely unexplored. A recently discovered intramitochondrial signalling pathway links CO2 generated by the Krebs cycle with the respiratory chain, through the action of a mitochondrial soluble adenylyl cyclase (mt-sAC). Cytochrome oxidase (COX), whose deficiency causes a number of fatal metabolic disorders, is a key mitochondrial enzyme activated by mt-sAC. We have now discovered that the mt-sAC pathway modulates mitochondrial biogenesis in a reactive oxygen species dependent manner, in cultured cells and in animals with COX deficiency. We show that upregulation of mt-sAC normalizes reactive oxygen species production and mitochondrial biogenesis, thereby restoring mitochondrial function. This is the first example of manipulation of a mitochondrial signalling pathway to achieve a direct positive modulation of COX, with clear implications for the development of novel approaches to treat mitochondrial diseases. PMID:20049744

  10. The mitochondrial connection in auditory neuropathy.

    PubMed

    Cacace, Anthony T; Pinheiro, Joaquim M B

    2011-01-01

    'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.

  11. Complete maternal uniparental isodisomy of chromosome 4 in a subject with major depressive disorder detected by high density SNP genotyping arrays.

    PubMed

    Middleton, Frank A; Trauzzi, Marco G; Shrimpton, Antony E; Gentile, Karen L; Morley, Christopher P; Medeiros, Helena; Pato, Michele T; Pato, Carlos N

    2006-01-05

    Uniparental isodisomy (iUPD) is a rare genetic condition caused by non-disjunction during meiosis that ultimately leads to a duplication of either the maternal or paternal chromosome in the affected individual. Two types of disorders can result, those due to imprinted genes and those due to homozygosity of recessive disease-causing mutations. Here, we describe the third known case of complete chromosome 4 iUPD of maternal origin. This condition became apparent during whole genome linkage studies of psychiatric disorders in the Portuguese population. The proband is an adult female with normal fertility and no major medical complaints, but a history of major depressive disorder and multiple suicide attempts. The proband's siblings and parents had normal chromosome 4 genotypes and no history of mood disturbance. A brief review of other studies lends support for the possibility that genes on chromosome 4 might confer risk for mood disorders. We conclude that chromosome 4 maternal uniparental disomy (UPD) is a rare disorder that may present with a major depressive phenotype. The lack of a common disease phenotype between this and two other cases of chromosome 4 iUPD [Lindenbaum et al. [1991] Am J Med Genet 49(Suppl 285):1582; Spena et al. [2004] Eur J Hum Genet 12:891-898) would suggest that there is no vital maternal gene imprinting on chromosome 4. However, since there is no reported case of paternal chromosome 4 UPD, paternal gene imprinting on chromosome 4 cannot be excluded. (c) 2005 Wiley-Liss, Inc.

  12. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism.

    PubMed

    Pett, Walker; Lavrov, Dennis V

    2015-06-27

    The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNA(Ile) lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins.

  13. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism

    PubMed Central

    Pett, Walker; Lavrov, Dennis V.

    2015-01-01

    The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNAIle lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins. PMID:26116918

  14. Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging

    PubMed Central

    Meyer-Hermann, Michael; Osiewacz, Heinz D.

    2012-01-01

    Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span. PMID:22761564

  15. Mitochondrial dysfunction as a cause of ageing.

    PubMed

    Trifunovic, A; Larsson, N-G

    2008-02-01

    Mitochondrial dysfunction is heavily implicated in the ageing process. Increasing age in mammals correlates with accumulation of somatic mitochondrial DNA (mtDNA) mutations and decline in respiratory chain function. The age-associated respiratory chain deficiency is typically unevenly distributed and affects only a subset of cells in various human tissues, such as heart, skeletal muscle, colonic crypts and neurons. Studies of mtDNA mutator mice has shown that increased levels of somatic mtDNA mutations directly can cause a variety of ageing phenotypes, such as osteoporosis, hair loss, greying of the hair, weight reduction and decreased fertility. Respiratory-chain-deficient cells are apoptosis prone and increased cell loss is therefore likely an important consequence of age-associated mitochondrial dysfunction. There is a tendency to automatically link mitochondrial dysfunction to increased generation of reactive oxygen species (ROS), however, the experimental support for this concept is rather weak. In fact, respiratory-chain-deficient mice with tissue-specific mtDNA depletion or massive increase of point mutations in mtDNA typically have minor or no increase of oxidative stress. Mitochondrial dysfunction is clearly involved in the human ageing process, but its relative importance for mammalian ageing remains to be established.

