Science.gov

Sample records for direct-conversion flat-panel imager

  1. Direct-conversion flat-panel x-ray imaging: reduction of noise by presampling filtration

    NASA Astrophysics Data System (ADS)

    Rowlands, John A.; Ji, Winston G.; Zhao, Wei; Lee, Denny L. Y.

    2000-04-01

    Large area flat panel solid-state detectors are being studied for digital radiography and fluoroscopy. Such systems use active matrix arrays to readout latent charge images created either by direct conversion of x-ray energy to charge in a photoconductor or indirectly using a phosphor and individual photodiodes on the active matrix array. Our work has utilized the direct conversion method because of its simplicity and the higher resolution possible due to the electrostatic collection of secondary quanta. Aliasing of noise occurs in current designs of direct detectors based on amorphous selenium ((alpha) -Se) because of its high intrinsic resolution. This aliasing leads to a decrease in detective quantum efficiency (DQE) as frequency increases. It has been predicted, using a previously developed model of the complete imaging system, that appropriately controlled spatial filtration can reduce this aliased noise and hence increase DQE at the Nyquist frequency, fNY. Our purpose is to experimentally verify this concept by implementing presampling filtration in a practical flat panel system. An (alpha) -Se based flat panel imager is modified by incorporating an insulating layer between the active matrix and the (alpha) -Se layer to introduce a predetermined amount of presampling burring. The modified imager is evaluated using standard linear analysis tools, modulation transfer function (MTF), noise power spectra (NPS) and DQE(f), and the results are compared to theoretical predictions.

  2. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    SciTech Connect

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct

  3. Direct-conversion flat-panel imager with avalanche gain: feasibility investigation for HARP-AMFPI.

    PubMed

    Wronski, M M; Rowlands, J A

    2008-12-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10(-7)-10(-2) R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction

  4. Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors.

    PubMed

    Kasap, Safa; Frey, Joel B; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S; Rowlands, John A

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI(2) and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  5. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    PubMed Central

    Kasap, Safa; Frey, Joel B.; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S.; Rowlands, John A.

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  6. [Correlation between basic imaging properties and subjective evaluations of two digital radiographic X-ray systems based on direct-conversion flat panel detector].

    PubMed

    Sakaguchi, Taro; Katayama, Reiji; Morishita, Junji; Sakai, Shinji; Kuroki, Hidefumi; Ohkubo, Seiji; Maeda, Takashi; Hayabuchi, Naofumi

    2010-11-20

    The purpose of this study was to examine the correlation between the basic imaging properties of two digital radiographic X-ray systems with a direct conversion flat-panel detector and their image qualities, which were evaluated by the observer in hard copy and soft copy studies. The subjective image quality was evaluated and compared in terms of the low-contrast detectability and image sharpness in the two digital radiographic X-ray systems. We applied the radiographs of a contrast detail phantom to the evaluation of low-contrast detectability and analyzed the contrast detail diagrams. Finally, low-contrast detectability was evaluated by the image quality figure (IQF) calculated from the contrast detail diagrams. Also, the subjective image sharpness of human dry bones of two systems was examined and evaluated by the normalized-rank method. The results indicated that System A tended to provide superior subjective image quality compared to System B in both observer studies. We also found high correlations between IQFs and basic imaging properties, such as the noise power spectrum (NPS) and the noise equivalent quantum (NEQ). In conclusion, the low-contrast detectability of the two digital radiographic X-ray systems with a direct conversion flat-panel detector corresponded to the NPS and the NEQ in both outputs (soft copy and hard copy). On the other hand, the subjective image sharpness of human dry bones was affected by their noise properties.

  7. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    SciTech Connect

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-06-15

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  8. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most

  9. The Usefulness of Three-Dimensional Angiography with a Flat Panel Detector of Direct Conversion Type in a Transcatheter Arterial Chemoembolization Procedure for Hepatocellular Carcinoma: Initial Experience

    SciTech Connect

    Kakeda, Shingo Korogi, Yukunori; Hatakeyama, Yoshihisa; Ohnari, Norihiro; Oda, Nobuhiro; Nishino, Kazuyoshi; Miyamoto, Wataru

    2008-03-15

    The purpose of this study was to assess the usefulness of a three-dimensional (3D) angiography system using a flat panel detector of direct conversion type in treatments with subsegmental transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). Thirty-six consecutive patients who underwent hepatic angiography were prospectively examined. First, two radiologists evaluated the degree of visualization of the peripheral branches of the hepatic arteries on 3D digital subtraction angiography (DSA). Then the radiologists evaluated the visualization of tumor staining and feeding arteries in 25 patients (30 HCCs) who underwent subsegmental TACE. The two radiologists who performed the TACE assessed whether the additional information provided by 3D DSA was useful for treatments. In 34 (94.4%) of 36 patients, the subsegmental branches of the hepatic arteries were sufficiently visualized. The feeding arteries of HCCs were sufficiently visualized in 28 (93%) of 30 HCCs, whereas tumor stains were sufficiently visualized in 18 (60%). Maximum intensity projection images were significantly superior to volume recording images for visualization of the tumor staining and feeding arteries of HCCs. In 27 (90%) of 30 HCCs, 3D DSA provided additional useful information for subsegmental TACE. The high-quality 3D DSA with flat panel detector angiography system provided a precise vascular road map, which was useful for performing subsegmental TACE .of HCCs.

  10. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  11. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.

    PubMed

    Cowen, A R; Kengyelics, S M; Davies, A G

    2008-05-01

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  12. High voltage protection in active matrix flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Lehnert, Joerg; Zhao, Wei

    2006-03-01

    Various direct and indirect active matrix flat-panel imagers (AMFPI) are being investigated for x-ray imaging. In both direct AMFPI and indirect AMFPI with avalanche gain, a bias potential up to several thousand volts is required to operate the photoconductor. Under the condition of a large amount of radiation exposure between subsequent readout, a potential >80 V could appear across the amorphous silicon (a-Si) thin film transistor (TFT) and cause permanent damage. The purpose of this paper is to investigate a simple pixel design for high voltage protection. The pixel electrode acts as an additional gate for the top channel of an a-Si TFT to drain excess image charge from the pixel electrode until an equilibrium is reached where the TFT channel current equals the detector signal current at a predetermined safe maximum value V Pmax for the pixel potential. This "dual-gate" TFT structure without additional protective device simplifies the TFT array design and improves yield. However special care is required to understand the characteristics of both the top and the bottom gates to ensure sufficient detector dynamic range as well as reliable high voltage protection. A physical model for dual-gate a-Si TFTs was developed and device parameters were determined by fitting the model to measured characteristics from a dual-gate TFT array. Our results showed that compared to the bottom (normal) gate, the protective gate has a shallower transfer characteristics (i.e. channel current as a function of gate voltage) due to a higher density of states in the top interface. Nevertheless it provides adequate protection of the TFT with V Pmax of ~40 V for typical radiographic exposures.

  13. Flat-panel-detector-based volume tomographic angiography imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Zhang, Dinghua; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-09-01

    Recent development of large area flat panel solid state detector arrays indicates that flat panel image sensors have some common potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high DQE, high frame rate and high dynamic range, small image lag (less than 1%) and excellent linearity (approximately 1%). The advantages of the new flat-panel detector make it a promising candidate for cone beam volume tomographic angiography imaging. The purpose of this study is to characterize a Selenium thin film transistor (STFT) flat panel detector-based imaging system for cone beam volume tomographic angiography imaging applications. A prototype STFT detector-based cone beam volume tomographic angiography imaging system has been designed and constructed based on the modification of a GE 8800 CT scanner. This system is evaluated using a vascular phantom with different x-ray spectra, different sizes of vessels and different iodine concentration levels. The results indicate that with the currently available STFT flat panel detector, 90 kVp is the optimal kVp to achieve the highest signal-to-noise ratio for volume tomographic angiography imaging and the low contrast resolution of the system is 4 mg/ml iodine for a 2 mm vessel.

  14. A new x-ray imaging technique for radiography mode of flat-panel imager

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ikeda, S.; Ueda, K.; Baba, R.

    2007-03-01

    A digital radiography system using a flat-panel imager, which has a novel imaging technique for a radiography mode, has been developed. A radiographic image captured by the new imaging technique has a wide dynamic range in comparison with conventional radiographic images. The purpose of this presentation is to show the basic performance of the image quality acquired by the new imaging technique and compare it with an image taken by a conventional technique. The flat-panel imager has a gain switching capability, normally used in a dynamic imaging mode for a cone-beam CT study. The gain switching method has two gain settings and switches between them automatically, depending on the incident dose to each pixel of flat-panel imager. As a result of the gain switching method, an image having wide dynamic range is achieved. In this study, we applied the gain switching method to the radiography mode, and achieved a radiographic image with wider dynamic range than a conventional radiograph. Furthermore, we have also developed an algorithm for calibration of the gain switching method in radiography mode.

  15. Flat-panel see-through three-dimensional display based on integral imaging.

    PubMed

    Takaki, Yasuhiro; Yamaguchi, Yuta

    2015-04-15

    This study proposes a technique to construct a flat-panel see-through three-dimensional (3D) display based on integral imaging. This display consists of multiple lens arrays, a transparent flat-panel display, and a light-blocking wall (LBW). Rays behind the display are reconstructed in front of it by combination of the lens arrays and the LBW to provide the see-through function. The combination of one of the lens arrays and the transparent flat-panel display produces full-parallax 3D images, which are superimposed on background images. The experimental system is constructed to verify the proposed technique. The see-through and superposition capabilities of the experimental system are demonstrated.

  16. Flat-panel imaging system for fluoroscopy applications

    NASA Astrophysics Data System (ADS)

    Colbeth, Richard E.; Allen, Maxwell J.; Day, Derek J.; Gilblom, David L.; Harris, Richard A.; Job, Isaias D.; Klausmeier-Brown, Martin E.; Pavkovich, John M.; Seppi, Edward J.; Shapiro, Edward G.; Wright, Michael D.; Yu, Jiann M.

    1998-07-01

    This paper describes a multi-mode, digital imager for real- time x-ray applications. The imager has three modes of operation: low dose fluoroscopy, zoom fluoroscopy, and high resolution radiography. These modes trade-off resolution or field-of-view for frame rate and additionally optimize the sensitivity of the imager to match the x-ray dose used in each mode. This large area sensing technology has a form factor similar to that of a film cassette, no geometric image distortion, no sensitivity to magnetic fields, a very large dynamic range which eliminates repeat shots due to over or under exposure, 12 bit digital output and the ability to switch between operating modes in real-time. The imager, which consists of three modules: the Receptor, the Power Supply and the Command Processor, is intended as a component in a larger imaging system. Preliminary characterization of the prototype imager in fluoroscopic mode at entrance exposure rates down to 2.5 (mu) R/frame, indicates that the DQE(f), MTF and low contrast resolution are comparable to that obtained with an image intensifier tube (IIT) coupled to a video camera.

  17. Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Roos, Pieter G.; Colbeth, Richard E.; Mollov, Ivan; Munro, Peter; Pavkovich, John; Seppi, Edward J.; Shapiro, Edward G.; Tognina, Carlo A.; Virshup, Gary F.; Yu, J. Micheal; Zentai, George; Kaissl, Wolfgang; Matsinos, Evangelos; Richters, Jeroen; Riem, Heinrich

    2004-05-01

    The dynamic range of many flat panel imaging systems are fundamentally limited by the dynamic range of the charge amplifier and readout signal processing. We developed two new flat panel readout methods that achieve extended dynamic range by changing the read out charge amplifier feedback capacitance dynamically and on a real-time basis. In one method, the feedback capacitor is selected automatically by a level sensing circuit, pixel-by-pixel, based on its exposure level. Alternatively, capacitor selection is driven externally, such that each pixel is read out two (or more) times, each time with increased feedback capacitance. Both methods allow the acquisition of X-ray image data with a dynamic range approaching the fundamental limits of flat panel pixels. Data with an equivalent bit depth of better than 16 bits are made available for further image processing. Successful implementation of these methods requires careful matching of selectable capacitor values and switching thresholds, with the imager noise and sensitivity characteristics, to insure X-ray quantum limited operation over the whole extended dynamic range. Successful implementation also depends on the use of new calibration methods and image reconstruction algorithms, to insure artifact free rebuilding of linear image data by the downstream image processing systems. The multiple gain ranging flat panel readout method extends the utility of flat panel imagers and paves the way to new flat panel applications, such as cone beam CT. We believe that this method will provide a valuable extension to the clinical application of flat panel imagers.

  18. Evaluation of image quality and dose on a flat-panel CT-scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Suess, Ch.; Stierstorfer, K.; Popescu, S.; Flohr, T.

    2005-04-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (VCT) scanner. We focused on improving the image quality using different detector settings and reducing x-ray scatter intensities. For the presented results we used a Varian 4030CB flat-panel detector mounted in a multislice CT-gantry (Siemens Medical Systems). The scatter intensities may severely impair image quality in flat-panel detector CT systems. To reduce the impact of scatter we tested bowtie shaped filters, anti-scatter grids and post-processing correction algorithms. We evaluated the improvement of image quality by each method and also by a combination of the several methods. To achieve an extended dynamic range in the projection data, we implemented a novel dynamic gain-switching mode. The read out charge amplifier feedback capacitance is changing dynamically in this mode, depending on the signal level. For this scan mode dedicated corrections in the offset and gain calibration are required. We compared image quality in terms of low contrast for both, the dynamic mode and the standard fixed gain mode. VCT scanners require different types of dose parameters. We measured the dose in a 16 cm CTDI phantom and free air in the scanners iso-center and defined a new metric for a VCT dose index (VCTDI). The dose for a high quality VCT scan of this prototype scanner varied between 15 and 40 mGy.

  19. Image quality of flat-panel cone beam CT

    NASA Astrophysics Data System (ADS)

    Rose, Georg; Wiegert, Jens; Schaefer, Dirk; Fiedler, Klaus; Conrads, Norbert; Timmer, Jan; Rasche, Volker; Noordhoek, Niels; Klotz, Erhard; Koppe, Reiner

    2003-06-01

    We present results on 3D image quality in terms of spatial resolution (MTF) and low contrast detectability, obtained on a flat dynamic X-ray detector (FD) based cone-beam CT (CB-CT) setup. Experiments have been performed on a high precision bench-top system with rotating object table, fixed X-ray tube and 176 x 176 mm2 active detector area (Trixell Pixium 4800). Several objects, including CT performance-, MTF- and pelvis phantoms, have been scanned under various conditions, including a high dose setup in order to explore the 3D performance limits. Under these optimal conditions, the system is capable of resolving less than 1% (~10 HU) contrast in a water background. Within a pelvis phantom, even inserts of muscle and fat equivalent are clearly distinguishable. This also holds for fast acquisitions of up to 40 fps. Focusing on the spatial resolution, we obtain an almost isotropic three-dimensional resolution of up to 30 lp/cm at 10% modulation.

  20. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics

    PubMed Central

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-01-01

    Abstract Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis. Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared. For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50). We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  1. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.

    PubMed

    Gong, Xing; Vedula, Aruna A; Glick, Stephen J

    2004-06-07

    The purpose of this study was to investigate microcalcification detectability using CT mammography with a flat-panel imager. To achieve this, a computer simulation was developed to model an amorphous-silicon, CsI based flat-panel imager system using a linear cascaded model. The breast was modelled as a hemi-ellipsoid shape with composition of 50% adipose and 50% glandular tissue. Microcalcifications were modelled as small spheres having a composition of calcium carbonate. The results show that with a mean glandular dose equivalent to that typically used in two-view screening mammography, CT mammography with a flat-panel detector is capable of providing images where most microcalcifications are detectable. A receiver operating characteristic (ROC) study was conducted by five physicist observers viewing simulated CT mammography reconstructions. The results suggest that the microcalcification with its diameter equal to or greater than 0.175 mm can be detected with an average area under the ROC curve (AUC) greater than 0.95 using 0.1 or 0.2 mm pixelized detectors. The results also indicate that the optimal pixel size of the detector is around 0.2 mm for microcalcification detection, based on the trade-off between detectability of microcalcifications and the time required for data acquisition and reconstruction.

  2. Evaluation of the mechanical stability of a megavoltage imaging system using a new flat panel positioner

    NASA Astrophysics Data System (ADS)

    Morin, O.; Chen, J.; Aubin, M.; Pouliot, J.

    2005-04-01

    Mega-Voltage systems are used in radiation oncology both for external radiation delivery and patient positioning prior to treatment. A pair of portal images compared with digitally reconstructed radiographs is currently the gold standard for positioning but new developments have made possible the use of Mega-Voltage Cone Beam CT for better 3D setup. The non-ideal imaging geometry of the treatment unit has a direct impact on both methods. It led to the use of a reticule attachment as reference for the scale and the isocenter position on the portal images. The reticule has limited precision and occasionally super-imposes anatomical information. As for Cone Beam, the image quality crucially depends on the knowledge of the scan geometry during the acquisition. The reproducibility of the detector position at each angle will affect the image reconstruction and determine how frequently geometrical calibration must be performed. The objectives of this study are to measure the flex of the detector and evaluate its reproducibility. A RID 1640 Perkin Elmer a-Si Flat Panel is installed on a Siemens Primus linear accelerator with a positioner similar the the one used in the Oncor product. Three original methods are used to investigate the behavior in space and time of the imaging system. A reticule and a Plumb Bob tip are placed along the line formed by the isocenter and the source. Their positions projected on the flat panel for different gantry positions are used to calculate the mechanical flex. Projection matrices obtained in a geometrical Cone Beam calibration are also used to quantify the flat panel sagging. Six full sets of data were acquired over a period of 5 months and recorded overall mechanical flexes of 1 and 3 mm for the transversal and longitudinal directions respectively. The absolute magnitude of the flat panel displacement varies slightly with the method used but the discrepancy stays within the laser precision used for alignment. The small standard deviations

  3. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  4. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  5. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more.

    PubMed

    Nickoloff, Edward Lee

    2011-01-01

    This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time.

  6. Flat-panel detector-based cone beam volume CT breast imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Conover, David L.; Ning, Ruola

    2003-06-01

    Preliminary evaluation of large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages over film-screen and CCD-based imagers: compactness, high resolution, high frame rate, large dynamic range, small image lag (<1%), and excellent linearity (~1%). A real time large-area flat panel detector (FPD) Varian PaxScan 2520 was evaluated for cone-beam volume breast imaging (CBVCTBI) in terms of dynamic range, linearity, image lag, and spatial as well as low contrast resolution. In addition, specially made breast phantoms were imaged with our prototyped CBVCTBI system to provide real outcomes to evaluate the detector under full imaging system conditions including the x-ray source, gantry geometry, x-ray technique selection, data acquisition system and reconstruction algorithms. We have concentrated on the low kVp range (30 to 80 kVp) in the context of the breast-imaging task. For ~288 images/scan the exposure required was ~2.5mR/projection. This is equivalent to that of a conventional mammography screening exam. The results indicate that the FPD-based CBVCTBI system can achieve sufficient high- and low-contrast resolution for diagnostic CBVCT breast imaging with a clinically acceptable exposure level. The advantages of the new FPD make it a promising candidate for CBVCTBI.

  7. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    SciTech Connect

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  8. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).

    PubMed

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, B J M; Hunt, D C; Rowlands, J A; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  9. [Flat-panel detectors in X-ray systems].

    PubMed

    Spahn, M; Heer, V; Freytag, R

    2003-05-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography,mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method. For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications. Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography. Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods.

  10. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  11. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  12. Performance requirements for electronic displays of color moving images using flat panel technology

    NASA Astrophysics Data System (ADS)

    Glenn, William E.

    1994-04-01

    The initial market for flat panel displays has been dominated by the laptop computer. This is a very attractive entry market for the newer technologies. The technical requirements for computer displays are much easier to satisfy then for high definition entertainment displays. While the resolutions are similar, the other requirements of contrast ratio, cost, light output, response time, uniformity, gray scale, size and color purity are all much less demanding than those for the display of real-time moving images for entertainment. However, if the panels being developed for computers could meet the requirements of entertainment television, they could be used as light valves in large screen projectors. In this way the investment in development and in manufacturing facilities can be amortized over a much larger market. This paper will review a comparison of the requirements for both applications.

  13. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity

  14. [Physical imaging properties of a flat panel X-ray detector system].

    PubMed

    Yoshida, Akira; Nakamura, Satoru; Nishihara, Sadamitsu; Kohama, Chiyuki; Takahata, Akira; Fujikawa, Kouichi

    2002-01-01

    We report the physical imaging properties of a flat panel detector (FPD) designed for radiographic imaging applications (Revolution XQ/i digital chest imaging system, G.E. Medical Systems). The imaging properties of the detector were evaluated through measurements of the characteristic curve, modulation transfer function (MTF), and Wiener spectrum. The digital characteristic curves of the FPD system were measured for the two tube voltages (80 kV and 120 kV). They showed that the correlation between the pixel values of FPD and the incident exposure to the FPD was a linear correlation. The dynamic range of characteristic curves had a range from about 0.003 to 2 microC/kg at the exposure. The presampling MTFs for different tube voltage were almost the same, when we measured the MTFs at 80 kV and 120 kV. And also, there was no significant difference between the MTFs measured with the slit in the direction parallel to the horizontal direction and with the slit in the perpendicular direction. The relative resolution of the FPD system was a 46% higher than that of ST-V imaging plate of FCR (Fuji Computed Radiography) system at 2 cycles/mm. The digital Wiener spectrum of the FPD system was about 1/10 lower than that of the CR system. Thus the FPD system can provide superior imaging performance due to both high resolution and low noise.

  15. Investigation of time-resolved proton radiography using x-ray flat-panel imaging system

    NASA Astrophysics Data System (ADS)

    Jee, K.-W.; Zhang, R.; Bentefour, E. H.; Doolan, P. J.; Cascio, E.; Sharp, G.; Flanz, J.; Lu, H.-M.

    2017-03-01

    Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.

  16. Potential applications of flat-panel volumetric CT in morphologic and functional small animal imaging.

    PubMed

    Greschus, Susanne; Kiessling, Fabian; Lichy, Matthias P; Moll, Jens; Mueller, Margareta M; Savai, Rajkumar; Rose, Frank; Ruppert, Clemens; Günther, Andreas; Luecke, Marcus; Fusenig, Norbert E; Semmler, Wolfhard; Traupe, Horst

    2005-08-01

    Noninvasive radiologic imaging has recently gained considerable interest in basic and preclinical research for monitoring disease progression and therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT) as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, and brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model and the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, and kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion and tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  17. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  18. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation.

    PubMed

    Ning, R; Chen, B; Yu, R; Conover, D; Tang, X; Ning, Y

    2000-09-01

    Preliminary evaluation of recently developed large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high detective quantum efficiency (DQE), high frame rate and high dynamic range, small image lag (< 1%), and excellent linearity (approximately 1%). The advantages of the new FPD make it a promising candidate for cone-beam volume computed tomography (CT) angiography (CBVCTA) imaging. The purpose of this study is to characterize a prototype FPD-based imaging system for CBVCTA applications. A prototype FPD-based CBVCTA imaging system has been designed and constructed around a modified GE 8800 CT scanner. This system is evaluated for a CBVCTA imaging task in the head and neck using four phantoms and a frozen rat. The system is first characterized in terms of linearity and dynamic range of the detector. Then, the optimal selection of kVps for CBVCTA is determined and the effect of image lag and scatter on the image quality of the CBVCTA system is evaluated. Next, low-contrast resolution and high-contrast spatial resolution are measured. Finally, the example reconstruction images of a frozen rat are presented. The results indicate that the FPD-based CBVCT can achieve 2.75-lp/mm spatial resolution at 0% modulation transfer function (MTF) and provide more than enough low-contrast resolution for intravenous CBVCTA imaging in the head and neck with clinically acceptable entrance exposure level. The results also suggest that to use an FPD for large cone-angle applications, such as body angiography, further investigations are required.

  19. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  20. Evaluation of flat panel detector cone beam CT breast imaging with different sizes of breast phantoms

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Lu, Xianghua; Zhang, Yan; Yu, Yong; Schiffhauer, Linda; Cullinan, Jeanne

    2005-04-01

    The sensitivity to detect small breast cancers and the specificity of conventional mammography (CM) remain limited owing to an overlap in the appearances of lesions and surrounding structure. We propose to address the limitations accompanying CM using flat panel detector (FPD)-based cone beam CT breast imaging (CBCTBI). The purpose of the study is to determine optimal x-ray operation ranges for different sizes of normal breasts and corresponding glandular dose levels. The current CBCT prototype consists of a modified GE HighSpeed Advantage CT gantry, an x-ray tube, a Varian PaxScan 4030CB FPD, a CT table and a PC. Two uncompressed breast phantoms, with the diameters of 10.8 and 13.8 cm, consist of three inserts: a layer of silicone jell simulating a background structure, a lucite plate on which five simulated carcinomas are mounted, and a plate on which six calcifications are attached. With a single scan, 300 projections were acquired for all phantom scans. The optimal x-ray techniques for different phantom sizes were determined. The total mean glandular doses for different size phantoms were measured using a CT pencil ionization chamber. With the optimal x-ray techniques that result in the maximal dose efficiency for the different tissue thickness, the image quality with two different phantoms was evaluated. The results demonstrate that the CBCTBI can detect a few millimeter-size simulated carcinoma and ~ 0.2 mm calcification with clinically acceptable mean glandular doses for different size breasts.

  1. Flat panel detector-based cone beam CT for dynamic imaging: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Yang, Dong; Lu, Xianghua

    2006-03-01

    The purpose of this study is to characterize a newly built flat panel detector (FPD)-based cone beam CT (CBCT) prototype for dynamic imaging. A CBCT prototype has been designed and constructed by completely modifying a GE HiSpeed Advantage (HSA) CT gantry, incorporating a newly acquired large size real-time FPD (Varian PaxScan 4030CB), a new x-ray generator and a dual focal spot angiography x-ray tube that allows the full coverage of the detector. During data acquisition, the x-ray tube and the FPD can be rotated on the gantry over Nx360 degrees due to integrated slip ring technology with the rotation speed of one second/revolution. With a single scan time of up to 40 seconds , multiple sets of reconstructions can be performed for dynamic studies. The upgrade of this system has been completed. The prototype was used for a series of preliminary phantom studies: different sizes of breast phantoms, a Humanoid chest phantom and scatter correction studies. The results of the phantom studies demonstrate that good image quality can be achieved with this newly built prototype.

  2. CRT and flat panel inspection via personal computer-based image processing

    NASA Astrophysics Data System (ADS)

    Melson, John

    1988-12-01

    The light output inspection process of cathode ray tubes, flat panels and other displays often requires extremely precise and time-consuming manual steps. This paper describes the PR-900 Video Photometer, a PC-based photometric, spatial and colorimetric instrument which automates this inspeCtion process - eliminating operator error and greatly reducing measurement time. The PR-900 digitizes the displayed image as acquired in video form and converts the data into an accurate NBS-traceable measurement. The IBM PC/AT-based photometer is designed for speed and resolution. The system includes a personal computer, an image digitizer, a customized CCD-array Video Sensor Assembly (VSA), interwhangeable objective lenses and proprietary VideoView software. Optionally, an automatic VSA Positioning Stage is added for Automatic Test Environment (ATE) applications. With its modular approach, the hardware and software of the video photometer is readily optimized to meet diverse measurement requirements. This versatile instrument is used to calculate such a wide scope of parameters as luminance (brightness) uniformity, line width, luminance profiles, character size, spot contours, modulation transfer function (MTF), misconvergence, geometric distortion and relative chromaticity (color) coordinates.

  3. Motion gated small animal imaging with a flat-panel CT

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Bartling, S.; Dinkel, J.; Kiessling, F.; Semmler, W.; Stierstorfer, K.; Schmidt, B.

    2008-03-01

    Small animal CT gains increasing interest in preclinical research. However, physiological motion compensation like in clinical CT has seldom been employed so far. We present different methods of retrospective motion correction for small animal imaging despite their high respiratory and heart rate. Beside respiratory gating alone the combination of respiratory and simultaneous cardiac gating is shown. In vivo data are acquired with an experimental flat-panel based CT scanner*(Siemens Healthcare, Forchheim Germany). Whole mice or rats fit in the available FOV of 25 * 25 * 4 cm 3, while acquisition rate is 100fps. Extrinsic gating is realized by tracing the physiological motion from a small animal monitoring system with a pneumatic pillow for respiratory motion and ECG for heart motion. At the alternative intrinsic method, the lung motion is directly correlated to the movement of the center of gravity in the acquired projection data. As an advantage of the second method the even low preparation effort per scan is reduced. As long as the rotation time of the gantry is far below the cycle time of heart or the lung a multi-segment reconstruction is used in both methods. Motion artifacts are largely suppressed after gating. While in non gated images, the diaphragm, heart contours, bronchi and lung vessels are already visible, they are more sharply defined in the gated datasets. Four-dimensional assessment of lung motion is possible and lung volume in several phases such as peak inspiration and expiration could be segmented, quantified and compared.

  4. Performance of cone-beam CT using a flat-panel imager

    NASA Astrophysics Data System (ADS)

    Endo, Masahiro; Tsunoo, Takanori; Satoh, Kazumasa; Matsusita, Satoshi; Kusakabe, Masahiro; Fukuda, Yasushi

    2001-06-01

    An active matrix flat-panel imager (FPI) is a good candidate for the 2-dimensional detector of cone beam CT (CBCT), because it has a wider dynamic range and less geometrical distortion than video-fluoroscopic system so far employed. However the performance of FPI-based CBCT has not been sufficiently examined yet. The aim of this work is to examine the performance of CBCT using a FPI with several phantoms. An X-ray tube, a phantom and a FPI were aligned on an experimental table. The FPI was PaxScan2520 provided by Varian Medical Systems. It has an active area of approximately 180x240mm and the pixel size is 127 micrometer. CsI is used as a scintillator. The phantom was rotated with 1-degree steps while 360 projection frames (1408x1888 active pixels each frame) were collected. 2x2 pixels were combined into a single pixel to reduce noise. 512x512x512 voxels were reconstructed with the Feldkamp method. The comparison was made between reconstructed images with or without scatter rejecting grid. The uniformity and linearity of reconstruction value was drastically improved with the grid. Scatter rejection using a thin-vane collimator was also examined, and it showed more effective than the grid.

  5. Cathode Rays in Imaging: From Nipkow Disks to Flat Panel Displays

    NASA Astrophysics Data System (ADS)

    Bardsley, J. Norman

    1997-04-01

    The two essential elements in electronic recording and display of images were discovered before 1897. In 1873 Willoughby Smith and Joseph May, working on the Atlantic telegraph cable, noted that the resistance of selenium changes when light falls on it. In 1884 Paul Nipkow patented a scanning disk, consisting of a flat circular plate with small holes arranged along spiral lines, to be spun between the scene to be scanned and a light sensitive cell. The foundation for the development of more efficient electronic detection of light was laid in the 1880's by the discovery of the photoelectric effect. Meanwhile, in 1879 Crookes had shown that the fluorescence caused by cathode rays on the tube walls could be used to create images through the use of shadow masks. The elucidation of the properties of cathode rays and confirmation that they could be deflected by electrostatic and electromagnetic forces led to the invention by Frederick Braun in 1897 of the cathode ray tube, with its electron gun and fluorescent screen. High resolution television sets capable of displaying moving pictures appeared in laboratories in the 1920's. The cathode ray tube has continued to dominate display technology, but its supremacy is now being challenged by various forms of flat panel displays. The extent to which these new technologies rely on electron dynamics and electron-induced fluorescence will be outlined and the need for further research and development will be discussed. In particular, the ways in which cathode rays are harnessed to produce images in Field-Emission Displays and Plasma Display Panels will be described.

  6. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging

    NASA Astrophysics Data System (ADS)

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Hye Cho, Myung; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-01

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 × 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:Tl (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 × 100 × 200 µm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 lp/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 lp/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented.

  7. Relative dosimetry using active matrix flat-panel imager (AMFPI) technology.

    PubMed

    El-Mohri, Y; Antonuk, L E; Yorkston, J; Jee, K W; Maolinbay, M; Lam, K L; Siewerdsen, J H

    1999-08-01

    The first examination of the use of active matrix flat-panel arrays for dosimetry in radiotherapy is reported. Such arrays are under widespread development for diagnostic and radiotherapy imaging. In the current study, an array consisting of 512 x 512 pixels with a pixel pitch of 508 microm giving an area of 26 x 26 cm2 has been used. Each pixel consists of a light sensitive amorphous silicon (a-Si:H) photodiode coupled to an a-Si:H thin-film transistor. Data was obtained from the array using a dedicated electronics system allowing real-time data acquisition. In order to examine the potential of such arrays as quality assurance devices for radiotherapy beams, field profile data at photon energies of 6 and 15 MV were obtained as a function of field size and thickness of overlying absorbing material (solid water). Two detection configurations using the array were considered: a configuration (similar to the imaging configuration) in which an overlying phosphor screen is used to convert incident radiation to visible light photons which are detected by the photodiodes; and a configuration without the screen where radiation is directly sensed by the photodiodes. Compared to relative dosimetry data obtained with an ion chamber, data taken using the former configuration exhibited significant differences whereas data obtained using the latter configuration was generally found to be in close agreement. Basic signal properties, which are pertinent to dosimetry, have been investigated through measurements of individual pixel response for fluoroscopic and radiographic array operation. For signal levels acquired within the first 25% of pixel charge capacity, the degree of linear response with dose was found to be better than 99%. The independence of signal on dose rate was demonstrated by means of stability of pixel response over the range of dose rates allowed by the radiation source (80-400 MU/min). Finally, excellent long-term stability in pixel response, extending over a 2

  8. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.

    PubMed

    Cowen, A R; Davies, A G; Sivananthan, M U

    2008-10-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design.

  9. Optimization of a flat-panel based real time dual-energy system for cardiac imaging.

    PubMed

    Ducote, Justin L; Xu, Tong; Molloi, Sabee

    2006-06-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm2. The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm2. Increasing filter thickness beyond 1000 mg/cm2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 microm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  10. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    SciTech Connect

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-06-15

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm{sup 2}. The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm{sup 2}. Increasing filter thickness beyond 1000 mg/cm{sup 2} increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 {mu}m, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration

  11. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  12. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    NASA Astrophysics Data System (ADS)

    Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.

    2008-09-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  13. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom.

    PubMed

    Dragusin, O; Bosmans, H; Pappas, C; Desmet, W

    2008-09-21

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 microGy/im. Radiation doses (IAK approximately 40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s(-1), detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 microGy/im to 0.17 microGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters

  14. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  15. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    PubMed

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  16. Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Stritt, Carina; Plamondon, Mathieu; Hofmann, Jürgen; Flisch, Alexander; Sennhauser, Urs

    2017-03-01

    Active matrix flat-panel detectors have gained popularity amongst X-ray imaging systems due to their speed, resolution and high dynamic range. With appropriate shielding modern flat-panel imagers can even be used in high energy Computed Tomography (CT) systems of energies up to several mega-electronvolt (MeV). However, the performance of a digital detector is not independent of the rest of the radiographic system but depends on all other components of the system. Signal and noise transfer properties highly depend on all parameters of an imaging chain. This work focuses on quantifying the resolution capabilities and the noise in the signals of a MeV X-ray imaging system. The performance quantification is done by computing the modulation transfer function (MTF) using the standard edge method as well as the noise power spectrum (NPS) of the imaging system. We performed Monte Carlo (MC) simulations in order to understand the influence of scattered radiation on the measurements. A comparison of the horizontal and vertical MTF showed that the imaging behaviour of the detector is isotropic. Moreover, an additional investigation of the noise performance of the system showed that there is no measurable noise correlation present in the system. It was shown that the thickness of the edge device does not have a significant influence on the resulting system MTF. A rapid drop in the visibility could be observed resulting in a value of 1.2 line pairs per mm at 50% MTF. The visibility limit of line pair patterns was found to be at 2.3 line pairs per mm given by the 10% MTF value.

  17. Use of personal digital assistants for retrieval of medical images and data on high-resolution flat panel displays.

    PubMed

    Ratib, Osman; McCoy, J Michael; McGill, D Ric; Li, Minglin; Brown, Allen

    2003-01-01

    For its new acute care hospital, the University of California at Los Angeles is evaluating innovative technology involving high-resolution flat panel display devices configured as "network appliances" that can be wall mounted for use in the retrieval and display of medical images and data. Physicians and healthcare providers can log on with wireless handheld computers, which can serve as an identification device as well as a navigational tool for selecting patient records and data. These data are displayed and manipulated on the flat panel display without the need for a keyboard or mouse. A prototype was developed with commercially available image display software, which was modified to allow the remote control of software functions from a handheld device through an infrared communication port. The system also allows navigation through the patient data in a World Wide Web-based electronic patient record. This prototype illustrates the evolution of radiologic facilities toward "shareable" high-quality display devices that allow more convenient and cost-effective access to medical images and related data in complex clinical environments, resulting in a paradigm shift in data navigation and accessibility.

  18. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

    NASA Astrophysics Data System (ADS)

    Conover, David L.; Ning, Ruola; Yu, Yong; Lu, Xianghua; Wood, Ronald W.; Reeder, Jay E.; Johnson, Aimee M.

    2005-04-01

    Flat panel detector-based cone beam CT (FPD-CBCT) imaging system prototypes have been constructed based on modified clinical CT scanners (a modified GE 8800 CT system and a modified GE HighSpeed Advantage (HSA) spiral CT system) each with a Varian PaxScan 2520 imager. The functions of the electromechanical and radiographic subsystems of the CT system were controlled through specially made hardware, software and data acquisition modules to perform animal cone beam CT studies. Small animal (mouse) imaging studies were performed to demonstrate the feasibility of an optimized CBCT imaging system to have the capability to perform longitudinal studies to monitor the progression of cancerous tumors or the efficacy of treatments. Radiographic parameters were optimized for fast (~10 second) scans of live mice to produce good reconstructed image quality with dose levels low enough to avoid any detectable radiation treatment to the animals. Specifically, organs in the pelvic region were clearly imaged and contrast studies showed the feasibility to visualize small vasculature and space-filling bladder tumors. In addition, prostate and mammary tumors were monitored in volume growth studies.