  16. MAVS maintains mitochondrial homeostasis via autophagy

    PubMed Central

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  17. Transcription and replication of mitochondrial DNA.

    PubMed

    Clayton, D A

    2000-07-01

    The physical isolation of mammalian mitochondrial DNA (mtDNA) over 30 years ago marked the beginning of studies of its structure, replication and the expression of its genetic content. Such analyses have revealed a number of surprises: novel DNA structural features of the circular genome such as the displacement loop (D-loop); multiple sized and deleted forms of the circular genome; a minimal set of mitochondrially encoded rRNAs and tRNAs needed for translation; a bacteriophage-like, nuclear-encoded mitochondrial RNA polymerase for transcription; and a direct linkage between transcription and the commitment to replication of the leading mtDNA strand that centres on the nuclear encoded mitochondrial transcription factor A. One of the more recent revelations is the existence, near the D-loop, of an atypical, stable RNA-DNA hybrid (or R-loop) at the origin of mammalian leading-strand DNA replication, composed of the parent DNA strands and an RNA transcript. In mammalian mitochondrial systems, all of the proteins known to be involved in DNA replication are encoded in the nucleus. Thus alterations and deficiencies in mtDNA replication must arise from mutations in mtDNA regulatory sequences and nuclear gene defects. Further studies of the relationships between nuclear-encoded proteins and their mtDNA target sequences could result in strategies to manipulate genotypes within cellular mtDNA populations.

  18. Mitochondrial signaling contributes to disuse muscle atrophy

    PubMed Central

    Wiggs, Michael P.; Duarte, Jose A.; Zergeroglu, A. Murat; Demirel, Haydar A.

    2012-01-01

    It is well established that long durations of bed rest, limb immobilization, or reduced activity in respiratory muscles during mechanical ventilation results in skeletal muscle atrophy in humans and other animals. The idea that mitochondrial damage/dysfunction contributes to disuse muscle atrophy originated over 40 years ago. These early studies were largely descriptive and did not provide unequivocal evidence that mitochondria play a primary role in disuse muscle atrophy. However, recent experiments have provided direct evidence connecting mitochondrial dysfunction to muscle atrophy. Numerous studies have described changes in mitochondria shape, number, and function in skeletal muscles exposed to prolonged periods of inactivity. Furthermore, recent evidence indicates that increased mitochondrial ROS production plays a key signaling role in both immobilization-induced limb muscle atrophy and diaphragmatic atrophy occurring during prolonged mechanical ventilation. Moreover, new evidence reveals that, during denervation-induced muscle atrophy, increased mitochondrial fragmentation due to fission is a required signaling event that activates the AMPK-FoxO3 signaling axis, which induces the expression of atrophy genes, protein breakdown, and ultimately muscle atrophy. Collectively, these findings highlight the importance of future research to better understand the mitochondrial signaling mechanisms that contribute to disuse muscle atrophy and to develop novel therapeutic interventions for prevention of inactivity-induced skeletal muscle atrophy. PMID:22395111

  19. Peripheral neuropathy in mitochondrial disorders.

    PubMed

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  20. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction

    SciTech Connect

    Varela, Ana T.; Gomes, Ana P.; Simoes, Anabela M.; Teodoro, Joao S.; Duarte, Filipe V.; Rolo, Anabela P.; Palmeira, Carlos M.

    2008-12-01

    Indirubin, a red colored 3,2'-bisindole isomer, is a component of Indigo naturalis and is an active ingredient used in traditional Chinese medicine for the treatment of chronic diseases. The family of indirubin derivatives, such as indirubin-3'-oxime, has been suggested for various therapeutic indications. However, potential toxic interactions such as indirubin effects on mitochondrial bioenergetics are still unknown. This study evaluated the action of indirubin-3'-oxime on the function of isolated rat liver mitochondria contributing to a better understanding of the biochemical mechanisms underlying the multiple effects of indirubin. Indirubin-3'-oxime incubated with isolated rat liver mitochondria, at concentrations above 10{mu}M, significantly depresses the phosphorylation efficiency of mitochondria as inferred from the decrease in the respiratory control and ADP/O ratios, the perturbations in mitochondrial membrane potential and in the phosphorylative cycle induced by ADP. Furthermore, indirubin-3'-oxime at up to 25{mu}M stimulates the rate of state 4 respiration and inhibits state 3 respiration. The increased lag phase of repolarization was associated with a direct inhibition of the mitochondrial ATPase. Indirubin-3'-oxime significantly inhibited the activity of complex II and IV thus explaining the decreased FCCP-stimulated mitochondrial respiration. Mitochondria pre-incubated with indirubin-3'-oxime exhibits decreased susceptibility to calcium-induced mitochondrial permeability transition. This work shows for the first time multiple effects of indirubin-3'-oxime on mitochondrial bioenergetics thus indicating a potential mechanism for indirubin-3'-oxime effects on cell function.

  1. Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission.

    PubMed

    Zhang, Bo; Davidson, Mercy M; Zhou, Hongning; Wang, Chunxin; Walker, Winsome F; Hei, Tom K

    2013-11-15

    Direct DNA damage is often considered the primary cause of cancer in patients exposed to ionizing radiation or environmental carcinogens. Although mitochondria are known to play an important role in radiation-induced cellular response, the mechanisms by which cytoplasmic stimuli modulate mitochondrial dynamics and functions are largely unknown. In the present study, we examined changes in mitochondrial dynamics and functions triggered by α particle damage to the mitochondria in human small airway epithelial cells, using a precision microbeam irradiator with a beam width of 1 μm. Targeted cytoplasmic irradiation using this device resulted in mitochondrial fragmentation and a reduction of cytochrome c oxidase and succinate dehydrogenase activity, when compared with nonirradiated controls, suggesting a reduction in respiratory chain function. In addition, mitochondrial fragmentation or fission was associated with increased expression of the dynamin-like protein DRP1, which promotes mitochondrial fission. DRP1 inhibition by the drug mdivi-1 prevented radiation-induced mitochondrial fission, but respiratory chain function in mitochondria inhibited by radiation persisted for 12 hours. Irradiated cells also showed an increase in mitochondria-derived superoxide that could be quenched by dimethyl sulfoxide. Taken together, our results provide a mechanistic explanation for the extranuclear, nontargeted effects of ionizing radiation.

  2. Differentiation of mitochondrial DNA and Y chromosomes in Russian populations.

    PubMed

    Malyarchuk, Boris; Derenko, Miroslava; Grzybowski, Tomasz; Lunkina, Arina; Czarny, Jakub; Rychkov, Serge; Morozova, Irina; Denisova, Galina; Miścicka-Sliwka, Danuta

    2004-12-01

    The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.

  3. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment

    PubMed Central

    Niyazov, Dmitriy M.; Kahler, Stephan G.; Frye, Richard E.

    2016-01-01

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (oxphos). Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process. However, many disorders have the ‘mitochondrial’ phenotype without an identifiable mtDNA or nDNA mutation or they have a variant of unknown clinical significance. Secondary mitochondrial dysfunction (SMD) can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to nongenetic causes such as environmental factors. In our practice, we see many patients with clinical signs of mitochondrial dysfunction based on phenotype, biomarkers, imaging, muscle biopsy, or negative/equivocal mtDNA or nDNA test results. In these cases, it is often tempting to assign a patient's phenotype to ‘mitochondrial disease’, but SMD is often challenging to distinguish from PMD. Fortunately, rapid advances in molecular testing, made possible by next generation sequencing, have been effective at least in some cases in establishing accurate diagnoses to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective. We review the latest findings regarding mitochondrial disease/dysfunction and give representative examples in which differentiation between PMD and SMD has been crucial for diagnosis and treatment. PMID:27587988

  4. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10.

    PubMed

    Murcha, Monika W; Rudhe, Charlotta; Elhafez, Dina; Adams, Keith L; Daley, Daniel O; Whelan, James

    2005-08-01

    The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.