  19. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.

  20. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  1. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier

    NASA Astrophysics Data System (ADS)

    Ducote, Justin L.; Xu, Tong; Molloi, Sabee

    2007-01-01

    This study presents a comparison of dual-energy imaging with an x-ray image intensifier and flat-panel detector for cardiac imaging. It also investigates if the wide dynamic range of the flat-panel detector can improve dual-energy image quality while reducing patient dose. Experimental contrast-to-noise (CNR) measurements were carried out in addition to simulation studies. Patient entrance exposure and system tube loading were also recorded. The studied contrast objects were calcium and iodine. System performance was quantified with a figure-of-merit (FOM) defined as the image CNR2 over patient entrance exposure. The range of thickness studied was from 10 to 30 cm of Lucite (PMMA). Detector dose was initially set to 140 nGy (16 µR)/frame. The high-energy 120 kVp beam was filtered by an additional 0.8 mm silver filter. Keeping the same filament current, the kVp for the low-energy beam was adjusted as a function of thickness until 140 nGy was achieved. System performance was found to be similar for both systems, with the x-ray image intensifier performing better at lower thicknesses and the flat-panel detector performing better at higher thicknesses. This requirement of fixed detector entrance exposure was then relaxed and the kVp for the low-energy beam was allowed to vary while the mAs of the x-ray tube remained fixed to study changes in dual-energy image quality, patient dose and FOM with the flat-panel detector. It was found that as the kVp for the low-energy beam was reduced, system performance would rise until reaching a maximum while simultaneously lowering patient exposure. Suggested recommendations for optimal dual-energy imaging implementation are also provided.

  2. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier.

    PubMed

    Ducote, Justin L; Xu, Tong; Molloi, Sabee

    2007-01-07

    This study presents a comparison of dual-energy imaging with an x-ray image intensifier and flat-panel detector for cardiac imaging. It also investigates if the wide dynamic range of the flat-panel detector can improve dual-energy image quality while reducing patient dose. Experimental contrast-to-noise (CNR) measurements were carried out in addition to simulation studies. Patient entrance exposure and system tube loading were also recorded. The studied contrast objects were calcium and iodine. System performance was quantified with a figure-of-merit (FOM) defined as the image CNR(2) over patient entrance exposure. The range of thickness studied was from 10 to 30 cm of Lucite (PMMA). Detector dose was initially set to 140 nGy (16 microR)/frame. The high-energy 120 kVp beam was filtered by an additional 0.8 mm silver filter. Keeping the same filament current, the kVp for the low-energy beam was adjusted as a function of thickness until 140 nGy was achieved. System performance was found to be similar for both systems, with the x-ray image intensifier performing better at lower thicknesses and the flat-panel detector performing better at higher thicknesses. This requirement of fixed detector entrance exposure was then relaxed and the kVp for the low-energy beam was allowed to vary while the mAs of the x-ray tube remained fixed to study changes in dual-energy image quality, patient dose and FOM with the flat-panel detector. It was found that as the kVp for the low-energy beam was reduced, system performance would rise until reaching a maximum while simultaneously lowering patient exposure. Suggested recommendations for optimal dual-energy imaging implementation are also provided.

  3. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    SciTech Connect

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-07-01

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging quality was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)

  4. Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl.

    PubMed

    Arvanitis, C D; Bohndiek, S E; Blakesley, J; Olivo, A; Speller, R D

    2009-01-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors can be optically coupled to CsI:Tl phosphors forming a indirect active pixel flat panel imager (APFPI) for high performance medical imaging. The aim of this work is to determine the x-ray imaging capabilities of CMOS-based APFPI and study the signal and noise transfer properties of CsI:Tl phosphors. Three different CsI:Tl phosphors from two different vendors have been used to produce three system configurations. The performance of each system configuration has been studied in terms of the modulation transfer function (MTF), noise power spectra, and detective quantum efficiency (DQE) in the mammographic energy range. A simple method to determine quantum limited systems in this energy range is also presented. In addition, with aid of monochromatic synchrotron radiation, the effect of iodine characteristic x-rays of the CsI:Tl on the MTF has been determined. A Monte Carlo simulation of the signal transfer properties of the imager is also presented in order to study the stages that degrade the spatial resolution of our current system. The effect of using substrate patterning during the growth of CsI:Tl columnar structure was also studied, along with the effect of CsI:Tl fixed pattern noise due to local variations in the scintillation light. CsI:Tl fixed pattern noise appears to limit the performance of our current system configurations. All the system configurations are quantum limited at 0.23 microC/kg with two of them having DQE (0) equal to 0.57. Active pixel flat panel imagers are shown to be digital x-ray imagers with almost constant DQE throughout a significant part of their dynamic range and in particular at very low exposures.

  5. [Present state and future of flat panel detector in Japan].

    PubMed

    Higashida, Yoshiharu

    2002-01-01

    In our country, the introduction of flat panel detector is carried out in the diagnosis region since before several years. In flat panel detector with the high image characteristic, large expectation is being placed. In this paper, image characteristic of flat panel detector and effectiveness of clinical application were reviewed. It is anticipated that flat panel detector with the excellent image characteristic gives large effect in the radiological diagnosis.

  6. Comparison of the imaging physics performance of a prototype flat-panel detector with a 400-speed screen-film system

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.; Roskopf, Marsha L.; Rush, Charles

    2001-06-01

    The performance of a digital radiography system that included a prototype flat panel detector (StingRay) was compared with a 400 speed screen-film system. The flat panel detector consisted of a 500 micrometers thick CsI scintillator with an image matrix size of 3k2. The limiting spatial resolution of screen-film (approximately 4 line pairs/mm) was superior to that of the flat panel detector (approximately 2.5 line pairs/mm). The digital detector had an excellent linearity response (r2 equals 0.997), a dynamic range of 20,000:1, and saturated at a radiation exposure of 60 mR.

  7. A low Z linac and flat panel imager: comparison with the conventional imaging approach

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Hansen, V. N.; Niven, A. C.; Thompson, M. G.; Seco, J.; Evans, P. M.

    2008-11-01

    Experimental and Monte Carlo simulations were conducted for an Elekta Ltd Precise Treatment System linac fitted with a low Z insert of sufficient thickness to remove all primary electrons. A variety of amorphous silicon based panels employing different scintillators were modelled to determine their response to a variety of x-ray spectra and produce an optimized portal imaging system. This study has shown that in a low Z configuration the vast majority of x-rays are produced in the nickel electron window, and with a combination of a carbon insert and caesium iodide based XVI-panel, significant improvement in the object contrast was achieved. For thin, head and neck-type geometries, contrast is 4.62 times greater for 1.6 cm bone in 5.8 cm water than the standard 6 MV/iViewGT system. For thicker, pelvis-type geometries contrast increases by a factor of 1.3 for 1.6 cm of bone in 25.8 cm water. To obtain images with the same signal-to-noise ratio as the 6 MV/iViewGT system, dose reductions of a factor of 15 and 4.2 are possible for 5.8 cm and 25.8 cm phantoms respectively. This design has the advantage of being easily implemented on a standard linac and provides a portal image directly from the therapy beam aperture.

  8. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-09-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 μm 1-poly/4-metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd2O2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  9. Image performance of a new amorphous selenium flat panel x-ray detector designed for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Cheung, L. K.; Jing, Z.; Bogdanovich, S.; Golden, K.; Robinson, S.; Beliaevskaia, E.; Parikh, S.

    2005-04-01

    The purpose of this work is to report the performance of an amorphous selenium (a-Se) based flat-panel x-ray imager under development for application in digital breast tomosynthesis. This detector is designed to perform both in the conventional Full Field Digital Mammography (FFDM) mode and the tomosynthesis mode. The large area 24 x 29 cm detector achieves rapid image acquisition rates of up to 4 frames per second with minimal trapped charge induced effects such as ghost or lag images of previously acquired objects. In this work, a new a-Se/TFT detector layer structure is evaluated. The design uses a top conductive layer in direct contact with the a-Se x-ray detection layer. The simple structure has few layers and minimal hole and electron trapping effects. Prototype detectors were built to investigate the basic image performance of this new a-Se/TFT detector. Image signal generation, image ghosting, image lag, and detector DQE were studied. For digital mammography applications, the residual image ghosting was less than 1% at 30 seconds elapsed time. DQE, measured at a field of 5.15 V/um, showed significantly higher values over previously reported data, especially at low exposure levels. For digital breast tomosynthesis, the image lag at dynamic readout rate was < 0.6 % at 0.5-second elapsed time. A prototype tomosynthesis system is being developed utilizing this new a-Se/TFT detector.

  10. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  11. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    SciTech Connect

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-06-15

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.

  12. Comparison of a digital flat-panel x-ray image intensifier and conventional film-screen system for radiostereometric analysis (RSA)

    NASA Astrophysics Data System (ADS)

    Yuan, Xunhua; Drangova, Maria; Pollmann, Steve; Miron, Ricky; Bourne, Robert; Holdsworth, David W.

    2004-05-01

    In this paper, the accuracy and precision of RSA analysis using a GE InnovaTM 4100 digital flat panel and a Siemens Multistar x-ray image intensifier (XRII) were evaluated and compared with that of a conventional film-screen system, in order to explore the possibility of real-time kinematic and dynamic RSA study. A phantom, having two rigid body segments with no movement, was constructed and imaged by the digital flat panel, XRII and conventional screen-film systems, respectively. The acquired images were measured and motions were derived. The mean and standard deviation of the repeated results were analyzed to determine the accuracy and precision, respectively. Comparing all three axes, the lowest rotational accuracy and precision were 0.008 +/- 0.011°, 0.013 +/- 0.015° and 0.006 +/- 0.05° while the lowest translational accuracy and precision were 25 +/- 28 mm, 17 +/- 37 mm and 4 +/- 6 mm for the film-screen, XRII and digital flat panel, respectively. The evaluation of the accuracy and precision of the RSA in this study confirms its place as a highly accurate method. The study shows that both digital flat panel and XRII systems have potential application to the kinematics and dynamics joint study.

  13. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  14. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  15. [Full-field digital mammography with amorphous silicon-based flat- panel detector: physical imaging characteristics and signal detection].

    PubMed

    Ideguchi, Tadamitsu; Higashida, Yoshiharu; Himuro, Kazuhiko; Ohki, Masafumi; Nakamura, Satoru; Yoshida, Akira; Takagi, Rie; Hatano, Hirohide; Kuwahara, Rie; Toyonaga, Makiko; Tanaka, Isamu; Toyofuku, Fukai

    2004-03-01

    The physical characteristics of a clinical amorphous silicon-based flat-panel imager for full-field digital mammography were investigated. Pre-sampled modulation transfer functions (MTF) were measured by using a slit method. Noise power spectra were determined for different input exposures by fast Fourier transform. The MTFs of full-field digital mammography systems showed significantly higher values than those of the computed radiography (CR) system. The full-field digital mammography system showed a lower noise level than that of the CR system under the same exposure conditions. Contrast detail analysis has been performed to compare the detectability of the full-field digital mammography system with that of the screen-film (Min-R 2000/Min-R 2000) system. The average contrast-detail curves of digital and film images were obtained from the results of observation. Image quality figures (IQF) were also calculated from the individual observer performance tests. The results indicated that the digital contrast-detail curves and IQF, on average, are superior to those of the screen-film system.

  16. Stereoscopic Flat Panel Display

    DTIC Science & Technology

    2004-12-01

    the display of stereo imagery have been demonstrated. Stereoscopic displays typically require the user to wear special headgear. Autostereoscopic ...components and the resulting changes in the encoding algorithm. Keywords: Stereoscopic display, LCD, 3D , polarization encoding, flat panel 1...panel display when viewing non-stereoscopic imagery or data. Remotely operated vehicles do not represent the only potential application for 3D

  17. Optimization of image process parameters through factorial experiments using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Norrman, Eva; Geijer, Håkan; Persliden, Jan

    2007-09-01

    In the optimization process of lumbar spine examinations, factorial experiments were performed addressing the question of whether the effective dose can be reduced and the image quality maintained by adjusting the image processing parameters. A 2k-factorial design was used which is a systematic and effective method of investigating the influence of many parameters on a result variable. Radiographic images of a Contrast Detail phantom were exposed using the default settings of the process parameters for lumbar spine examinations. The image was processed using different settings of the process parameters. The parameters studied were ROI density, gamma, detail contrast enhancement (DCE), noise compensation, unsharp masking and unsharp masking kernel (UMK). The images were computer analysed and an image quality figure (IQF) was calculated and used as a measurement of the image quality. The parameters with the largest influence on image quality were noise compensation, unsharp masking, unsharp masking kernel and detail contrast enhancement. There was an interaction between unsharp masking and kernel indicating that increasing the unsharp masking improved the image quality when combined with a large kernel size. Combined with a small kernel size however the unsharp masking had a deteriorating effect. Performing a factorial experiment gave an overview of how the image quality was influenced by image processing. By adjusting the level of noise compensation, unsharp masking and kernel, the IQF was improved to a 30% lower effective dose.

  18. Optimization of image process parameters through factorial experiments using a flat panel detector.

    PubMed

    Norrman, Eva; Geijer, Håkan; Persliden, Jan

    2007-09-07

    In the optimization process of lumbar spine examinations, factorial experiments were performed addressing the question of whether the effective dose can be reduced and the image quality maintained by adjusting the image processing parameters. A 2k-factorial design was used which is a systematic and effective method of investigating the influence of many parameters on a result variable. Radiographic images of a Contrast Detail phantom were exposed using the default settings of the process parameters for lumbar spine examinations. The image was processed using different settings of the process parameters. The parameters studied were ROI density, gamma, detail contrast enhancement (DCE), noise compensation, unsharp masking and unsharp masking kernel (UMK). The images were computer analysed and an image quality figure (IQF) was calculated and used as a measurement of the image quality. The parameters with the largest influence on image quality were noise compensation, unsharp masking, unsharp masking kernel and detail contrast enhancement. There was an interaction between unsharp masking and kernel indicating that increasing the unsharp masking improved the image quality when combined with a large kernel size. Combined with a small kernel size however the unsharp masking had a deteriorating effect. Performing a factorial experiment gave an overview of how the image quality was influenced by image processing. By adjusting the level of noise compensation, unsharp masking and kernel, the IQF was improved to a 30% lower effective dose.

  19. [Pulmonary functional diagnostic imaging using a dynamic flat-panel detector: comparison with findings in pulmonary scintigraphy].

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Tsuji, Shiro; Hayashi, Norio; Nanbu, Yuko; Matsui, Osamu

    2009-06-20

    Pulmonary ventilation and circulation dynamics are reflected on dynamic chest radiographs as changes in X-ray translucency,i.e., pixel values. The present study was performed to develop a pulmonary functional evaluation method based on the changes in pixel value, and to investigate the clinical usefulness of our method. Sequential chest radiographs of 20 subjects (abnormal,n=12; normal,n=8) during respiration were obtained with a dynamic flat-panel detector (FPD) system. The average pixel value in each local area was measured tracking the same area. To facilitate visual evaluation, the results were mapped on the original image using a grayscale in which small changes were shown in black and large changes were shown in white. In our clinical evaluation in comparison with a pulmonary scintigraphy, pulmonary ventilation disorder was indicated as a reduction of changes in pixel values. In many patients, there was a correlation between our result and a pulmonary scintigraphy (0.7

  20. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed.

  1. The performance of an amorphous silicon flat panel for neutron imaging at the PSI NEUTRA facility

    NASA Astrophysics Data System (ADS)

    Estermann, Mirko; Frei, Gabriel; Lehmann, Eberhard; Vontobel, Peter

    2005-04-01

    Commonly applied imaging methods in neutron radiography use a CCD camera in conjunction with a scintillator or imaging plates. CCDs and imaging plates have desirable properties concerning resolution, linearity, dynamic range and signal-to-noise ratio ( S/ N) but both techniques have the disadvantage of a slow read out and for the CCD camera, an additional disadvantage is the loss of light through the optical system. Amorphous silicon detectors, originally developed for medical and industrial X-ray imaging, generally do not have the above-mentioned disadvantages. These detectors have a much faster readout and, in comparison to the generally used crystalline silicon, can be put directly in the X-ray or neutron beam without being damaged. This type of detector also does not require any optical interface, minimizing possible light loss. The detector is operated at room temperature, which has some influence on the noise. Using the whole dynamic range with a low gain, results in a S/ N of up to 30, for normal applications, however, a S/ N of about 15-20 is typical. The main drawback of this imaging device is the dynamic range of only 12 bits and the relatively complicated operating system in which different operation modes can be chosen. In 2003, successful experiments were performed with this new device, but it is still in its fledgling stages and improvements from the manufacturer as well as the experience from the NEUTRA team will help to advance this technique for neutron imaging in a most efficient way.

  2. Achieving high-resolution in flat-panel imagers for digital radiography

    NASA Astrophysics Data System (ADS)

    Rahn, Jeffrey T.; Lemmi, Francesco; Lu, Jeng-Ping; Mei, Ping; Street, Robert A.; Ready, Steve E.; Ho, Jackson; Apte, Raj B.; Van Schuylenbergh, Koenraad; Lau, Rachel; Weisfield, Richard L.; Lujan, Rene; Boyce, James B.

    1999-10-01

    Amorphous silicon (a-Si:H) matrix-addressed imager sensors are the leading new technology for digital medical x-ray imaging. Large-area systems are now commercially available with good resolution and large dynamic range. These systems image x-rays either by detecting light emission from a phosphor screen onto an a-Si:H photodiode, or by collecting ionization charge in a thick x-ray absorbing photoconductor with as selenium, and both approaches have been widely discussed in the literature. While these systems meet the performance needs for general radiographic imaging, further improvements in sensitivity, noise and resolution are needed to fully satisfy the requirements for fluoroscopy and mammography. The approach taken for this paper uses indirect detection, with a phosphor layer for x-ray conversion. The thin a-Si:H photodiode layer for detects the scintillation light. In contrast with the present generation of devices, which have a mesa-isolated sensor at each pixel, these imagers use a continuous sensor covering the entire front surface of the array. The p+ and i layers of a-Si:H are continuous, while the n+ contact has been patterned to isolate adjacent pixels. The continuous photodiode layer maximizes light absorption from the phosphor and provides high x-ray conversion efficiency.

  3. Development of thin-film flat-panel arrays for diagnostic and radiotherapy imaging

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Boudry, John M.; Yorkston, John; Morton, E. J.; Huang, Weidong; Street, Robert A.

    1992-06-01

    Since the design and fabrication of the first pixelated, two-dimensional, hydrogenated amorphous silicon image sensor arrays at Xerox, PARC, in 1988, a variety of milestones have been achieved including the first demonstration of high quality radiographic images of low- contrast, anatomical detail. Current array configurations and design rules offer the prospect of 100 micrometers pixel pitches over 30 by 30 cm2 areas in the next few years. Beyond this, present attempts to extend the size of the substrates to 100 cm on the diagonal by 1996 coupled with the possibility of three-dimensional thin-film electronics could eventually result in a revolution in many forms of x-ray imaging. Such arrays will present challenges in the design of the fast, analog, and digital electronic readout systems required to precisely match the characteristics of the arrays to those of the imaging needs. For such arrays, one of the most important parameters is the dynamic range. Early results are reported for the measured limits on this quantity as obtained through measurements from individual sensors and FETs as well as an improved lower limit as obtained by direct measurements of array pixels.

  4. Development of functional chest imaging with a dynamic flat-panel detector (FPD).

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Nakayama, Kazuya; Matsui, Takeshi; Hayashi, Norio; Matsui, Osamu

    2008-07-01

    Dynamic FPD permits the acquisition of distortion-free radiographs with a large field of view and high image quality. In the present study, we investigated the feasibility of functional imaging for evaluating the pulmonary sequential blood distribution with an FPD, based on changes in pixel values during cardiac pumping. Dynamic chest radiographs of seven normal subjects were obtained in the expiratory phase by use of an FPD system. We measured the average pixel value in each region of interest that was located manually in the heart and lung areas. Subsequently, inter-frame differences and differences from a minimum-intensity projection image, which was created from one cardiac cycle, were calculated. These difference values were then superimposed on dynamic chest radiographs in the form of a color display, and sequential blood distribution images and a blood distribution map were created. The results were compared to typical data on normal cardiac physiology. The clinical effectiveness of our method was evaluated in a patient who had abnormal pulmonary blood flow. In normal cases, there was a strong correlation between the cardiac cycle and changes in pixel value. Sequential blood distribution images showed a normal pattern at determined by the physiology of pulmonary blood flow, with a symmetric distribution and no blood flow defects throughout the entire lung region. These findings indicated that pulmonary blood flow was reflected on dynamic chest radiographs. In an abnormal case, a defect in blood flow was shown as defective in color in a blood distribution map. The present method has the potential for evaluation of local blood flow as an optional application in general chest radiography.

  5. A ghost story: spatio-temporal response characteristics of an indirect-detection flat-panel imager.

    PubMed

    Siewerdsen, J H; Jaffray, D A

    1999-08-01

    Spatial and temporal imaging characteristics of an amorphous silicon flat-panel imager (FPI) were investigated in terms relevant to the application of such devices in cone-beam computed tomography (CBCT) and other x-ray imaging modalities, including general radiography, fluoroscopy, mammography, radiotherapy portal imaging, and nondestructive testing. Specifically, issues of image lag (including the magnitude, spatial uniformity, temporal-frequency characteristics, and dependence upon exposure and frame time) and long-term image persistence ("ghosts") were investigated. As part of the basic characterization of the FPI, pixel dark signal and noise (magnitude, temporal stability, and spatial uniformity) as well as radiation response (signal size, linearity, gain, and reciprocity) were also measured. Image lag was analyzed as a function of frame time and incident exposure. First-frame lag (i.e., the relative residual signal in the first frame following readout of an exposure) was approximately 2-10%, depending upon incident exposure and was spatially nonuniform to a slight degree across the FPI; second-, third-, and fourth-frame lag were approximately 0.7%, 0.4%, and 0.3%, respectively (at 25% sensor saturation). Image lag was also analyzed in terms of the temporal-frequency-dependent transfer function derived from the radiation response, allowing a quantitative description of system components contributing to lag. Finally, the contrast of objects as a function of time following an exposure was measured in order to examine long-term image persistence ("ghosts"). Ghosts were found to persist up to 30 min or longer, depending upon the exposure and frame time. Two means of reducing the apparent contrast of ghost images were tested: (i) rapid scanning of the FPI at maximum frame rate, and (ii) flood-field exposure of the FPI; neither was entirely satisfactory. These results pose important considerations for application of FPIs in CBCT as well as other x-ray imaging

  6. Large Area Flat Panel Imaging Detectors for Astronomy and Night Time Sensing

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2013-09-01

    Sealed tube photo-sensing detectors for optical/IR detection have applications in astronomy, nighttime remote reconnaissance, and airborne/space situational awareness. The potential development of large area photon counting, imaging, timing detectors has significance for these applications and a number of other areas (High energy particle detection (RICH), biological single-molecule fluorescence lifetime imaging microscopy, neutron imaging, time of flight mass spectroscopy, diffraction imaging). We will present details of progress towards the development of a 20 cm sealed tube optical detector with nanoengineered microchannel plates for photon counting, imaging and sub-ns event time stamping. In the operational scheme of the photodetector incoming light passes through an entrance window and interacts with a semitransparent photocathode on the inside of the window. The photoelectrons emitted are accelerated across a proximity gap and are detected by an MCP pair. The pair of novel borosilicate substrate MCPs are functionalized by atomic layer deposition (ALD), and amplify the signal and the resulting electron cloud is detected by a conductive strip line anode for determination of the event positions and the time of arrival. The physical package is ~ 25 x 25 cm but only 1.5 cm thick. Development of such a device in a square 20 cm format presents challenges: hermetic sealing to a large entrance window, a 20 cm semitransparent photocathode with good efficiency and uniformity, 20 cm MCPs with reasonable cost and performance, robust construction to preserve high vacuum and withstand an atmosphere pressure differential. We will discuss the schemes developed to address these issues and present the results for the first test devices. The novel microchannel plates employing borosilicate micro-capillary arrays provide many performance characteristics typical of conventional MCPs, but have been made in sizes up to 20 cm, have low intrinsic background (0.08 events cm2 s-1) and

  7. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    PubMed

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  8. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  9. Analysis of a free-running synchronization artifact correction for MV-imaging with aSi:H flat panels

    SciTech Connect

    Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Sedlmayer, Felix; Deutschmann, Heinz; Huber, Stefan

    2013-03-15

    Purpose: Solid state flat panel electronic portal imaging devices (EPIDs) are widely used for megavolt (MV) photon imaging applications in radiotherapy. In addition to their original purpose in patient position verification, they are convenient to use in quality assurance and dosimetry to verify beam geometry and dose deposition or to perform linear accelerator (linac) calibration procedures. However, native image frames from amorphous silicon (aSi:H) detectors show a range of artifacts which have to be eliminated by proper correction algorithms. When a panel is operated in free-running frame acquisition mode, moving vertical stripes (periodic synchronization artifacts) are a disturbing feature in image frames. Especially for applications in volumetric intensity modulated arc therapy (VMAT) or motion tracking, the synchronization (sync) artifacts are the limiting factor for potential and accuracy since they become even worse at higher frame rates and at lower dose rates, i.e., linac pulse repetition frequencies (PRFs). Methods: The authors introduced a synchronization correction method which is based on a theoretical model describing the interferences of the panel's readout clocking with the linac's dose pulsing. Depending on the applied PRF, a certain number of dose pulses is captured per frame which is readout columnwise, sequentially. The interference of the PRF with the panel readout is responsible for the period and the different gray value levels of the sync stripes, which can be calculated analytically. Sync artifacts can then be eliminated multiplicatively in precorrected frames without additional information about radiation pulse timing. Results: For the analysis, three aSi:H EPIDs of various types were investigated with 6 and 15 MV photon beams at varying PRFs of 25, 50, 100, 200, and 400 pulses per second. Applying the sync correction at panels with gadolinium oxysulfide scintillators improved single frame flood field image quality drastically

  10. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2006-06-01

    The feasibility of a real-time dual-energy imaging technique with dynamic filtration using a flat panel detector for quantifying coronary arterial calcium was evaluated. In this technique, the x-ray beam was switched at 15 Hz between 60 kVp and 120 kVp with the 120 kVp beam having an additional 0.8 mm silver filter. The performance of the dynamic filtration technique was compared with a static filtration technique (4 mm Al+0.2 mm Cu for both beams). The ability to quantify calcium mass was evaluated using calcified arterial vessel phantoms with 20-230 mg of hydroxylapatite. The vessel phantoms were imaged over a Lucite phantom and then an anthropomorphic chest phantom. The total thickness of Lucite phantom ranges from 13.5-26.5 cm to simulate patient thickness of 16-32 cm. The calcium mass was measured using a densitometric technique. The effective dose to patient was estimated from the measured entrance exposure. The effects of patient thickness on contrast-to-noise ratio (CNR), effective dose, and the precision of calcium mass quantification (i.e., the frame to frame variability) were studied. The effects of misregistration artifacts were also measured by shifting the vessel phantoms manually between low- and high-energy images. The results show that, with the same detector signal level, the dynamic filtration technique produced 70% higher calcium contrast-to-noise ratio with only 4% increase in patient dose as compared to the static filtration technique. At the same time, x-ray tube loading increased by 30% with dynamic filtration. The minimum detectability of calcium with anatomical background was measured to be 34 mg of hydroxyapatite. The precision in calcium mass measurement, determined from 16 repeated dual-energy images, ranges from 13 mg to 41 mg when the patient thickness increased from 16 to 32 cm. The CNR was found to decrease with the patient thickness linearly at a rate of (-7%/cm). The anatomic background produced measurement root-mean-square (RMS

  11. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification

    SciTech Connect

    Xu Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2006-06-15

    The feasibility of a real-time dual-energy imaging technique with dynamic filtration using a flat panel detector for quantifying coronary arterial calcium was evaluated. In this technique, the x-ray beam was switched at 15 Hz between 60 kVp and 120 kVp with the 120 kVp beam having an additional 0.8 mm silver filter. The performance of the dynamic filtration technique was compared with a static filtration technique (4 mm Al+0.2 mm Cu for both beams). The ability to quantify calcium mass was evaluated using calcified arterial vessel phantoms with 20-230 mg of hydroxylapatite. The vessel phantoms were imaged over a Lucite phantom and then an anthropomorphic chest phantom. The total thickness of Lucite phantom ranges from 13.5-26.5 cm to simulate patient thickness of 16-32 cm. The calcium mass was measured using a densitometric technique. The effective dose to patient was estimated from the measured entrance exposure. The effects of patient thickness on contrast-to-noise ratio (CNR), effective dose, and the precision of calcium mass quantification (i.e., the frame to frame variability) were studied. The effects of misregistration artifacts were also measured by shifting the vessel phantoms manually between low- and high-energy images. The results show that, with the same detector signal level, the dynamic filtration technique produced 70% higher calcium contrast-to-noise ratio with only 4% increase in patient dose as compared to the static filtration technique. At the same time, x-ray tube loading increased by 30% with dynamic filtration. The minimum detectability of calcium with anatomical background was measured to be 34 mg of hydroxyapatite. The precision in calcium mass measurement, determined from 16 repeated dual-energy images, ranges from 13 mg to 41 mg when the patient thickness increased from 16 to 32 cm. The CNR was found to decrease with the patient thickness linearly at a rate of (-7%/cm). The anatomic background produced measurement root-mean-square (RMS

  12. The use of modern electronic flat panel devices for image guided radiation therapy:. Image quality comparison, intra fraction motion monitoring and quality assurance applications

    NASA Astrophysics Data System (ADS)

    Nill, S.; Stützel, J.; Häring, P.; Oelfke, U.

    2008-06-01

    With modern radiotherapy delivery techniques like intensity modulated radiotherapy (IMRT) it is possible to delivery a more conformal dose distribution to the tumor while better sparing the organs at risk (OAR) compared to 3D conventional radiation therapy. Due to the theoretically high dose conformity achievable it is very important to know the exact position of the target volume during the treatment. With more and more modern linear accelerators equipped with imaging devices this is now almost possible. These imaging devices are using energies between 120kV and 6MV and therefore different detector systems are used but the vast majority is using amorphous silicon flat panel devices with different scintilator screens and build up materials. The technical details and the image quality of these systems are discussed and first results of the comparison are presented. In addition new methods to deal with motion management and quality assurance procedures are shortly discussed.

  13. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    SciTech Connect

    Schumann, M.; Mauerhofer, E.; Engels, R.; Kemmerling, G.; Frank, M.; Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T.; Schitthelm, O.

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  14. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kyung Cha, Bo; Seo, Chang-Woo; Yang, Keedong; Jeon, Seongchae; Huh, Young

    2015-06-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80-120 kVp, and different current (10-50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally.

  15. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    PubMed

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-07

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  16. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  17. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  18. Development of active matrix flat panel imagers incorporating thin layers of polycrystalline HgI(2) for mammographic x-ray imaging.

    PubMed

    Jiang, Hao; Zhao, Qihua; Antonuk, Larry E; El-Mohri, Youcef; Gupta, Tapan

    2013-02-07

    Active matrix flat-panel imagers (AMFPIs) offer many advantages and have become ubiquitous across a wide variety of medical x-ray imaging applications. However, for mammography, the imaging performance of conventional AMFPIs incorporating CsI:Tl scintillators or a-Se photoconductors is limited by their relatively modest signal-to-noise ratio (SNR), particularly at low x-ray exposures or high spatial resolution. One strategy for overcoming this limitation involves the use of a high gain photoconductor such as mercuric iodide (HgI(2)) which has the potential to improve the SNR by virtue of its low effective work function (W(EFF)). In this study, the performance of direct-detection AMFPI prototypes employing relatively thin layers of polycrystalline HgI(2) operated under mammographic irradiation conditions over a range of 0.5 to 16.0 mR is presented. High x-ray sensitivity (corresponding to W(EFF) values of ∼19 eV), low dark current (<0.1 pA mm(-2)) and good spatial resolution, largely limited by the size of the pixel pitch, were observed. For one prototype, a detective quantum efficiency of ∼70% was observed at an x-ray exposure of ∼0.5 mR at 26 kVp.

  19. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy.

    PubMed

    Tanaka, Rie; Ichikawa, Katsuhiro; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Kawashima, Hiroki; Minohara, Shinichi; Sanada, Sigeru

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ± 5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation.

  20. [Canon's flat-panel detector].

    PubMed

    Matsumoto, Masao; Sumida, Iori; Ideguchi, Tadamitsu; Kawaji, Yasuyuki; Himuro, Kazuhiko

    2002-01-01

    We measured and evaluated digital, pre-sampling and overall imaging properties (characteristic curve, modulation transfer function (MTF), Wiener spectrum (WS), noise equivalent quanta (NEQ) ) for Cannon's flat-panel detector (FPD), Fuji computed radiography (FCR) and screen-film (S/F) systems, respectively. First, the digital and overall characteristic curves of FPD and FCR systems were more wide dynamic range than that of the S/F system. Second, the pre-sampling and overall MTF of FPD system were better than those of FCR system a little at lower spatial frequencies than 0.8 mm(-1), but the overall MTF of FPD and FCR systems were worse than that of S/F system a little at all spatial frequencies. Third, the digital and overall WS of FPD system were similar or better than those of FCR system, but the overall WS of FPD and FCR systems were worse than that of S/F system. Fourth, the pre-sampling and overall NEQ of FPD system were better than those of FCR system a little at lower spatial frequencies than 1.6 mm(-1), but the overall NEQ of FPD and FCR systems were worse than that of S/F system at all spatial frequencies. Comparison of chest phantom images showed that the FPD produced images with quality comparable to or higher than those of the FCR system. From these results, we can expect that the FPD is useful machine by using digital image processing and so on in the radiology department.

  1. Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT).

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Matsui, Takeshi; Hayashi, Norio; Matsui, Osamu

    2008-07-01

    A sequential dual-energy subtraction technique for image-guided radiation therapy (IGRT) was developed. Here, we report on a computerized method for creating sequential soft-tissue images and the accuracy of tracking targets on the images obtained, in comparison to conventional fluoroscopic images. Two sets of sequential chest images during respiration of a normal subject were obtained with X-rays of different energy separately with a flat-panel detector (FPD). Sequential soft-tissue images were created from the two sets of sequential images consisting of real-time images and reference template images, respectively. The creation of sequential soft-tissue images consisted of three steps: one-to-one image correspondence of the two sequential images, image registration, and image subtraction in each frame. Motion tracking of lung vessels was then performed by the template-matching technique. For evaluation of the accuracy of motion tracking on the sequential soft-tissue images, the results were compared with those on the original sequential images. Sequential soft-tissue images provided more accurate tracking than the original images (P < 0.01). There was no significant error throughout all frames in the soft-tissue images, whereas the rib shadow introduced a tracking error in the original images. The maximum errors were 4.1 +/- 0.3 mm in the sequential soft-tissue images and 28.1 +/- 20.0 mm in the original images. In conclusion, sequential soft-tissue images were helpful for tracking of a target affected by respiratory motion. Dual-energy subtraction has the potential to improve the accuracy of IGRT without implanted markers.

  2. An alternate line erasure and readout (ALER) method for implementing slot-scan imaging technique with a flat-panel detector--initial experiences.

    PubMed

    Liu, Xinming; Shaw, Chris C; Altunbas, Mustafa C; Wang, Tianpeng

    2006-04-01

    This paper describes and demonstrates an electronic collimation method, referred to as the alternate line erasure and readout (ALER) technique, for implementing slot-scan digital radiography technique with an amorphous silicon (a-Si) thin-film transistor (TFT) array based flat-panel detector. An amorphus selenium (a-Se) flat-panel detector was modified to implement the ALER technique for slot-scan imaging. A stepping-motor driven fore-collimator was mounted in front of an X-ray tube to generate a scanning X-ray fan beam. The scanning speed and magnification were adjusted to synchronize the fan beam motion with the image line readout rate. The image lines on the leading and trailing edges of the fan beam were tracked and alternately reset and read out, respectively. The former operation resulted in the erasure of the scatter signals accumulated in the leading edge image line prior to the arrival of the fan beam. The latter operation resulted in the acquisition of fan beam exposure data integrated in the trailing edge image line right after the fan beam passed. To demonstrate the scatter rejection capability of this technique, an anthropomorphic chest phantom was placed in PA position and scanned at a speed of 576 lines (8.0 cm)/s at 117 kVp and 32 mA. A tungsten bar is placed at the entrance side of the chest phantom to measure the scatter-to-primary ratio (SPR), scatter reduction factor (SRF), and contrast-to-noise ratio degradation factor (CNRDF) in the slot-scan images to evaluate the effectiveness of scatter rejection and the resultant improvement of image quality. SPR and CNRDF in the open-field images were also measured and used as the reference for comparison. A scatter reduction by 86.4 to 95.4% across lower lung and heart regions has been observed with slot-scan imaging. The CNRs have been found to be improved by a factor of 2 in the mediastinum areas over the open-field image as well.

  3. [Hologic's Flat-Panel Detector].