  5. Mitochondrial function as a therapeutic target in heart failure

    PubMed Central

    Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai

    2017-01-01

    Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807

  6. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  7. Batteries not included: diagnosis and management of mitochondrial disease.

    PubMed

    McFarland, R; Turnbull, D M

    2009-02-01

    In 1998, Wallace et al. (Science 1988; 242: 1427-30) published evidence that the mutation m.11778G>A was responsible for causing Leber's hereditary optic neuropathy. This was the first account of a mitochondrial DNA mutation being irrefutably linked with a human disease and was swiftly followed by a report from Holt et al. (Nature 1988; 331: 717-9) identifying deletions in mitochondrial DNA as a cause for myopathy. During the subsequent 20 years there has been an exponential growth in 'mitochondrial medicine', with clinical, biochemical and genetic characterizations of a wide range of mitochondrial diseases and evidence implicating mitochondria in a host of many other clinical conditions including ageing, neurodegenerative illness and cancer. In this review we shall focus on the diagnosis and management of mitochondrial diseases that lead directly or indirectly to disruption of the process of oxidative phosphorylation.

  8. Rolling circle amplification of complete nematode mitochondrial genomes.

    PubMed

    Tang, Sha; Hyman, Bradley C

    2005-06-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80 degrees C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing.

  9. How mitochondrial dynamism orchestrates mitophagy

    PubMed Central

    Shirihai, Orian; Song, Moshi; Dorn, Gerald W

    2015-01-01

    Mitochondria are highly dynamic, except in adult cardiomyocytes. Yet, the fission and fusion-promoting proteins that mediate mitochondrial dynamism are highly expressed in, and essential to the normal functioning of, hearts. Here, we review accumulating evidence supporting important roles for mitochondrial fission and fusion in cardiac mitochondrial quality control, focusing on the PINK1-Parkin mitophagy pathway.Based in part on recent findings from in vivo mouse models in which mitofusin-mediated mitochondrial fusion or Drp1-mediated mitochondrial fission were conditionally interrupted in cardiac myocytes, we propose several new concepts that may provide insight into the cardiac mitochondrial dynamism-mitophagy interactome. PMID:25999423

  10. Quality Control of Mitochondrial Proteostasis

    PubMed Central

    Baker, Michael J.; Tatsuta, Takashi; Langer, Thomas

    2011-01-01

    A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy. PMID:21628427

  11. Mitochondrial cardiomyopathy and related arrhythmias.

    PubMed

    Montaigne, David; Pentiah, Anju Duva

    2015-06-01

    Mitochondrial dysfunction has been shown to be involved in the pathophysiology of arrhythmia, not only in inherited cardiomyopathy due to specific mutations in the mitochondrial DNA but also in acquired cardiomyopathy such as ischemic or diabetic cardiomyopathy. This article briefly discusses the basics of mitochondrial physiology and details the mechanisms generating arrhythmias due to mitochondrial dysfunction. The clinical spectrum of inherited and acquired cardiomyopathies associated with mitochondrial dysfunction is discussed followed by general aspects of the management of mitochondrial cardiomyopathy and related arrhythmia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cross-reactivity of Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae With Heat Shock Protein 60 and ATP-Binding Protein Correlates to Reduced Mitochondrial Activity in HIBCPP Choroid Plexus Papilloma Cells.

    PubMed

    Reuss, B; Schroten, H; Ishikawa, H; Asif, A R

    2015-09-01

    Antibacterial antibodies can cause neurologic side-effects by cross-reactivity with cellular antigens. Here we investigated interactions of antibodies to Neisseria gonorrhoeae (α-NG) - maternal infections by which increases the offspring's risk for later psychosis-with HIBCPP cells, a cell culture model of choroid plexus epithelium. Immunocytochemistry and Western blotting with α-NG, revealed organelle-like intracellular staining in HIBCPP cells, and labelling of several immunoreactive bands in cellular protein. Two-dimensional Western blotting revealed several immunopositive spots, most prominent of which were identified by mass spectrometry as mitochondrially localized proteins heat shock protein 60 (Hsp60) and ATP-binding protein β-subunit (ATPB). Similarly α-NG interacted with commercial samples of these proteins as revealed by Western blotting. Three alternative methods (JC-1, Janus green and MTT staining) revealed α-NG to cause in HIBCPP cells a significant decrease in mitochondrial activity, which could be reverted by neuroleptic drugs. Immunoreactivity of α-NG with choroid plexus epithelium in human post mortem samples suggests in vivo relevance of these findings. Finally, distinctly different staining patterns of antibodies against Neisseria meningitidis (α-NM), confirmed antibody specificity. To our knowledge this is the first report that α-NG cross-reactivity with Hsp60 and ATPB impairs mitochondrial activity in choroid plexus epithelial cells, pathogenetic relevance of which needs further clarification.

  13. Mitochondrial dynamics and inherited peripheral nerve diseases.

    PubMed

    Pareyson, Davide; Saveri, Paola; Sagnelli, Anna; Piscosquito, Giuseppe

    2015-06-02

    Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental

  14. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  15. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  16. Genetics of Mitochondrial Disease.

    PubMed

    Saneto, Russell P

    2017-01-01

    Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  18. Betaine is a positive regulator of mitochondrial respiration

    SciTech Connect

    Lee, Icksoo

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  19. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury.

    PubMed

    Camara, Amadou K S; Bienengraeber, Martin; Stowe, David F

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.

  20. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

    PubMed Central

    Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063

  1. Analysis of uniparental lineages in two villages of Santiago Del Estero, Argentina, seat of Pueblos de Indios in colonial times.

    PubMed

    Pauro, Maia; García, Angelina; Nores, Rodrigo; Demarchi, Darío A

    2013-10-01

    Based on the analysis of the mitochondrial control region and seven biallelic markers of the Y chromosome, we investigated the genetic composition of two rural populations of southern Santiago del Estero, Argentina, that were seats in colonial times of pueblos de indios, a colonial practice that consisted of concentrating the indigenous populations in organized and accessible settlements, to facilitate Christianizing and policing. We found the Native American Y chromosome haplogroup Q1a3a in only 11% (3 of 27) of the males. Haplogroup R, common in European populations, is the most frequent haplogroup in Santiago del Estero (55%). In contrast, the persistence of Native American maternal lineages is extremely high (95%). This finding is most likely due to the low incidence in that region of the 20th century European wave of migration and to the existence of pueblos de indios from 1612 to the first decades of the 19th century. In contrast to archeological records that suggest Santiago del Estero late pre-Hispanic groups were strongly influenced by the Andean world, we did not find genetic evidence in support of significant gene fl ow. On the other hand, these populations share many mitochondrial DNA hypervariable region I (HVRI) haplotypes with other populations from the Sierras Pampeanas (particularly with Córdoba) and the Gran Chaco regions.

  2. Adult-onset mitochondrial myopathy.

    PubMed Central

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  3. Mitochondrial degradation and energy metabolism.

    PubMed

    Melser, Su; Lavie, Julie; Bénard, Giovanni

    2015-10-01

    Mitochondria are intracellular power plants that feed most eukaryotic cells with the ATP produced by the oxidative phosphorylation (OXPHOS). Mitochondrial energy production is controlled by many regulatory mechanisms. The control of mitochondrial mass through both mitochondrial biogenesis and degradation has been proposed to be one of the most important regulatory mechanisms. Recently, autophagic degradation of mitochondria has emerged as an important mechanism involved in the regulation of mitochondrial quantity and quality. In this review, we highlight the intricate connections between mitochondrial energy metabolism and mitochondrial autophagic degradation by showing the importance of mitochondrial bioenergetics in this process and illustrating the role of mitophagy in mitochondrial patho-physiology. Furthermore, we discuss how energy metabolism could coordinate the biogenesis and degradation of this organelle. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Renal Mitochondrial Cytopathies

    PubMed Central

    Emma, Francesco; Montini, Giovanni; Salviati, Leonardo; Dionisi-Vici, Carlo

    2011-01-01

    Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNALEU mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized. PMID:21811680

  5. Renal mitochondrial cytopathies.

    PubMed

    Emma, Francesco; Montini, Giovanni; Salviati, Leonardo; Dionisi-Vici, Carlo

    2011-01-01

    Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNA(LEU) mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized.