    PubMed

    Ogata, Yuji; Matsumoto, Masao; Suekane, Koji

    2002-01-01

    We measured and evaluated digital, pre-sampling and overall imaging properties (characteristic curve, Modulation Transfer Function (MTF), Wiener spectrum (WS), Noise Equivalent Quanta (NEQ) and Detective Quantum Efficiency (DQE)) for Hologic's direct type and Cannon's indirect type of Flat-Panel Detector (FPD). First, the digital and overall characteristic curves of both types of FPD were more wide dynamic range than that of the S/F system. Second, the pre-sampling and overall MTF of the direct-type FPD system were superior to those of the indirect-type FPD system. Third, for identical exposures, the digital and overall WS of the direct-type FPD system were similar or worse than those of the indirect-type FPD system, and for larger exposure, the digital WS of the both types of FPD system were smaller, but the overall WS of the both types of FPD systems were larger. Fourth, the digital and overall NEQ and DQE of the direct-type FPD system were worse than those of the indirect-type FPD system at lower spatial frequencies than 1.75 - 2.0 mm(-1), but were worse at higher spatial frequencies than 1.75 - 2.0 mm(-1). We show radiographs made with the direct type of FPD system. Radiographs of square wave chart show the difference in MTF and contrast of the both types of FPD systems. As the result of evaluation of radiographs of chest phantom in point of noise by radiologists and radiological technologists, the direct type of FPD system needed double or more exposure dose than own standard condition, this dose was same as the indirect-type FPD system. And radiologists evaluated radiographs of human body, spatial resolution was very good, but contrast was much more likely to high at standard parameter. Therefore we have to consider exposure condition and image processing for the direct type of FPD system.

  4. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    PubMed Central

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-01

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast. PMID:28146088

  5. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector.

    PubMed

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-30

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast.

  6. Flat-panel volume CT: fundamental principles, technology, and applications.

    PubMed

    Gupta, Rajiv; Cheung, Arnold C; Bartling, Soenke H; Lisauskas, Jennifer; Grasruck, Michael; Leidecker, Christianne; Schmidt, Bernhard; Flohr, Thomas; Brady, Thomas J

    2008-01-01

    Flat-panel volume computed tomography (CT) systems have an innovative design that allows coverage of a large volume per rotation, fluoroscopic and dynamic imaging, and high spatial resolution that permits visualization of complex human anatomy such as fine temporal bone structures and trabecular bone architecture. In simple terms, flat-panel volume CT scanners can be thought of as conventional multidetector CT scanners in which the detector rows have been replaced by an area detector. The flat-panel detector has wide z-axis coverage that enables imaging of entire organs in one axial acquisition. Its fluoroscopic and angiographic capabilities are useful for intraoperative and vascular applications. Furthermore, the high-volume coverage and continuous rotation of the detector may enable depiction of dynamic processes such as coronary blood flow and whole-brain perfusion. Other applications in which flat-panel volume CT may play a role include small-animal imaging, nondestructive testing in animal survival surgeries, and tissue-engineering experiments. Such versatility has led some to predict that flat-panel volume CT will gain importance in interventional and intraoperative applications, especially in specialties such as cardiac imaging, interventional neuroradiology, orthopedics, and otolaryngology. However, the contrast resolution of flat-panel volume CT is slightly inferior to that of multidetector CT, a higher radiation dose is needed to achieve a comparable signal-to-noise ratio, and a slower scintillator results in a longer scanning time.

  7. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    SciTech Connect

    Franich, R; Smith, R; Millar, J; Haworth, A; Taylor, M; McDermott, L

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment

  8. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  9. Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm.

    PubMed

    Tang, X; Ning, R; Yu, R; Conover, D

    2001-05-01

    The application of x-ray flat panel imagers (FPIs) in cone beam volume CT (CBVCT) has attracted increasing attention. However, due to a deficient semiconductor array manufacturing process, defective cells unavoidably exist in x-ray FPIs. These defective cells cause their corresponding image pixels in a projection image to behave abnormally in signal gray level, and result in severe streak and ring artifacts in a CBVCT image reconstructed from the projection images. Since a three-dimensional (3-D) back-projection is involved in CBVCT, the formation of the streak and ring artifacts is different from that in the two-dimensional (2-D) fan beam CT. In this paper, a geometric analysis of the abnormality propagation in the 3D back-projection is presented, and the morphology of the streak and ring artifacts caused by the abnormality propagation is investigated through both computer simulation and phantom studies. In order to calibrate those artifacts, a 2D wavelet-analysis-based statistical approach to correct the abnormal pixels is proposed. The approach consists of three steps: (1) the location-invariant defective cells in an x-ray FPI are recognized by applying 2-D wavelet analysis on flat-field images, and a comprehensive defective cell template is acquired; (2) based upon the template, the abnormal signal gray level of the projection image pixels corresponding to the location-invariant defective cells is replaced with the interpolation of that of their normal neighbor pixels; (3) that corresponding to the isolated location-variant defective cells are corrected using a narrow-windowed median filter. The CBVCT images of a CT low-contrast phantom are employed to evaluate this proposed approach, showing that the streak and ring artifacts can be reliably eliminated. The novelty and merit of the approach are the incorporation of the wavelet analysis whose intrinsic multi-resolution analysis and localizability make the recognition algorithm robust under variable x

  10. A real-time flat-panel X-ray pixel imaging system for low-dose medical diagnostics and craniofacial applications.

    PubMed

    Chapuy, S; Dimcovski, D; Dimcovski, Z; Grigoriev, E; Grob, E; Ligier, Y; Pachoud, M; Riondel, F; Rüfenacht, D; Sayegh, C; Terrier, F; Valley, J F; Verdun, F R

    2000-01-01

    The aim of this study was to evaluate on-line performance of a real-time digital imaging system based on amorphous silicon technology and to compare it with conventional film-screen equipment. The digital detecting imager consists of (1) a converter, which transforms the energy of the incident X rays into light; (2) a real-time digital detecting system, capable of producing as many as 10 pictures per second using a large-area pixel matrix (20 x 20 cm2) based on solid-state amorphous silicon sensor technology with a pitch of 400 microns; and (3) appropriate computer tools for control, real-time image treatment, data representation, and off-line analysis. Different phantoms were used for qualitative comparison with the conventional film-screen technique, with images obtained with both systems at the normal dose (used as a reference), as well as with dose reduction by a factor of 10 to 100. Basic image quality parameters evaluated showed that the response of the detector is linear in a wide range of entrance air kerma; the dynamic range is higher compared with the conventional film-screen combination; the spatial resolution is 1.25 lp per millimeter, as expected from the pixel size; and good image quality is ensured at doses substantially lower than for the film-screen technique. The flat-panel X-ray imager based on amorphous silicon technology implemented in standard radiographic equipment permits acquisition of real-time images in radiology (as many as 10 images per second) of diagnostic quality with a marked reduction of dose (as much as 100 times) and better contrast compared with the standard film technique. Preliminary results obtained with a 100-micron pitch imager based on the same technology show better quality but a less substantial dose reduction. Applications in craniofacial surgery look promising.

  11. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  12. Performance comparison of an active matrix flat panel imager, computed radiography system, and a screen-film system at four standard radiation qualities.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J F; Verdun, F R

    2005-02-01

    Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.

  13. Imaging performance of a clinical selenium flat-panel detector for advanced applications in full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Loustauneau, Vincent; Bissonnette, Michel; Cadieux, Sebastien; Hansroul, Marc; Masson, E.; Savard, Serge; Polischuk, Brad T.; Lehtimauki, Mari J.

    2003-06-01

    The advent of digital detectors will enable several advanced imaging applications to be used in the fight against breast cancer. For example, dynamic imaging applications such as tomosynthesis, contrast enhanced and dual energy mammography have demonstrated promising results. In this paper, we will assess the suitability of this detector for these advanced applications. MTF and DQE measurements were performed on a selenium FFDM detector to assess image quality. Ghosting properties of a digital detector are also an important factor, since it can strongly degrade image quality. In this paper, we will also report on the ghosting characteristics of the selenium detector, using typical exposures envisioned to be used in tomosynthesis exams. The physical mechanisms that create ghost images will be discussed and will be quantified.

  14. Flat panel display Impurity doping technology for flat panel displays

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiharu

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  15. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  16. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    PubMed

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  17. MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

    2014-03-01

    The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan® phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan® phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

  18. Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications.

    PubMed

    Antonuk, L E; Jee, K W; El-Mohri, Y; Maolinbay, M; Nassif, S; Rong, X; Zhao, Q; Siewerdsen, J H; Street, R A; Shah, K S

    2000-02-01

    A theoretical investigation of factors limiting the detective quantum efficiency (DQE) of active matrix flat-panel imagers (AMFPIs), and of methods to overcome these limitations, is reported. At the higher exposure levels associated with radiography, the present generation of AMFPIs is capable of exhibiting DQE performance equivalent, or superior, to that of existing film-screen and computed radiography systems. However, at exposure levels commonly encountered in fluoroscopy, AMFPIs exhibit significantly reduced DQE and this problem is accentuated at higher spatial frequencies. The problem applies both to AMFPIs that rely on indirect detection as well as direct detection of the incident radiation. This reduced performance derives from the relatively large magnitude of the square of the total additive noise compared to the system gain for existing AMFPIs. In order to circumvent these restrictions, a variety of strategies to decrease additive noise and enhance system gain are proposed. Additive noise could be reduced through improved preamplifier, pixel and array design, including the incorporation of compensation lines to sample external line noise. System gain could be enhanced through the use of continuous photodiodes, pixel amplifiers, or higher gain x-ray converters such as lead iodide. The feasibility of these and other strategies is discussed and potential improvements to DQE performance are quantified through a theoretical investigation of a variety of hypothetical 200 microm pitch designs. At low exposures, such improvements could greatly increase the magnitude of the low spatial frequency component of the DQE, rendering it practically independent of exposure while simultaneously reducing the falloff in DQE at higher spatial frequencies. Furthermore, such noise reduction and gain enhancement could lead to the development of AMFPIs with high DQE performance which are capable of providing both high resolution radiographic images, at approximately 100 microm

  19. Evaluation of Effective Dose During Abdominal Three-Dimensional Imaging for Three Flat-Panel-Detector Angiography Systems

    SciTech Connect

    Suzuki, Shigeru; Yamaguchi, Ichiro; Kidouchi, Takashi; Yamamoto, Asako; Masumoto, Tomohiko; Ozaki, Yutaka

    2011-04-15

    The purpose of this study was to evaluate the effective dose during abdominal three-dimensional (3D) imaging on phantoms and estimate the dose-area product (DAP) for effective dose conversion factors for three types of angiographic units. Three-dimensional imaging was performed for three sizes (small, medium, large) of human-shaped phantoms using three types of angiographic units (Allura Xper FD20/10, INNOVA 4100, AXIOM Artis dTA). We calculated 25 organ doses and effective doses using Monte Carlo technique for the three phantoms with a program for a personal computer. As benchmark studies to back up the results by Monte Carlo technique, we measured the organ doses directly on the small phantom using radiophotoluminescent glass dosimeters. The DAP value increased as the phantom size increased. The organ doses and the effective doses during the 3D imaging increased as the phantom size increased. The effective doses for the small phantom by Monte Carlo technique were 1.9, 2.2, and 2.1 mSv for the Allura Xper FD20/10, INNOVA 4100, and AXIOM Artis dTA, respectively, while those by direct measurement were 1.6, 2.0, and 2.6 mSv. The effective doses to DAP ratios by Monte Carlo technique were 0.37-0.45, 0.26-0.32, and 0.13-0.15 (mSv Gy{sup -1}cm{sup -2}) for the Allura Xper FD20/10, INNOVA 4100, and AXIOM Artis dTA, respectively. In conclusion, the effective doses during 3D imaging and the dose-to-DAP ratios differ among angiographic units, and the effective dose can be estimated using a proper conversion factor for each angiographic unit.

  20. Cone-beam CT with a flat-panel detector on a mobile C-arm: preclinical investigation in image-guided surgery of the head and neck

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Chan, Y.; Rafferty, M. A.; Moseley, D. J.; Jaffray, D. A.; Irish, J. C.

    2005-04-01

    A promising imaging platform for combined low-dose fluoroscopy and cone-beam CT (CBCT) guidance of interventional procedures has been developed in our laboratory. Based on a mobile isocentric C-arm (Siemens PowerMobil) incorporating a high-performance flat-panel detector (Varian PaxScan 4030CB), the system demonstrates sub-mm 3D spatial resolution and soft-tissue visibility with field of view sufficient for head and body sites. For pre-clinical studies in head neck tumor surgery, we hypothesize that the 3D intraoperative information provided by CBCT permits precise, aggressive techniques with improved avoidance of critical structures. The objectives include: 1) quantify improvement in surgical performance achieved with CBCT guidance compared to open and endoscopic techniques; and 2) investigate specific, challenging surgical tasks under CBCT guidance. Investigations proceed from an idealized phantom model to cadaveric specimens. A novel surgical performance evaluation method based on statistical decision theory is applied to excision and avoidance tasks. Analogous to receiver operating characteristic (ROC) analysis in medical imaging, the method quantifies surgical performance in terms of Lesion-Excised (True-Positve), Lesion-Remaining (False-Negative), Normal-Excised (False-Positive), and Normal-Remaining (True-Negative) fractions. Conservative and aggressive excision and avoidance tasks are executed in 12 cadaveric specimens with and without CBCT guidance, including: dissection through dura, preservation of posterior lamina, ethmoid air cells removal, exposure of peri-orbita, and excision of infiltrated bone in the skull base (clivus). Intraoperative CBCT data was found to dramatically improve surgical performance and confidence in the execution of such tasks. Pre-clinical investigation of this platform in head and neck surgery, as well as spinal, trauma, biopsy, and other nonvascular procedures, is discussed.

  1. Laser illuminated flat panel display

    SciTech Connect

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  2. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.

    PubMed

    Berbeco, Ross I; Jiang, Steve B; Sharp, Gregory C; Chen, George T; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-21

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  3. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-01

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  4. Musculoskeletal applications of flat-panel volume CT.

    PubMed

    Reichardt, Benjamin; Sarwar, Ammar; Bartling, Soenke H; Cheung, Arnold; Grasruck, Michael; Leidecker, Christianne; Bredella, Miriam A; Brady, Thomas J; Gupta, Rajiv

    2008-12-01

    Flat-panel volume computed tomography (fpVCT) is a recent development in imaging. We discuss some of the musculoskeletal applications of a high-resolution flat-panel CT scanner. FpVCT has four main advantages over conventional multidetector computed tomography (MDCT): high-resolution imaging; volumetric coverage; dynamic imaging; omni-scanning. The overall effective dose of fpVCT is comparable to that of MDCT scanning. Although current fpVCT technology has higher spatial resolution, its contrast resolution is slightly lower than that of MDCT (5-10HU vs. 1-3HU respectively). We discuss the efficacy and potential utility of fpVCT in various applications related to musculoskeletal radiology and review some novel applications for pediatric bones, soft tissues, tumor perfusion, and imaging of tissue-engineered bone growth. We further discuss high-resolution CT and omni-scanning (combines fluoroscopic and tomographic imaging).

  5. Plasma technology and its use in flat panel digital radiography.

    PubMed

    Zur, Albert

    2010-01-01

    Plasma DR technology is used to produce a cost effective flat panel x-ray detector that acquires digital x-ray images with excellent diagnostic quality. The detector is radiation hard and permanently zero defect, with a full virtual pixel matrix that has no dead lines, pixels, or dead pixel clusters. The technology also allows the full potential of large area amorphous Selenium imaging to finally be realized (see Figure 4).

  6. Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature.

    PubMed

    Völk, Markus; Hamer, Okka W; Feuerbach, Stefan; Strotzer, Michael

    2004-05-01

    The two most frequently performed diagnostic X-ray examinations are those of the extremities and of the chest. Thus, dose reduction in the field of conventional skeletal and chest radiography is an important issue and there is a need to reduce man-made ionizing radiation. The large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide provides a significant reduction of radiation dose in skeletal and chest radiography compared with traditional imaging systems. This article describes the technical background and basic image quality parameters of this 43 x 43-cm digital system, and summarizes the available literature (years 2000-2003) concerning dose reduction in experimental and clinical studies. Due to its high detective quantum efficiency and dynamic range compared with traditional screen-film systems, a dose reduction of up to 50% is possible without loss of image quality.

  7. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    SciTech Connect

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-11-15

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  8. Flat panel displays in an underwater cockpit

    NASA Astrophysics Data System (ADS)

    Sola, Kenneth E.

    1999-08-01

    This paper reports on a highly unusual application of flat panel displays in a cockpit. The cockpit is found in a mini- submarine of the Advanced SEAL Delivery System (ASDS), a state-of-the-art military platform designed to deliver U.S. Navy SEALs, and other special forces, to their mission locations. For security reasons, the presentation details are intentionally kept minimal.

  9. Temporal-spatial characteristic evaluation in a dynamic flat-panel detector system

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Tanaka, R.; Matsubara, K.; Ichikawa, K.; Sakuta, K.; Minami, S.; Hayashi, N.; Sanada, S.; Kawamura, M.; Yamamoto, T.

    2010-04-01

    This report presents the fundamental temporospatial characteristics of a dynamic flat-panel detector (FPD) system. We investigated the relationship between pixel value and X-ray pulse output, and examined reproducibility, dependence on pulse width, tube voltage, and pulse rate. Sequential images were obtained using a direct conversion-type dynamic FPD. The exposure conditions were: 110 kV, 80 mA, 6.3 ms, 7.5 fps, source-to-image distance (SID) 1.5 m. X-ray pulse output was measured using a dosimetry system with a sampling interval of 70 μs, to determine temporal changes in each X-ray pulse output. Temporal changes in pixel value were measured in the obtained images, and the relationship between pixel value and X-ray pulse output was examined. Reproducibility was assessed by comparing the results in two sequential images obtained under the same exposure conditions. Moreover, the relationships and properties were evaluated by changing the pulse width (12 ms and 25 ms), tube voltage (80 kV, 90 kV, and 100 kV), and pulse rate (3.75 fps and 15 fps). The results showed a good correlation between the X-ray pulse output and pixel values. Fluctuation of the pixel value measured in sequential images is thought to be mainly due to changes in X-ray pulse output, and is not caused by FPD.

  10. Investigation into the influence of x-ray scatter on the imaging performance of an x-ray flat-panel imager-based cone-beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The advent of the x-ray flat panel imager (FPI) is making the study of cone beam volume CT (CBVCT) more competitive. Motivated by recent encouraging developments in CBVCT, this paper investigates the influence of x-ray scatter on the imaging performance of an x-ray FPI based CBVCT prototype. The prototype employs a circle-plus-two-arc orbit to meet the data sufficiency condition, and can reconstruct a region of interest within a longitudinally unbounded object using a cone beam filtered back-projection algorithm derived for the data acquisition orbit. First, the humanoid phantom is used to investigate the temporal variation of both scatter intensity and scatter to primary ratio (SPR) in the projection images acquired for CB reconstruction. Second, a 160 mm cylindrical water phantom consisting of four 16 mm rods made up of Acrylic, Polyethelene, Polycarborate and Polystrene respectively is utilized to evaluate the variation of interference caused by x-ray scatter (cupping effect) and signal to noise ratio vs. SPR in projection images. Third, a disc phantom consisting of seven acrylic discs stacked at even intervals is employed to evaluate the influence of x-ray scatter on reconstruction accuracy and the improvement of CBVCT image quality with recourse to an anti-scatter grid. Finally, the alleviation of the cupping effect in the presence of a beam-shaping (bow-tie) attenuator is assessed . The quantitative investigation shows that the influence of x-ray scatter on the SNR and CT number accuracy is a crucial problem to be addressed for the application of x-ray CBVCT.

  11. Image quality of a prototype direct conversion detector for digital mammography

    NASA Astrophysics Data System (ADS)

    Mainprize, James G.; Ford, Nancy L.; Yin, Shi; Tumer, Tumay O.; Yaffe, Martin J.

    1999-05-01

    A digital mammography system in which the x-ray sensitive device is a solid-state direct conversion detector is under development. This detector is a 1 mm thick silicon photodiode array hybridized to a CCD read-out, with a 50 micrometer pixel pitch. The detector is designed to be used in a slot-scanned system using time-delay integration (TDI) for signal acquisition. To handle the large signal generated in the photodiode, a novel read-out technique was used, in which charge was integrated 'on-chip' over a small number of rows, and the output of each of these sections was digitally summed 'off-chip' to produce the total integrated signal for each pixel in the image. This two-stage integration process not only allows easy acquisition of large signals, it effectively increases bit depth from 12 bits (for a single section) to approximately 16 (for the total integrated signal). The image quality of the device has been measured and compared to predictions based on cascaded linear systems theory. The resolution of the new detector was determined from the modulation transfer function (MTF) which was obtained from over-sampled edge spread functions (ESF). The ESF was measured in both the scan and slot directions from four repeated images of a tantalum edge. Noise power spectra (NPS) were determined from 40 repeated flat-field images at each of several x-ray exposures. By combining the MTF and NPS measurements, the detective quantum efficiency (DQE) was also determined. The MTF in the non-scanned direction was found to greater than 20% at 10 mm-1 and slightly lower in the scanned direction (approximately equals 10% at 10 mm-1). In all cases, the DQE was at least comparable to film-screen mammography receptors. The DQE at 120 mR detector exposure at zero spatial frequency ranged from 0.4 to 0.6 depending on the sample tested. Electronic noise was fairly low, contributing to less than plus or minus 7 ADU (out of a possible 98304 ADU). Future work will involve re-designing the

  12. Phosphors for flat panel emissive displays

    SciTech Connect

    Anderson, M.T.; Walko, R.J.; Phillips, M.L.F.

    1995-07-01

    An overview of emissive display technologies is presented. Display types briefly described include: cathode ray tubes (CRTs), field emission displays (FEDs), electroluminescent displays (ELDs), and plasma display panels (PDPs). The critical role of phosphors in further development of the latter three flat panel emissive display technologies is outlined. The need for stable, efficient red, green, and blue phosphors for RGB fall color displays is emphasized.

  13. Feasibility of Flat Panel Detector CT in Perfusion Assessment of Brain Arteriovenous Malformations: Initial Clinical Experience.

    PubMed

    Garcia, M; Okell, T W; Gloor, M; Chappell, M A; Jezzard, P; Bieri, O; Byrne, J V

    2017-02-16

    The different results from flat panel detector CT in various pathologies have provoked some discussion. Our aim was to assess the role of flat panel detector CT in brain arteriovenous malformations, which has not yet been assessed. Five patients with brain arteriovenous malformations were studied with flat panel detector CT, DSC-MR imaging, and vessel-encoded pseudocontinuous arterial spin-labeling. In glomerular brain arteriovenous malformations, perfusion was highest next to the brain arteriovenous malformation with decreasing values with increasing distance from the lesion. An inverse tendency was observed in the proliferative brain arteriovenous malformation. Flat panel detector CT, originally thought to measure blood volume, correlated more closely with arterial spin-labeling-CBF and DSC-CBF than with DSC-CBV. We conclude that flat panel detector CT perfusion depends on the time point chosen for data collection, which is triggered too early in these patients (ie, when contrast agent appears in the superior sagittal sinus after rapid shunting through the brain arteriovenous malformation). This finding, in combination with high data variability, makes flat panel detector CT inappropriate for perfusion assessment in brain arteriovenous malformations.

  14. C-arm CT with XRIIs and digital flat panels: a review

    NASA Astrophysics Data System (ADS)

    Fahrig, Rebecca; Ganguly, Arundhuti; Starman, Jared D.; Strobel, Norbert K.

    2004-10-01

    C-arm CT first emerged as a useful high-contrast imaging modality in the late 1990s, using an XRII as the large area x-ray detector. To date, the C-arm approach to intra-procedural 3D imaging has primarily been used for high-contrast imaging tasks. The emerging goal for these systems is to extend the imaging range into the area of soft-tissue, and it is thought that digital flat-panel detectors may help. Flat panels replace the analog image intensifier, the camera optics, the pickup tube and the analog-to-digital converter with an all-digital detector. Flat panel detectors have a linear response, do not require distortion correction, do not suffer from veiling glare or blooming, and have higher dynamic range that current XRIIs. On the other hand, XRIIs have greater flexibility in FOV, and could support higher frame rates at high resolution, thereby reducing the effects of view aliasing. We have experience with a typical XRII-based C-arm imaging system and a new high-end C-arm equipped with a large flat-panel detector. Initial investigations show that when projection pixel size, acquisition geometry and focal spot size are matched, the flat-panel-based system produces reconstructions with improved MTF, primarily due to the additional interpolation step required for XRII warp correction. Investigations of artifact levels and comparison with in vivo CT images are presented.

  15. Low-dose 2.5 MV cone-beam computed tomography with thick CsI flat-panel imager.

    PubMed

    Tang, Grace; Moussot, Christopher; Morf, Daniel; Seppi, Edward; Amols, Howard

    2016-07-08

    Most of the treatment units, both new and old models, are equipped with a megavoltage portal imager but its use for volumetric imaging is limited. This is mainly due to the poor image quality produced by the high-energy treatment beam (> 6MV). A linac at our center is equipped with a prototype 2.5 MV imaging beam. This study evaluates the feasibility of low-dose megavoltage cone-beam imaging with the 2.5MV beam and a thick cesium iodide detector, which is a high-efficiency imager. Basic imaging properties such as spatial resolution and modulation transfer function were assessed for the 2.5 MV prototype imaging system. For image quality and imaging dose, a series of megavoltage cone-beam scans were acquired for the head, thorax, and pelvis of an anthropomorphic phantom and were compared to kilovoltage cone-beam and 6X megavoltage cone-beam images. To demonstrate the advantage of MV imaging, a phantom with metallic inserts was scanned and the image quality was compared to CT and kilovoltage cone-beam scans. With a lower energy beam and higher detector efficiency, the 2.5 MV imaging system generally yields better image quality than does the 6 MV imaging system with the conventional MV imager. In particular, with the anthropomorphic phantom studies, the contrast to noise of bone to tissue is generally improved in the 2.5 MV images compared to 6 MV. With an image quality sufficient for bony alignment, the imaging dose for 2.5 MV cone-beam images is 2.4-3.4 MU compared to 26 MU in 6 MV cone-beam scans for the head, thorax, and pelvis regions of the phantom. Unlike kilovoltage cone-beam, the 2.5 MV imaging system does not suffer from high-Z image artifacts. This can be very useful for treatment planning in cases where high-Z prostheses are present.

  16. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography.

  17. Evaluation of image lag in a flat-panel, detector-equipped cardiovascular X-ray machine using a newly developed dynamic phantom.

    PubMed

    Sato, Hisaya; Kondo, Keisuke; Kato, Kyoichi; Nakazawa, Yasuo

    2015-03-08

    We developed a dynamic phantom for use in routine checks. This phantom can be used to physically evaluate image lag that occurs in dynamic images. It has a unique measurement method. ROIs on the target are chosen, and, with the position of ROIs fixed on the image, changes in pixel value are detected physically when the target passes through the ROIs over time and perceived as image lag. Thus, it was possible to physically detect different intensities of image lag lasting less than one second while maintaining the same intensity trends. The checking technique we propose with the dynamic phantom that we developed could be effective for routine checking of fluoroscopy X-ray machines, and could become an established method.

  18. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  19. Comparison of the image quality of a high-resolution screen-film system and a digital flat panel detector system in avian radiography.

    PubMed

    Bochmann, Monika; Ludewig, Eberhard; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2011-01-01

    A conventional high-resolution screen-film system was compared with a digital detector system. A total of 20 birds (14 pigeons and six psittacine birds) with an average body mass of 533g were examined in dorsoventral as well as lateral projections. Digital radiographs were acquired with the same mAs as well as half the mAs used for the conventional radiographs. Three criteria and one overall assessment were defined for each of four anatomic regions and assessed by five veterinarians using a score system. Comparison of the ratings was done by visual grading analysis. For the majority of criteria, there was no significant difference regarding image quality between the digital and screen-film projections. However, for certain criteria the quality of the digital images was significantly superior. Using the same mAs as for the conventional radiographs, the humeral joint surfaces and the honeycomb structure of the lung were assessed as superior with the digital imaging system. The tracheal rings and the delineation of the trachea from the surrounding tissue were also superior with the digital system. Assessment of the trabecular structure of the humerus was superior when the full mAs was used compared with the reduced mAs. In conclusion the digital technique is equal or superior to the conventional screen-film high-resolution system for pet birds of a medium size. With some limitations, a dose reduction is possible with the digital system.

  20. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect

    Sweeney, D.; DeLong, K.

    1997-04-29

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  1. Radiation Exposure in Biliary Procedures Performed to Manage Anastomotic Strictures in Pediatric Liver Transplant Recipients: Comparison Between Radiation Exposure Levels Using an Image Intensifier and a Flat-Panel Detector-Based System

    SciTech Connect

    Miraglia, Roberto Maruzzelli, Luigi; Tuzzolino, Fabio; Indovina, Pietro Luigi; Luca, Angelo

    2013-12-15

    Purpose: The aim of this study was to estimate radiation exposure in pediatric liver transplants recipients who underwent biliary interventional procedures and to compare radiation exposure levels between biliary interventional procedures performed using an image intensifier-based angiographic system (IIDS) and a flat panel detector-based interventional system (FPDS). Materials and Methods: We enrolled 34 consecutive pediatric liver transplant recipients with biliary strictures between January 2008 and March 2013 with a total of 170 image-guided procedures. The dose-area product (DAP) and fluoroscopy time was recorded for each procedure. The mean age was 61 months (range 4-192), and mean weight was 17 kg (range 4-41). The procedures were classified into three categories: percutaneous transhepatic cholangiography and biliary catheter placement (n = 40); cholangiography and balloon dilatation (n = 55); and cholangiography and biliary catheter change or removal (n = 75). Ninety-two procedures were performed using an IIDS. Seventy-eight procedures performed after July 2010 were performed using an FPDS. The difference in DAP between the two angiographic systems was compared using Wilcoxon rank-sum test and a multiple linear regression model. Results: Mean DAP in the three categories was significantly greater in the group of procedures performed using the IIDS compared with those performed using the FPDS. Statistical analysis showed a p value = 0.001 for the PTBD group, p = 0.0002 for the cholangiogram and balloon dilatation group, and p = 0.00001 for the group with cholangiogram and biliary catheter change or removal. Conclusion: In our selected cohort of patients, the use of an FPDS decreases radiation exposure.

  2. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Anastasios C.; Szafraniec, Magdalena B.; Speller, Robert D.; Olivo, Alessandro

    2012-10-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors (APS) have been introduced recently in many scientific applications. This work reports on the performance (in terms of signal and noise transfer) of an X-ray detector that uses a novel CMOS APS which was developed for medical X-ray imaging applications. For a full evaluation of the detector's performance, electro-optical and X-ray characterizations were carried out. The former included measuring read noise, full well capacity and dynamic range. The latter, which included measuring X-ray sensitivity, presampling modulation transfer function (pMTF), noise power spectrum (NPS) and the resulting detective quantum efficiency (DQE), was assessed under three beam qualities (28 kV, 50 kV (RQA3) and 70 kV (RQA5) using W/Al) all in accordance with the IEC standard. The detector features an in-pixel option for switching the full well capacity between two distinct modes, high full well (HFW) and low full well (LFW). Two structured CsI:Tl scintillators of different thickness (a “thin” one for high resolution and a thicker one for high light efficiency) were optically coupled to the sensor array to optimize the performance of the system for different medical applications. The electro-optical performance evaluation of the sensor results in relatively high read noise (∼360 e-), high full well capacity (∼1.5×106 e-) and wide dynamic range (∼73 dB) under HFW mode operation. When the LFW mode is used, the read noise is lower (∼165) at the expense of a reduced full well capacity (∼0.5×106 e-) and dynamic range (∼69 dB). The maximum DQE values at low frequencies (i.e. 0.5 lp/mm) are high for both HFW (0.69 for 28 kV, 0.71 for 50 kV and 0.75 for 70 kV) and LFW (0.69 for 28 kV and 0.7 for 50 kV) modes. The X-ray performance of the studied detector compares well to that of other mammography and general radiography systems, obtained under similar experimental conditions. This demonstrates the suitability

  3. Comparison of concentrating collectors to tracking flat panels

    SciTech Connect

    Jones, G.J.

    1984-01-01

    Two-axis tracking appears to be the economic optimum for photovoltaic flat-panel technology. This requires a new comparison of flat-panel and concentrator arrays using the most competitive flat-panel option. The array field costs for a two-axis tracking flat-panel should be nearly identical to the costs for a concentrator. Therefore, module costs for the two technologies can be compared directly, simplifying the analysis. For example, at southwestern sites, characterized by a high direct-to-diffuse insolation ratio, 12% flat-panels are found to be equivalent to 15% concentrators of the same cost ($/m/sup 2/). For regions with more diffuse radiation the concentrator must be over 18% efficient to be equivalent.

  4. A comparison of concentrating collectors to tracking flat panels

    SciTech Connect

    Jones, G.J.

    1984-05-01

    Two-axis tracking appears to be the economic optimum for photovoltaic flat-panel technology. This requires a new comparison of flatpanel and concentrator arrays using the most competitive flat-panel option. The array field costs for a two-axis tracking flat-panel should be nearly identical to the costs for a concentrator. Therefore, module costs for the two technologies can be compared directly, simplifying the analysis. For example, at southwestern sites, characterized by a high direct-to-diffuse insolation ratio, 12% flat-panels are found to be equivalent to 15% concentrators of the same cost ($/M/sup 2/). For regions with more diffuse radiation the concentrator must be over 18% efficient to be equivalent.

  5. Image quality evaluation of direct-conversion digital mammography system with new dual a-Se layer detector

    NASA Astrophysics Data System (ADS)

    Kuwabara, Takao; Iwasaki, Nobuyuki; Sendai, Tomonari; Furue, Ryosuke; Agano, Toshitaka

    2009-02-01

    To increase the detection performance of breast cancers in mammograms, we need to improve shape delineation of micro calcifications and tumors. We accomplished this by developing a direct-conversion mammography system with an optical reading method and a new dual a-Se layer detector. The system achieved both small pixel size (50 micrometer) and a high Detective Quantum Efficiency (DQE) realized by 100 % of fill factor and noise reduction. We evaluated image quality performance and determined the best exposure conditions. We measured DQE and Modulation Transfer Function(MTF) according to the IEC62220-1-2. High DQE was maintained at a low radiation dosage, indicating that the optical reading method accompanies low noises. Response of MTF was maintained at up to the Nyquist frequency of 10 cyc/mm, which corresponds to 50 micrometer pixel size. To determine the best exposure conditions, we measured Contrast to Noise Ratio (CNR) and visually evaluated images of a resected breast under conditions of MoMo, MoRh, and WRh. There were occasional disagreements between the exposure conditions for achieving the maximum CNR and those for the best image graded by the visual evaluation. This was probably because CNR measurement does not measure effects of scattered X-ray. The images verified the improvement in detection and delineation performance of micro calcifications and tumors.

  6. Sarnoff JND Vision Model for Flat-Panel Design

    NASA Technical Reports Server (NTRS)

    Brill, Michael H.; Lubin, Jeffrey

    1998-01-01

    This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,

  7. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  8. Light sharing in multi-flat-panel-PMT PEM detectors.

    PubMed

    Raylman, Raymond R; Majewski, Stan; Mayhugh, Michael R

    2006-01-01

    Large are a detectors, such as those used in positron emission mammography (PEM) and scintimammography, utilize arrays of discrete semtillator elements mounted on arrays of position sensitive photomultiplier tubes (PSPMT). Scintillator elements can be packed very densely (minimizing area between elements), allowing good detection sensitivity and spatial resolution. And, while new flat panel PSPMTS have minimal inactive edges, when they are placed in arrays significant dead spaces where scintillation light is undetectable are created. To address this problem, a light guide is often placed between the detector and PSPMT array to spread scintillation light so that these gaps can be bridged. In this investigation we studied the effect of light guides of various thickness on system performance. A 10x10 element array of LYSO detector elements was coupled to the center of a 2x2 array of PSPMTs through varying thicknesses (1 to 4 mm) of UV glass. The spot size of the imaged elements and distortions in the regular square pattern of the imaged scintillator arrays were evaluated. Energy resolution was measured by placing single elements of LYSO at several locations of the PSPMT array. Spatial distortions in the images of the array were reduced by using thicker light guides (3-4 mm). Use of thicker light guides, however, resulted in reduced pixel resolution and slight degradation of energy resolution. Therefore, some loss of pixel and energy resolution will accompany the use of thick light guides (minimum of 3 mm) required for optimum identification of detector elements.

  9. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  10. Second generation large area microchannel plate flat panel phototubes

    NASA Astrophysics Data System (ADS)

    Ertley, C. D.; Siegmund, O. H. W.; Jelinsky, S. R.; Tedesco, J.; Minot, M. J.; O'Mahony, A.; Craven, C. A.; Popecki, M.; Lyashenko, A. V.; Foley, M. R.

    2016-07-01

    Very large (20 cm × 20 cm) flat panel phototubes are being developed which employ novel microchannel plates (MCPs). The MCPs are manufactured using borosilicate microcapillary arrays which are functionalized by the application of resistive and secondary emissive layers using atomic layer deposition (ALD). This allows the operational parameters to be set by tailoring sequential ALD deposition processes. The borosilicate substrates are robust, including the ability to be produced in large formats (20 cm square). ALD MCPs have performance characteristics (gain, pulse amplitude distributions, and imaging) that are equivalent or better than conventional MCPs. They have low intrinsic background (0.045 events cm-2 sec-1)., high open area ratios (74% for the latest generation of borosilicate substrates), and stable gain during >7 C cm-2 charge extraction after preconditioning (vacuum bake and burn-in). The tube assemblies use a pair of 20 cm × 20 cm ALD MCPs comprised of a borosilicate entrance window, a proximity focused bialkali photocathode, and a strip-line readout anode. The second generation design employs an all glass body with a hot indium seal and a transfer photocathode. We have achieved >20% quantum efficiency and good gain uniformity over the 400 cm2 field of view, spatial resolution of <1 cm and obtained event timing accuracy of close to 100 ps FWHM.

  11. Rotational flat-panel computed tomography in diagnostic and interventional neuroradiology.

    PubMed

    Dörfler, A; Struffert, T; Engelhorn, T; Richter, G

    2008-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range than available with X-ray film or film-screen combinations, flat-panel detector technology has become widely accepted for neuroangiographic imaging. In particular flat-panel detector computed tomography (FD-CT) which uses rotational C-arm-mounted flat-panel detector technology is capable of volumetric imaging with high spatial resolution. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures, i.e. intracranial stenting for cerebrovascular stenoses, stent-assisted coil embolization of wide-necked cerebral aneurysms and embolizations of arteriovenous malformations. By providing morphologic, CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize periprocedural hemorrhage and may thus improve rapid complication management without the need for patient transfer. In addition, myelography and postmyelographic FD-CT imaging can be carried out using a single machine. Spinal interventions, such as kyphoplasty or vertebroplasty might also benefit from FD-CT. This paper briefly reviews the technical principles of FD technology and then focuses on possible applications in diagnostic and interventional neuroradiology.

  12. Focal spot measurements using a digital flat panel detector

    PubMed Central

    Jain, Amit; Panse, A.; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Focal spot size is one of the crucial factors that affect the image quality of any x-ray imaging system. It is, therefore, important to measure the focal spot size accurately. In the past, pinhole and slit measurements of x-ray focal spots were obtained using direct exposure film. At present, digital detectors are replacing film in medical imaging so that, although focal spot measurements can be made quickly with such detectors, one must be careful to account for the generally poorer spatial resolution of the detector and the limited usable magnification. For this study, the focal spots of a diagnostic x-ray tube were measured with a 10-μm pinhole using a 194-μm pixel flat panel detector (FPD). The two-dimensional MTF, measured with the Noise Response (NR) Method was used for the correction for the detector blurring. The resulting focal spot sizes based on the FWTM (Full Width at Tenth Maxima) were compared with those obtained with a very high resolution detector with 8-μm pixels. This study demonstrates the possible effect of detector blurring on the focal spot size measurements with digital detectors with poor resolution and the improvement obtained by deconvolution. Additionally, using the NR method for measuring the two-dimensional MTF, any non-isotropies in detector resolution can be accurately corrected for, enabling routine measurement of non-isotropic x-ray focal spots. This work presents a simple, accurate and quick quality assurance procedure for measurements of both digital detector properties and x-ray focal spot size and distribution in modern x-ray imaging systems. PMID:25302004

  13. Focal spot measurements using a digital flat panel detector

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Panse, A.; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Focal spot size is one of the crucial factors that affect the image quality of any x-ray imaging system. It is, therefore, important to measure the focal spot size accurately. In the past, pinhole and slit measurements of x-ray focal spots were obtained using direct exposure film. At present, digital detectors are replacing film in medical imaging so that, although focal spot measurements can be made quickly with such detectors, one must be careful to account for the generally poorer spatial resolution of the detector and the limited usable magnification. For this study, the focal spots of a diagnostic x-ray tube were measured with a 10-μm pinhole using a 194-μm pixel flat panel detector (FPD). The twodimensional MTF, measured with the Noise Response (NR) Method was used for the correction for the detector blurring. The resulting focal spot sizes based on the FWTM (Full Width at Tenth Maxima) were compared with those obtained with a very high resolution detector with 8-μm pixels. This study demonstrates the possible effect of detector blurring on the focal spot size measurements with digital detectors with poor resolution and the improvement obtained by deconvolution. Additionally, using the NR method for measuring the two-dimensional MTF, any non-isotropies in detector resolution can be accurately corrected for, enabling routine measurement of non-isotropic x-ray focal spots. This work presents a simple, accurate and quick quality assurance procedure for measurements of both digital detector properties and x-ray focal spot size and distribution in modern x-ray imaging systems.

  14. Focal spot measurements using a digital flat panel detector.

    PubMed

    Jain, Amit; Panse, A; Bednarek, Daniel R; Rudin, Stephen

    2014-03-19

    Focal spot size is one of the crucial factors that affect the image quality of any x-ray imaging system. It is, therefore, important to measure the focal spot size accurately. In the past, pinhole and slit measurements of x-ray focal spots were obtained using direct exposure film. At present, digital detectors are replacing film in medical imaging so that, although focal spot measurements can be made quickly with such detectors, one must be careful to account for the generally poorer spatial resolution of the detector and the limited usable magnification. For this study, the focal spots of a diagnostic x-ray tube were measured with a 10-μm pinhole using a 194-μm pixel flat panel detector (FPD). The two-dimensional MTF, measured with the Noise Response (NR) Method was used for the correction for the detector blurring. The resulting focal spot sizes based on the FWTM (Full Width at Tenth Maxima) were compared with those obtained with a very high resolution detector with 8-μm pixels. This study demonstrates the possible effect of detector blurring on the focal spot size measurements with digital detectors with poor resolution and the improvement obtained by deconvolution. Additionally, using the NR method for measuring the two-dimensional MTF, any non-isotropies in detector resolution can be accurately corrected for, enabling routine measurement of non-isotropic x-ray focal spots. This work presents a simple, accurate and quick quality assurance procedure for measurements of both digital detector properties and x-ray focal spot size and distribution in modern x-ray imaging systems.

  15. Second-generation flat panel displays for the enhanced Abrahms M1 battlefield tank

    NASA Astrophysics Data System (ADS)

    Mahdi, Ken F.; Wyrembelski, Rick J.; Hatton, Terry J.

    1997-07-01

    The Abrams M1 Battlefield Tank has undergone several phases of performance enhancements since its introduction, improvements have covered updates to all the major components of the vehicle with major emphasis on the vetronics and man-machine interface. Through these enhancements of M1 has pioneered the utilization of flat panel display (FPD) technologies and the M1A2 version has an FPD at both the driver and gunner stations and a third at the commander position. These FPDs all employ electroluminescent (EL) imaging technology that is well suited for the severe vetronics environment. The latest M1A2 enhancements, being introduced as part of the M1A2 System Enhancement Package, include a flat panel AMLCD color tactical display which supersedes the earlier monochrome EL FPD used in this application, and a high resolution monochrome EL FPD for the second generation FLIR sensor, which supersedes the earlier bulky CRT display.

  16. Motion-compensated defect interpolation for flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Aach, Til; Barth, Erhardt; Mayntz, Claudia

    2004-05-01

    One advantage of flat-panel X-ray detectors is the immediate availability of the acquired images for display. Current limitations in large-area active-matrix manufacturing technology, however, require that the images read out from such detectors be processed to correct for inactive pixels. In static radiographs, these defects can only be interpolated by spatial filtering. Moving X-ray image modalities, such as fluoroscopy or cine-angiography, permit to use temporal information as well. This paper describes interframe defect interpolation algorithms based on motion compensation and filtering. Assuming the locations of the defects to be known, we fill in the defective areas from past frames, where the missing information was visible due to motion. The motion estimator is based on regularized block matching, with speedup obtained by successive elimination and related measures. To avoid the motion estimator locking on to static defects, these are cut out of each block during matching. Once motion is estimated, three methods are available for defect interpolation: direct filling-in by the motion-compensated predecessor, filling-in by a 3D-multilevel median filtered value, and spatiotemporal mean filtering. Results are shown for noisy fluoroscopy sequences acquired in clinical routine with varying amounts of motion and simulated defects up to six lines wide. They show that the 3D-multilevel median filter appears as the method of choice since it causes the least blur of the interpolated data, is robust with respect to motion estimation errors and works even in non-moving areas.

  17. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants.

    PubMed

    Pearl, M S; Roy, A; Limb, C J

    2014-06-01

    Radiologic assessment of cochlear implants can be limited because of metallic streak artifacts and the high attenuation of the temporal bones. We report on 14 patients with 18 cochlear implants (17 Med-El standard 31.5-mm arrays, 1 Med-El medium 24-mm array) who underwent flat panel CT with the use of high-resolution secondary reconstruction techniques. Flat panel CT depicted the insertion site, cochlear implant course, and all 216 individual electrode contacts. The calculated mean angular insertion depth for standard arrays was 591.9° (SD = 70.9; range, 280°). High-resolution secondary reconstructions of the initial flat panel CT dataset, by use of a manually generated field of view, Hounsfield unit kernel type, and sharp image characteristics, provided high-quality images with improved spatial resolution. Flat panel CT is a promising imaging tool for the postoperative evaluation of cochlear implant placement.

  18. Flat Panel Space Based Space Surveillance Sensor

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.

    2013-09-01

    Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction

  19. Flat panel CT detectors for sub-second volumetric scanning

    NASA Astrophysics Data System (ADS)

    Colbeth, Richard E.; Mollov, Ivan P.; Roos, Pieter G.; Shapiro, Edward G.

    2005-04-01

    This paper explores the potential of flat panel detectors in sub-second CT scanning applications. Using a PaxScan 4030CB with 600um thick CsI(Tl), a central section of the panel (16 to 32 rows), was scanned at frame rates up to 1000fps. Using this platform, fundamental issues related to high speed scanning were characterized. The offset drift of the imager over 60 seconds was found to be less than 0.014 ppm/sec relative to full scale. The gain stability over a 10 hour period is better than +/- .45%, which is at the resolution limit of the measurement. Two different types of lag measurements were performed in order to separate the photodiode array lag from the CsI afterglow. The panel lag was found to be 0.41% 1st frame and 0.054% 25th frame at 1000fps. The CsI(Tl) afterglow, however, is roughly an order of magnitude higher, dominating the lag for sub-second scans. At 1000fps the 1st frame lag due to afterglow was 3.3% and the 25th frame lag was 0.34%. Both the lag and afterglow are independent of signal level and each follows a simple power law evolution versus time. Reconstructions of anatomical phantoms and the CATPHAN 500 phantom are presented. With a 2 second, 1200 projection scan of the CATPHAN phantom at 600fps in 32 slice mode, using 120kVp and CTDI100 of 43.2mGy, 0.3% contrast resolution for a 6mm diameter target, can be visualized. In addition, 15lp/cm spatial resolution was achieved with a 2mm slice and a central CTDI100 of 10.8mGy.

  20. Software Simulates Sight: Flat Panel Mura Detection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is

  1. 75 FR 51286 - Certain Flat Panel Digital Televisions and Components Thereof; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... COMMISSION Certain Flat Panel Digital Televisions and Components Thereof; Notice of Investigation AGENCY: U.S... importation of certain flat panel digital televisions and components thereof by reason of infringement of... certain flat panel digital televisions and components thereof that infringe one or more of claims 22-25...

  2. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    PubMed

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  3. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  4. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  5. Flat panel planar optic display. Revision 4/95

    SciTech Connect

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  6. Flat panel display test and evaluation: procedures, standards, and facilities

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.

    1997-07-01

    This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.

  7. Unfolding X-ray spectra using a flat panel detector.

    PubMed

    Gallardo, Sergio; Juste, Belén; Pozuelo, Fausto; Ródenas, José; Querol, Andrea; Verdú, Gumersindo

    2013-01-01

    It is difficult to measure the energy spectrum of X-ray tubes due to the pile up effect produced by the high fluence of photons. Using attenuating materials, appropriate detector devices and the Monte Carlo method, primary X-ray spectrum of these devices can be estimated. In this work, a flat panel detector with a PMMA wedge has been used to obtain a dose curve corresponding to certain working conditions of a radiodiagnostic X-ray tube. The relation between the dose curve recorded by the flat panel and the primary X-ray spectrum is defined by a response function. Normally this function can be approximated by a matrix, which can be obtained by means of the Monte Carlo method. Knowing the measured dose curve and the response matrix, the primary X-ray spectrum can be unfolded. However, there are some problems that strongly affect the applicability of this method: i.e. technical features of the flat panel and inherent characteristics of the involved radiation physics (ill-posed problem). Both aspects are analyzed in this work, concluding that the proposed method can be applied with an acceptable accuracy for spectra without characteristic lines, for instance, tungsten anode in the 50-70 kVp range.

  8. An iterative algorithm for soft tissue reconstruction from truncated flat panel projections

    NASA Astrophysics Data System (ADS)

    Langan, D.; Claus, B.; Edic, P.; Vaillant, R.; De Man, B.; Basu, S.; Iatrou, M.

    2006-03-01

    The capabilities of flat panel interventional x-ray systems continue to expand, enabling a broader array of medical applications to be performed in a minimally invasive manner. Although CT is providing pre-operative 3D information, there is a need for 3D imaging of low contrast soft tissue during interventions in a number of areas including neurology, cardiac electro-physiology, and oncology. Unlike CT systems, interventional angiographic x-ray systems provide real-time large field of view 2D imaging, patient access, and flexible gantry positioning enabling interventional procedures. However, relative to CT, these C-arm flat panel systems have additional technical challenges in 3D soft tissue imaging including slower rotation speed, gantry vibration, reduced lateral patient field of view (FOV), and increased scatter. The reduced patient FOV often results in significant data truncation. Reconstruction of truncated (incomplete) data is known an "interior problem", and it is mathematically impossible to obtain an exact reconstruction. Nevertheless, it is an important problem in 3D imaging on a C-arm to address the need to generate a 3D reconstruction representative of the object being imaged with minimal artifacts. In this work we investigate the application of an iterative Maximum Likelihood Transmission (MLTR) algorithm to truncated data. We also consider truncated data with limited views for cardiac imaging where the views are gated by the electrocardiogram(ECG) to combat motion artifacts.

  9. Autostereoscopic 3D flat panel display using an LCD-pixel-associated parallax barrier

    NASA Astrophysics Data System (ADS)

    Chen, En-guo; Guo, Tai-liang

    2014-05-01

    This letter reports an autostereoscopic three-dimensional (3D) flat panel display system employing a newly designed LCD-pixel-associated parallax barrier (LPB). The barrier's parameters can be conveniently determined by the LCD pixels and can help to greatly simplify the conventional design. The optical system of the proposed 3D display is built and simulated to verify the design. For further experimental demonstration, a 508-mm autostereoscopic 3D display prototype is developed and it presents good stereoscopic images. Experimental results agree well with the simulation, which reveals a strong potential for 3D display applications.

  10. [Screening chest X-ray examination with kinetic analysis using flat-panel detector].

    PubMed

    Sanada, Shigeru; Tanaka, Rie; Kobayashi, Takeshi; Suzuki, Masayuki; Inoue, Hitoshi

    2003-11-01

    We are developing dynamic screening radiography to provide kinetic information for lung respiratory examination using a flat-panel-detector (FPD) system. We modified the FPD system (CANON CXDI-22) to take sequential images for a short period of time (10 seconds, 3 frames/sec). Sequential chest radiographs from full inspiration to expiration were taken and analyzed for diaphragm movement and density changes in local lung areas to objectively detect respiratory anomalies. Our methods derived some respiratory functions such as regional air passage and lung structure movement, and suggested that the degree of chronic obstructive pulmonary disease and interstitial pneumonia could be evaluated quantitatively.

  11. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  12. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  13. Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy.

    PubMed

    Zechner, A; Stock, M; Kellner, D; Ziegler, I; Keuschnigg, P; Huber, P; Mayer, U; Sedlmayer, F; Deutschmann, H; Steininger, P

    2016-11-21

    Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager's deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10 mm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, ϕ. Projection images of the phantom incorporating the CBCT scanner's geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed

  14. Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy

    NASA Astrophysics Data System (ADS)

    Zechner, A.; Stock, M.; Kellner, D.; Ziegler, I.; Keuschnigg, P.; Huber, P.; Mayer, U.; Sedlmayer, F.; Deutschmann, H.; Steininger, P.

    2016-11-01

    Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager’s deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10 mm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, ϕ. Projection images of the phantom incorporating the CBCT scanner’s geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed

  15. Perfusion analysis using a wide coverage flat-panel volume CT: feasibility study

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Klotz, E.; Schmidt, B.; Flohr, T.

    2007-03-01

    We developed a Flat-panel detector based Volume CT (VCT) prototype scanner with large z-coverage. In that prototype scanner a Varian 4030CB a-Si flat-panel detector was mounted in a multi slice CT-gantry (Siemens Medical Solutions) which provides a 25 cm field of view with 18 cm z-coverage at isocenter. The large volume covered in one rotation can be used for visualization of complete organs of small animals, e.g. rabbits. By implementing a mode with continuous scanning, we are able to reconstruct the complete volume at any point in time during the propagation of a contrast bolus. Multiple volumetric reconstructions over time elucidate the first pass dynamics of a bolus of contrast resulting in 4-D angiography and potentially allowing whole organ perfusion analysis. We studied to which extent pixel based permeability and blood volume calculation with a modified Patlak approach was possible. Experimental validation was performed by imaging evolution of contrast bolus in New Zealand rabbits. Despite the short circulation time of a rabbit, the temporal resolution was sufficient to visually resolve various phases of the first pass of the contrast bolus. Perfusion imaging required substantial spatial smoothing but allowed a qualitative discrimination of different types of parenchyma in brain and liver. If a true quantitative analysis is possible, requires further studies.

  16. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  17. Physical properties of a new flat panel detector with cesium-iodide technology

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Penchev, Petar; Fiebich, Martin

    2016-03-01

    Flat panel detectors have become the standard technology in projection radiography. Further progress in detector technology will result in an improvement of MTF and DQE. The new detector (DX-D45C; Agfa; Mortsel/Belgium) is based on cesium-iodine crystals and has a change in the detector material and the readout electronics. The detector has a size of 30 cm x 24 cm and a pixel matrix of 2560 x 2048 with a pixel pitch of 124 μm. The system includes an automatic exposure detector, which enables the use of the detector without a connection to the x-ray generator. The physical properties of the detector were determined following IEC 62220-1-1 in a laboratory setting. The MTF showed an improvement compared to the previous version of cesium-iodine based flat-panel detectors. Thereby the DQE is also improved especially for the higher frequencies. The new detector showed an improvement in the physical properties compared to the previous versions. This enables a potential for further dose reductions in clinical imaging.

  18. SAPHIRE: A New Flat-Panel Digital Mammography Detector With Avalanche Photoconductor and High-Resolution Field Emitter Readout

    DTIC Science & Technology

    2006-06-01

    array of TFTs, simi- lar to that in existing AMFPI. The proposed detector is named SHARP-AMFPI scintillator-HARP active matrix flat-panel imager...the wavelength of the incident photon. It was found by Pai and Enck that the ESe and dependence of photogeneration in a-Se follow the Onsager ...mechanism.25 Onsager theory states that every absorbed photon creates a pair of thermalized carriers bound by their Coulombic attrac- tion. The initial

  19. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  20. Improving the diversity of manufacturing electroluminescent flat panel displays

    SciTech Connect

    Moss, T.S.; Samuels, J.A.; Smith, D.C.

    1995-09-01

    Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate temperature, and reactor pressure. The influence of these parameters will be discussed in terms of structure, uniformity, and TFEL device performance.

  1. Flat-panel, full-color, electroluminescent display

    NASA Astrophysics Data System (ADS)

    Robertson, James B.

    1987-08-01

    This invention relates to a flat-panel, electroluminescent display capable of achieving full color and is particularly useful in achieving a bright display with high resolution. The invention uses red, green and blue phosphors in two layers separated by layers of insulating material and layers of electrodes that are used to excite the phosphors. In operation, the display is addressed by supplying sufficient voltage between selected electrodes. This places an electric field across the phosphor at each picture element located between the overlap of the selected electrodes causing the phosphor to emit light at this location. These and other matrix-addressed displays can be addressed line-at-a-time (row or column) fashion in rapid enough sequence to display information at standard TV frame rates.

  2. EMI investigation and modeling of a flat panel display

    NASA Astrophysics Data System (ADS)

    Shinde, Satyajeet

    It is often important to carry out EMI analysis in the design phase of an electronic product to predict the radiated emissions. An EMI analysis is important to predict if the product complies with the FCC regulations as well as to gain an understanding of the noise coupling and radiation mechanisms. EMI analysis and prediction of radiated emissions in electronic products that have an electrically large chassis, pose a challenge due to the presence of multiple resonant structures and noise-coupling mechanisms. The study focusses on the investigation of the main noise coupling mechanisms, the approach and methods used for the modeling of a flat panel display. Full-wave simulation models are a powerful tool for the prediction of radiated emissions and the visualization of coupling paths within the product. The first part deals with the measurement of radiated emissions from the display under standard test conditions and the identification of the main noise sources using near-field scanning. The contribution of the chassis components - frame, back cover and the back panel, to the radiated emission is analyzed using shielding measurements. Noise coupling from the main board, flex cables, display driver boards and the display is analyzed from measurements. The second part deals with the full-wave modeling of the components - main board, flex cables, chassis and the display driver boards. The modeling approach is demonstrated by highlighting some of the challenges in modeling larger structures having many details. The simulation model contains the main components of the TV that contribute to far-field radiation. The full-wave modeling is done using the CST Microwave Studio. Two sets of simulation models are described - the common mode models and the complete models. The use of the common mode models for the identification of the resonant structures is demonstrated. The far-field radiated emissions along with the coupling mechanism within the flat panel display can be

  3. Quantitative carbon ion beam radiography and tomography with a flat-panel detector.

    PubMed

    Telsemeyer, Julia; Jäkel, Oliver; Martišíková, Mária

    2012-12-07

    High dose gradients are inherent to ion beam therapy. This results in high sensitivity to discrepancies between planned and delivered dose distributions. Therefore an accurate knowledge of the ion stopping power of the traversed tissue is critical. One proposed method to ensure high quality dose deposition is to measure the stopping power by ion radiography. Although the idea of imaging with highly energetic ions is more than forty years old, there is a lack of simple detectors suitable for this purpose. In this study the performance of an amorphous silicon flat-panel detector, originally designed for photon imaging, was investigated for quantitative carbon ion radiography and tomography. The flat-panel detector was exploited to measure the water equivalent thickness (WET) and water equivalent path length (WEPL) of a phantom at the Heidelberg Ion-Beam Therapy Center (HIT). To do so, the ambiguous correlation of detector signal to particle energy was overcome by active or passive variation of carbon ion beam energy and measurement of the signal-to-beam energy correlation. The active method enables one to determine the WET of the imaged object with an uncertainty of 0.5 mm WET. For tomographic WEPL measurements the passive method was exploited resulting in an accuracy of 0.01 WEPL. The developed imaging technique presents a method to measure the two-dimensional maps of WET and WEPL of phantoms with a simple and commercially available detector. High spatial resolution of 0.8 × 0.8 mm(2) is given by the detector design. In the future this powerful tool will be used to evaluate the performance of the treatment planning algorithm by studying WET uncertainties.

  4. Color Flat Panel Displays: 3D Autostereoscopic Brassboard and Field Sequential Illumination Technology.

    DTIC Science & Technology

    1997-06-01

    DTI has advanced autostereoscopic and field sequential color (FSC) illumination technologies for flat panel displays. Using a patented backlight...technology, DTI has developed prototype 3D flat panel color display that provides stereoscopic viewing without the need for special glasses or other... autostereoscopic viewing. Discussions of system architecture, critical component specifications and resultant display characteristics are provided. Also

  5. Quantitative analysis of performance of selenium flat-panel detector for interventional mammography

    NASA Astrophysics Data System (ADS)

    Debrie, Anne; Polischuk, Brad T.; Rougeot, Henri; Hansroul, Marc; Poliquin, Eric; Caron, Mario; Wong, Kerwin; Shukri, Ziad; Martin, Jean-Pierre

    2000-04-01

    The purpose of this paper is to analyze the image quality of a selenium-based flat panel detector suited for digital interventional mammography. To characterize the image quality, the DQE was measured at various x-ray exposures. The results indicate that when the detector is quantum noise limited, the DQE is independent of the exposure. A measurement of the quantum detection efficiency of 90% indicates that an electrostatic field shaping effect within the selenium layer gives a greater collection efficiency than that predicted simply by the geometric fill factor of each pixel collection electrode. Measurements were also conducted to determine the relative strength of ghost images on the detector. An image of a high contrast object using an exposure of 183 mR was acquired, followed by a low exposure 6 mR flat field image. No visual indication of a ghost could be found in the latter image even after appropriate windowing and leveling of the image was performed. A subjective comparison of image quality between film/screen and the detector was conducted by acquiring images of the ACR phantom under various exposure conditions. The digital images were printed on film using optimally adjusted LUT's. The resulting images were randomly presented to 15 non-trained observers, who assessed a score for each image. The comparison results show that the image quality obtained with the digital detector is superior to the images acquired with film/screen.

  6. Development of next generation digital flat panel catheterization system: design principles and validation methodology

    NASA Astrophysics Data System (ADS)

    Belanger, B.; Betraoui, F.; Dhawale, P.; Gopinath, P.; Tegzes, Pal; Vagvolgyi, B.

    2006-03-01

    The design principles that drove the development of a new cardiovascular x-ray digital flat panel (DFP) detector system are presented, followed by assessments of imaging and dose performance achieved relative to other state of the art FPD systems. The new system (GE Innova 2100 IQ TM) incorporates a new detector with substantially improved DQE at fluoroscopic (73%@1μR) and record (79%@114uR) doses, an x-ray tube with higher continuous fluoro power (3.2kW), a collimator with a wide range of copper spectral filtration (up to 0.9mm), and an improved automatic x-ray exposure management system. The performance of this new system was compared to that of the previous generation GE product (Innova 2000) and to state-of-the art cardiac digital x-ray flat panel systems from two other major manufacturers. Performance was assessed with the industry standard Cardiac X-ray NEMA/SCA and I phantom, and a new moving coronary artery stent (MCAS) phantom, designed to simulate cardiac clinical imaging conditions, composed of an anthropomorphic chest section with stents moving in a manner simulating normal coronary arteries. The NEMA/SCA&I phantom results showed the Innova 2100 IQ to exceed or equal the Innova 2000 in all of the performance categories, while operating at 28% lower dose on average, and to exceed the other DFP systems in most of the performance categories. The MCAS phantom tests showed the Innova 2100 IQ to be significantly better (p << 0.05) than the Innova 2000, and significantly better than the other DFP systems in most cases at comparable or lower doses, thereby verifying excellent performance against design goals.

  7. Development of a real-time digital radiography system using a scintillator-type flat-panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi

    2001-06-01

    In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.

  8. Cryogenic flat-panel gas-gap heat switch

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; Keijzer, R.; Buitelaar, P.; ter Brake, H. J. M.

    2016-09-01

    A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100-180 K. The apparatus is cooled by a two-stage GM cooler and the temperature is controlled with a heater and a braided copper wire connection. A thermal guard is mounted on the hot side of the device to confine the heat flow axially through the sample. A gas handling system allows testing the device with different gas pressures in the heat switch. Experiments are performed at various heat sink temperatures, by varying gas pressure in the gas-gap and with helium, hydrogen and nitrogen gas. The measured off-conductance with a heat sink temperature of 115 K and the hot plate at 120 K is 0.134 W/K, the on-conductance with helium and hydrogen gases at the same temperatures is 4.80 W/K and 4.71 W/K, respectively. This results in an on/off conductance ratio of 37 ± 7 and 35 ± 6 for helium and hydrogen respectively. The experimental results matches fairly well with the predicted heat conductance at cryogenic temperatures.

  9. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    SciTech Connect

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  10. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    PubMed Central

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  11. Human Visual Performance and Flat Panel Display Image Quality

    DTIC Science & Technology

    1980-07-01

    lowest ranking indicates best performance) Color Meister and Sullivan (1969) Rizy (1967) Red Yellow Magenta White Cyan Blue Green 2 1 4...92940 Dr. Robert French Naval Ocean Systems San Diego, CA 92152 Dr. Ross L. Pepper Naval Ocean Systems Center Hawaii Laboratory P. 0. Box 997

  12. Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators

    NASA Astrophysics Data System (ADS)

    Yoneno, Hirosyi; Yamamoto, Ryoichi

    Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.

  13. Quality control phantom for flat panel detector X-ray systems.

    PubMed

    Chida, Koichi; Kaga, Yuji; Haga, Yoshihiro; Takeda, Ken; Zuguchi, Masayuki

    2013-01-01

    X-ray equipment should be routinely checked for optimal imaging performance and appropriate radiation dose. Recently, the use of diagnostic x-ray equipment with flat panel detectors (FPDs) has increased instead of image intensifier (II) and/or screen film systems. In addition, it is necessary to maintain the performance of FPD systems. Unfortunately, no simple quality control (QC) phantom is available for easy evaluation of FPD image performance. This manuscript suggests a novel simple and inexpensive QC phantom for radiography and fluoroscopy. The authors made a new QC phantom for FPD systems to evaluate the spatial resolution, low-contrast resolution, and dynamic range on single (one-shot) x-ray exposures. The phantom consists of three copper thicknesses (0.5, 1.5, and 3.0 mm), an aluminum stepwedge (0.1-2.7 mm), and piano wire of various diameters (0.08-0.5 mm). They also performed an initial check of the new phantom using a FPD system (fluoroscopic and radiographic images). The new phantom is simple and inexpensive to make. This simple phantom is very useful for QC of FPD systems because a visual evaluation of image performance in three thicknesses of copper (low, intermediate, and high attenuation) is readily available with a single exposure. This simple method for daily checking of FPD systems (radiography and fluoroscopy) using the phantom constitutes an easy way to routinely check image performance and will be useful for QC.

  14. Monte Carlo calculation of the spatial response (Modulated Transfer Function) of a scintillation flat panel and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Juste, Belén; Miró, Rafael; Monasor, Paula; Verdú, Gumersindo

    2015-11-01

    Phosphor screens are commonly used in many X-ray imaging applications. The design and optimization of these detectors can be achieved using Monte Carlo codes to simulate radiation transport in scintillation materials and to improve the spatial response. This work presents an exhaustive procedure to measure the spatial resolution of a scintillation flat panel image and to evaluate the agreement with data obtained by simulation. To evaluate the spatial response we have used the Modulated Transfer Function (MTF) parameter. According to this, we have obtained the Line Spread Function (LSF) of the system since the Fourier Transform (FT) of the LSF gives the MTF. The experimental images were carried out using a medical X-ray tube (Toshiba E7299X) and a flat panel (Hammamatsu C9312SK). Measurements were based on the slit methodology experimental implementation, which measures the response of the system to a line. LSF measurements have been performed using a 0.2 mm wide lead slit superimposed over the flat panel. The detector screen was modelled with MCNP (version 6) Monte Carlo simulation code in order to analyze the effect of the acquisition setup configuration and to compare the response of scintillator screens with the experimental results. MCNP6 offers the possibility of studying the optical physics parameters (optical scattering and absorption coefficients) that occur in the phosphor screen. The study has been tested for different X-ray tube voltages, from 100 to 140 kV. An acceptable convergence between the MTF results obtained with MCNP6 and the experimental measurements have been obtained.

  15. Planar cone-beam computed tomography with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Youn, H.; Kim, D.; Kam, S.; Jeon, H.; Kim, H. K.

    2015-12-01

    For a dedicated x-ray inspection of printed-circuit boards (PCBs), a bench-top planar cone-beam computed tomography (pCT) system with a flat-panel detector has been built in the laboratory. The system adopts the tomosynthesis technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range. For the optimal operation of the system and further improvement in the next design, we have evaluated imaging performances, such as modulation-transfer function, noise-power spectrum, and noise-equivalent number of quanta. The performances are comparatively evaluated with the coventional cone-beam CT (CBCT) acquisition for various scanning angular ranges, applied tube voltages, and geometrical magnification factors. The pCT scan shows a poorer noise performance than the conventional CBCT scan because of less number of projection views used for reconstruction. However, the pCT shows a better spatial-resolution performance than the CBCT. Because the image noise can be compensated by an elevated exposure level during scanning, the pCT can be a useful modality for the PCB inspection that requires higher spatial-resolution performance.

  16. Practical expressions describing detective quantum efficiency in flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  17. Effect of oblique X-ray incidence in flat-panel computed tomography of the breast.

    PubMed

    Badano, Aldo; Kyprianou, Iacovos S; Freed, Melanie; Jennings, Robert J; Sempau, Josep

    2009-05-01

    We quantify the variation in resolution due to anisotropy caused by oblique X-ray incidence in indirect flat-panel detectors for computed tomography breast imaging systems. We consider a geometry and detector type utilized in breast computed tomography (CT) systems currently being developed. Our methods rely on mantis, a combined X-ray, electron, and optical Monte Carlo transport open source code. The physics models are the most accurate available in general-purpose Monte Carlo packages in the diagnostic energy range. We consider maximum-obliquity angles of 10 ( degrees ) and 13 ( degrees ) at the centers of the 30 and 40 cm detector edges, respectively, and 16 ( degrees ) at the corner of the detector. Our results indicate that blur is asymmetric and that the resolution properties vary significantly with the angle (or location) of incidence. Our results suggest that the asymmetry can be as high as a factor of 2.6 between orthogonal directions. Anisotropy maps predicted by mantis provide an understanding of the effect that such variations have on the imaging system and allow more accurate modeling and optimization of breast CT systems. These maps of anisotropy across the detector could lead to improved reconstruction and help motivate physics-based strategies for computer detection of breast lesions.

  18. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization.

    PubMed

    Gupta, Rajiv; Grasruck, Michael; Suess, Christoph; Bartling, Soenke H; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Brady, Tom; Flohr, Thomas

    2006-06-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT).

  19. Breathing chest radiography using a dynamic flat-panel detector combined with computer analysis.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Suzuki, Masayuki; Kobayashi, Takeshi; Matsui, Takeshi; Inoue, Hitoshi; Yoshihisa, Nakano

    2004-08-01

    Kinetic information is crucial when evaluating certain pulmonary diseases. When a dynamic flat-panel detector (FPD) can be used for a chest examination, kinetic information can be obtained simply and cost-effectively. The purpose of this study was to develop methods for analyzing respiratory kinetics, such as movement of the diaphragm and lung structures, and the respiratory changes in x-ray translucency in local lung fields. Postero-anterior dynamic chest radiographs during respiration were obtained with a modified FPD, which provided dynamic chest radiographs at a rate of 3 frames/s. Image registration for correction of physical motion was followed by measurement of the distance from the lung apex to the diaphragm. Next, we used a cross-correlation technique to measure the vectors of respiratory movement in specific lung areas. Finally, the average pixel value for a given local area was calculated by tracing the same local area in the lung field. This method of analysis was used for six healthy volunteers and one emphysema patient. The results reported here represent the initial stage in the development of a method that may constitute a new method for diagnosing certain pulmonary diseases, such as chronic obstructive pulmonary disease, fibroid lung, and pneumonia. A clinical evaluation of our method is now in progress.

  20. [Reproducibility of dynamic chest radiography with a flat-panel detector - respiratory changes in pixel value].

    PubMed

    Kawashima, Hiroki; Tanaka, Rie; Sanada, Shigeru

    2009-06-20

    Dynamic chest radiography using a flat panel detector (FPD) with a large field of view is expected to be a useful pulmonary functional evaluation method based on the respiratory changes in pixel value. For clinical use as a follow-up and therapeutic evaluation tool, the system must have a high degree of reproducibility in measurements of pixel values. The present study was performed to investigate the reproducibility of respiratory changes in pixel values. Dynamic chest radiographs of five normal subjects and one patient were obtained. Imaging was performed twice in each subject. The slope (X-ray translucency variation) was then calculated from the changes in pixel value from distance lung apex-diaphragm, and the slopes of two sequences were compared. The results showed there were no significant differences in changes in pixel value between the two sequences in all normal subject (5 males, p>0.05). The results indicated that the present method has reproducibility for measuring pulmonary function and also has potential as a tool for follow-up and therapeutic evaluation.

  1. Indirect flat-panel detector with avalanche gain: design and operation of the avalanche photoconductor

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, Brian; Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2005-04-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP. The final electronic image can be read out using either an array of thin film transistors (TFT) or field emitters (FE). The advantage of the proposed detector is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. This paper investigates the important design considerations for HARP such as avalanche gain, which depends on both the thickness dSe and the applied electric field ESe. To determine the optimal design parameter and operational conditions for HARP, we measured the ESe dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were applied to a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and non-avalanche modes as a function of ESe: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; and (4) gain non-uniformity resulting from thickness non-uniformity. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  2. Comparison measurements of DQE for two flat panel detectors: fluoroscopic detector vs. cone beam CT detector

    NASA Astrophysics Data System (ADS)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David

    2006-03-01

    The physical performance of two flat panel detectors (FPD) has been evaluated using a standard x-ray beam quality set by IEC, namely RQA5. The FPDs evaluated in this study are based on an amorphous silicon photodiode array that is coupled to a thallium-doped Cesium Iodide scintillator and to a thin film transistor (TFT) array. One detector is the PaxScan 2520 that is designed for fluoro imaging, and has a small dynamic range and a large image lag. The other detector is the PaxScan 4030CB that is designed for cone beam CT, and has a large dynamic range (>16-bit), a reduced image lag and many imaging modes. Varian Medical Systems manufactured both detectors. The linearity of the FPDs was investigated by using an ionization chamber and aluminum filtration in order to obtain the beam quality. Since the FPDs are used in fluoroscopic mode, image lag of the FPD was measured in order to investigate its effect on this study, especially its effect on DQE. The spatial resolution of the FPDs was determined by obtaining the pre-sampling modulation transfer function for each detector. A sharp edge was used in accordance to IEC 62220-1. Next, the Normalized Noise Power Spectrum (NNPS) was calculated for various exposures levels at RQA5 radiation quality. Finally, the DQE of each FPD was obtained with a modified version of the international standard set by IEC 62220-1. The results show that the physical performance in DQE and MTF of the PaxScan 4030CB is superior to that of PaxScan2520.

  3. Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy.

    PubMed

    Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária

    2012-01-07

    Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post

  4. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    SciTech Connect

    Nickoloff, Edward L. Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-04-15

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV){sup -N}] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables.

  5. Cone-Beam CT with Flat-Panel-Detector Digital Angiography System: Early Experience in Abdominal Interventional Procedures

    SciTech Connect

    Hirota, Shozo Nakao, Norio; Yamamoto, Satoshi; Kobayashi, Kaoru; Maeda, Hiroaki; Ishikura, Reiichi; Miura, Koui; Sakamoto, Kiyoshi; Ueda, Ken; Baba, Rika

    2006-12-15

    We developed a cone-beam computed tomography (CBCT) system equipped with a large flat-panel detector. Data obtained by 200{sup o} rotation imaging are reconstructed by means of CBCT to generate three-dimensional images. We report the use of CBCT angiography using CBCT in 10 patients with 8 liver malignancies and 2 hypersplenisms during abdominal interventional procedures. CBCT was very useful for interventional radiologists to confirm a perfusion area of the artery catheter wedged on CT by injection of contrast media through the catheter tip, although the image quality was slightly degraded, scoring as 2.60 on average by streak artifacts. CBCT is space-saving because it does not require a CT system with a gantry, and it is also time-saving because it does not require the transfer of patients.

  6. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Okazaki, Nobuo; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2008-03-01

    This study was performed to investigate the ability of breathing chest radiography using flat-panel detector (FPD) to quantify relative local ventilation. Dynamic chest radiographs during respiration were obtained using a modified FPD system. Imaging was performed in three different positions, ie, standing and right and left decubitus positions, to change the distribution of local ventilation. We measured the average pixel value in the local lung area. Subsequently, the interframe differences, as well as difference values between maximum inspiratory and expiratory phases, were calculated. The results were visualized as images in the form of a color display to show more or less x-ray translucency. Temporal changes and spatial distribution of the results were then compared to lung physiology. In the results, the average pixel value in each lung was associated with respiratory phase. In all positions, respiratory changes of pixel value in the lower area were greater than those in the upper area (P < 0.01), which was the same tendency as the regional differences in ventilation determined by respiratory physiology. In addition, in the decubitus position, it was observed that areas with large respiratory changes in pixel value moved up in the vertical direction during expiration, which was considered to be airway closure. In conclusion, breathing chest radiography using FPD was shown to be capable of quantifying relative ventilation in local lung area and detecting regional differences in ventilation and timing of airway closure. This method is expected to be useful as a new diagnostic imaging modality for evaluating relative local ventilation.

  7. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2006-03-01

    Chest radiography using a dynamic flat-panel detector with a large field of view can provide sequential chest radiographs during respiration. These images provide information regarding respiratory kinetics, which is effective for diagnosis of pulmonary diseases. For valid analysis of respiratory kinetics in diagnosis of pulmonary diseases, it is crucial to determine the association between the kinetics and respiratory phase. We developed four methods to determine the respiratory phase based on image information associated with respiration and compared the results in dynamic chest radiographs of 37 subjects. Here, the properties of each method and future tasks are discussed. The method based on the change in size of the lung gave the most stable results, and that based on the change in distance from the lung apex to the diaphragm was the most promising method for determining the respiratory phase.

  8. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    NASA Astrophysics Data System (ADS)

    Vavrik, D.; Fauler, A.; Fiederle, M.; Jandejsek, I.; Jakubek, M.; Turecek, D.; Zwerger, A.

    2013-04-01

    Damage of gradually loaded ductile materials involves a number of physical processes which are highly nonlinear and have different intensity and extent. Dynamic defectoscopy (i.e. defectoscopy of time changing damage processes) combining an X-ray/optical imaging system is proposed for online visualization and analysis of the complex behaviour of such materials. A large area flat panel detector with rather long read out time is used for overall observation of slow damage processes. On the other hand, a semiconductor CdTe Timepix detector with small active area allows following the rapid damage processes occurring in the final phase of specimen failure. Optical imaging of the specimen surface was utilized for analysing the specimen deformations.

  9. Flat-panel volumetric computed tomography in cerebral perfusion: evaluation of three rat stroke models.

    PubMed

    Juenemann, Martin; Goegel, Sinja; Obert, Martin; Schleicher, Nadine; Ritschel, Nouha; Doenges, Simone; Eitenmueller, Inka; Schwarz, Niko; Kastaun, Sabrina; Yeniguen, Mesut; Tschernatsch, Marlene; Gerriets, Tibo

    2013-09-30

    Flat-panel volumetric computed tomography (fpVCT) is a non-invasive approach to three-dimensional small animal imaging. The capability of volumetric scanning and a high resolution in time and space enables whole organ perfusion studies. We aimed to assess feasibility and validity of fpVCT in cerebral perfusion measurement with impaired hemodynamics by evaluation of three well-established rat stroke models for temporary and permanent middle cerebral artery occlusion (MCAO). Male Wistar rats were randomly assigned to temporary (group I: suture model) and permanent (group II: suture model; III: macrosphere model) MCAO and to a control group. Perfusion scans with respect to cerebral blood flow (CBF) and volume (CBV) were performed 24h post intervention by fpVCT, using a Gantry rotation time of 1s and a total scanning time of 30s. Postmortem analysis included infarct-size calculation by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Infarct volumes did not differ significantly throughout intervention groups. After permanent MCAO, CBF significantly decreased in subcortical regions to 78.2% (group II, p=0.005) and 79.9% (group III, p=0.012) and in total hemisphere to 77.4% (group II, p=0.010) and 82.0% (group III, p=0.049). CBF was less impaired with temporary vessel occlusion. CBV measurement revealed no significant differences. Results demonstrate feasibility of cerebral perfusion quantification in rats with the fpVCT, which can be a useful tool for non-invasive dynamic imaging of cerebral perfusion in rodent stroke models. In addition to methodological advantages, CBF data confirm the macrosphere model as a useful alternative to the suture model for permanent experimental MCAO.

  10. Evaluation of the potential utility of flat panel CT for quantifying relative contrast enhancement

    SciTech Connect

    Jones, A. Kyle; Mahvash, Armeen

    2012-07-15

    Purpose: Certain directed oncologic therapies seek to take advantage of the fact that tumors are typically more susceptible to directed therapeutic agents than normal tissue owing to their extensive networks of poorly formed, leaky vasculature. If differences between the vascularity of normal and tumor tissues could be quantified, patients could be selected for or excluded from directed treatments on the basis of this difference. However, angiographic imaging techniques such as digital subtraction angiography (DSA) yield two-dimensional data that may be inadequate for this task. As a first step, the authors evaluated the feasibility of using a commercial implementation of flat panel computed tomography (FPCT) to quantify differences in enhancement of a simulated tumor compared with normal tissue based on differences in CT number measured in precontrast and postcontrast scans. Methods: To evaluate the FPCT scanner studied, the authors scanned several phantoms containing simulated normal and tumor tissues. In the first experiment, the authors used an anthropomorphic phantom containing inclusions representing normal, tumor, and bone tissue to evaluate the constancy of CT numbers in scans repeated at clinically relevant intervals of 1 and 3 min. The authors then scanned gelatin phantoms containing dilutions of iodinated contrast to evaluate the accuracy of relative contrast enhancement measurements for a clinical FPCT system. Data were analyzed using widely available software. Results: CT numbers measured in identical locations were constant over both scan intervals evaluated. Measured relative contrast enhancement values were accurate compared with known relative contrast enhancement values. Care must be taken to avoid artifacts in reconstructed images when placing regions of interest. Conclusions: Despite its limitations, FPCT in the interventional laboratory can be used to quantify relative contrast enhancement in phantoms. This is accomplished by measuring CT

  11. Functional shoulder radiography with use of a dynamic flat panel detector.

    PubMed

    Sakuda, Keita; Sanada, Shigeru; Tanaka, Rie; Kitaoka, Katsuhiko; Hayashi, Norio; Matsuura, Yukihiro

    2014-07-01

    Our purpose in this study was to develop a functional form of radiography and to perform a quantitative analysis for the shoulder joint using a dynamic flat panel detector (FPD) system. We obtained dynamic images at a rate of 3.75 frames per second (fps) using an FPD system. Three patients and 5 healthy controls were studied with a clinically established frontal projection, with abduction of the arms. The arm angle, glenohumeral angle (G-angle), and scapulothoracic angle (S-angle) were measured on dynamic images. The ratio of the G-angle to the S-angle (GSR) was also evaluated quantitatively. In normal subjects, the G-angle and S-angle changed gradually along with the arm angle. The G-angle was approximately twice as large as the S-angle, resulting in a GSR of 2 throughout the abduction of the shoulder. Changes in G-angle and S-angle tended to be irregular in patients with shoulder disorders. The GSR of the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis were 3-7.5, 4-9.5, and 3.5-7.5, respectively. The GSR of the anterior serratus muscle paralysis improved to approximately 2 after orthopedic treatment. Our preliminary results indicated that functional radiography by FPD and computer-aided quantitative analysis is useful for diagnosis of some shoulder disorders, such as the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis. The technique and procedures described comprise a simple, functional shoulder radiographic method for evaluation of the therapeutic effects of surgery and/or rehabilitation.

  12. Photoelectrochemical based direct conversion systems

    SciTech Connect

    Kocha, S.; Arent, D.; Peterson, M.

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  13. 76 FR 9360 - In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... COMMISSION In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of a... within the United States after importation of certain flat panel digital televisions and components... named the following respondents: LG Electronics, Inc. of South Korea and LG Electronics, Inc....

  14. Scan equalization digital radiography (SEDR) implemented with an amorphous selenium flat-panel detector: initial experience.

    PubMed

    Liu, Xinming; Lai, Chao-Jen; Chen, Lingyun; Han, Tao; Zhong, Yuncheng; Shen, Youtao; Wang, Tianpeng; Shaw, Chris C

    2009-11-21

    It is well recognized in projection radiography that low-contrast detectability suffers in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of a prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array-based flat-panel detector. With this system, slot-scan geometry with alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead (Pb) beam blockers attached, position feedback sensors and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs) and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for the SEDR technique in the lungs, and 77% for the full

  15. Multidetector-row CT with a 64-row amorphous silicon flat panel detector

    NASA Astrophysics Data System (ADS)

    Shapiro, Edward G.; Colbeth, Richard E.; Daley, Earl T.; Job, Isaias D.; Mollov, Ivan P.; Mollov, Todor I.; Pavkovich, John M.; Roos, Pieter G.; Star-Lack, Josh M.; Tognina, Carlo A.

    2007-03-01

    A unique 64-row flat panel (FP) detector has been developed for sub-second multidetector-row CT (MDCT). The intent was to explore the image quality achievable with relatively inexpensive amorphous silicon (a-Si) compared to existing diagnostic scanners with discrete crystalline diode detectors. The FP MDCT system is a bench-top design that consists of three FP modules. Each module uses a 30 cm x 3.3 cm a-Si array with 576 x 64 photodiodes. The photodiodes are 0.52 mm x 0.52 mm, which allows for about twice the spatial resolution of most commercial MDCT scanners. The modules are arranged in an overlapping geometry, which is sufficient to provide a full-fan 48 cm diameter scan. Scans were obtained with various detachable scintillators, e.g. ceramic Gd IIO IIS, particle-in-binder Gd IIO IIS:Tb and columnar CsI:Tl. Scan quality was evaluated with a Catphan-500 performance phantom and anthropomorphic phantoms. The FP MDCT scans demonstrate nearly equivalent performance scans to a commercial 16-slice MDCT scanner at comparable 10 - 20 mGy/100mAs doses. Thus far, a high contrast resolution of 15 lp/cm and a low contrast resolution of 5 mm @ 0.3 % have been achieved on 1 second scans. Sub-second scans have been achieved with partial rotations. Since the future direction of MDCT appears to be in acquiring single organ coverage per scan, future efforts are planned for increasing the number of detector rows beyond the current 64- rows.

  16. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system

    SciTech Connect

    Seslija, Petar; Teeter, Matthew G.; Yuan Xunhua; Naudie, Douglas D. R.; Bourne, Robert B.; MacDonald, Steven J.; Peters, Terry M.; Holdsworth, David W.

    2012-10-15

    Purpose: The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. Methods: An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. Results: The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07 Degree-Sign in-plane, and 0.24 mm and 0.6 Degree-Sign out-of-plane. The repeatability of kinematics measurements performed

  17. [Flat-panel detector technology -State-of-the-art and future prospects-].

    PubMed

    Yamazaki, Tatsuya

    2002-01-01

    A flat-panel detector (FPD) is a long-awaited technology to implement the digital X-ray imaging technology into the radiological department. This paper describes the state-of-the-art technology and future prospects on the FPD technology. State-of-the-art technology was reviewed taking the CXDI series as an example. Several FPD-based systems have been introduced into the Japanese market since CXDI-11 opened it in November 1998. Accompanying CXDI-C2 for control, CXDI-22 for table position and CXDI-31 for portable, the CXDI series fulfills the requirement of the radiography room being a fully digitalized room. The FPD on the CXDI series is comprised of a scintillator (Gd(2)O(2)S:Tb(3+)) as a primary sensor in which the X-ray is captured and an amorphous silicon detector (LANMIT) as a secondary sensor in which the fluorescent light is detected. Since the scintillator is identical to that of the screen-film systems, it can be said as proven, durable and chemically stable and it is expected to produce the same image quality as the screen-film systems. CXDI-31, a portable FPD-based system, was developed targeting thinner dimensions, lightweight, durability and high spatial resolution. Thoroughly re-designing the mechanical structure and reducing the power consumption at the readout IC realized thinner dimensions. Introducing the portable note PC technologies successfully combined lightweight with durability. Improving the sensor process and re-designing the layout made the sensor high resolution without compromising the signal-to-noise ratio. Future prospects were overviewed in the aspect of technology and applications. Sensitivity, spatial resolution, frame rate and portability were described as the upcoming technology. Increasing gain and reducing noise will realize higher sensitivity, especially by adopting the PbI(2), HgI(2) or such photoconductor materials as the primary sensor. Pixelized amplifier will also achieve higher sensitivity. Layered sensor designed such

  18. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  19. Attenuated phase-shift mask (PSM) blanks for flat panel display

    NASA Astrophysics Data System (ADS)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  20. Development of Design, Test and Acquisition Criteria for Aircraft Dot-Matrix Flat Panel Display Systems

    DTIC Science & Technology

    1985-09-01

    SUB. R Flat-Panel Dot-Matrix Displays, Color, Alphanumeric, 23 07 Video, LED, Grey Scale, Luminance, Optical Coupling, 23 11 Contrast, Legibility...based flight simulations and bench test experiments. SPECIFICS Method Utilizing the bottom-up methodology, the electro- optical % characteristics and...switches, with emphasis on the optical effects of fingerprints, and on techniques for optimizing the interpret- ability of rapidly time changing numeric

  1. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  2. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    PubMed

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  3. Flat-panel electronic displays: a triumph of physics, chemistry and engineering

    PubMed Central

    Hilsum, Cyril

    2010-01-01

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  4. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  5. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  6. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  7. A forward bias method for lag correction of an a-Si flat panel detector

    SciTech Connect

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-15

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the

  8. Evaluation of bone substitute materials: comparison of flat-panel based volume CT to conventional multidetector CT.

    PubMed

    Sauerbier, Sebastian; Duttenhoefer, Fabian; Sachlos, Elefterios; Haberstroh, Jörg; Scheifele, Christian; Wrbas, Karl-Thomas; Voss, Pit Jacob; Veigel, Egle; Smedek, Jörg; Ganter, Philip; Tuna, Taskin; Gutwald, Ralf; Palmowski, Moritz

    2013-10-01

    Over the last decade tissue engineering has emerged as a key factor in bone regeneration within the field of cranio-maxillofacial surgery. Despite this in vivo analysis of tissue-engineered-constructs to monitor bone rehabilitation are difficult to conduct. Novel high-resolving flat-panel based volume CTs (fp-VCT) are increasingly used for imaging bone structures. This study compares the potential value of novel fp-VCT with conventional multidetector CT (MDCT) based on a sheep sinus floor elevation model. Calcium-hydroxyapatite reinforced collagen scaffolds were populated with autologous osteoblasts and implanted into sheep maxillary sinus. After 8, 16 and 24 weeks MDCT and fp-VCT scans were performed to investigate the volume of the augmented area; densities of cancellous and compact bone were assessed as comparative values. fp-VCT imaging resulted in higher spatial resolution, which was advantageous when separating closely related anatomical structures (i.e. trabecular and compact bone, biomaterials). Fp-VCT facilitated imaging of alterations occurring in test specimens over time. fp-VCTs therefore displayed high volume coverage, dynamic imaging potential and superior performance when investigating superfine bone structures and bone remodelling of biomaterials. Thus, fp-VCTs may be a suitable instrument for intraoperative imaging and future in vivo tissue-engineering studies.

  9. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen.

    PubMed

    Okamura, Terue; Tanaka, Saori; Koyama, Koichi; Norihumi, Nishida; Daikokuya, Hideo; Matsuoka, Toshiyuki; Kishimoto, Kenji; Hatagawa, Masakatsu; Kudoh, Hiroaki; Yamada, Ryusaku

    2002-07-01

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography.

  10. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    SciTech Connect

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  11. Percutaneous Glycerol Rhizotomy for Trigeminal Neuralgia Using a Single-Plane, Flat Panel Detector Angiography System: Technical Note

    PubMed Central

    ARISHIMA, Hidetaka; KAWAJIRI, Satoshi; ARAI, Hiroshi; HIGASHINO, Yoshifumi; KODERA, Toshiaki; KIKUTA, Ken-ichiro

    2016-01-01

    Percutaneous treatments for trigeminal neuralgia (TN) including glycerol rhizotomy (GR), radiofrequency thermocoagulation (RT), and balloon compression (BC) are effective for patients with medical comorbidities and risk factors of microvascular decompression (MVD). These procedures are usually performed under fluoroscopy. Surgeons advance the needle to the trigeminal plexus through the foramen ovale while observing landmarks of fluoroscopic images; however, it is sometimes difficult to appropriately place the needle tip in Meckel’s cave. We present the technical details of percutaneous GR using a single-plane, flat panel detector angiography system to check the needle positioning. When the needle tip may be located near the trigeminal cistern, three-dimensional (3-D) bone images are taken with cone-beam computed tomography (CT). These images clearly show the position of the needle tip in Meckel’s cave. If it is difficult to place it through the foramen ovale, surgeons perform cone beam CT to observe the actual position of the needle tip at the skull base. After confirming the positional relation between the needle tip and foramen ovale, surgeons can advance it in the precise direction. In 10 procedures, we could place the nerve-block needle in about 14.5 minutes on average without complications. We think that our method is simple and convenient for percutaneous treatments for TN, and it may be helpful for surgeons to perform such treatments. PMID:27041633

  12. Percutaneous Glycerol Rhizotomy for Trigeminal Neuralgia Using a Single-Plane, Flat Panel Detector Angiography System: Technical Note.

    PubMed

    Arishima, Hidetaka; Kawajiri, Satoshi; Arai, Hiroshi; Higashino, Yoshifumi; Kodera, Toshiaki; Kikuta, Ken-Ichiro

    2016-05-15

    Percutaneous treatments for trigeminal neuralgia (TN) including glycerol rhizotomy (GR), radiofrequency thermocoagulation (RT), and balloon compression (BC) are effective for patients with medical comorbidities and risk factors of microvascular decompression (MVD). These procedures are usually performed under fluoroscopy. Surgeons advance the needle to the trigeminal plexus through the foramen ovale while observing landmarks of fluoroscopic images; however, it is sometimes difficult to appropriately place the needle tip in Meckel's cave. We present the technical details of percutaneous GR using a single-plane, flat panel detector angiography system to check the needle positioning. When the needle tip may be located near the trigeminal cistern, three-dimensional (3-D) bone images are taken with cone-beam computed tomography (CT). These images clearly show the position of the needle tip in Meckel's cave. If it is difficult to place it through the foramen ovale, surgeons perform cone beam CT to observe the actual position of the needle tip at the skull base. After confirming the positional relation between the needle tip and foramen ovale, surgeons can advance it in the precise direction. In 10 procedures, we could place the nerve-block needle in about 14.5 minutes on average without complications. We think that our method is simple and convenient for percutaneous treatments for TN, and it may be helpful for surgeons to perform such treatments.

  13. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    NASA Technical Reports Server (NTRS)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  14. DQE(f) of an amorphous-silicon flat-panel x-ray detector: detector parameter influences and measurement methodology

    NASA Astrophysics Data System (ADS)

    Granfors, Paul R.; Aufrichtig, Richard

    2000-04-01

    We discuss how the frequency dependent detective quantum efficiency [DQE(f)] in a well-designed amorphous silicon flat panel detector is affected by several phenomena that reduce the DQE in other types of medical imaging detectors. The detector examined employs a CsI(Tl) scintillator and is designed for general diagnostic x-ray imaging applications. We consider DQE degradation due to incomplete x-ray absorption, secondary quantum noise, Swank factor, Lubberts effect, spatial variation in gain, noise aliasing, and additive system noise. The influences of detector design parameters on the frequency- and exposure-dependent DQE are also examined. We find that the DQE does not depend directly on MTF and that DQE is independent of exposure within the detector's operating range, except at the lowest exposures. Likewise the signal per absorbed x-ray, which contains the fill factor as one of several multiplicative components, does not affect DQE except at the lowest exposures. A methodology for determining DQE(f) from measurements of MTF(f), noise power spectrum (NPS), average signal, and x-ray exposure is presented. We find that it is important to incorporate several corrections in the NPS measurement procedure in order to obtain accurate results. These include corrections for lag, non-linearity, response variation from pixel to pixel, and use of a finite number of flat-field images. MTF, NPS, and DQE results are presented for a 41 X 41-cm2 flat panel detector designed for radiographic applications.

  15. High-speed readout for the H8500 flat panel PSPMT

    NASA Astrophysics Data System (ADS)

    Orsolini Cencelli, Valentino; de Notaristefani, Francesco; D'Abramo, Enrico

    2007-02-01

    In this paper we present a new readout system for the H8500 flat panel photomultiplier. The system is based on the MAX1320 analog-to-digital converter and reads all of 64 anodic signals simultaneously at a rate that approaches the 250 ksample/s typical of MAX1320 with a resolution of 14 bits. The data are read through an FPGA by a chip computer, the ETRAX 100LX, and either transmitted via Ethernet or stored on a USB mass storage device.

  16. High-performance low-noise 128-channel readout-integrated circuit for flat-panel x-ray detector systems

    NASA Astrophysics Data System (ADS)

    Beuville, Eric J.; Belding, Mark; Costello, Adrienne N.; Hansen, Randy; Petronio, Susan M.

    2004-05-01

    A silicon mixed-signal integrated circuit is needed to extract and process x-ray induced signals from a coated flat panel thin film transistor array (TFT) in order to generate a digital x-ray image. Indigo Systems Corporation has designed, fabricated, and tested such a readout integrated circuit (ROIC), the ISC9717. This off-the-shelf, high performance, low-noise, 128-channel device is fully programmable with a multistage pipelined architecture and a 9 to 14-bit programmable A/D converter per channel, making it suitable for numerous X-ray medical imaging applications. These include high-resolution radiography in single frame mode and fluoroscopy where high frame rates are required. The ISC9717 can be used with various flat panel arrays and solid-state detectors materials: Selenium (Se), Cesium Iodide (CsI), Silicon (Si), Amorphous Silicon, Gallium Arsenide (GaAs), and Cadmium Zinc Telluride (CdZnTe). The 80-micron pitch ROIC is designed to interface (wire bonding or flip-chip) along one or two sides of the x-ray panel, where ROICs are abutted vertically, each reading out charge from pixels multiplexed onto 128 horizontal read lines. The paper will present the design and test results of the ROIC, including the mechanical and electrical interface to a TFT array, system performance requirements, output multiplexing of the digital signals to an off-board processor, and characterization test results from fabricated arrays.

  17. Investigation of forming curved ablative panels from flat panels for space shuttle

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1972-01-01

    The purpose of this study was to determine the feasibility of reforming flat ablative panels to a curved configuration. The study indicated that if the panels could be shaped to a radius of 2.54 m (100 in.) then 88.7% of the surface area of the orbiter could be covered, and that if they could be shaped to a radius of 3.81 m (150 in.) then 77.2% of the surface could be covered. Two basic approaches were followed to determine the best method for forming the flat panels to a curved shape. The first was to determine if partially cured panels could be formed, allowing the forming heat cycle to complete the curing of the ablator. The second method was to form fully cured flat panels into the desired curvature through a secondary heat cycle. Measurements made on the panels during storage indicated that they continued to straighten out over time. This was attributed to residual stresses locked into the panels that had not been fully relaxed by the heat cycle.

  18. Dual-energy technique for digital flat-panel detectors without x-ray tube voltage switching

    NASA Astrophysics Data System (ADS)

    Coello, Christopher S.; Dinten, Jean-Marc; Arques, Marc; Rohr, Pierre; Odet, Christophe

    2007-03-01

    Dual-energy imaging increases the possibility of pulmonary nodule detection by reducing the bone structure noise. The major problem of the dual-energy acquisition process with digital flat-panel detectors is the interval of time between low-energy (LE) exposure and high-energy (HE) exposure. Due to misregistration between LE and HE images, motion artifacts pollute the subtracted image. This paper presents a new acquisition approach for dual-energy imaging developed in order to reduce this inter-exposure time. The idea is to keep the tube voltage constant and to just switch a filter in front of the imaged object and thus to modulate the outgoing x-ray spectrum. The first part of this study presents how to optimize system parameters for the new acquisition protocol: source voltage, dynamic filtration before the patient, exposure time for LE and HE acquisition. The tube load is kept constant to focus the optimization study on the dose and the exposure time. A noise quality factor (NQF) and a spectral quality factor (SQF) are used as criteria for optimization. The new approach system is then compared to the state-of-the-art system with voltage switching between low and high energy. A filtering algorithm of dual energy acquisitions enabling a significant noise reduction is presented. Performance between its combination with the new acquisition protocol and the reference one are compared. For a limited noise quality factor, three times faster acquisition time is obtained using the new system. Noise reduction techniques improve the image SNR by 61% in the new system and only 32% in the reference system, without taking into account the impact of better registration on the dual-energy image quality.

  19. Gain and offset calibration reduces variation in exposure-dependent SNR among systems with identical digital flat-panel detectors

    SciTech Connect

    Willis, Charles E.; Vinogradskiy, Yevgeniy Y.; Lofton, Brad K.; White, R. Allen

    2011-07-15

    Purpose: The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. Methods: The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 {mu}Gy air KERMA) to the detector. Results: The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r{sup 2} = 0.9999). The dependence was greater than unity (m = 1.101 {+-} 0.006), and the difference from unity was statistically significant (p < 0.005). The SD of mean SNR after calibration also

  20. A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Xiao, Yuan; Song, Jimin; Miao, Junhe

    2014-03-01

    The aim of this work was to provide a concrete study to understand the effects of operation on biofilm morphology and microstructure and degradation efficiency for the disposal of sulfur dioxide produced by coal-fired power plants. For this purpose, a flat-panel reactor-membrane bioreactor (MBR) with a composite membrane consisting of a dense layer and a support layer was designed; the membrane bioreactors inoculated with Thiobacillus ferrooxidans were further conducted for the removal of sulfur dioxide. Dry weight, active biomass, pressure drop, removal efficiency, morphology and structure of the formed biofilms were investigated and analyzed over period of biofilm formation. The results found that the dry weight, biomass, pressure drops and removal efficiency increased rapidly during biofilm formation, remained relatively stable in the stabilization period of biofilm growth, and finally reached 0.085 g, 7.00 μg, 180 Pa, and 78%, respectively. Our results suggested the MBR is available for flue-gas desulfurization.

  1. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  2. An improved method for flat-field correction of flat panel x-ray detector.

    PubMed

    Kwan, Alexander L C; Seibert, J Anthony; Boone, John M

    2006-02-01

    In this Technical Note, the effects of different flat-field techniques are examined for a cesium iodide flat panel detector, which exhibited a slightly nonlinear exposure response. The results indicate that the variable flat-field correction method with the appropriate polynomial fit provides excellent correction throughout the entire exposure range. The averaged normalized variation factor, used to assess the nonuniformity of the flat-field correction, decreased from 30.76 for the fixed correction method to 4.13 for the variable flat-field correction method with a fourth-order polynomial fit for the 60 kVp spectrum, and from 16.42 to 3.97 for the 95 kVp spectrum.

  3. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  4. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  5. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  6. Quantitative kinetic analysis of lung nodules by temporal subtraction technique in dynamic chest radiography with a flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2007-03-01

    Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  7. SU-D-12A-04: Investigation of a 2D Antiscatter Grid for Flat Panel Detectors

    SciTech Connect

    Altunbas, C; Kavanagh, B; Miften, M; Zhong, Y; Shaw, C

    2014-06-01

    Purpose: To improve CT number accuracy and contrast sensitivity, a novel 2D antiscatter grid (ASG) for flat panel detector (FPD) based CBCT imaging was evaluated. Experiments were performed to characterize the scatter rejection and contrast sensitivity performance of ASG. The reduction in primary transmission for various ASG geometries was also evaluated by a computational model. Methods: The 2D ASG design was based on multi-hole collimators used in Nuclear Medicine. It consisted of abutted hexagon shaped apertures with 2.5 mm pitch and 32 mm height, and separated by 0.25 mm thick lead septa. Scatter-to-primary ratio (SPR), contrast-to-noise ratio (CNR), and mean primary transmission were measured using a benchtop FPD/x-ray source system. Acrylic slabs of varying thicknesses were imaged with a contrast-detail phantom to measure CNR and SPR under different scatter conditions. Primary transmission was also measured by averaging pixel values in flood field images without the phantom. We additionally explored variation of primary transmission with pitch and septum thickness using a computational model of our ASG. Results: Our 2D ASG reduced the SPR from 3.3 to 0.12, and improved CNR by 50% in 20 cm thick slab phantom projections acquired at 120 kVp. While the measured primary transmission was 72.8%, our simulations show that primary transmission can be increased to 86% by reducing the septum thickness to 0.1 mm. Primary transmission further increases to 93% if septum thickness of 0.1 mm is used in conjunction with an increased pitch of 4 mm. Conclusion: The 2D ASG appears to be a promising scatter rejection device, offering both superior scatter rejection and improved contrast sensitivity. Though its lead footprint reduced primary transmission, our work shows that optimization of aperture pitch and septum thickness can significantly improve the primary transmission.

  8. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    SciTech Connect

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-09-15

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  9. 75 FR 51285 - In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of... that information on this matter can be obtained by contacting the Commission's TDD terminal on...

  10. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    SciTech Connect

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-10-15

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by

  11. Optimization of key building blocks for a large-area radiographic and fluoroscopic dynamic digital x-ray detector based on a-Si:H/CsI:Tl flat panel technology

    NASA Astrophysics Data System (ADS)

    Ducourant, Thierry; Michel, Marc; Vieux, Gerard; Peppler, Tobias; Trochet, J. C.; Schulz, Reiner F.; Bastiaens, Raoul J. M.; Busse, Falko

    2000-04-01

    This paper introduces the key design optimizations which have been carried out recently in Trixell in order to prepare the future family of large area, combined static (Radiography) and dynamic (Fluoroscopy, Cardio...) digital X-ray detectors based on a-Si:H/CsI:Tl flat panel technology. These optimizations have been carried out on a 16' X 12' prototype that has been designed and built in a product-oriented way. We describe the detector technology and give some of its main characteristics, as well as some preliminary measurement results.The heart of the new prototype is a Cesium Iodide scintillating screen, directly evaporated onto a 2 K X 2.5 K pixel, array of amorphous silicon photodiodes and TFTs deposited on a glass substrate. The pixel pitch is 155 micrometer. The detective flat panel is connected to dedicated electronics which provides line addressing, low-noise column readout and multiplexing into a serial electrical signal. This signal is digitized over 14 bits to provide a direct digital image output, available for the host radiology system via an optical fiber. This type of detector (flat panel + electronics) is built into a light and thin (less than 100 mm) packaging which can be easily integrated in various x-ray equipment such as R&F tables, Angiography systems (incl. Cardiology), and mobile C-arm systems.

  12. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  13. Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Tsujioka, Katsumi; Matsui, Takeshi; Takata, Tadanori; Matsui, Osamu

    2008-01-01

    The purpose of this study is to investigate the feasibility of cardiac evaluation with a dynamic flat-panel detector (FPD), based on changes in pixel values during cardiac pumping. To investigate the feasibility of cardiac evaluation with a dynamic flat-panel detector (FPD), based on changes in pixel values during cardiac pumping. Sequential radiographs of a cardiac motion phantom and water-equivalent material step were obtained with an FPD system. Various combinations of cardiac output and heart rate were evaluated with and without contrast medium. The ventricular area and summation of pixel values in the ventricles were measured. The ejection fraction (EF) was calculated based on the rate of changes and then compared to EF obtained from computed tomography images. In addition, slight changes in pixel values were visualized by use of inter-frame subtraction and color-mapping. The result of a clinical case was examined according to cardiac physiology. There were strong correlations between EF and our results. There was no significant difference between the findings with and without contrast medium. When the heart rate was greater than 60 bpm, EF obtained with our method were underestimated. It is necessary for a patient to be examined at an imaging rate between 7.5 and 10 fps at least. In addition, a +/-1.2% change in pixel value was equivalent to a +/-10 mm change in the thickness of water. Color-mapping images were supported by cardiac physiology. Evaluating changes in pixel values on dynamic chest radiography with FPD has the potential to demonstrate cardiac function without contrast medium. Inter-frame subtraction and color-mapping are very useful for interpreting changes in pixel value as velocities of blood flow.

  14. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    NASA Astrophysics Data System (ADS)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  15. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    PubMed Central

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  16. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  17. Thermal Reactor Model for Large-Scale Algae Cultivation in Vertical Flat Panel Photobioreactors.

    PubMed

    Endres, Christian H; Roth, Arne; Brück, Thomas B

    2016-04-05

    Microalgae can grow significantly faster than terrestrial plants and are a promising feedstock for sustainable value added products encompassing pharmaceuticals, pigments, proteins and most prominently biofuels. As the biomass productivity of microalgae strongly depends on the cultivation temperature, detailed information on the reactor temperature as a function of time and geographical location is essential to evaluate the true potential of microalgae as an industrial feedstock. In the present study, a temperature model for an array of vertical flat plate photobioreactors is presented. It was demonstrated that mutual shading of reactor panels has a decisive effect on the reactor temperature. By optimizing distance and thickness of the panels, the occurrence of extreme temperatures and the amplitude of daily temperature fluctuations in the culture medium can be drastically reduced, while maintaining a high level of irradiation on the panels. The presented model was developed and applied to analyze the suitability of various climate zones for algae production in flat panel photobioreactors. Our results demonstrate that in particular Mediterranean and tropical climates represent favorable locations. Lastly, the thermal energy demand required for the case of active temperature control is determined for several locations.

  18. Compact flat-panel gas-gap heat switch operating at 295 K

    NASA Astrophysics Data System (ADS)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  19. Astaxanthin induction in Microalga H. pluvialis with flat panel airlift photobioreactors under indoor and outdoor conditions.

    PubMed

    Poonkum, Woradej; Powtongsook, Sorawit; Pavasant, Prasert

    2015-01-01

    Astaxanthin was induced from Haematococcus pluvialis (NIES-144) under indoor and outdoor conditions using 17-, 50-, and 90-L flat-panel airlift photobioreactors (FP-APBRs). Preliminary experiments in 1.5-L bubble column photobioreactors (BC-PBRs) revealed that sterilized clean water with 3% CO2 aeration (1.47 cm(3) s(-1) CO2 loading) could best encourage astaxanthin accumulation at 18.21 g m(-3) (3.63% by weight). Operating 17-L FP-APBRs with these bubble column parameters under indoor conditions could further enhance astaxanthin to 26.63 g m(-3) (5.34% by weight). This was potentially due to the inherited up-lift force from the reactor that helped avoid cell precipitation by allowing the cells to be circulated within the reactor. In addition, the various sizes of FP-APBRs exhibited similar performance, implying a potential scale-up opportunity. However, similar operation under outdoor condition exhibited slightly poorer performance due to the light inhibition effect. The best outdoor performance was obtained with the FP-APBR covered with one layer of shading net, where 20.11 g m(-3) (4.47% by weight) of astaxanthin was resulted.

  20. Continuous production of diatom Entomoneis sp. in mechanically stirred tank and flat-panel airlift photobioreactors.

    PubMed

    Viriyayingsiri, Thunyaporn; Sittplangkoon, Pantaporn; Powtongsook, Sorawit; Nootong, Kasidit

    2016-10-02

    Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d(-1). A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d(-1) and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 10(4) cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.

  1. Crystallization of silicon films on glass: a comparison of methods. [Flat panel displays

    SciTech Connect

    Lemons, R.A.; Bosch, M.A.; Herbst, D.

    1982-01-01

    The lure of flat panel displays has stimulated much research on the crystallization of silicon films deposited on large-area transparent substrates. In most respects, fused quartz is ideal. It has high purity, thermal shock resistance, and a softening point above the silicon melting temperature. Unfortunately, fused quartz has such a small thermal expansion that the silicon film cracks as it cools. This problem has been attacked by patterning with islands or moats before and after crystallization, by capping, and by using silicate glass substrates that match the thermal expansion of silicon. The relative merits of these methods are compared. Melting of the silicon film to achieve high mobility has been accomplished by a variety of methods including lasers, electron beams, and strip heaters. For low melting temperature glasses, surface heating with a laser or electron beam is essential. Larger grains are obtained with the high bias temperature, strip heater techniques. The low-angle grain boundaries characteristic of these films may be caused by constitutional undercooling. A model is developed to predict the boundary spacing as a function of scan rate and temperature gradient. 11 figures.

  2. Comparison of an amorphous silicon/cesium iodide flat-panel digital chest radiography system with screen/film and computed radiography systems--a contrast-detail phantom study.

    PubMed

    Rong, X J; Shaw, C C; Liu, X; Lemacks, M R; Thompson, S K

    2001-11-01

    Flat-panel (FP) based digital radiography systems have recently been introduced as a new and improved digital radiography technology; it is important to evaluate and compare this new technology with currently widely used conventional screen/film (SF) and computed radiography (CR) techniques. In this study, the low-contrast performance of an amorphous silicon/cesium iodide (aSi/Csl)-based flat-panel digital chest radiography system is compared to those of a screen/film and a computed radiography system by measuring their contrast-detail curves. Also studied were the effects of image enhancement in printing the digital images and dependence on kVp and incident exposure. It was found that the FP system demonstrated significantly better low-contrast performance than the SF or CR systems. It was estimated that a dose savings of 70%-90% could be achieved to match the low-contrast performance of the FP images to that of the SF images. This dose saving was also found to increase with the object size. No significant difference was observed in low-contrast performances between the SF and CR systems. The use of clinical enhancement protocols for printing digital images was found to be essential and result in better low-contrast performance. No significant effects were observed for different kVps. From the results of this contrast-detail phantom study, the aSi/CsI-based flat-panel digital chest system should perform better under clinical situations for detection of low-contrast objects such as lung nodules. However, proper processing prior to printing would be essential to realizing this better performance.

  3. 76 FR 45296 - In the Matter of Certain Flat Panel Display Devices, and Products Containing the Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... sale for importation, and the sale within the United States after importation of certain flat panel.... Patent No. 6,281,955 (``the `955 patent''); U.S. Patent No. 7,697,093 (``the `093 patent''); U.S. Patent No. 7,286,192 (``the `192 patent''); U.S. Patent No. 6,818,967 (``the `967 patent''); U.S. Patent...

  4. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    PubMed

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.

  5. SU-E-I-49: Simulation Study for Removing Scatter Radiation in Cesium-Iodine Based Flat Panel Detector System

    SciTech Connect

    Yoon, Y; Park, M; Kim, H; Kim, K; Kim, J; Morishita, J

    2015-06-15

    Purpose: This study aims to identify the feasibility of a novel cesium-iodine (CsI)-based flat-panel detector (FPD) for removing scatter radiation in diagnostic radiology. Methods: The indirect FPD comprises three layers: a substrate, scintillation, and thin-film-transistor (TFT) layer. The TFT layer has a matrix structure with pixels. There are ineffective dimensions on the TFT layer, such as the voltage and data lines; therefore, we devised a new FPD system having net-like lead in the substrate layer, matching the ineffective area, to block the scatter radiation so that only primary X-rays could reach the effective dimension.To evaluate the performance of this new FPD system, we conducted a Monte Carlo simulation using MCNPX 2.6.0 software. Scatter fractions (SFs) were acquired using no grid, a parallel grid (8:1 grid ratio), and the new system, and the performances were compared.Two systems having different thicknesses of lead in the substrate layer—10 and 20μm—were simulated. Additionally, we examined the effects of different pixel sizes (153×153 and 163×163μm) on the image quality, while keeping the effective area of pixels constant (143×143μm). Results: In case of 10μm lead, the SFs of the new system (∼11%) were lower than those of the other system (∼27% with no grid, ∼16% with parallel grid) at 40kV. However, as the tube voltage increased, the SF of new system (∼19%) was higher than that of parallel grid (∼18%) at 120kV. In the case of 20μm lead, the SFs of the new system were lower than those of the other systems at all ranges of the tube voltage (40–120kV). Conclusion: The novel CsI-based FPD system for removing scatter radiation is feasible for improving the image contrast but must be optimized with respect to the lead thickness, considering the system’s purposes and the ranges of the tube voltage in diagnostic radiology. This study was supported by a grant(K1422651) from Institute of Health Science, Korea University.

  6. Performance of a direct-detection active matrix flat panel dosimeter (AMFPD) for IMRT measurements.

    PubMed

    Chen, Yu; Moran, Jean M; Roberts, Donald A; El-Mohri, Youcef; Antonuk, Larry E; Fraass, Benedick A

    2007-12-01

    The dosimetric performance of a direct-detection active matrix flat panel dosimeter (AMFPD) is reported for intensity modulated radiation therapy (IMRT) measurements. The AMFPD consists of a-Si : H photodiodes and thin-film transistors deposited on a glass substrate with no overlying scintillator screen or metal plate. The device is operated at 0.8 frames per second in a continuous acquisition or fluoroscopic mode. The effect of the applied bias voltage across the photodiodes on the response of the AMFPD was evaluated because this parameter affects dark signal, lag contributions, and pixel sensitivity. In addition, the AMPFD response was evaluated as a function of dose, dose rate, and energy, for static fields at 10 cm depth. In continuous acquisition mode, the AMFPD maintained a linear dose response (r2 > 0.99999) up to at least 1040 cGy. In order to obtain reliable integrated dose results for IMRT fields, the effects of lag on the radiation signal were minimized by operating the system at the highest frame rate and at an appropriate reverse bias voltage. Segmental MLC and dynamic MLC IMRT fields were measured with the AMFPD, and the results were compared to film, using standard methods for reliable film dosimetry. Both AMFPD and film measurements were independently converted to dose in cGy. Gamma and chi values were calculated as indices of agreement. The results from the AMFPD were in excellent agreement with those from film. When 2% of D(max) and 2 mm of distance to agreement were used as the criteria, 98% of the region of interest (defined as the region where dose is greater than 5% of D(max)) satisfied [chi] < or = 1 on average across the cases that were tested.

  7. Do LCDs have a chance to keep a leading position on flat panel display market?

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy; Olifierczuk, Marek

    2004-09-01

    A lot of significant discoveries and inventions in the field of technology of displays were made in the latter part of the twentieth century. Apart from well-known CRT, the plasma-, luminescence- and liquid crystal-displays are commercially available. One can notice that a leading position on that flat panel displays market belong to LCD. But the progress in Organic LED materials and devices is impressive. Threshold voltage for light emission have fallen from several thousands V to just 2 - 3 V for today's OLEDs (polymer and small molecule). Luminous efficiency has increased from 0,01 to more than 10 lm/W. These improvements have brought PLED technology to the point where serious consideration is being given to OLED graphic and video display product. The question given some years ago by Dr. M. E. Becker, [Display Metrology and Systems]: "...is the current OLED enthusiasm justified because OLED displays feature significant improvements in visual and ergonomic performance, and because they are much cheaper to manufacture; Or it is just another hope for those who missed the LCD train?...," is trite. During SID Conference in Baltimore in 2003 two companies claiming to have built the largest organic LED. International Display Technology demonstrated a 20 inch display driven by "super amorphous silicon" technology; Sony showed off its 24 inch screen, which consists of a 2x2 tiled array of OLED displays. The presented work will be oriented towards specifying the characteristic features of liquid crystal and electro luminescence organic compounds which make these groups of displays so attractive and prospective among other imagery systems devices existing nowadays.

  8. The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus.

    PubMed

    Leupold, Marco; Hindersin, Stefan; Kerner, Martin; Hanelt, Dieter

    2013-11-01

    Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4-30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ([Formula: see text]). This caused a flow velocity between 2 and 20 cm s(-1) of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175-1.340 L(gas volume) L(photobioreactor volume)(-1) min(-1) pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3-5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0-1.5 g L(-1), airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L(-1), growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation.

  9. SU-E-I-07: Response Characteristics and Signal Conversion Modeling of KV Flat-Panel Detector in Cone Beam CT System

    SciTech Connect

    Wang, Yu; Cao, Ruifen; Pei, Xi; Wang, Hui; Hu, Liqin

    2015-06-15

    Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared to Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by

  10. Are New Image Quality Figures of Merit Needed for Flat Panel Displays?

    DTIC Science & Technology

    1998-06-01

    Inc. Dayton, Ohio and Clarence E. Rash Aircrew Health and Performance Division June 1998 PTIC QUALITY IN3?ECTia) 1 Approved for public release...endorsement or approval of the use of such commercial items. Reviewed: ItriC^ MORRIS R. LATTIMORE , JR Colonel, MS Director, Aircrew Health...Performance Division Released for publication : JOHN A. CALDWELL, Ph.D. Chairman, Scientific Review Committee V / t> (f/CHERRJI L. GAFFNEYColoneCMC

  11. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    NASA Technical Reports Server (NTRS)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  12. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    SciTech Connect

    Zbijewski, W. Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  13. Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector: quantitative correlation analysis with findings on perfusion scan.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Hayashi, Norio; Tsuji, Shiro; Okamoto, Hiroyuki; Nanbu, Yuko; Matsui, Osamu

    2010-01-01

    Pulmonary blood flow is reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. Thus, decreased blood flow should be observed as a reduction of the variation of X-ray translucency. We performed the present study to investigate the feasibility of pulmonary blood flow evaluation with a dynamic flat-panel detector (FPD). Sequential chest radiographs of 14 subjects were obtained with a dynamic FPD system. The changes in pixel value in each local area were measured and mapped on the original image by use of a gray scale in which small and large changes were shown in white and black, respectively. The resulting images were compared to the findings in perfusion scans. The cross-correlation coefficients of the changes in pixel value and radioactivity counts in each local area were also computed. In all patients, pulmonary blood flow disorder was indicated as a reduction of changes in pixel values on the mapping image, and a correlation was observed between the distribution of changes in pixel value and those in radioactivity counts (0.7

  14. Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector.

    PubMed

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2009-04-01

    Early detection and treatment of lung cancer is one of the most effective means of reducing cancer mortality, and to this end, chest X-ray radiography has been widely used as a screening method. A related technique based on the development of computer analysis and a flat panel detector (FPD) has enabled the functional evaluation of respiratory kinetics in the chest and is expected to be introduced into clinical practice in the near future. In this study, we developed a computer analysis algorithm to detect lung nodules and to evaluate quantitative kinetics. Breathing chest radiographs obtained by modified FPD and breath synchronization utilizing diaphragmatic analysis of vector movement were converted into four static images by sequential temporal subtraction processing, morphological enhancement processing, kinetic visualization processing, and lung region detection processing. An artificial neural network analyzed these density patterns to detect the true nodules and draw their kinetic tracks. Both the algorithm performance and the evaluation of clinical effectiveness of seven normal patients and simulated nodules showed sufficient detecting capability and kinetic imaging function without significant differences. Our technique can quantitatively evaluate the kinetic range of nodules and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  15. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.

    PubMed

    Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng

    2003-07-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using

  16. Performance of advanced a-Si/CsI-based flat-panel x-ray detectors for mammography

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas; Hudspeth, Heather; Possin, George E.; Lee, Ji Ung; Granfors, Paul R.; Giambattista, Brian W.

    2003-06-01

    The GE Senographe 2000D, the first full field digital mammography system based on amorphous Silicon (a-Si) flat panel arrays and a Cesium-Iodide (CsI) scintillator, has been in clinical use for several years. The purpose of this paper is to demonstrate and quantify improvements in the detective quantum efficiency (DQE) for both typical screening and ultra-low exposure levels for this technology platform. A new figure of merit, the electronic noise factor, is introduced to explicitly quantify the influence of the electronic noise, conversion factor, modulation transfer function (MTF), and pixel pitch towards the reduction of DQE at low exposure levels. Methods to improve the DQE through an optimization of both the flat panel design and the scintillator deposition process are discussed. The results show a substantial improvement in the DQE(f) at all frequencies and demonstrate the potential for DQE(0) to exceed 80%. The combination of high DQE at ultra low exposures and the inherent fast read-out capability makes this technology platform ideal for both current clinical procedures and advanced applications that may use multiple projections (tomosynthesis) or contrast media to enhance digital mammography.

  17. Modeling Shift-Variant X-Ray Focal Spot Blur for High-Resolution Flat-Panel Cone-Beam CT

    PubMed Central

    Tilley, Steven; Zbijewski, Wojciech; Siewerdsen, Jeffrey H.; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional reconstruction approaches without a blur model exhibit shift-variant resolution properties that depend greatly on the acquisition protocol (e.g. short vs. full scans) and the anode angles of the rays used to reconstruct a particular region. For physical CBCT experiments focal spot blur was characterized and a spatial resolution phantom was scanned and reconstructed. In both experiments image quality using the shift-variant model was significantly improved over approaches that modeled no blur or only a shift-invariant blur, suggesting a potential means to overcome traditional CBCT spatial resolution and system design limitations. PMID:28361129

  18. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  19. Performance of a new digital flat-panel detector system in the detection of simulated rheumatoid erosions: a comparison with a speed-class 200 screen-film system, a mammography screen-film system, and a storage-phosphor system at different levels of exposure.

    NASA Astrophysics Data System (ADS)

    Ludwig, Karl; Henschel, Andreas; Bernhardt, Thomas; Lenzen, Horst; Wormanns, Dag; Diederich, Stefan; Heindel, Walter

    2002-05-01

    The purpose of this study was to compare a large-area direct read-out flat-panel detector system with a speed class 200 screen-film system, a storage-phosphor system and a mammography screen-film system with regard to the detection of simulated rheumatoid erosions and to assess its diagnostic performance with decreasing exposure dose. The performance of a flat-panel system in such small lesions was considered especially interesting, as the spatial resolution of this system, limited by its pixel size, is considerably lower than that of conventional screen-film systems. An animal model with 160 joint specimens from 20 monkey paws was used. 640 regions were defined in these 160 meta- carpophalangeal and proximal interphalangeal joint specimens. Simulated rheumatoid erosions were created in 320 of these 640 regions. Specimens were enclosed in containers filed with water to obtain absorption and scatter radiation conditions similar to a human hand. Imaging was performed using a flat-panel system, a sped class 200 screen-film system, a mammography screen-film system and a storage- phosphor system under exactly matched conditions. Different exposure doses equivalent to speed classes of S equals 100, 200, 400, 800, 1600 and 3200 were used. Presence or absence of a lesion was assessed by three radiologists using a five level confidence scale. Receiver operating characteristic analysis was performed for a total of 21,120 observations and diagnostic performance estimated by the area under the ROC curve. The significance of differences between Az values was tested with analysis of variance. ROC-analysis showed Az values of 0.809, 0.768, 0.737, 0.710 and 0.685 for the flat-panel system, 0.770 for the screen-film system, 0.781, 0.739, 0.724 and 0.680 for the storage-phosphor system, and 0.798 for the mammography screen-film system. Analysis of variance showed significant differences for certain combinations of imaging modalities and exposure doses. The diagnostic performance of

  20. Direct Conversion Through Trans-Differentiation: Efficacy and Safety.

    PubMed

    Prasad, Ankshita; Teh, Daniel Boon Loong; Shah Jahan, Fathima R; Manivannan, Janani; Chua, Soo Min; All, Angelo H

    2017-02-01

    Direct conversion through transdifferentiation is a promising cell reprogramming approach that induces a cell lineage conversion among adult cells without passing through an intermediate pluripotent phase. However, there is a need to critically evaluate the efficacy and safety of direct conversion to establish its feasibility as a clinically viable cell reprogramming technique. This review article aims to delineate some critical constraints of direct conversion as a cellular reprogramming approach. We report the most important challenges of lineage reprogramming through direct conversion and divide them into two major sections. The first section explores the obstacles that limit the efficiency of the direct conversion process. In this study, we discuss challenges such as lack of understanding of molecular mechanism and transcriptional control of direct conversion, low proliferative capacity of converted cells, and senescence and apoptosis as critical barriers of direct conversion. The second section focuses on addressing concerns of safety of directly converted cells. We describe issues of transgene load and epigenetic memory retention along with the constraints of currently available validation tools to characterize reprogrammed cells. Each issue mentioned above is evaluated in view of their origin, implications, progress made toward their resolution and scope for development of new strategies to address the constraints of the present technique.

  1. Post-buckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Souza, M. A.

    1993-01-01

    The static post-buckling of simply-supported flat panels exposed to a stationary nonuniform temperature field and subjected to a system of subcritical in-plane compressive edge loads is investigated. The study is performed within a refined theory of composite laminated plates incorporating the effect of transverse shear and the geometric nonlinearities. The influence played by a number of effects, among them transverse shear deformation, initial geometric imperfections, the character of the in-plane boundary conditions and thickness ratio are studied and a series of conclusions are outlined. The influence played by the complete temperature field (i.e., the uniform through thickness and thickness-wise gradient) as compared to the one induced by only the uniform one, is discussed and the peculiarities of the resulting post-buckling behaviors are enlightened.

  2. Monte Carlo simulation-based feasibility study of novel indirect flat panel detector system for removing scatter radiation.

    PubMed

    Yoon, Yongsu; Morishita, Junji; Park, MinSeok; Kim, Hyunji; Kim, Kihyun; Kim, Jungmin

    2016-01-01

    The purpose of this study is to investigate the feasibility of a novel indirect flat panel detector (FPD) system for removing scatter radiation. The substrate layer of our FPD system has a Pb net-like structure that matches the ineffective area and blocks the scatter radiation such that only primary X-rays reach the effective area on a thin-film transistor. To evaluate the performance of the proposed system, we used Monte Carlo simulations to derive the scatter fraction and contrast. The scatter fraction of the proposed system is lower than that of a parallel grid system, and the contrast is superior to that of a system without a grid. If the structure of the proposed FPD system is optimized with respect to the specifications of a specific detector, the purpose of the examination, and the energy range used, the FPD can be useful in diagnostic radiology.

  3. Performance of flat panel (AMLCD) units installed in the aft end of drug interdiction P-3s

    NASA Astrophysics Data System (ADS)

    Sola, Kenneth E.; Sankovic, Michael

    1997-07-01

    The US Navy is proactively upgrading its fleet of P-3 Maritime Patrol Aircraft to continue to meet current and near future challenges to national security. The traditional P-3 role of anti-submarine warfare, though retained, is being expanded to include anti-surface warfare, increased reconnaissance and surveillance, and other missions. As part of the overall improvement program, P-3 cockpit and tactical crewstations throughout the aircraft are being upgraded to improve crew performance. Flat panel display technology is replacing CRTs in five on-going crewstation improvements. This paper reports on one of them: the replacement of CRT displays in a prototype EO/IR crewstation with a suite of four color AMLCDs, one of which is configured with a surface acoustic wave touch overlay to serve as a programmable touch interface. This upgrade is already in service with the fleet.

  4. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-05-15

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  5. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  6. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery.

    PubMed

    Siewerdsen, J H; Moseley, D J; Burch, S; Bisland, S K; Bogaards, A; Wilson, B C; Jaffray, D A

    2005-01-01

    A mobile isocentric C-arm (Siemens PowerMobil) has been modified in our laboratory to include a large area flat-panel detector (in place of the x-ray image intensifier), providing multi-mode fluoroscopy and cone-beam computed tomography (CT) imaging capability. This platform represents a promising technology for minimally invasive, image-guided surgical procedures where precision in the placement of interventional tools with respect to bony and soft-tissue structures is critical. The image quality and performance in surgical guidance was investigated in pre-clinical evaluation in image-guided spinal surgery. The control, acquisition, and reconstruction system are described. The reproducibility of geometric calibration, essential to achieving high three-dimensional (3D) image quality, is tested over extended time scales (7 months) and across a broad range in C-arm angulation (up to 45 degrees), quantifying the effect of improper calibration on spatial resolution, soft-tissue visibility, and image artifacts. Phantom studies were performed to investigate the precision of 3D localization (viz., fiber optic probes within a vertebral body) and effect of lateral projection truncation (limited field of view) on soft-tissue detectability in image reconstructions. Pre-clinical investigation was undertaken in a specific spinal procedure (photodynamic therapy of spinal metastases) in five animal subjects (pigs). In each procedure, placement of fiber optic catheters in two vertebrae (L1 and L2) was guided by fluoroscopy and cone-beam CT. Experience across five procedures is reported, focusing on 3D image quality, the effects of respiratory motion, limited field of view, reconstruction filter, and imaging dose. Overall, the intraoperative cone-beam CT images were sufficient for guidance of needles and catheters with respect to bony anatomy and improved surgical performance and confidence through 3D visualization and verification of transpedicular trajectories and tool placement

  7. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    PubMed Central

    Yang, Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-01-01

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system’s efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames∕s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system. PMID:20831059

  8. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    SciTech Connect

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  9. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  10. Voxel-Based Sensitivity of Flat-Panel CT for the Detection of Intracranial Hemorrhage: Comparison to Multi-Detector CT

    PubMed Central

    Frölich, Andreas M.; Buhk, Jan-Hendrik; Fiehler, Jens; Kemmling, Andre

    2016-01-01

    Objectives Flat-panel CT (FPCT) allows cross-sectional parenchymal, vascular and perfusion imaging within the angiography suite, which could greatly facilitate acute stroke management. We hypothesized that FPCT offers equal diagnostic accuracy compared to multi-detector CT (MDCT) as a primary tool to exclude intracranial hemorrhage. Methods 22 patients with intracranial hematomas who had both MDCT and FPCT performed within 24 hours were retrospectively identified. Patients with visible change in hematoma size or configuration were excluded. Two raters independently segmented hemorrhagic lesions. Data sets and corresponding binary lesion maps were co-registered to compare hematoma volume. Diagnostic accuracy of FPCT to detect hemorrhage was calculated from voxel-wise analysis of lesion overlap compared to reference MDCT. Results Mean hematoma size was similar between MDCT (16.2±8.9 ml) and FPCT (16.1±8.6 ml), with near perfect correlation of hematoma sizes between modalities (ρ = 0.95, p<0.001). Sensitivity and specificity of FPCT to detect hemorrhagic voxels was 61.6% and 99.8% for intraventricular hematomas and 67.7% and 99.5% for all other intracranial hematomas. Conclusions In this small sample containing predominantly cases with subarachnoid hemorrhage, FPCT based assessment of hemorrhagic volume in brain yields acceptable accuracy compared to reference MDCT, albeit with a limited sensitivity on a voxel level. Further assessment and improvement of FPCT is necessary before it can be applied as a primary imaging modality to exclude intracranial hemorrhage in acute stroke patients. PMID:27806106

  11. Clinical performance of a prototype flat-panel digital detector for general radiography

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Scalzetti, Ernest M.; Roskopf, Marsha L.; Geiger, Robert

    2001-08-01

    Digital radiographs obtained using a prototype Digital Radiography System (Stingray) were compared with those obtained using conventional screen-film. Forty adult volunteers each had two identical radiographs taken at the same level of radiation exposure, one using screen-film and the other the digital detector. Each digital image was processed by hand to ensure that the printed quality was optimal. Ten radiologists compared the diagnostic image quality of the digital images with the corresponding film radiographs using a seven point ranking scheme.

  12. See-through integral imaging display with background occlusion capability.

    PubMed

    Yamaguchi, Yuta; Takaki, Yasuhiro

    2016-01-20

    Background occlusion capability is provided to a flat-panel-type integral imaging display that has a transparent screen and can superimpose three-dimensional (3D) images on real scenes. A symmetric integral imaging system that comprises two integral imaging systems connected by an additional lens array, is proposed. Elementary images are displayed on a flat-panel display on one integral imaging system to generate 3D images, and the occlusion mask patterns are displayed on a flat-panel display on the other integral imaging system to selectively block rays from background scenes. The proposed system was constructed and experimentally verified.

  13. Edge-Spread Functions Expected for Several Changes in a Commercial Flat-Panel System

    SciTech Connect

    Schach von Wittenau, A E

    2002-02-25

    The Bldg. 239 radiography facility uses a 9 MeV bremsstrahlung linac and a commercially available fiat-panel detector system. Ref. [1] discusses the facility in detail. Ref. [1] furthermore discusses the imaging quality of the fiat-panel system, and identifies several sources of image blur for the system in question. The maim'' contributors to the imaging blur are radiation scattered from the front cover of the detector housing, radiation scattered from the back cover of the detector housing, and radiation scattered from the aluminum plate that supports the amorphous-Si detector within the detector housing. The manufacturer of one such fiat-panel system seems willing to modify one of their products as requested, if such modifications may be made easily. Easy modifications would include making the detector housing thinner, decreasing the sizes of air gaps inside tile detector system, etc. Removing the aluminum support plate is considered to be a difficult modification. This memo reports the results of a set of Monte Carlo simulations that were performed to predict the changes in imaging quality, compared to that of the current system, if the detector is modified as suggested above. In particular, the edge-spread function (ESF) was calculated for each modification. ESFs were calculated for three photon energies: 100 keV, 450 keV, and 3 MeV. The results suggest that thinning and moving tile front and back covers of the detector housing should result in improved image quality for all of the photon energies considered. Interestingly, the results also suggest that removing the aluminum support plate would improve tim imaging performance at 100 keV and 450 keV, but that removing the plate has no additional benefit for imaging with 3 MeV photons.

  14. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  15. The exact solution of shear-lag problems in flat panels and box beams assumed rigid in the transverse direction

    NASA Technical Reports Server (NTRS)

    Hildebrand, Francis B

    1943-01-01

    A mathematical procedure is herein developed for obtaining exact solutions of shear-lag problems in flat panels and box beams: the method is based on the assumption that the amount of stretching of the sheets in the direction perpendicular to the direction of essential normal stresses is negligible. Explicit solutions, including the treatment of cut-outs, are given for several cases and numerical results are presented in graphic and tabular form. The general theory is presented in a from which further solutions can be readily obtained. The extension of the theory to cover certain cases of non-uniform cross section is indicated. Although the solutions are obtained in terms of infinite series, the present developments differ from those previously given in that, in practical cases, the series usually converge so rapidly that sufficient accuracy is afforded by a small number of terms. Comparisons are made in several cases between the present results and the corresponding solutions obtained by approximate procedures devised by Reissner and by Kuhn and Chiarito.

  16. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers

    PubMed Central

    Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  17. Theoretical investigation of flutter of two-dimensional flat panels with one surface exposed to supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Cunningham, Herbert J

    1956-01-01

    A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.

  18. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    SciTech Connect

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-08-15

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems.

  19. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    PubMed Central

    Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous

  20. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light.

  1. Direct-conversion receiver for HiperLAN2

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    2001-11-01

    A direct conversion receiver is presented for HiperLAN2 system that uses Orthogonal Frequency Division Multiplexing (OFDM) as its modulation scheme with data rate up to 54 Mbits/second. The direct conversion scheme converts the RF signal directly into a complex low-pass equivalent signal represented by in- phase (I) and quadrature (Q) components or so called I-Q base- band signal without any Intermediate Frequency (IF) stages and expensive Surface-Acoustic-Wave (SAW) filters. However, for a direct conversion receiver there are many key issues to be solved. One of the most important issues is so-called I-Q imbalance caused by the mismatch between I channel and Q channel of the quadrature demodulator. The I-Q imbalance may include gain and group delay difference between the I channel and the Q channel at any frequency within the low-pass signal bandwidth. With the patent-pending IQ-BalancingTM technology and other proprietary technologies of 4D Connect, inc., the adverse effects of I-Q imbalance on the receiver performance can be removed. Fixed-point simulation results for sensitivity performance and interference performance are presented. Performance comparisons when severe I-Q imbalance is present are also given.

  2. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  3. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O`Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-01

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4×4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16×16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92×0.92×3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8×16.8 mm2. Thirty-two such blocks will be arranged in a 4×8 array with 1 mm gaps to form a panel detector with detection area around 7 cm×14 cm in the full-size detector. The flood histogram acquired with 68Ge source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, ±0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  4. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications

    PubMed Central

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-01-01

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702

  5. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Foral, M.J.

    1990-01-01

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of the various options will be performed as experimental data become available.

  6. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  7. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2017-03-01

    A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole-Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  8. A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors.

    PubMed

    Li, Zhen; Ma, Xiaoqin; Li, Aifen; Zhang, Chengwu

    2012-08-01

    Carotenoids profile of the unicellular Eustigmatos cf. polyphem (Eustigmatophyceae) and β-carotene production of the microalga in bubble column and large flat panel bioreactors were studied. The microalga which contained β-carotene, violaxanthin and vaucheriaxanthin as the major carotenoids accumulated large amount of β-carotene. The β-carotene production of this microalga in the bubble column bioreactor was considerable, with the maximum intracellular β-carotene content reaching 60.76 mg g(-1), biomass reaching 9.2 g L(-1), and β-carotene yield up to 470.2 mg L(-1). The β-carotene productions in two large flat panel bioreactors were relatively lower, whereas over 100 mg β-carotene L(-1) was achieved. Besides, high light intensity helped to accumulate intracellular β-carotene and biomass. Deficient nitrate supply inhibited biomass growth, though it helped to accumulate β-carotene. Our results first proved that E. cf. polyphem was a potential source and producer of β-carotene, making it an interesting subject for further β-carotene study or commercial exploration.

  9. Photoelectrochemical based direct conversion systems for hydrogen production

    SciTech Connect

    Kocha, S.; Peterson, M.; Arent, D.

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  10. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Foral, M.J.

    1990-01-01

    Amoco Oil Company is investigating the direct conversion of light hydrocarbon gases to liquid fuels via partial oxidation. This report describes work completed in the first quarter of the two-year project (first quarter FY 1990). Task 1 of the work, preparation of the Project Management Plan, has been completed. Work was started and progress made on three other tasks during this quarter: Task 2. Modification of an existing Amoco pilot plant to handle the conditions of this project. Minor modifications were made to increase the maximum operating pressure to 1500 psig. Other more extensive modifications are being designed, including addition of an oxygen compressor and recycle system. Task 3.1. Evaluation of a Los Alamos National Laboratory methane oxidation kinetic model for suitability in guiding the experimental portions of this project. Task 3.2. Process variable (e.g. temperature, pressure, residence time) studies to determine optimal partial oxidation conditions. 1 fig.

  11. Direct conversion of terpenylalkanolamines to ethylidyne N-nitroso compounds

    USGS Publications Warehouse

    Abidi, S.L.

    1986-01-01

    A series of mono- and diterpenylalkanolamines bearing isopropylidene functionality on the terpene group was reacted with sodium nitrite in aqueous acetic acid to yield ethylidyne N-nitroso analogues. The key feature of this direct conversion involved initial N-nitrosation followed by apparent elimination of a "CH4" unit (not necessarily methane) from the isopropylidene double bond. The product distribution data for ethylidyne nitrosamines derived from tertiary terpenyl alkanolamines reflect the conformational outcome of the nitrosative dealkylation process. For β,γ-unsaturated allylic diterpenylethanolamines, electronic effects appeared to be important for controlling the product distribution of ethylidyne nitrosamines in light of the highly selective α-cleavage observed in the nitrosation reactions.

  12. Method for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  13. Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise

    NASA Astrophysics Data System (ADS)

    Tilley, Steven, II; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-01-01

    While model-based reconstruction methods have been successfully applied to flat-panel cone-beam CT (FP-CBCT) systems, typical implementations ignore both spatial correlations in the projection data as well as system blurs due to the detector and focal spot in the x-ray source. In this work, we develop a forward model for flat-panel-based systems that includes blur and noise correlation associated with finite focal spot size and an indirect detector (e.g. scintillator). This forward model is used to develop a staged reconstruction framework where projection data are deconvolved and log-transformed, followed by a generalized least-squares reconstruction that utilizes a non-diagonal statistical weighting to account for the correlation that arises from the acquisition and data processing chain. We investigate the performance of this novel reconstruction approach in both simulated data and in CBCT test-bench data. In comparison to traditional filtered backprojection and model-based methods that ignore noise correlation, the proposed approach yields a superior noise-resolution tradeoff. For example, for a system with 0.34 mm FWHM scintillator blur and 0.70 FWHM focal spot blur, using the correlated noise model instead of an uncorrelated noise model increased resolution by 42% (with variance matched at 6.9  ×  10-8 mm-2). While this advantage holds across a wide range of systems with differing blur characteristics, the improvements are greatest for systems where source blur is larger than detector blur.

  14. Should 3K zoom function be used for detection of pneumothorax in cesium iodide/amorphous silicon flat-panel detector radiographs presented on 1K-matrix soft copies?

    PubMed

    Herrmann, Karin A; Bonél, H M; Stäbler, A; Voelk, M; Strotzer, M; Zech, C J; Reiser, M F

    2006-12-01

    The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p = 0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice.

  15. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  16. CMOS highly linear direct-conversion transmitter for WCDMA with fine gain accuracy

    NASA Astrophysics Data System (ADS)

    Xin, Li; Jian, Fu; Yumei, Huang; Zhiliang, Hong

    2011-08-01

    A highly linear, high output power, 0.13 μm CMOS direct conversion transmitter for wideband code division multiple access (WCDMA) is described. The transmitter delivers 6.8 dBm output power with 38 mA current consumption. With careful design on the resistor bank in the IQ-modulator, the gain step accuracy is within 0.1 dB, hence the image rejection ratio can be kept below -47 dBc for the entire output range. The adjacent channel leakage ratio and the LO leakage at 6.8 dBm output power are -44 dBc @ 5 MHz and -37 dBc, respectively, and the corresponding EVM is 3.6%. The overall gain can be programmed in 6 dB steps in a 66-dB range.

  17. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  18. Development and evaluation of a digital subtraction angiography system using a large-area flat panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Colbeth, Richard E.; Webb, Chris; Tanaka, Saori; Okusako, Kenji

    2003-06-01

    We developed prototype Digital Subtraction Angiography (DSA) System with a new large area FPD. Dynamic range, MTF, Contrast ratio and line noise were much improved. The improved FPD is a scintillator-type detector, and has a 40 x 30 cm active area, 2048 x 1536 matrix with 194um pixel pitch. The Prototype DSA system has two x-ray detectors, the FPD and the I.I.-CCD camera, and we can choose them on demand. All images captured from both detectors at 3 frames/sec in DSA mode and 30 frames/sec in Fluoroscopy mode are forwarded to our image-processing unit. We applied the new DSA system to more than 150 studies and compared the results with images from the I.I.-CCD. In DSA mode, FPD System, which has a wide dynamic range, large detecting area, and good contrast ratio yielded superior angiogram images compared with the I.I-CCD system. In Fluoroscopy mode, we improved line noise and increased the contrast of catheters and guide wires with a new image processing technique. With these improvements, the image quality of the FPD System is superior to the I.I.-CCD system at the exposure range of over 2uR/frame (17.4 nGy/frame).

  19. Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience

    SciTech Connect

    Cazzato, Roberto Luigi Buy, Xavier Alberti, Nicolas Fonck, Mariane; Grasso, Rosario Francesco; Palussière, Jean

    2015-02-15

    PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize the tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.

  20. Simulation system for understanding the lag effect in fluoroscopic images.

    PubMed

    Tanaka, Rie; Kawashima, Hiroki; Ichikawa, Katsuhiro; Matsubara, Kosuke; Iida, Hiroji; Sanada, Shigeru

    2013-07-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is crucial to understand the effects of image lag for real-time tumor tracking. Our purpose in this study was to develop a lag simulation system based on the image lag properties of an FPD system. Image lag properties were measured on flat-field images both in direct- and indirect-conversion dynamic FPDs. A moving target with image lag was simulated based on the lag properties in all combinations of FPD types, imaging rates, exposure doses, and target speeds, and then compared with actual moving targets for investigation of the reproducibility of image lag. Image lag was simulated successfully and agreed well with the actual lag as well as with the predicted effect. In the indirect-conversion FPD, a higher dose caused greater image lag on images. In contrast, there were no significant differences among dose levels in a direct-conversion FPD. There were no relationships between target speed and amount of image blurring in either type of FPD. The maximum contour blurring and the rate of increase in pixel value due to image lag were 1.1 mm and 10.0 %, respectively, in all combinations of imaging parameters examined in this study. Blurred boundaries and changes in pixel value due to image lag were estimated under various imaging conditions with use of the simulation system. Our system would be helpful for a better understanding of the effects of image lag in fluoroscopic images.

  1. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    PubMed

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized.

  2. Uterine artery embolization for leiomyomata: optimization of the radiation dose to the patient using a flat-panel detector angiographic suite.

    PubMed

    Sapoval, Marc; Pellerin, Olivier; Rehel, Jean-Luc; Houdoux, Nicolas; Rahmoune, Ghizlaine; Aubert, Bernard; Fitton, Isabelle

    2010-10-01

    The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 +/- 1.3 to 0.4 +/- 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 +/- 27,207 microGy m(2) for group A to 9,515 +/- 4,520 microGy m(2) for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 +/- 238 mGy (group A) to 83 +/- 41 mGy (group B) and from 388 +/- 246 mGy (group A) to 85 +/- 39 mGy (group B), respectively. Effective doses decreased from 112 +/- 71 mSv (group A) to 24 +/- 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.

  3. Uterine Artery Embolization for Leiomyomata: Optimization of the Radiation Dose to the Patient Using a Flat-Panel Detector Angiographic Suite

    SciTech Connect

    Sapoval, Marc Pellerin, Olivier; Rehel, Jean-Luc; Houdoux, Nicolas; Rahmoune, Ghizlaine; Aubert, Bernard; Fitton, Isabelle

    2010-10-15

    The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 {+-} 1.3 to 0.4 {+-} 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 {+-} 27,207 {mu}Gy m{sup 2} for group A to 9,515 {+-} 4,520 {mu}Gy m{sup 2} for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 {+-} 238 mGy (group A) to 83 {+-} 41 mGy (group B) and from 388 {+-} 246 mGy (group A) to 85 {+-} 39 mGy (group B), respectively. Effective doses decreased from 112 {+-} 71 mSv (group A) to 24 {+-} 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.

  4. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2014-07-01 2014-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  5. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2011-07-01 2011-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  6. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cost comparisons. 3. For activities large in total size (including those with a mix of civilian and... 32 National Defense 1 2013-07-01 2013-07-01 false Simplified Cost Comparison and Direct Conversion... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  7. Cascaded systems analysis of the 3D noise transfer characteristics of flat-panel cone-beam CT.

    PubMed

    Tward, Daniel J; Siewerdsen, Jeffrey H

    2008-12-01

    The physical factors that govern 2D and 3D imaging performance may be understood from quantitative analysis of the spatial-frequency-dependent signal and noise transfer characteristics [e.g., modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ)] along with a task-based assessment of performance (e.g., detectability index). This paper advances a theoretical framework based on cascaded systems analysis for calculation of such metrics in cone-beam CT (CBCT). The model considers the 2D projection NPS propagated through a series of reconstruction stages to yield the 3D NPS and allows quantitative investigation of tradeoffs in image quality associated with acquisition and reconstruction techniques. While the mathematical process of 3D image reconstruction is deterministic, it is shown that the process is irreversible, the associated reconstruction parameters significantly affect the 3D DQE and NEQ, and system optimization should consider the full 3D imaging chain. Factors considered in the cascade include: system geometry; number of projection views; logarithmic scaling; ramp, apodization, and interpolation filters; 3D back-projection; and 3D sampling (noise aliasing). The model is validated in comparison to experiment across a broad range of dose, reconstruction filters, and voxel sizes, and the effects of 3D noise correlation on detectability are explored. The work presents a model for the 3D NPS, DQE, and NEQ of CBCT that reduces to conventional descriptions of axial CT as a special case and provides a fairly general framework that can be applied to the design and optimization of CBCT systems for various applications.

  8. [Improvement of method of determining fluoroscopy loading factor in digital angiographic x-ray system with a flat panel detector].

    PubMed

    Sato, Hisaya; Kato, Kyoichi; Maruyama, Masahiro; Okada, Keigo; Miura, Yoshiaki; Nakanishi, Isao; Nitta, Masaru; Nakazawa, Yasuo

    2010-07-20

    A catheterization study and treatment of coronary arteriopathy are performed by investigating the coronary artery from different angles to find the region to be treated. In doing so, our system always started from the initial value of the loading factor, using this only for the first time, and the system started from the last loading factor the second time and later, at all angles. Therefore, depending on the angle, the loading factor at the start of fluoroscopy sometimes became unstable, and it took time to stabilize. This made the starting image too dark (undershoot x-ray condition) or fogged by halation (overshoot x-ray condition). With the system manufacturer, we developed a tube voltage and tube current setting method for the initial value of the loading factor. We installed software which preset the loading factor at the start of fluoroscopy depending on the angle, and an auto memory function of the last loading factor for each angle. This function allows the system to control the tube voltage and tube current for any angle. As a result, the system can acquire a more stabilized image from the start of fluoroscopy. This method of determining the initial loading factor is an effective way to stabilize the fluoroscopy image quickly.

  9. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    SciTech Connect

    Russ, M; Ionita, C; Bednarek, D; Rudin, S

    2015-06-15

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors without changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  10. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  11. A New Flat-Panel Digital Mammography Detector with Avalanche Photoconductor and High-Resolution Field Emitter Readout

    DTIC Science & Technology

    2005-06-01

    electric field Ese as opposed to the fixed high conversion gain of HgI 2 or PbI2. One of 4 the practical problems of having a fixed high gain is that the...Nylen, K. Shah, L. Melekhov and H. Hermon, "Comparison of PbI2 and HgI 2 for direct detection active matrix x-ray image sensors", J. Appl. Phys. 91...a-Se and HgI 2", Appl. Phys. Lett. 80, 1664-1666 (2002) 23 14 N. Matsuura, Wei Zhao, Z. Huang and J. A. Rowlands, "Digital radiology using active

  12. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    SciTech Connect

    Wagner, Marlies; Kyriakou, Yiannis; Mesnil de Rochemont, Richard du; Singer, Oliver C.; Berkefeld, Joachim

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.

  13. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.

    PubMed

    Park, Younghyun; Park, Seonghwan; Nguyen, Van Khanh; Kim, Jung Rae; Kim, Hong Suck; Kim, Byung Goon; Yu, Jaecheul; Lee, Taeho

    2017-02-01

    In order to confirm the effects of the low conductivity and biodegradability of wastewater, flat-panel air-cathode microbial fuel cells (FA-MFCs) were operated by supplying substrates with different volume ratios of domestic wastewater mixed with an artificial medium: the artificial medium only, 25% wastewater, 50% wastewater, 75% wastewater, 100% of wastewater with 500mg-COD/L by adding acetate, and raw domestic wastewater (230mg-COD/L). With the increase of wastewater ratio, the maximum power density and organic removal efficiency decreased from 187 to 60W/m(3) and 51.5 to 37.4%, respectively, but the Coulombic efficiency was maintained in the range of 18.0-18.9%. The FA-MFCs could maintain their low internal resistances and overcome the decreasing conductivity. The acetate concentration was more important than the total organics for power production. This study suggests that the FA-MFC configuration has great applicability for practical applications when supplied by domestic wastewater with low conductivity and biodegradability.

  14. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  15. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    SciTech Connect

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D

    2015-06-15

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.

  16. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    SciTech Connect

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew; O'Connell, Avice M.

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin thickness

  17. Acquisition hardware for digital imaging.

    PubMed

    Widmer, William R

    2008-01-01

    Use of digital radiography is growing rapidly in veterinary medicine. Two basic digital imaging systems are available, computed radiography (CR) and direct digital radiography (DDR). Computed radiographic detectors use a two-step process for image capture and processing. Image capture is by X-ray sensitive phosphors in the image plate. The image plate reader transforms the latent phosphor image to light photons that are converted to an analog electrical signal. An analog to digital converter is used to digitize the electrical signal before computer analysis. Direct digital detectors provide digital data by direct readout after image capture--a reader unnecessary. Types of DDR detectors are flat panel detectors and charge coupled device (CCD) detectors. Flat panel detectors are composed of layers of semiconductors for image capture with transistor and microscopic circuitry embedded in a pixel array. Direct converting flat panel detectors convert incident X-rays directly into electrical charges. Indirect detectors convert X-rays to visible light, then to electrical charges. All flat panel detectors send a digitized electrical signal to a computer using a direct link. Charge coupled device detectors have a small chip similar to those used in digital cameras. A scintillator first converts X-rays to a light signal that is minified by an optical system before reaching the chip. The chip sends a digital signal directly to a computer. Both CR and DDR provide quality diagnostic images. CR is a mature technology while DDR is an emerging technology.

  18. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    PubMed Central

    Safafar, Hamed; Hass, Michael Z.; Møller, Per; Holdt, Susan L.; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  19. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.

    PubMed

    Safafar, Hamed; Hass, Michael Z; Møller, Per; Holdt, Susan L; Jacobsen, Charlotte

    2016-07-29

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry.

  20. Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons

    PubMed Central

    Tang, Heng-He; Tan, Yunhua; Liu, Pu-Kun

    2016-01-01

    A compact metallic meta-structure is proposed to realize directional conversion between spoof surface plasmon polaritons (SSPPs) and propagating waves at millimeter wave and THz frequencies. The structure is constructed by embedding two slits or multi-slits array into a subwavelength metallic reflection grating. When the back-side of the structure is illuminated by an oblique beam with a fixed incident angle, the propagating wave will be unidirectionally converted into SSPPs with a considerable efficiency. Both the simulations and experiments demonstrate that the excitation ratio of the SSPPs between the two possible propagating directions (left and right) reaches up to about 340. Furthermore, assisted by the structure, near-field SSPPs can be also converted into far-field narrow beams with particular directions. Through frequency sweeping, wide-angle beam scanning is verified by theory and experiments. The work paves a new way for SSPPs launching and also provides fresh ideas for super-resolution imaging in the longer wavelength range. PMID:27629825

  1. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    SciTech Connect

    Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.; Ponnusamy, Sundaravadivelnathan; Cooke, Peter; Schaub, Tanner; Deng, Shuguang

    2013-08-06

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel sample produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.

  2. Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Tang, Heng-He; Tan, Yunhua; Liu, Pu-Kun

    2016-09-01

    A compact metallic meta-structure is proposed to realize directional conversion between spoof surface plasmon polaritons (SSPPs) and propagating waves at millimeter wave and THz frequencies. The structure is constructed by embedding two slits or multi-slits array into a subwavelength metallic reflection grating. When the back-side of the structure is illuminated by an oblique beam with a fixed incident angle, the propagating wave will be unidirectionally converted into SSPPs with a considerable efficiency. Both the simulations and experiments demonstrate that the excitation ratio of the SSPPs between the two possible propagating directions (left and right) reaches up to about 340. Furthermore, assisted by the structure, near-field SSPPs can be also converted into far-field narrow beams with particular directions. Through frequency sweeping, wide-angle beam scanning is verified by theory and experiments. The work paves a new way for SSPPs launching and also provides fresh ideas for super-resolution imaging in the longer wavelength range.

  3. Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons.

    PubMed

    Tang, Heng-He; Tan, Yunhua; Liu, Pu-Kun

    2016-09-15

    A compact metallic meta-structure is proposed to realize directional conversion between spoof surface plasmon polaritons (SSPPs) and propagating waves at millimeter wave and THz frequencies. The structure is constructed by embedding two slits or multi-slits array into a subwavelength metallic reflection grating. When the back-side of the structure is illuminated by an oblique beam with a fixed incident angle, the propagating wave will be unidirectionally converted into SSPPs with a considerable efficiency. Both the simulations and experiments demonstrate that the excitation ratio of the SSPPs between the two possible propagating directions (left and right) reaches up to about 340. Furthermore, assisted by the structure, near-field SSPPs can be also converted into far-field narrow beams with particular directions. Through frequency sweeping, wide-angle beam scanning is verified by theory and experiments. The work paves a new way for SSPPs launching and also provides fresh ideas for super-resolution imaging in the longer wavelength range.

  4. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    SciTech Connect

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-09-15

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 {mu}m a-Se layer with a maximum gain of {approx}300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor.

  5. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna.

    PubMed

    Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal; Elder, Delwin L; Dalton, Larry R; Hafner, Christian; Leuthold, Juerg

    2015-12-09

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

  6. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna

    PubMed Central

    2015-01-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35 000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain. PMID:26570995

  7. Dissection of Regulatory Elements During Direct Conversion of Somatic Cells into Neurons.

    PubMed

    Soleimani, Tahereh; Falsafi, Nafiseh; Fallahi, Hossein

    2017-02-23

    A revolutionary approach that involves direct conversion of somatic cells into almost any other types of cells showed promising results for regenerative medicine. Currently, producing valuable cell types including neurons, cardiomyocytes and hepatocytes through direct conversion of somatic cells appear to be a feasible option for regenerative medicine. The process involves inducing the cells by chemical cocktails or by expression of different types of transcription factors. In this concept, in vitro neurogenesis considered to be able to produce neuron cells to replace damaged neurons especially in Alzheimer and Parkinson disease. However, early successful experiments followed by major drawbacks such as low differentiation efficiency in producing neurons and detection of various undesirable types of cells in the culture. Therefore, there is not a single optimized common protocol for producing high quality neurons in vitro so far. This is partly due to the lack of our understanding about the precise cellular, genetic, and molecular mechanisms underlying neurogenesis via direct conversion. In the current work, we have employed meta-analysis tools and extensive gene regulatory network analysis on the high through put gene expression data obtained from previous reprogramming protocols to identify central gene regulatory components involved in direct conversion of fibroblasts into neurons. Our results identified miR-9, miR-30 as the most important miRNA and TP53, MYC, JUN, SP1 and SMAD2 considered to be the most important transcription factors. These findings would be useful for direct targeting these hub regulatory elements in order to increase the efficacy and specificity of the conversion protocols. This article is protected by copyright. All rights reserved.

  8. [Optimization of the chest exposure condition with a contrast-detail phantom: evaluation of the flat-panel versus computed radiography systems].

    PubMed

    Kinoshita, Emi; Umezu, Yoshiyuki; Ogawa, Kazuhisa; Katou, Toyoyuki; Arimura, Hisao; Yoshikawa, Hideki; Higashida, Yoshiharu; Ooki, Masafumi; Toyofuku, Fukai

    2004-07-01

    In this study, we evaluated the performance of a digital chest imaging system using a contrast-detail (C-D) phantom. In the initial step, 76 sample images of the C-D phantom were produced by changing the doses from 0.5, 0.75, 1.0, 1.25, 1.5, to 2.0 times the dose for a screen-film (S/F) system. The sample images were analyzed by five radiological technologists and two medical physicists, and the image quality figure (IQF) was determined. The quality of each image was examined, and appropriate doses were determined from the calculated IQF to obtain the same image quality for other digital chest imaging systems. The method of determining IQF from C-D phantom analysis was very useful for comparing image quality and determining radiographic techniques.

  9. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  10. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.

    PubMed

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-06-17

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  11. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  12. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    SciTech Connect

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes, and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.

  13. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device

    NASA Astrophysics Data System (ADS)

    Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-07-01

    We describe the principles of design, fabrication, and operation of a piezoelectric optomechanical crystal with which we demonstrate bi-directional conversion of energy between microwave and optical frequencies. The optomechanical crystal has an optical mode at 1523 nm co-located with a mechanical breathing mode at 3.8 GHz, with a measured optomechanical coupling strength gom/2π of 115 kHz. The breathing mode is driven and detected by curved interdigitated transducers that couple to a Lamb mode in suspended membranes on either end of the optomechanical crystal, allowing the external piezoelectric modulation of the optical signal as well as the converse, the detection of microwave electrical signals generated by a modulated optical signal. We compare measurements to theory where appropriate.

  14. Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-04-25

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  15. Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds.

    PubMed

    Dai, Ping; Harada, Yoshinori; Takamatsu, Tetsuro

    2015-05-01

    Direct conversion of mammalian fibroblasts into induced neuronal (iN) cells has been attained by forced expression of pro-neural transcriptional factors, or by combining defined factors with either microRNAs or small molecules. Here, we show that neuronal cells can be converted from postnatal human fibroblasts into cell populations with neuronal purities of up to >80% using a combination of six chemical compounds. The chemical compound-induced neuronal cells (CiNCs) express neuron-specific proteins and functional neuron markers. The efficiency of CiNCs is unaffected by either the donor's age or cellular senescence (passage number). We propose this chemical direct converting strategy as a potential approach for highly efficient generation of neuronal cells from human fibroblasts for such uses as in neural disease modeling and regenerative medicine.

  16. Low power considerations and design for CMOS VCOs applied for direct conversion receivers at 5GHz

    NASA Astrophysics Data System (ADS)

    Adin, Iñigo; Quemada, Carlos; Solar, Hector; Sedano, Beatriz; Gutierrez, Iñigo

    2007-05-01

    Low power design often requires direct conversion architectures, such as low-IF or zero-IF. Any of these two possibilities needs a low power, low phase noise voltage control oscillator (VCO) in the frequency synthesizer. This work is focused on low power considerations applied to the practical modern conception of this device. Fulfilling the standard specifications (output power, phase noise, frequency range) should be completed with this deeper step. A conscious design leads moreover to an improvement in the results obtained by the classical considerations. The increase of the quality factor of the passive elements is one of the key points, followed by an accurate design of the architecture scheme. Furthermore, lower current consumption provides higher oscillation frequencies and facilitates higher frequency ranges, which follow the trends of modern wireless and wideband communication standards. In order to validate the aforementioned assumptions, a CMOS VCO has been implemented in UMC 0.18μm 1P6M technology, with power consumption down to 3.4mW.

  17. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution.

    PubMed

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng; Qiao, Yan; Hou, Xianglin

    2013-09-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization of the reaction parameters including the screening of 8 co-catalysts was carried out. Among them, AlCl3 and B(OH)3 improved 5-HMF yield, whereas CdCl2, CuCl2 and NH4Cl had no effect. CrCl3, SnCl4 and SnCl2 showed negative effects, i.e. lower yields. Consequently, the optimal reaction conditions were found to be 67 wt.% ZnCl2 aqueous solution, at 120 °C without co-catalyst. The reactions were further studied by in situ NMR, and no intermediate or other byproducts, except humins, were observed. Finally, the substrate scope was expanded from GlcNH2 to N-acetyl-D-glucosamine and various chitosan polymers with different molecular weights, 5-HMF yield from polymers were generally lower than that from GlcNH2.

  18. CMOS linear-in-dB VGA with DC offset cancellation for direct-conversion receivers

    NASA Astrophysics Data System (ADS)

    Qianqian, Lei; Zhiming, Chen; Yin, Shi; Xiaojie, Chu; Zheng, Gong

    2011-10-01

    A low-power high-linearity linear-in-dB variable gain amplifier (VGA) with novel DC offset calibration loop for direct-conversion receiver (DCR) is proposed. The proposed VGA uses the differential-ramp based technique, a digitally programmable gain amplifier (PGA) can be converted to an analog controlled dB-linear VGA. An operational amplifier (OPAMP) utilizing an improved Miller compensation approach is adopted in this VGA design. The proposed VGA shows a 57 dB linear range. The DC offset cancellation (DCOC) loop is based on a continuous-time feedback that includes the Miller effect and a linear range operation MOS transistor to realize high-value capacitors and resistors to solve the DC offset problem, respectively. The proposed approach requires no external components and demonstrates excellent DCOC capability in measurement. Fabricated using SMIC 0.13 μm CMOS technology, this VGA dissipates 4.5 mW from a 1.2 V supply voltage while occupying 0.58 mm2 of chip area including bondpads. In addition, the DCOC circuit shows 500 Hz high pass cutoff frequency (HPCF) and the measured residual DC offset at the output of VGA is less than 2 mV.

  19. Ultra-hard polycrystalline diamond synthesized by direct conversion of graphite using multianvil apparatus

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kurio, A.; Sakamoto, S.; Inoue, T.; Sumiya, H.

    2002-12-01

    Occurrence of sintered polycrystalline diamonds, such as carbonado and ballas, has been reported in some diamond mines, although the production rate has been very limited and their origin has been unsolved. These polycrystalline diamonds are most valuable in industrial applications because they are often harder than single crystal diamonds, whose hardness depends largely upon the crystallographic directions. Synthesis of pure polycrystalline diamond, however, has been unsuccessful, whereas single crystal diamond has been produced using some catalysts or solvents by high-pressure synthesis since its success in 1950's. Here, we report the first synthesis of a pure massive polycrystalline diamond by direct conversion of graphite without any catalysts/solvents under static high pressure and high temperature. Thus synthesized diamond at pressures 12-25 GPa and temperatures 2300-2500°C was optically transparent and colorless, and consisted of minute crystals of typically 1020 nanometers. Moreover, it was found that the Knoop hardness of the present diamonds is 110-140 GPa, which is higher than those of any known materials, including high quality synthetic type IIa diamond

  20. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells.

    PubMed

    Jin, Yoonhee; Seo, Jungmok; Lee, Jung Seung; Shin, Sera; Park, Hyun-Ji; Min, Sungjin; Cheong, Eunji; Lee, Taeyoon; Cho, Seung-Woo

    2016-09-01

    Triboelectric nanogenerators (TENGs) can be an effective cell reprogramming platform for producing functional neuronal cells for therapeutic applications. Triboelectric stimulation accelerates nonviral direct conversion of functional induced neuronal cells from fibroblasts, increases the conversion efficiency, and induces highly matured neuronal phenotypes with improved electrophysiological functionalities. TENG devices may also be used for biomedical in vivo reprogramming.

  1. Small molecule–driven direct conversion of human pluripotent stem cells into functional osteoblasts

    PubMed Central

    Kang, Heemin; Shih, Yu-Ru V.; Nakasaki, Manando; Kabra, Harsha; Varghese, Shyni

    2016-01-01

    The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs. PMID:27602403

  2. X-Ray Detector for Digital Fluoroscopy and Digital Radiography in Medical Imaging

    NASA Astrophysics Data System (ADS)

    Saito, Keiichi

    Recently digital X-ray detectors are developed for medical imaging. By comparison with the structure of X-ray image intensifier system and X-ray flat panel detector (FPD), the dynamic of digital images is more superior and would result in enhanced diagnosis. Moreover the difference from the detective quantum efficiency (DQE) of X-ray image intensifier and FPD is shown as the significant index of X-ray image quality.

  3. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  4. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond.

    PubMed

    Tomkins, Patrick; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2017-02-21

    In the recent years methane has become increasingly abundant. However, transportation costs are high and methane recovered as side product is often flared rather than valorized. The chemical utilization of methane is highly challenging and currently mainly based on the cost-intensive production of synthesis gas and its conversion. Alternative routes have been discovered in academia, though high temperatures are mostly required. However, the direct conversion of methane to methanol is an exception. It can already be carried out at comparably low temperatures. It is challenging that methanol is more prone to oxidation than methane, which makes high selectivities at moderate conversions difficult to reach. Decades of research for the direct reaction of methane and oxygen did not yield a satisfactory solution for the direct partial oxidation toward methanol. When changing the oxidant from oxygen to hydrogen peroxide, high selectivities can be reached at rather low conversions, but the cost of hydrogen peroxide is comparably high. However, major advancements in the field were introduced by converting methane to a more stable methanol precursor. Most notable is the conversion of methane to methyl bisulfate in the presence of a platinum catalyst. The reaction is carried out in 102% sulfuric acid using SO3 as the oxidant. This allows for oxidation of the platinum catalyst and prevents the in situ hydrolysis of methyl bisulfate toward the less stable methanol. With a slightly different motif, the stepped conversion of methane to methanol over copper-zeolites was developed a decade ago. The copper-zeolite is first activated in oxygen at 450 °C, and then cooled to 200 °C and reacts with methane in the absence of oxygen, thus protecting a methanol precursor from overoxidation. Subsequently methanol can be extracted with water. Several active copper-zeolites were found, and the active sites were identified and discussed. For a long time, the process was almost unchanged

  5. Concise review: Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion.

    PubMed

    Velasco, Iván; Salazar, Patricia; Giorgetti, Alessandra; Ramos-Mejía, Verónica; Castaño, Julio; Romero-Moya, Damià; Menendez, Pablo

    2014-11-01

    Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening.

  6. Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 11 for thrid quarter FY 1990

    SciTech Connect

    Foral, M.J.

    1990-12-31

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of the various options will be performed as experimental data become available.

  7. A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation.

    PubMed

    Prasad, Ankshita; Manivannan, Janani; Loong, Daniel T B; Chua, Soo M; Gharibani, Payam M; All, Angelo H

    2016-03-01

    Rapid progress in the field of stem cell therapy and cellular reprogramming provides convincing evidence of its feasibility in treating a wide range of pathologies through autologous cell replacement therapy. This review article describes in detail on three widely used approaches of somatic cell reprogramming: induced pluripotent stem cells, direct conversion and direct reprogramming, in the context of demyelination in the CNS. The potential limitations of each reprogramming technique are reviewed along with their distinct molecular approach to reprogramming. This is followed by an analysis on the scopes and challenges of its translational applications in deriving oligodendrocyte progenitor cells and oligodendrocytes for cell replacement treatment of demyelinating conditions in the CNS.

  8. Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum

    SciTech Connect

    Blachier, F.; M'Rabet-Touil, H.; Darcy-Vrillon, B.; Posho, L.; Duee, P.H. )

    1991-06-28

    In enterocytes isolated from pig jejunum, L-arginine is metabolized to L-citrulline either directly or indirectly through the sequence of reactions catalysed by arginase and ornithine transcarbamylase. In the presence of 5 mM D-glucose, the direct conversion of 1mM L-(guanido-14C) arginine to L-citrulline was increased more than 4 times. Isolated enterocytes exhibit a high glycolytic capacity. Furthermore, the decarboxylation of 5mM D-(1-14C) glucose was 3.6 fold higher than the decarboxylation of 5 mM D-(6-14C) glucose which suggests the presence of a pentose phosphate pathway in enterocytes. Since the production of labelled L-citrulline from L-(guanido-14C) arginine in pig enterocyte homogenates was markedly increased in the presence of NADPH, it is proposed that the direct conversion of L-arginine to L-citrulline could be stimulated by the production of NADPH from D-glucose in the pentose phosphate pathway.

  9. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  10. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors.

  11. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  12. DESIGN OF 2.4 GHZ CMOS DIRECT CONVERSION LNA AND MIXER COMBINATION FOR WIRLESS DATA LINK TRANSCEIVER.

    SciTech Connect

    ZHAO, D.; OCONNOR, P.

    2002-04-10

    Three LNA and mixer combinations in 0.6{micro}m and 0.4{micro}m standard CMOS processes for direct-conversion receiver of 2.4GHz ISM band short-range wireless data-link applications are described in this paper. Taking low power dissipation as first consideration, these designs, employing differential common-source LNA and double balanced mixer architectures, achieve total conversion gain as high as 42.4dB, DSB noise figure as low as 9.5dB, output-referred IP3 as high as of 21.3dBm at about 4mA DC current consumption. This proves it is possible to apply standard CMOS process to implement receiver front-end with low power dissipation for this kind of application, but gain changeable LNA is needed to combat the dominant flicker noise of the mixer in order to achieve acceptable sensitivity and dynamic range at the same time.

  13. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  14. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  15. Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh; Xu, Weizong

    2016-05-01

    We have created a new state of BN (named Q-BN) through rapid melting and super undercooling and quenching by using nanosecond laser pulses. Phase pure c-BN is formed either by direct quenching of super undercooled liquid or by nucleation and growth from Q-BN. Thus, a direct conversion of hexagonal boron nitride (h-BN) into phase-pure cubic boron nitride (c-BN) is achieved by nanosecond pulsed laser melting at ambient temperatures and atmospheric pressure in air. According to the P-T phase diagram, the transformation from h-BN into c-BN under equilibrium processing can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa or 3700 K/7.0 GPa with a recent theoretical refinement. Using nonequilibrium nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to the formation of a new phase, named as Q-BN. We present detailed characterization of Q-BN and c-BN layers by using Raman spectroscopy, high-resolution scanning electron microscopy, electron-back-scatter diffraction, high-resolution TEM, and electron energy loss spectroscopy, and discuss the mechanism of formation of nanodots, nanoneedles, microneedles, and single-crystal c-BN on sapphire substrate. We have also deposited diamond by pulsed laser deposition of carbon on c-BN and created c-BN/diamond heterostructures, where c-BN acts as a template for epitaxial diamond growth. We discuss the mechanism of epitaxial c-BN and diamond growth on lattice matching c-BN template under pulsed laser evaporation of amorphous carbon, and the impact of this discovery on a variety of applications.

  16. TU-EF-207-00: Advances in Breast Imaging

    SciTech Connect

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  17. Changing from image intensifier to flat detector technology for interventional cardiology procedures: a practical point of view.

    PubMed

    Bokou, C; Schreiner-Karoussou, A; Breisch, R; Beissel, J

    2008-01-01

    A small-scale internal audit has been used to evaluate the impact of the use of a dynamic flat panel detector in the clinical routine in the National Interventional Cardiology Centre in Luxembourg. The parameters tested during commissioning and constancy control of an X-ray system, the introduction of new clinical protocols, the patient and the personal staff dosimetry were considered. The technical parameters tested by the hospital physicist stay the same as for the image intensifier. No innovative protocols have been adopted due to the existence of the flat panel detector. A reduction in dose was noted after the installation of a flat detector, due mostly to the continuing education of the interventional cardiologists as well as the initial calibration of the radiological system. The understanding of the X-ray system and its possibilities is vital for the optimisation of clinical procedures in patient and staff exposure.

  18. Neutron Imaging Developments at LANSCE [PowerPoint

    SciTech Connect

    Nelson, Ronald Owen; Hunter, James F.; Schirato, Richard C.; Vogel, Sven C.; Swift, Alicia L.; Ickes, Timothy Lee; Ward, William Carl; Losko, Adrian Simon; Tremsin, Anton; Sevanto, Sanna Annika; Espy, Michelle A.; Dickman, Lee Thoresen; Malone, Michael

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800-MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  19. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  20. Characterization of a prototype tabletop x-ray CT breast imaging system

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Glick, Stephen J.; Gong, Xing; Didier, Clay; Mah'd, Mufeed

    2007-03-01

    Planar X-ray mammography is the standard medical imaging modality for the early detection of breast cancer. Based on advancements in digital flat-panel detector technology, dedicated x-ray computed tomography (CT) mammography is a modality under investigation that offers the potential for improved breast tumor imaging. We have implemented a prototype half cone-beam CT breast imaging system that utilizes an indirect flat-panel detector. This prototype can be used to explore and evaluate the effect of varying acquisition and reconstruction parameters on image quality. This report describes our system and characterizes the performance of the system through the analysis of Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS). All CT reconstructions were made using Feldkamp's filtered backprojection algorithm. The 3D MTF was determined by the analysis of the plane spread function (PlSF) derived from the surface spread function (SSF) of reconstructed 6.3mm spheres. 3D NPS characterization was performed through the analysis of a 3D volume extracted from zero-mean CT noise of air reconstructions. The effect of varying locations on MTF and the effect of different Butterworth filter cutoff frequencies on NPS are reported. Finally, we present CT images of mastectomy excised breast tissue. Breast specimen images were acquired on our CTMS using an x-ray technique similar to the one used during performance characterization. Specimen images demonstrate the inherent CT capability to reduce the masking effect of anatomical noise. Both the quantitative system characterization and the breast specimen images continue to reinforce the hope that dedicated flat-panel detector, x-ray cone-beam CT will eventually provide enhanced breast cancer detection capability.

  1. Real-time imaging detectors for portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Cheng, Chee-Wai

    1993-12-01

    This paper reviews the status of real-time imaging systems which are used in radiation-therapy for radiotherapy localization and verification. Imaging systems under review include (1) metal- fluorescent screens, optically coupled to video cameras; (2) metal-phosphor screen in direct contact with two-dimensional photo-diode array (flat panel detector); (3) two-dimensional liquid ionization chamber; and (4) linear diode arrays. These systems permit frequent verification during the treatment and have been shown to be very useful. Unfortunately the image quality achieved, while impressive considering the short time the devices have been on the market, is significantly inferior to that which is available from the metal/film combination (port film).

  2. TU-EF-207-01: Introductory Remarks on Recent Advances in Breast Imaging

    SciTech Connect

    Karellas, A.

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  3. Thin-film transistor array technology for high-performance direct-conversion x-ray sensors

    NASA Astrophysics Data System (ADS)

    den Boer, Willem; Aggas, Steven; Byun, Young H.; Gu, Tieer; Zhong, Johnny Q.; Thomsen, Scott V.; Jeromin, Lothar S.; Lee, Denny L. Y.

    1998-07-01

    Thin Film Transistor (TFT) array technology is presented for Digital X-ray Sensors in Direct Radiography applications. Circuit simulations were performed to optimize the design of the TFT array. The sensor array uses a combination of a mushroom electrode with a high fill factor of 86% and a polymer passivation dielectric to minimize column capacitance and improve signal-to-noise ratio. A 14 in. X 8.5 in. sensor array with 1536 X 2560 pixels was developed using this technology. The TFT arrays are processed entirely in Class 1 clean room environments to eliminate line defects and minimize pixel defects. The best 14 in. X 8.5 in. panels have exhibited fewer than 0.001% pixel defects, as detected during in process testing prior to Se coating. In typical image quality comparisons with conventional X-ray film/screen combinations, the digital X-ray sensor exhibited equal or better performance than film-screens. Clinical studies were also conducted. Radiologists concluded that diagnostically significant projection radiographic images can be produced with the new digital X-ray sensor that are equivalent or superior to conventional film/screen images at the same X-ray exposures. The detector recently received FDA approval.

  4. Multispectral single-scan lung imaging system: initial feasibility

    NASA Astrophysics Data System (ADS)

    Besson, Guy M.; Crocker, Kenneth E.

    2006-03-01

    This paper describes a system for multi-spectral single-scan lung imaging. The proposed approach relies on a low noise detector sampled at a high rate. The proposed method overcomes limitations of CCD time-and-delay integration slot-scanning systems. The system design and preliminary specifications are described. The results of initial spectral and system simulations in support of system feasibility per the outlined specifications are described. Initial investigations support the potential of the proposed approach to alleviate four shortcomings of the current digital flat-panel approach to chest radiography: (i) by enabling dynamic multi-spectral imaging in a single scan, the approach reduces the time delay between exposures, thus reducing sensitivity to motion; (ii) the approach enables dynamic technique feedback and technique adaptation, eliminating the need for a pre-exposures and reducing the likelihood of poor x-ray techniques in local image areas; (iii) by enabling direct measurement of the scatter field, the proposed method allows further scatter correction resulting in image quality improvements; (iv) finally, full-frame sampling of a digital detector allows imaging of the beam penumbra, thereby reclaiming the detection quantum efficiency loss due to over-collimation in current TDI slot-scanning approach; the resulting DQE potentially exceeds that of flat-panel detectors by a factor up to two.

  5. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    SciTech Connect

    Hu, Yue-Houng Zhao, Wei

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  6. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  7. Beam-Steerable Flat-Panel Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  8. Tests of Flat Panels with Four Types of Stiffeners

    DTIC Science & Technology

    1943-01-01

    within one-half of 1 percent by a standard tensile test. in this test two Huggenberger tensometers with 1-inch gage lengths were used to measure the...into three equal parts by a lever arrsngement, the loads being 25-pound bags of shot. This lever system wss designed to fit all four stiffener spacings...the platens about an axis normal to the plane of the specimen was very small. In the second and third groups of tests, tensometers were also attached

  9. Optically Tiled Flat Panel Displays. A Feasibility Study

    DTIC Science & Technology

    1992-11-01

    distortion. The fabrication of a traditional rotational symmetric Fresnel lens could be possible using diamond turning methods. However the rotational...and allow the microlens array to be located next to the LCD module output polarizer and immediately followed by the negative Fresnel lens and then the...microlenses remapping the pixels onto a diffuser through a 4 negative Fresnel lens (Figure 11). This method could tile together LCD modules separated by a

  10. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    PubMed Central

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S. H.; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    ABSTRACT Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  11. Development of breast phantoms for use in breast imaging simulation

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael

    Dedicated x-ray breast computed tomography (BCT) and breast tomosynthesis (BT) using a cone-beam flat-panel detector system are modalities under investigation by a number of research teams. Several teams, including the University of Massachusetts Medical School (UMMS) Tomographic Breast Imaging Lab (TBIL), have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system. TBIL researchers also use computer simulation software to investigate various x-ray acquisition and reconstruction parameters. I have developed a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens in order to create an ensemble of three-dimensional (3D) digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. The resulting breast phantoms can then be used to simulate realistic projection data for both BCT and BT systems thereby providing a powerful evaluation and optimization mechanism for research and development of novel breast imaging systems as well as the optimization of imaging techniques for such systems.

  12. Development of Rapidly Fermenting Strains of Saccharomyces diastaticus for Direct Conversion of Starch and Dextrins to Ethanol

    PubMed Central

    Laluce, Cecilia; Mattoon, James R.

    1984-01-01

    Alcoholic fermentation, growth, and glucoamylase production by 12 strains of Saccharomyces diastaticus were compared by using starch and dextrins as substrates. Haploid progeny produced from a rapidly fermenting strain, SD2, were used for hybridization with other S. diastaticus and Saccharomyces cerevisiae haploids. Alcoholic fermentation and enzyme production by hybrid diploids and their haploid parents were evaluated. Although the dosage of the STA or DEX (starch or dextrin fermentation) genes may enhance ethanol production, epistatic effects in certain strain combinations caused decreases in starch-fermenting activity. Both the nature of the starch or dextrin used and the fermentation medium pH had substantial effects on alcohol production. Commercial dextrin was not as good a substrate as dextrins prepared by digesting starch with α-amylase. Crude manioc starch digested by α-amylase was fermented directly by selected hybrids with almost 100% conversion efficiency. The manioc preparation contained adequate minerals and growth factors. This procedure should be suitable for direct commercial application in manioc-producing regions in Brazil and elsewhere. A rapidly fermenting haploid strain, SD2-A8, descended from strain SD2, contains two unlinked genes controlling formation of extracellular amylase. A convenient method for detecting these genes (STA genes) in replica plates containing large numbers of meiotic progeny was developed. Images PMID:16346584

  13. Phase matching considerations in second harmonic generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology

    NASA Astrophysics Data System (ADS)

    LaComb, Ronald; Nadiarnykh, Oleg; Townsend, Sallie S.; Campagnola, Paul J.

    2008-04-01

    We present a heuristic treatment which relates SHG image intensities, signal directionality, and observed morphology to the physical structure of collagen and cellulose fibrillar tissues. The SHG creation model is based upon relaxed phase matching conditions which account for dispersion, randomness, and axial momentum contributions from the media, and includes a mathematical treatment which relates SHG conversion efficiency to fibril diameter and packing through the inclusion of potential intensity amplification resultant from quasi-phase matching (QPM). A direct consequence of this theory is that SHG in biological tissues is not strictly a coherent process, and that the forward directed SHG has a longer coherence length than the backward component, Through this treatment, we show that the emission directionality and also conversion efficiency do not arise solely from the fibril size but also depend on packing density and order of the inter-fibril structure. We demonstrate these principles in comparing the SHG response in normal and Osteogenesis Imperfecta (OI) skin. We show that the observed directionality and decreased relative intensity in the diseased state is consistent with phase matching conditions arising from the decreased fibril size and more random assembly. We further use this theory to explain the differences in morphology seen in forward and backward collected SHG in fibrillar tissues (e.g., collagenous and cellulosic). Specifically, we attribute segmented appearance to destructive interference between small fibrils separated by less than the coherence length. We suggest the approach based on relaxed phasematching conditions is general in predicting the SHG response in tissues and may be broadly applicable in interpreting the SHG contrast for diagnostic applications.

  14. WE-FG-207A-05: Dedicated Breast CT as a Diagnostic Imaging Tool: Physics and Clinical Feasibility.

    PubMed

    Karellas, A

    2016-06-01

    dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1-8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In

  15. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  16. First DMAP-mediated direct conversion of Morita-Baylis-Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates.

    PubMed

    Ayadi, Marwa; Elleuch, Haitham; Vrancken, Emmanuel; Rezgui, Farhat

    2016-01-01

    An efficient synthesis of a series of γ-ketoallylphosphonates through a direct conversion of both primary and secondary Morita-Baylis-Hillman (MBH) alcohols by trialkyl phosphites with or without DMAP, used as additive, and under solvent-free conditions, is described herein for the first time. Subsequently, a highly regioselective Luche reduction of the primary phosphonate 2a (R = H) gave the corresponding γ-hydroxyallylphosphonate 5 that further reacted with tosylamines in the presence of diiodine (15 mol %) as a catalyst, affording the corresponding SN2-type products 6a-d in 63 to 70% isolated yields. Alternatively, the alcohol 5 produced the corresponding acetate 7 which, mediated by Ce(III), was successfully converted into the corresponding γ-aminoallylphosphonates 8a-d.

  17. First DMAP-mediated direct conversion of Morita–Baylis–Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates

    PubMed Central

    Ayadi, Marwa; Elleuch, Haitham; Vrancken, Emmanuel

    2016-01-01

    An efficient synthesis of a series of γ-ketoallylphosphonates through a direct conversion of both primary and secondary Morita–Baylis–Hillman (MBH) alcohols by trialkyl phosphites with or without DMAP, used as additive, and under solvent-free conditions, is described herein for the first time. Subsequently, a highly regioselective Luche reduction of the primary phosphonate 2a (R = H) gave the corresponding γ-hydroxyallylphosphonate 5 that further reacted with tosylamines in the presence of diiodine (15 mol %) as a catalyst, affording the corresponding SN2-type products 6a–d in 63 to 70% isolated yields. Alternatively, the alcohol 5 produced the corresponding acetate 7 which, mediated by Ce(III), was successfully converted into the corresponding γ-aminoallylphosphonates 8a–d. PMID:28144364

  18. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites

    SciTech Connect

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2011-06-17

    Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Reflective and transmissive CR ScanHead technology on needle image plates

    NASA Astrophysics Data System (ADS)

    Frankenberger, Jorg; Mair, Stephan; Herrmann, Clemens; Lamotte, Johan; Fasbender, Robert

    2005-04-01

    The image quality of needle-image-plate (NIP) Computed Radiography (CR) scanners based on ScanHead technology was optimized. In order to get the best image quality for different applications, the influence of the phosphor layer thickness on the detective quantum efficiency (DQE) for different beam qualities was investigated. We compared a cassette-based, reflective CR-NIP-scanner to a new, transmissive flat-panel CR scanner with fixed, mounted NIP. The image quality was analyzed by DQE- and modulation transfer function (MTF) measurements supported by an observer study. The NIP systems reached DQE values up to three times higher than that of high-quality, state of the art CR scanners independent of the scanning principle. This allows a dose reduction by a factor of two to three without loss of image quality for both scanning systems. For high tube voltages, the variation of the phosphor layer thickness results in a DQE maximum at relatively large thicknesses. For lower tube voltages the DQE is less dependent on the layer thickness, reaching excellent values already at considerably lower thicknesses. Consequently, CR scanners can be adapted to different applications by using NIPs with different thicknesses. This could be easily realized for the cassette based system, but not for the flat-panel system with fixed IP. The latter demands a compromise with respect to the phosphor thickness, to yield superior image quality for all applications.

  20. A multi-platform approach to image guided radiation therapy (IGRT).

    PubMed

    Amies, Christopher; Bani-Hashemi, Ali; Celi, Juan-Carlos; Grousset, Guillaume; Ghelmansarai, Farhad; Hristov, Dimitre; Lane, Derek; Mitschke, Matthias; Singh, Ajit; Shukla, Himanshu; Stein, Joerg; Wofford, Mark

    2006-01-01

    Siemens Medical Solutions, Oncology Care Systems Group (SMSOCSG) is supporting the development of several technologies that enable image acquisition and decision making processes required for IGRT in various clinical settings. Four such technologies are presented including: (i) the integration of a traditional multi-slice computed tomography (CT) scanner "on rails" with a C-arm gantry linear accelerator; (ii) the development of a high sensitivity, fast, megavoltage (MV) electronic portal imaging device capable of clinical MV Conebeam CT (MVCBCT) reconstruction and fluoroscopy mounted on a C-arm gantry linear accelerator; (iii) the modification of a mobile C-arm with flat panel kilovoltage (kV) diagnostic imager; and (iv) the development of an in-line megavoltage and kilovoltage flat panel imaging system that has the potential to image both anatomical and dosimetric information in "real-time" utilizing the traditional C-arm gantry linear accelerator geometry. Each method of IGRT has unique as well as complementary qualities which are discussed from both a clinical and technical perspective.

  1. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  2. X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Funaki, Shota; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2017-04-01

    To reduce the radiation dose required in medical X-ray diagnoses, we propose a high-sensitivity direct-conversion-type silicon X-ray sensor that uses trench-structured photodiodes. This sensor is advantageous in terms of its long device lifetime, noise immunity, and low power consumption because of its low bias voltage. With this sensor, it is possible to detect X-rays with almost 100% efficiency; sensitivity can therefore be improved by approximately 10 times when compared with conventional indirect-conversion-type sensors. In this study, a test chip was fabricated using a single-poly single-metal 0.35 µm process. The formed trench photodiodes for the X-ray sensor were approximately 170 and 300 µm deep. At a bias voltage of 25 V, the absorbed X-ray-to-current signal conversion efficiencies were 89.3% (theoretical limit; 96.7%) at a trench depth of 170 µm and 91.1% (theoretical limit; 94.3%) at a trench depth of 300 µm.

  3. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene

    SciTech Connect

    Liu, Changjun; Sun, Junming; Smith, Colin; Wang, Yong

    2013-07-15

    ZnxZryOz mixed oxides were studied for direct conversion of ethanol to isobutene. Reaction conditions (temperature, residence time, ethanol molar fraction, steam to carbon ratio), catalyst composition, and pretreatment conditions were investigated, aiming at high-yield production of isobutene under industrially relevant conditions. An isobutene yield of 79% was achieved with an ethanol molar fraction of 8.3% at 475 °C on fresh Zn1Zr8O17 catalysts. Further durability and regeneration tests revealed that the catalyst exhibited very slow deactivation via coking formation with isobutene yield maintained above 75% for more than 10 h time-on-stream. More importantly, the catalysts activity in terms of isobutene yield can be readily recovered after in situ calcination in air at 550 °C for 2.5 h. XRD, TPO, IR analysis of adsorbed pyridine (IR-Py), and nitrogen sorption have been used to characterize the surface physical/chemical properties to correlate the structure and performance of the catalysts.

  4. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  5. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  6. Development of Prior Image-Based, High-Quality, Low-Dose Kilovoltage Cone Beam CT for Use in Adaptive Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    mathematically ready for reconstruction. 1.1.4 Scatter compensation for synthesized physical phantom data Compared to diagnostic CT where X - ray beam spanning a...Truncated, Diagnostic -CT Data", SPIE Medical Imaging, Lake Buena Vista, Florida, 2013 37. X . Han, E. Pearson, C. A. Pelizzari, X . Pan, “Investigation of...Prince, C. A. Pelizzari, and X . Pan,“Evaluation of sparse-view reconstruction from flat - panel -detector cone-beam CT,” Physics in Medicine and Biology

  7. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  8. Fundamental Discovery of New Phases and Direct Conversion of Carbon into Diamond and hBN into cBN and Properties

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh

    2016-04-01

    We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel

  9. TOPICAL REVIEW: Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.

    2002-03-01

    A review of electronic portal imaging devices (EPIDs) used in external beam, megavoltage radiation therapy is presented. The review consists of a brief introduction to the definition, role and clinical significance of portal imaging, along with a discussion of radiotherapy film systems and the motivations for EPIDs. This is followed by a summary of the challenges and constraints inherent to portal imaging along with a concise, historical review of the technologies that have been explored and developed. The paper then examines, in greater depth, the two first-generation technologies that have found widespread clinical use starting from the late 1980s. This is followed by a broad overview of the physics, operation, properties and advantages of active matrix, flat-panel, megavoltage imagers, presently being commercially introduced to clinical environments or expected to be introduced in the future. Finally, a survey of contemporary research efforts focused on improving portal imaging performance by addressing various weaknesses in existing commercial systems is presented.

  10. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  11. Advanced Image Intensifier: a 60°field-of-view night vision system with integral electroluminescent display

    NASA Astrophysics Data System (ADS)

    Crenshaw, David A.; Branigan, Robert G.

    1996-06-01

    The Advanced Image Intensifier Advanced Technology Demonstrator is an Army program to develop and demonstrate the next generation of night vision goggle using revolutionary new technologies to improve system performance and expand the capability of currently fielded image intensifier devices. The Advanced Image Intensifier is a helmet mounted imaging and display system that exploits recent advances in diffractive optics, miniature flat panel displays, image intensifier tube technology and manufacturing processes. The system will demonstrate significantly enhanced operational performance by increasing low-light resolution by greater than 25 percent; increasing field of view from 40 degrees to 60 degrees; improving high light performance; and integrating a display for viewing thermal imagery, computer graphics, and symbology. The results of these improvements will increase the night fighting capability, operational effectiveness, mobilty, versatility, and survivability of the dismounted soldier and aviator.

  12. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  13. X-ray Induced Effects on Photocurrents in Amorphous Se Films

    NASA Astrophysics Data System (ADS)

    Shimakawa, Koichi; Fukami, Kenji; Kishi, Hiroki; Belev, George; Kasap, Safa

    2007-03-01

    Amorphous selenium (a-Se) is one of the X-ray photoconductors that is available for use in recently developed direct conversion flat panel X-ray image detectors for medical imaging. To obtain a better understanding of trapping and recombination effects in a-Se, we have studied light and X-ray induced photocurrents in a-Se films. The residual photocurrent, after X-ray exposure, decreases in sandwich cells whereas it increases in coplanar cells. These effects are recovered over a time scale of hours. We show that the results can be interpreted by using valence alternation pair (VAP) type charged defects.

  14. [Digital radiography und fluoroscopy. Basics of technology, imaging properties and applications].

    PubMed

    Loose, R; Busch, H P; Wucherer, M

    2005-08-01

    For 110 years, x-rays and special x-ray films have been used in medical diagnostics. New developments in the field of x-ray techniques, and especially new computer applications, have led to new imaging techniques which have substantially expanded the spectrum of radiological examinations. In spite of significant technological and medical advances in the field of MRI and multidetector-CT, radiographic images of the lungs, skeleton and organs still comprise up to 80% of the routine radiological workload. The increasing availability of digital detectors has led to the continual replacement of conventional film/screen systems. The inclusion of digital mammography was delayed due to the higher requirements for spatial resolution. For about 2 years, dynamic flat panel detectors have started to replace the image intensifier which has been used in fluoroscopy for 40 years.

  15. Sci—Thur PM: Imaging — 03: A novel Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect

    Teymurazyan, A; Rowlands, J A; Pang, G

    2014-08-15

    Electronic Portal Imaging Devices (EPIDs) have been used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Recently a new concept of a high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibres aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required. In this work we propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index, a much superior light collection efficiency is achieved. Our Monte Carlo studies have shown that the modified new CPID has a QE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current flat-panel based EPIDs. Furthermore it has been demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.

  16. Imaging properties of digital magnification radiography.

    PubMed

    Boyce, Sarah J; Samei, Ehsan

    2006-04-01

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 microm) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR2 efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ

  17. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  18. Development of a QA phantom and automated analysis tool for geometric quality assurance of on-board MV and kV x-ray imaging systems.

    PubMed

    Mao, Weihua; Lee, Louis; Xing, Lei

    2008-04-01

    The medical linear accelerator (linac) integrated with a kilovoltage (kV) flat-panel imager has been emerging as an important piece of equipment for image-guided radiation therapy. Due to the sagging of the linac head and the flexing of the robotic arms that mount the x-ray tube and flat-panel detector, geometric nonidealities generally exist in the imaging geometry no matter whether it is for the two-dimensional projection image or three-dimensional cone-beam computed tomography. Normally, the geometric parameters are established during the commissioning and incorporated in correction software in respective image formation or reconstruction. A prudent use of an on-board imaging system necessitates a routine surveillance of the geometric accuracy of the system like the position of the x-ray source, imager position and orientation, isocenter, rotation trajectory, and source-to-imager distance. Here we describe a purposely built phantom and a data analysis software for monitoring these important parameters of the system in an efficient and automated way. The developed tool works equally well for the megavoltage (MV) electronic portal imaging device and hence allows us to measure the coincidence of the isocenters of the MV and kV beams of the linac. This QA tool can detect an angular uncertainty of 0.1 degrees of the x-ray source. For spatial uncertainties, such as the source position, the imager position, or the kV/MV isocenter misalignment, the demonstrated accuracy of this tool was better than 1.6 mm. The developed tool provides us with a simple, robust, and objective way to probe and monitor the geometric status of an imaging system in a fully automatic process and facilitate routine QA workflow in a clinic.

  19. Tomosynthesis imaging: At a translational crossroads

    PubMed Central

    Dobbins, James T.

    2009-01-01

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years. PMID:19610284

  20. Temporal change analysis for improved tumor detection in dedicated CT breast imaging using affine and free-form deformation

    NASA Astrophysics Data System (ADS)

    Dey, Joyoni; O'Connor, J. Michael; Chen, Yu; Glick, Stephen J.

    2008-03-01

    Preliminary evidence has suggested that computerized tomographic (CT) imaging of the breast using a cone-beam, flat-panel detector system dedicated solely to breast imaging has potential for improving detection and diagnosis of early-stage breast cancer. Hypothetically, a powerful mechanism for assisting in early stage breast cancer detection from annual screening breast CT studies would be to examine temporal changes in the breast from year-to-year. We hypothesize that 3D image registration could be used to automatically register breast CT volumes scanned at different times (e.g., yearly screening exams). This would allow radiologists to quickly visualize small changes in the breast that have developed during the period since the last screening CT scan, and use this information to improve the diagnostic accuracy of early-stage breast cancer detection. To test our hypothesis, fresh mastectomy specimens were imaged with a flat-panel CT system at different time points, after moving the specimen to emulate the re-positioning motion of the breast between yearly screening exams. Synthetic tumors were then digitally inserted into the second CT scan at a clinically realistic location (to emulate tumor growth from year-to-year). An affine and a spline-based 3D image registration algorithm was implemented and applied to the CT reconstructions of the specimens acquired at different times. Subtraction of registered image volumes was then performed to better analyze temporal change. Results from this study suggests that temporal change analysis in 3D breast CT can potentially be a powerful tool in improving the visualization of small lesion growth.

  1. Three-dimensional imaging with simultaneous reproduction of two image elements in one display pixel by information-dependent polarization coding.

    PubMed

    Ezhov, Vasily

    2010-05-20

    Information-dependent (active) polarization encoding can be used to simultaneously present two image-resolvable elements [elements of left and right views of a three-dimensional (3D) scene] in a single display pixel. Polarization decoding, with the help of passive polarization filters, makes it possible to separate elements of left and right views and to observe them independently by left and right eyes. In this paper the basic theory of such 3D displays is developed. The relevant solutions of the general equation of light elliptical polarization are obtained in all important cases: cases of controlled birefringence and/or optical activity as three basic controlled polarization encoders. The obtained formulas are essentially the forms of signals that should control the values of birefringence and optical activity to realize the required polarization encoding. Optical schemes of flat-panel direct-view stereoscopic and autostereoscopic displays with the use of liquid crystal polarization encoding matrices are considered.

  2. Evaluation of patient dose using a virtual CT scanner: Applications to 4DCT simulation and Kilovoltage cone-beam imaging

    NASA Astrophysics Data System (ADS)

    DeMarco, J. J.; McNitt-Gray, M. F.; Cagnon, C. H.; Angel, E.; Agazaryan, N.; Zankl, M.

    2008-02-01

    This work evaluates the effects of patient size on radiation dose from simulation imaging studies such as four-dimensional computed tomography (4DCT) and kilovoltage cone-beam computed tomography (kV-CBCT). 4DCT studies are scans that include temporal information, frequently incorporating highly over-sampled imaging series necessary for retrospective sorting as a function of respiratory phase. This type of imaging study can result in a significant dose increase to the patient due to the slower table speed as compared with a conventional axial or helical scan protocol. Kilovoltage cone-beam imaging is a relatively new imaging technique that requires an on-board kilovoltage x-ray tube and a flat-panel detector. Instead of porting individual reference fields, the kV tube and flat-panel detector are rotated about the patient producing a cone-beam CT data set (kV-CBCT). To perform these investigations, we used Monte Carlo simulation methods with detailed models of adult patients and virtual source models of multidetector computed tomography (MDCT) scanners. The GSF family of three-dimensional, voxelized patient models, were implemented as input files using the Monte Carlo code MCNPX. The adult patient models represent a range of patient sizes and have all radiosensitive organs previously identified and segmented. Simulated 4DCT scans of each voxelized patient model were performed using a multi-detector CT source model that includes scanner specific spectra, bow-tie filtration, and helical source path. Standard MCNPX tally functions were applied to each model to estimate absolute organ dose based upon an air-kerma normalization measurement for nominal scanner operating parameters.

  3. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  4. A compact gamma camera for biological imaging

    SciTech Connect

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  5. Direct Conversion of Radioisotope Energy to Electricity

    SciTech Connect

    Marks Prelas; Alexey Spitsyn; Alejandro Suarez; Eric Stienfelds; Dickerson Moreno; Bia-Ling Hsu; Tushar Ghosh; Robert Tompson; Sudarshan Loyalka; Dabir Viswanath

    2003-09-09

    A new chemical reactor has been tested for Field Enhanced Diffusion by Optical Activation doping and purification of SiC, GaN and AlN films. Different conditions have been used on SiC, GaN and AlN samples including temperature variation, electrical field variation, variations in electrical current and optical activation. A 5mW (630-680) nm laser was used for optical activation. It was observed that optical activation has a major effect on ion drift rates. It was also observed that the magnitude of the electrical current also enhanced ion drift rates by a postulated current drag mechanism. I-V characteristic curves were measured to verify changes in the electrical properties of the samples SIMS was used to analyze the concentrations of impurities in the film samples before and after treatment. It has been demonstrated that the field-enhanced diffusion by optical activation method can dope and purify the films. As a result, the electrical properties of the wafers have been significantly improved during treatment especially in cases where a laser is used.

  6. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors.

    PubMed

    Pulecio, Julian; Alejo-Valle, Oriol; Capellera-Garcia, Sandra; Vitaloni, Marianna; Rio, Paula; Mejía-Ramírez, Eva; Caserta, Ilaria; Bueren, Juan A; Flygare, Johan; Raya, Angel

    2016-10-11

    Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs) derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41(+), display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  7. Highly sensitive direct conversion ultrasound interferometer

    NASA Astrophysics Data System (ADS)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  8. Chest radiography with a large-area detector based on cesium-iodide/amorphous-silicon technology: image quality and dose requirement in comparison with an asymmetric screen-film system.

    PubMed

    Strotzer, M; Völk, M; Reiser, M; Lenhart, M; Manke, C; Gmeinwieser, J; Holzknecht, N; Link, J; Feuerbach, S

    2000-07-01

    The purpose of this study was to evaluate a large-area, flat-panel X-ray detector, which uses cesium-iodide (CsI) and amorphous silicon (a-Si). Conventional images were compared with digital images acquired with equal dose (2.5 microGy) and with 50% dose reduction. Fifteen consecutive patients were studied prospectively using an asymmetric screen-film system (detector dose, 2.5 microGy). Digital images were taken from the same patients in a posteroanterior view with detector doses of 2.5 and 1.25 microGy, respectively. The CsI/a-Si active-matrix imager had a panel-size of 43 x 43 cm, a matrix of 3 x 3k, and a pixel-pitch of 143 microm. Hard copies were presented in a random order to eight independent observers, who rated image quality according to six subjective quality criteria. Statistical significance of differences was evaluated with Student's t test for paired samples (confidence level, 95%). Digital radiographs with 2.5 and 1.25 microGy were superior to conventional images regarding all quality criteria. Statistically significant differences were observed for five of six criteria at a detector dose of 2.5 microGy and for only one quality feature at 1.25 microGy. Flat-panel digital imagers based on CsI/a-Si technique have the potential to replace conventional systems and might allow a reduction of radiation dose by 50% without loss of image quality.

  9. Noise simulation system for determining imaging conditions in digital radiography

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Ichikawa, K.; Matsubara, K.; Kawashima, H.

    2012-03-01

    Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. We propose a computerized method for determining optimized imaging conditions by use of simulated images. This study was performed to develop a prototype system for image noise and to ensure consistency between the resulting images and actual images. An RQA5 X-ray spectrum was used for determination of input-output characteristics of a flat-panel detector (FPD). The number of incident quantum to the detector per pixel (counts/pixel) was calculated according to the pixel size of the detector and the quantum number in RQA5 determined in IEC6220-1. The relationship among tube current-time product (mAs), exposure dose (C/kg) at the detector surface, the number of incident quanta (counts/pixel), and pixel values measured on the images was addressed, and a conversion function was then created. The images obtained by the FPD was converted into a map of incident quantum numbers and input into random-value generator to simulate image noise. In addition, graphic user interface was developed to observe images with changing image noise and exposure dose levels, which have trade-off relationship. Simulation images provided at different noise levels were compared with actual images obtained by the FPD system. The results indicated that image noise was simulated properly both in objective and subjective evaluation. The present system could allow us to determine necessary dose from image quality and also to estimate image quality from any exposure dose.

  10. Patient doses and image quality in digital chest radiology.

    PubMed

    Salát, D; Nikodemová, D

    2008-01-01

    Chest X-ray examination is one of the most frequently required procedures used in clinical practice. For studying the image quality of different X-ray digital systems and for the control of patient doses during chest radiological examinations, the standard anthropomorphic lung/chest phantom RSD 330 has been used and exposed in different digital modalities available in Slovakia. To compare different techniques of chest examination, a special software has been developed that enables researchers to compare digital imaging and communications in medicine header images from different digital modalities, using a special viewer. In this paper, this special software has been used for an anonymous correspondent audit for testing image quality evaluation by comparing various parameters of chest imaging, evaluated by 84 Slovak radiologists. The results of the comparison have shown that the majority of the participating radiologists felt that the highest image quality is reached with a flat panel, assessed by the entrance surface dose value, which is approximately 75% lower than the diagnostic reference level of chest examination given in the Slovak legislation. Besides the results of the audit, the possibilities of using the software for optimisation, education and training of medical students, radiological assistants, physicists and radiologists in the field of digital radiology will be described.

  11. Advances in computed radiography systems and their physical imaging characteristics.

    PubMed

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  12. Real-time image-processing algorithm for markerless tumour tracking using X-ray fluoroscopic imaging

    PubMed Central

    2014-01-01

    Objective: To ensure accuracy in respiratory-gating treatment, X-ray fluoroscopic imaging is used to detect tumour position in real time. Detection accuracy is strongly dependent on image quality, particularly positional differences between the patient and treatment couch. We developed a new algorithm to improve the quality of images obtained in X-ray fluoroscopic imaging and report the preliminary results. Methods: Two oblique X-ray fluoroscopic images were acquired using a dynamic flat panel detector (DFPD) for two patients with lung cancer. The weighting factor was applied to the DFPD image in respective columns, because most anatomical structures, as well as the treatment couch and port cover edge, were aligned in the superior–inferior direction when the patient lay on the treatment couch. The weighting factors for the respective columns were varied until the standard deviation of the pixel values within the image region was minimized. Once the weighting factors were calculated, the quality of the DFPD image was improved by applying the factors to multiframe images. Results: Applying the image-processing algorithm produced substantial improvement in the quality of images, and the image contrast was increased. The treatment couch and irradiation port edge, which were not related to a patient's position, were removed. The average image-processing time was 1.1 ms, showing that this fast image processing can be applied to real-time tumour-tracking systems. Conclusion: These findings indicate that this image-processing algorithm improves the image quality in patients with lung cancer and successfully removes objects not related to the patient. Advances in knowledge: Our image-processing algorithm might be useful in improving gated-treatment accuracy. PMID:24661056

  13. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    SciTech Connect

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  14. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly

  15. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  16. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed

  17. Creation of a Reference Image with Monte Carlo Simulations for Online EPID Verification of Daily Patient Setup

    SciTech Connect

    Descalle, M-A; Chuang, C; Pouliot, J

    2002-01-30

    Patient positioning accuracy remains an issue for external beam radiotherapy. Currently, kilovoltage verification images are used as reference by clinicians to compare the actual patient treatment position with the planned position. These images are qualitatively different from treatment-time megavoltage portal images. This study will investigate the feasibility of using PEREGRINE, a 3D Monte Carlo calculation engine, to create reference images for portal image comparisons. Portal images were acquired using an amorphous-silicon flat-panel EPID for (1) the head and pelvic sections of an anthropomorphic phantom with 7-8 mm displacements applied, and (2) a prostate patient on five treatment days. Planning CT scans were used to generate simulated reference images with PEREGRINE. A correlation algorithm quantified the setup deviations between simulated and portal images. Monte Carlo simulated images exhibit similar qualities to portal images, the phantom slabs appear clearly. Initial positioning differences and applied displacements were detected and quantified. We find that images simulated with Monte Carlo methods can be used as reference images to detect and quantify set-up errors during treatment.

  18. Assessment and optimisation of the image quality of chest-radiography systems.

    PubMed

    Redlich, U; Hoeschen, C; Doehring, W

    2005-01-01

    A complete evaluation strategy had been developed for thoracic X-ray imaging. It has been validated by investigating five chest-radiography systems, two of these systems after optimising image processing. The systems were a screen-film combination, a selenium drum, a conventional and a transparent imaging plate and a Cs/I-based flat panel detector (the two latter ones have been optimised using different post processing). At first all detectors have been characterised using physical parameters like DQE and MTF. After that all systems have been evaluated by human observer studies using anatomy in clinical images (VGA, ICS) and added pathological structures in thoracic phantom images (ROC). The ranking of the image quality of the systems was nearly the same in all studies. There was a similar assessment of main image quality parameters like spatial resolution, dynamic range and MTF. The modification of image post processing changed the visibility of pathological structures more than the visualisation of the anatomical criteria. The assessment of the clinical image quality has to be done for anatomical structures, and the recognition of pathological structures has to be evaluated.

  19. Novel method to calculate pulmonary compliance images in rodents from computed tomography acquired at constant pressures

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Castillo, Richard; Sanders, Kevin; Price, Roger; Komaki, Ritsuko; Cody, Dianna

    2006-03-01

    Our goal was to develop a method for generating high-resolution three-dimensional pulmonary compliance images in rodents from computed tomography (CT) images acquired at a series of constant pressures in ventilated animals. One rat and one mouse were used to demonstrate this technique. A pre-clinical GE flat panel CT scanner (maximum 31 line-pairs cm-1 resolution) was utilized for image acquisition. The thorax of each animal was imaged with breath-holds at 2, 6, 10, 14 and 18 cm H2O pressure in triplicate. A deformable image registration algorithm was applied to each pair of CT images to map corresponding tissue elements. Pulmonary compliance was calculated on a voxel by voxel basis using adjacent pairs of CT images. Triplicate imaging was used to estimate the measurement error of this technique. The 3D pulmonary compliance images revealed regional heterogeneity of compliance. The maximum total lung compliance measured 0.080 (±0.007) ml air per cm H2O per ml of lung and 0.039 (±0.004) ml air per cm H2O per ml of lung for the rat and mouse, respectively. In this study, we have demonstrated a unique method of quantifying regional lung compliance from 4 to 16 cm H2O pressure with sub-millimetre spatial resolution in rodents. Presented at the Third IASTED Int. Conf. on Biomechanics (Benidorm, Spain), 7-9 September 2005.

  20. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging

  1. Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoquan; Gong, Hui; Quan, Guotao; Deng, Yong; Luo, Qingming

    2010-05-01

    We developed a dual-modality system that combines fluorescence diffuse optical tomography (fDOT) and flat panel detector-based microcomputed tomography (micro-CT) to simultaneously reveal molecular and structural information in small animals. In fDOT, a 748 nm diode laser was used as an excitation source, while a cooled charge coupled device camera was adopted to collect transmission fluorescence. In micro-CT, a flat panel detector based on amorphous silicon, with active area of 13×13 cm2, and a microfocus x-ray tube were used. The fDOT system was mounted orthogonally to the micro-CT and the projection images were acquired without rotation of the sample, which is different from the method used for micro-CT alone. Both the finite element method and the algebraic reconstruction technique were used to reconstruct images from the fDOT. Phantom data showed that the resolution of the fDOT system was about 3 mm at an imaging depth of 7 mm. Quantitative error was no more than 5% and imaging sensitivity for 1,1'-dioctadecyl-3,3,3',3'-etramethylindotricarbocyanine iodide bis-oleate (DiR-BOA) was estimated to be higher than 100 nM at a depth of 7 mm. Calculations of the phantom's center of mass showed that the location accuracy of fDOT was about 0.7 mm. We applied a Feldkamp algorithm to reconstruct the micro-CT image. By measuring the presampled modulation transfer function with a 30 μm tungsten thread, we estimated that the micro-CT has a resolution of 5 mm-1 when the field of view was 6.5 cm. Our results indicate the uniformity of the transaxial micro-CT image and the contrast-to-noise ratio was measured as 1.95 for a radiation dose of 1 cGy. A non-image-based method was employed for merging images from the two imaging modalities. A nude mouse with DiR-BOA, imaged ex vivo, was used to validate the feasibility of the dual-modality system.

  2. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2015-02-01

    A recovery process for indium from waste liquid crystal display panels was developed on the basis of hydrometallurgical technology. The powdered sample was leached with 3 M HCl to extract its various metal constituents (indium, aluminum, tin, etc.). The mutual separation and subsequent recovery of the dissolved metals was achieved using two column adsorption tests: The first column was packed with a porous resin impregnated with Aliquat 336, a commercially available solvent extraction reagent based on a quaternary ammonium compound, and the resin contained in the second column was impregnated with Cyanex 923, also a commercially available solvent extraction reagent based on trialkylphosphine oxide. In the first column, tin, iron, and zinc were removed from the leach liquor. In the second column, only indium was selectively recovered. The metal ions trapped in these columns were eluted with 0.1 M H2SO4, yielding a solution purified indium solution with a concentration 10 times that of the feed solution.

  3. 76 FR 63657 - Certain Flat Panel Display Devices, and Products Containing the Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ...''); and BrandsMart USA, Inc. of Hollywood, Florida (``BrandsMart''). On August 31, 2011, AU Optronics... Corporation of America of Fort Lauderdale, Florida, d/b/a BrandsMart U.S.A. (collectively, ``New Respondents''), and to terminate the investigation as to AT&T, Best Buy, and BrandsMart. On September 15, 2011,...

  4. A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting.

    PubMed

    Hassan, Gul; Khan, Fasihullah; Hassan, Arshad; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2017-04-28

    Recently, many researchers have been paying attention to nanogenerators (NGs) as energy sources for self-powered mirco-nano systems, and studying how to achieve their higher power generation. Hence, we propose a hybrid-type NG for harvesting both the piezoelectric and triboelectric effect simultaneously. In the proposed hybrid NG, the piezoelectric NG (PNG) and triboelectric NG (TENG) are fabricated using polydimethylsiloxane (PDMS) and perovskite zinc stannite (ZnSnO3) nanocubes with a high charge polarization of 59 uC cm(-2) composite (PDMS + ZnSnO3) and UV surface-treated PDMS, respectively. To effectively combine a high output current of PNG and a high voltage of TENG, these two NGs are stacked upon each other, and separated by sponge spacers providing a uniform air gap for the triboelectric effect. In particular, this fabricated structure has a low Young's modulus for piezoelectricity. The proposed hybrid NG device effectively achieves a combined peak voltage of 300 V on an open circuit, a power density of 10.41 mW cm(-2) at 1 MΩ load, and a maximum short circuit current density of 16 mA cm(-2) at 50 Ω load. It is feasible that the proposed NG can be utilized as a source for various self-powered systems.

  5. System design and implementation for the glass panel alignment and sealing tool for flat panel displays

    SciTech Connect

    Jordan, J.D.; Stromberg, P.G.; Kuszmaul, S.S.

    1996-10-16

    This report describes the system designed and fabricated for the National Center for Advanced Information Component Manufacturing (NCAICM) project number 9322-135. The system is a device capable of simultaneously aligning two glass plates and sealing them together with glass frit. The process development was divided into two phases. The first was thermal sealing in an ambient environment. The second was sealing a controlled environment in a vacuum.

  6. An Experimental Investigation of Sandwich Flat Panels Under Low Velocity Impact.

    DTIC Science & Technology

    1994-12-01

    adhesive also contribute to damage in some cases . xvii AN EXPERIMENTAL INVESTIGATION OF SANDWICH PANELS UNDER LOW VELOCITY IMPACT Introduction 1.1...properties of the adhesive and core were determined from the manufacturers specification. In the case of the core, the curves shown in Figure 2.4 and...In this case , the 90° layer is defined as the two 90* plies in the middle of the lay-up. The upper portion of the core beneath the impact site in the 0

  7. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    PubMed Central

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% – 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  8. Postbuckling analysis of shear deformable composite flat panels taking into account geometrical imperfections

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Stein, M.

    1990-01-01

    The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.

  9. Comparative study on PS material of EAPSM for flat panel display

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woong; Song, Jin-Han; Lee, Ho-Jin; Kim, Kyu-Sik; Jeong, Woo-Gun; Yoon, Young-Jin; Yun, Sang-Pil; Jung, Sung-Mo

    2016-10-01

    We evaluated and compared the i-line 5.2 % Cr based EAPSM and i-line 5.2 % MoSi based EAPSM to find more appropriate material of shifter for FPD. The evaluation items were their CD linearity, phase shift, and optical properties such as transmittance, reflectance, and absorbance under the wavelength range 200-800 nm. Finally, from the results, we performed simulations. The CD linearity and the phase shift were seen as the performances of the same level within all their specifications. The optical properties indicated that the transmittance was higher in the i-line 5.2 % Cr based EAPSM than in i-line 5.2 % MoSi based EAPSM from about 350 nm wavelength, and the reflectance was lower in the iline 5.2 % Cr based EAPSM than in i-line 5.2 % MoSi based EAPSM under the entire wavelength region. From these results, NILS and contrast were simulated between them in 5.0 μm pitch LS pattern and it was found that they did not have a significant difference. Side-lobe effect appeared in both EAPSMs when clear features were closely adjacent under 2.0 μm contact pattern. However, the side-lobe could be removed effectively by adopting Rim type EAPSM. The i-line 5.2 % MoSi based EAPSM may be more suitable for the Rim type EAPSM than the i-line 5.2 % Cr based EAPSM considering their structure and production process of the Rim type EAPSM. It may be appropriate that we use the i-line 5.2 % Cr based EAPSM in LS pattern and the i-line 5.2 % MoSi based EAPSM in contact pattern, because they were almost same level in that performance perspective.

  10. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    SciTech Connect

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-03-15

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10{sup 11} cm{sup -3} were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect.

  11. Slider-adjusted softcopy ruler for calibrated image quality assessment

    NASA Astrophysics Data System (ADS)

    Jin, Elaine W.; Keelan, Brian W.

    2010-01-01

    ISO 20462 part 3 standardized the hardcopy quality ruler and a softcopy quality ruler based on a binary sort approach involving paired comparisons. The new softcopy ruler method described here utilizes a slider bar to match the quality of the ruler to that of the test image, which is found to substantially reduce the time required per assessment (30 to 15.5 s), with only a modest loss of precision (standard deviations of 2.5 to 2.9 just noticeable differences). In combination, these metrics implied a 20% improvement in the standard error of the mean achievable in a fixed amount of judging time. Ruler images calibrated against the standard quality scale of ISO 20462 are generated for 21 scenes, at 31 quality levels each, achieved through variation of sharpness, while other attributes are held near their preferred positions. The images are bundled with documentation and a MATLAB source code for a graphical user interface that administers softcopy ruler experiments, and these materials are donated to the International Imaging Industry Association for distribution. In conjunction with a specified large flat panel display, these materials should enable users to conduct softcopy quality ruler experiments with minimum effort, and should reduce the barriers to performing calibrated psychophysical measurements.

  12. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-04-01

    An image-processing technique for separating bones from soft tissue in static chest radiographs has been developed. The present study was performed to evaluate the usefulness of dynamic bone images in quantitative analysis of rib movement. Dynamic chest radiographs of 16 patients were obtained using a dynamic flat-panel detector and processed to create bone images by using commercial software (Clear Read BS, Riverain Technologies). Velocity vectors were measured in local areas on the dynamic images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as a reduced rib velocity field, resulting in an asymmetrical distribution of rib movement. Vector maps in all normal cases exhibited left/right symmetric distributions of the velocity field, whereas those in abnormal cases showed asymmetric distributions because of locally limited rib movements. Dynamic bone images were useful for accurate quantitative analysis of rib movements. The present method has a potential for an additional functional examination in chest radiography.

  13. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  14. A study on quality improvement of x-ray imaging of the respiratory-system based on a new image processing technique

    NASA Astrophysics Data System (ADS)

    Torii, Jun; Nagai, Yuichi; Horita, Tatsuya; Matsumoto, Yuuji; Izumo, Takehiro; Kitagawa, Mayumi; Ihara, Kanyu; Nakamura, Tadashi; Mukoyoshi, Wataru; Tennmei, Kounosuke; Suzuki, Katsumi; Hara, Akio; Sasada, Shinji; Aso, Tomohiko

    2015-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. New noise reduction processing, Adaptive Noise Reduction [ANR], was announced in SPIE last year.[8] ANR is a new image processing technique which is capable of extracting and reducing noise components regardless of moving objects in fluoroscopy images. However, for further enhancement of noise reduction effect in clinical use, it was used in combination with a recursive filter, which is a time axis direction filter. Due to this, the recursive filter generated image lags when there are moving objects in the fluoroscopic images, and these image lags sometimes became hindrance in performing smooth bronchoscopy. This is because recursive filters reduce noise by adding multiple fluoroscopy images. Therefore, we have developed new image processing technique, Motion Tracking Noise Reduction [MTNR] for decreasing image lags as well as noise. This ground-breaking image processing technique detects global motion in images with high accuracy, determines the pixels to track the motion, and applies a motion tracking-type time filter. With this, image lags are removed remarkably while realizing the effective noise reduction. In this report, we will explain the effect of MTNR by comparing the performance of MTNR images [MTNR] and ANR + Recursive filter-applied images [ANR + Recursive filter].

  15. A novel method and workflow for stereotactic surgery with a mobile intraoperative CT imaging device

    NASA Astrophysics Data System (ADS)

    Li, Senhu; Clinthorne, Neal

    2015-03-01

    xCAT®, (Xoran Technologies, LLC., Ann Arbor, MI) is a CT imaging device that has been used for minimally invasive surgeries. Designed with flat panel and cone-beam imaging technique, it provides a fast, low-dose CT imaging alternative for diagnosis and examination purposes