  6. Inherited mitochondrial optic neuropathies

    PubMed Central

    Yu-Wai-Man, P; Griffiths, P G; Hudson, G; Chinnery, P F

    2009-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA) are the two most common inherited optic neuropathies and they result in significant visual morbidity among young adults. Both disorders are the result of mitochondrial dysfunction: LHON from primary mitochondrial DNA (mtDNA) mutations affecting the respiratory chain complexes; and the majority of DOA families have mutations in the OPA1 gene, which codes for an inner mitochondrial membrane protein critical for mtDNA maintenance and oxidative phosphorylation. Additional genetic and environmental factors modulate the penetrance of LHON, and the same is likely to be the case for DOA which has a markedly variable clinical phenotype. The selective vulnerability of retinal ganglion cells (RGCs) is a key pathological feature and understanding the fundamental mechanisms that underlie RGC loss in these disorders is a prerequisite for the development of effective therapeutic strategies which are currently limited. PMID:19001017

  7. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium.

    PubMed

    Yang, Jia-Ying; Deng, Wu; Chen, Yumay; Fan, Weiwei; Baldwin, Kenneth M; Jope, Richard S; Wallace, Douglas C; Wang, Ping H

    2013-06-01

    Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium.

  8. Brow motility in mitochondrial myopathy.

    PubMed

    de Castro, Flávia Augusta Attié; Cruz, Antonio Augusto V; Sobreira, Cláudia Ferreira da Rosa

    2010-01-01

    To quantify the range of brow excursion in patients with mitochondrial myopathy and chronic progressive external ophthalmoplegia (CPEO). Comparative case series. Digital image processing techniques were used to quantify the upper eyelid resting position, brow excursion, and monocular eye movements (ductions) in 19 patients with mitochondrial myopathy and CPEO and in 27 healthy control subjects. All patients with CPEO had ptosis ranging from 0.6 to 8 mm. For most patients, eye motility limitation was symmetrical. Elevation was the most affected eye movement. Patient's brow motility was on average 56.7% of the motility seen in the control group, and did not correlate with age or eye motility in any direction. Seventy-six percent of the brows displayed more than 2 mm of excursion. In patients with CPEO, the occipitofrontalis muscle is less affected than the extraocular muscles. Most patients display a useful degree of brow excursion that theoretically can be used to clear the visual axis after a conservative brow suspension.

  9. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  10. Association of mitochondrial dysfunction and fatigue: A review of the literature

    PubMed Central

    Filler, Kristin; Lyon, Debra; Bennett, James; McCain, Nancy; Elswick, Ronald; Lukkahatai, Nada; Saligan, Leorey N.

    2014-01-01

    Fatigue is often described by patients as a lack of energy, mental or physical tiredness, diminished endurance, and prolonged recovery after physical activity. Etiologic mechanisms underlying fatigue are not well understood; however, fatigue is a hallmark symptom of mitochondrial disease, making mitochondrial dysfunction a putative biological mechanism for fatigue. Therefore, this review examined studies that investigated the association of markers of mitochondrial dysfunction with fatigue and proposes possible research directions to enhance understanding of the role of mitochondrial dysfunction in fatigue. A thorough search using PubMed, Scopus, Web of Science, and Embase databases returned 1220 articles. After the application of inclusion and exclusion criteria, a total of 25 articles meeting eligibility criteria were selected for full review. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid metabolism), immune response, and genetics were investigated as potential contributors to fatigue. Carnitine was the most investigated mitochondrial function marker. Dysfunctional levels were reported in all the studies investigating carnitine; however, the specific type of carnitine that was dysfunctional varied. Genetic profiles were the second most studied mitochondrial parameter. Six common pathways were proposed: metabolism, energy production, protein transport, mitochondrial morphology, central nervous system dysfunction and post-viral infection. Coenzyme Q10 was the most commonly investigated mitochondrial enzyme. Low levels of Coenzyme Q10 were consistently associated with fatigue. Potential targets for further investigation were identified as well as gaps in the current literature. PMID:25147756

  11. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria.

    PubMed

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR.