Sample records for directed information flow

  1. The mutual causality analysis between the stock and futures markets

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Qing-Wen

    2017-07-01

    In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.

  2. The epidemic spreading model and the direction of information flow in brain networks.

    PubMed

    Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P

    2017-05-15

    The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  4. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  5. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    NASA Astrophysics Data System (ADS)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  7. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking

    PubMed Central

    Saunders, Jeffrey A.

    2014-01-01

    Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194

  8. Which Way Is the Flow?

    NASA Technical Reports Server (NTRS)

    Kao, David

    1999-01-01

    The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.

  9. Information Flow in Interaction Networks II: Channels, Path Lengths, and Potentials

    PubMed Central

    Stojmirović, Aleksandar

    2012-01-01

    Abstract In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework. PMID:22409812

  10. Directional information flow in patients with Alzheimer's disease. A source-space resting-state MEG study.

    PubMed

    Engels, M M A; Yu, M; Stam, C J; Gouw, A A; van der Flier, W M; Scheltens, Ph; van Straaten, E C W; Hillebrand, A

    2017-01-01

    In a recent magnetoencephalography (MEG) study, we found posterior-to-anterior information flow over the cortex in higher frequency bands in healthy subjects, with a reversed pattern in the theta band. A disruption of information flow may underlie clinical symptoms in Alzheimer's disease (AD). In AD, highly connected regions (hubs) in posterior areas are mostly disrupted. We therefore hypothesized that in AD the information flow from these hub regions would be disturbed. We used resting-state MEG recordings from 27 early-onset AD patients and 26 healthy controls. Using beamformer-based virtual electrodes, we estimated neuronal oscillatory activity for 78 cortical regions of interest (ROIs) and 12 subcortical ROIs of the AAL atlas, and calculated the directed phase transfer entropy (dPTE) as a measure of information flow between these ROIs. Group differences were evaluated using permutation tests and, for the AD group, associations between dPTE and general cognition or CSF biomarkers were determined using Spearman correlation coefficients. We confirmed the previously reported posterior-to-anterior information flow in the higher frequency bands in the healthy controls, and found it to be disturbed in the beta band in AD. Most prominently, the information flow from the precuneus and the visual cortex, towards frontal and subcortical structures, was decreased in AD. These disruptions did not correlate with cognitive impairment or CSF biomarkers. We conclude that AD pathology may affect the flow of information between brain regions, particularly from posterior hub regions, and that changes in the information flow in the beta band indicate an aspect of the pathophysiological process in AD.

  11. Perceptual analysis of vibrotactile flows on a mobile device.

    PubMed

    Seo, Jongman; Choi, Seungmoon

    2013-01-01

    "Vibrotactile flow" refers to a continuously moving sensation of vibrotactile stimulation applied by a few actuators directly onto the skin or through a rigid medium. Research demonstrated the effectiveness of vibrotactile flow for conveying intuitive directional information on a mobile device. In this paper, we extend previous research by investigating the perceptual characteristics of vibrotactile flows rendered on a mobile device and proposing a synthesis framework for vibrotactile flows with desired perceptual properties.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Davis, Dr, Mary

    Generalized and quantitative relationships between flow and ecology are pivotal to developing environmental flow standards based on socially acceptable ecological conditions. Informing management at regional scales requires compiling sufficient hydrologic and ecological sources of information, identifying information gaps, and creating a framework for hypothesis development and testing. We compiled studies of empirical and theoretical relationships between flow and ecology in the South Atlantic region (SAR) of the United States to evaluate their utility for the development of environmental flow standards. Using database searches, internet searches, and agency contacts, we gathered 186 sources of information that provided a qualitative or quantitativemore » relationship between flow and ecology within states encompassing the SAR. A total of 109 of the 186 sources had sufficient information to support quantitative analyses. Ecological responses to natural changes in flow magnitude, frequency, and duration were highly variable regardless of the direction and magnitude of changes in flow. In contrast, the majority of ecological responses to anthropogenic-induced flow alterations were negative. Fish consistently showed negative responses to anthropogenic flow alterations whereas other ecological groups showed somewhat variable responses (e.g. macroinvertebrates and riparian vegetation) and even positive responses (e.g. algae). Fish and organic matter had sufficient sample sizes to stratify natural flow-ecology relationships by specific flow categories (e.g. high flow, baseflows) or by region (e.g. coastal plain, uplands). After stratifying relationships, we found that significant correlations existed between changes in natural flow and ecological responses. In addition, a regression tree explained 57% of the variation in fish responses to anthropogenic and natural changes in flow. Because of some ambiguity in interpreting the directionality in ecological responses, we utilized ecological gains or losses, where each represents a benefit or reduction to ecosystem services, respectively. Variables explained 49% of the variation in ecological gains and losses for all ecological groups combined. Altogether, our results suggested that the source of flow change and the ecological group of interest played primary roles in determining the direction and magnitude of ecological responses. Furthermore, our results suggest that developing broadly generalized relationships between ecology and changes in flow at a regional scale is unlikely unless relationships are placed within meaningful contexts, such as environmental flow components or by geomorphic setting.« less

  13. Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    PubMed Central

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N.; Barahona, Mauricio

    2014-01-01

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks. PMID:25297320

  14. The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned

    USGS Publications Warehouse

    Poland, Michael; Orr, Tim R.; Kauahikaua, James P.; Brantley, Steven R.; Babb, Janet L.; Patrick, Matthew R.; Neal, Christina; Anderson, Kyle R.; Antolik, Loren; Burgess, Matthew K.; Elias, Tamar; Fuke, Steven; Fukunaga, Pauline; Johanson, Ingrid; Kagimoto, Marian; Kamibayashi, Kevan P.; Lee, Lopaka; Miklius, Asta; Million, William; Moniz, Cyril J.; Okubo, Paul G.; Sutton, Andrew; Takahashi, T. Jane; Thelen, Weston A.; Tollett, Willam; Trusdell, Frank A.

    2016-01-01

    Lava flow crises are nothing new on the Island of Hawai‘i, where their destructive force has been demonstrated repeatedly over the past several hundred years. The 2014–2015 Pāhoa lava flow crisis, however, was unique in terms of its societal impact and volcanological characteristics. Despite low effusion rates, a long-lived lava flow whose extent reached 20 km (the longest at Kīlauea Volcano in the past several hundred years) was poised for months to impact thousands of people, although direct impacts were ultimately minor (thus far). Careful observation of the flow reaffirmed and expanded knowledge of the processes associated with pāhoehoe emplacement, including the direct correlation between summit pressurization and flow advance, the influence of existing geologic structures on flow pathways, and the possible relationship between effusion rate and flow length. Communicating uncertainty associated with lava flow hazards was a challenge throughout the crisis, but online distribution of information and direct contact with residents proved to be effective strategies for keeping the public informed and educated about flow progress and how lava flows work (including forecasting limitations). Volcanological and sociological lessons will be important for inevitable future lava flow crises in Hawai‘i and, potentially, elsewhere in the world.

  15. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow.

    PubMed

    Kawasaki, Masahiro; Uno, Yutaka; Mori, Jumpei; Kobata, Kenji; Kitajo, Keiichi

    2014-01-01

    Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.

  16. The effects of flow on schooling Devario aequipinnatus: school structure, startle response and information transmission

    PubMed Central

    Chicoli, A.; Butail, S.; Lun, Y.; Bak-Coleman, J.; Coombs, S.; Paley, D.A.

    2014-01-01

    To assess how flow affects school structure and threat detection, startle response rates of solitary and small groups of giant danio Devario aequipinnatus were compared to visual looming stimuli in flow and no-flow conditions. The instantaneous position and heading of each D. aequipinnatus were extracted from high-speed videos. Behavioural results indicate that (1) school structure is altered in flow such that D. aequipinnatus orient upstream while spanning out in a crosswise direction, (2) the probability of at least one D. aequipinnatus detecting the visual looming stimulus is higher in flow than no flow for both solitary D. aequipinnatus and groups of eight D. aequipinnatus, however, (3) the probability of three or more individuals responding is higher in no flow than flow. Taken together, these results indicate a higher probability of stimulus detection in flow but a higher probability of internal transmission of information in no flow. Finally, results were well predicted by a computational model of collective fright response that included the probability of direct detection (based on signal detection theory) and indirect detection (i.e. via interactions between group members) of threatening stimuli. This model provides a new theoretical framework for analysing the collective transfer of information among groups of fishes and other organisms. PMID:24773538

  17. Local statistics of retinal optic flow for self-motion through natural sceneries.

    PubMed

    Calow, Dirk; Lappe, Markus

    2007-12-01

    Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.

  18. Direct Estimation of Structure and Motion from Multiple Frames

    DTIC Science & Technology

    1990-03-01

    sequential frames in an image sequence. As a consequence, the information that can be extracted from a single optical flow field is limited to a snapshot of...researchers have developed techniques that extract motion and structure inform.4tion without computation of the optical flow. Best known are the "direct...operated iteratively on a sequence of images to recover structure. It required feature extraction and matching. Broida and Chellappa [9] suggested the use of

  19. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  20. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  1. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  2. Designing Biomedical Informatics Infrastructure for Clinical and Translational Science

    ERIC Educational Resources Information Center

    La Paz Lillo, Ariel Isaac

    2009-01-01

    Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…

  3. Variational optical flow estimation based on stick tensor voting.

    PubMed

    Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec

    2013-07-01

    Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.

  4. 27 CFR 20.94 - Statement of process.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 5150.19 shall also contain the following information: (i) Flow diagrams shall be submitted with the... connecting pipelines and valves. All major equipment shall be identified as to its use. The direction of flow through the pipelines shall be indicated in the flow diagram. The flow diagram, shall be accompanied by a...

  5. 27 CFR 20.94 - Statement of process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 5150.19 shall also contain the following information: (i) Flow diagrams shall be submitted with the... connecting pipelines and valves. All major equipment shall be identified as to its use. The direction of flow through the pipelines shall be indicated in the flow diagram. The flow diagram, shall be accompanied by a...

  6. 27 CFR 20.94 - Statement of process.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 5150.19 shall also contain the following information: (i) Flow diagrams shall be submitted with the... connecting pipelines and valves. All major equipment shall be identified as to its use. The direction of flow through the pipelines shall be indicated in the flow diagram. The flow diagram, shall be accompanied by a...

  7. 27 CFR 20.94 - Statement of process.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 5150.19 shall also contain the following information: (i) Flow diagrams shall be submitted with the... connecting pipelines and valves. All major equipment shall be identified as to its use. The direction of flow through the pipelines shall be indicated in the flow diagram. The flow diagram, shall be accompanied by a...

  8. 27 CFR 20.94 - Statement of process.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 5150.19 shall also contain the following information: (i) Flow diagrams shall be submitted with the... connecting pipelines and valves. All major equipment shall be identified as to its use. The direction of flow through the pipelines shall be indicated in the flow diagram. The flow diagram, shall be accompanied by a...

  9. Involvement of Thalamus in Initiation of Epileptic Seizures Induced by Pilocarpine in Mice

    PubMed Central

    Li, Yong-Hua; Li, Jia-Jia; Lu, Qin-Chi; Gong, Hai-Qing; Liang, Pei-Ji

    2014-01-01

    Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures. PMID:24778885

  10. Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean

    PubMed Central

    Goto, Yusuke; Yoda, Ken; Sato, Katsufumi

    2017-01-01

    Numerous flying and swimming animals constantly need to control their heading (that is, their direction of orientation) in a flow to reach their distant destination. However, animal orientation in a flow has yet to be satisfactorily explained because it is difficult to directly measure animal heading and flow. We constructed a new animal movement model based on the asymmetric distribution of the GPS (Global Positioning System) track vector along its mean vector, which might be caused by wind flow. This statistical model enabled us to simultaneously estimate animal heading (navigational decision-making) and ocean wind information over the range traversed by free-ranging birds. We applied this method to the tracking data of homing seabirds. The wind flow estimated by the model was consistent with the spatiotemporally coarse wind information provided by an atmospheric simulation model. The estimated heading information revealed that homing seabirds could head in a direction different from that leading to the colony to offset wind effects and to enable them to eventually move in the direction they intended to take, even though they are over the open sea where visual cues are unavailable. Our results highlight the utility of combining large data sets of animal movements with the “inverse problem approach,” enabling unobservable causal factors to be estimated from the observed output data. This approach potentially initiates a new era of analyzing animal decision-making in the field. PMID:28959724

  11. Symbolic phase transfer entropy method and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    2017-10-01

    In this paper, we introduce symbolic phase transfer entropy (SPTE) to infer the direction and strength of information flow among systems. The advantages of the proposed method are investigated by simulations on synthetic signals and real-world data. We demonstrate that symbolic phase transfer entropy is a robust and efficient tool to infer the information flow between complex systems. Based on the study of the synthetic data, we find a significant advantage of SPTE is its reduced sensitivity to noise. In addition, SPTE requires less amount of data than symbolic transfer entropy(STE). We analyze the direction and strength of information flow between six stock markets during the period from 2006 to 2016. The results indicate that the information flow among stocks varies over different periods. We also find that the interaction network pattern among stocks undergoes hierarchial reorganization with transition from one period to another. It is shown that the clusters are mainly classified according to period, and then by region. The stocks during the same time period are shown to drop into the same cluster.

  12. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  13. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  14. Proceedings of the Organization of 1990 Meeting of International Neural Network Society Jointed with IEEE Held in Washington, DC on January 15 - 19, 1990. Volume 1. Theory Track Neural and cognitive Sciences Track

    DTIC Science & Technology

    1990-11-30

    signaI flow , xi. The learning" of such statistics could result from synaptic modification rules similar to those known to exist in the brain 7 " 1 0,1 1...in figure 1 had been established. If the series are appro\\imat.ed by Gaussian process. the information flow from X to Y can be expressed by the...Based on this model. the information flow in different direction were calculated by using eq.(1). RESULTS Figures 2 illustrates the information flow

  15. Modern and Unconventional Approaches to Karst Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave diameter, very high Reynolds number flows may be encountered.

  16. Spatial reasoning to determine stream network from LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Wang, S.; Elliott, D. B.

    1983-01-01

    In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.

  17. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    PubMed

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  18. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  19. Public Participation Guide: Information Kiosks

    EPA Pesticide Factsheets

    Kiosks are similar to automatic teller machines, offering menus for interaction between a person and a computer. Information is provided through a presentation that invites viewers to ask questions or direct the flow of information.

  20. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  1. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771

  2. Preliminary interpretations of hydrogeologic data from boreholes and springs in the vicinity of Davis and Lavender Canyons, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thackston, J.W.

    1987-09-01

    This information is presented in tabular form and includes station locations, potentiometric levels, permeabilities, transmissibilities, total dissolved solids, depths, locations, data sources, a fracture log of the Gibson Dome No. 1 (GD-1) borehole, and other useful information. Three different ranking scales were used to evaluate available drill-stem test (DST) data. A preliminary detailed hydrogeologic column was prepared using the DST data and GD-1 borehole information. A series of preliminary potentiometric maps was interpreted from these data for the different hydrogeologic units. Preliminary potentiometric surface maps for the Lower Paleozoic Aquifer, Pennsylvanian Aquitard, Permian Aquifer/Aquitard, and Mesozoic (Jurassic) Aquifer were constructed.more » These maps show a general southwest flow direction in the Lower Paleozoic Aquifer, extremely low permeabilities in the Pennsylvanian, northerly ground-water flow in the Permian, and westward flow direction in the Mesozoic unit. The few data points in the Pennsylvanian tend to indicate that ground water in the upper Paradox Formation may be flowing toward the west and southwest in the area southeast of Six-Shooter Peaks.« less

  3. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.

  4. Low-flow characteristics for selected streams in Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  5. Tail dependence and information flow: Evidence from international equity markets

    NASA Astrophysics Data System (ADS)

    Al Rahahleh, Naseem; Bhatti, M. Ishaq; Adeinat, Iman

    2017-05-01

    Bhatti and Nguyen (2012) used the copula approach to measure the tail dependence between a number of international markets. They observed that some country pairs exhibit only left-tail dependence whereas others show only right-tail. However, the flow of information from uni-dimensional (one-tail) to bi-dimensional (two-tails) between various markets was not accounted for. In this study, we address the flow of information of this nature by using the dynamic conditional correlation (DCC-GARCH) model. More specifically, we use various versions of the DCC models to explain the nexus between the information flow of international equity and to explain the stochastic forward vs. backward dynamics of financial markets based on data for a 15-year period comprising 3,782 observations. We observed that the information flow between the US and Hong Kong markets and between the US and Australian markets are bi-directional. We also observed that the DCC model captures a wider co-movement structure and inter-connectedness compared to the symmetric Joe-Clayton copula.

  6. Information transmission and signal permutation in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn

    2018-03-01

    Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.

  7. Information Processing in Living Systems

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper; Bialek, William

    2016-03-01

    Life depends as much on the flow of information as on the flow of energy. Here we review the many efforts to make this intuition precise. Starting with the building blocks of information theory, we explore examples where it has been possible to measure, directly, the flow of information in biological networks, or more generally where information-theoretic ideas have been used to guide the analysis of experiments. Systems of interest range from single molecules (the sequence diversity in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and all scales in between. Many of these analyses are motivated by the idea that biological systems may have evolved to optimize the gathering and representation of information, and we review the experimental evidence for this optimization, again across a wide range of scales.

  8. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most groundwater discharge recharged within the boundaries of the shipyard is to the dry docks; only at the western end of the shipyard does groundwater discharge directly to Puget Sound. Particle tracking for the existing long-term monitoring well network suggests that only a few wells intercept groundwater that originates as recharge within the shipyard boundary.

  9. Effects of background motion on eye-movement information.

    PubMed

    Nakamura, S

    1997-02-01

    The effect of background stimulus on eye-movement information was investigated by analyzing the underestimation of the target velocity during pursuit eye movement (Aubert-Fleishl paradox). In the experiment, a striped pattern with various brightness contrasts and spatial frequencies was used as a background stimulus, which was moved at various velocities. Analysis showed that the perceived velocity of the pursuit target, which indicated the magnitudes of eye-movement information, decreased when the background stripes moved in the same direction as eye movement at higher velocities and increased when the background moved in the opposite direction. The results suggest that the eye-movement information varied as a linear function of the velocity of the motion of the background retinal image (optic flow). In addition, the effectiveness of optic flow on eye-movement information was determined by the attributes of the background stimulus such as the brightness contrast or the spatial frequency of the striped pattern.

  10. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  11. Planetary boundary-layer wind model evaluation at a mid-Atlantic coastal site

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.

    1980-01-01

    Detailed measurements of the mean flow and turbulence were made with the use of a micrometeorological facility consisting of an instrumented 76-m tall tower located within a 100-m distance from the Atlantic Ocean at Wallops Island, Virginia. Under moderately strong wind conditions, the popular neutral boundary layer flow model fails to provide an adequate description of the actual flow. In addition to detailed flow information for all wind directions, averages of the important flow parameters used for design such as vertical distribution of mean velocity, turbulence intensities and turbulence integral scales were presented for wind direction sectors with near uniform upstream terrain. Power spectra of the three velocity components for the prevailing northwesterly and southerly winds are discussed.

  12. Development of a Computational Framework for Big Data-Driven Prediction of Long-Term Bridge Performance and Traffic Flow

    DOT National Transportation Integrated Search

    2018-04-01

    Consistent efforts with dense sensor deployment and data gathering processes for bridge big data have accumulated profound information regarding bridge performance, associated environments, and traffic flows. However, direct applications of bridge bi...

  13. Intrinsic K-Ras dynamics: A novel molecular dynamics data analysis method shows causality between residue pair motions

    NASA Astrophysics Data System (ADS)

    Vatansever, Sezen; Gümüş, Zeynep H.; Erman, Burak

    2016-11-01

    K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that directly target it in the clinic. Recent studies utilizing dynamics information show promising results for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. Understanding the direction of information flow can provide new mechanistic insights for K-Ras targeting. Here, we present a novel approach -conditional time-delayed correlations (CTC) - using the motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads to residue correlations with relatively long characteristic decay times. Furthermore, our study is the first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control both. Our results provide novel insights for strategies that directly target mutant K-Ras.

  14. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  15. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{sNN} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  16. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{s_{{\\rm NN}}} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  17. Efficient packet forwarding using cyber-security aware policies

    DOEpatents

    Ros-Giralt, Jordi

    2017-04-04

    For balancing load, a forwarder can selectively direct data from the forwarder to a processor according to a loading parameter. The selective direction includes forwarding the data to the processor for processing, transforming and/or forwarding the data to another node, and dropping the data. The forwarder can also adjust the loading parameter based on, at least in part, feedback received from the processor. One or more processing elements can store values associated with one or more flows into a structure without locking the structure. The stored values can be used to determine how to direct the flows, e.g., whether to process a flow or to drop it. The structure can be used within an information channel providing feedback to a processor.

  18. Efficient packet forwarding using cyber-security aware policies

    DOEpatents

    Ros-Giralt, Jordi

    2017-10-25

    For balancing load, a forwarder can selectively direct data from the forwarder to a processor according to a loading parameter. The selective direction includes forwarding the data to the processor for processing, transforming and/or forwarding the data to another node, and dropping the data. The forwarder can also adjust the loading parameter based on, at least in part, feedback received from the processor. One or more processing elements can store values associated with one or more flows into a structure without locking the structure. The stored values can be used to determine how to direct the flows, e.g., whether to process a flow or to drop it. The structure can be used within an information channel providing feedback to a processor.

  19. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    NASA Astrophysics Data System (ADS)

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

    2013-05-01

    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  20. Influence of visual path information on human heading perception during rotation.

    PubMed

    Li, Li; Chen, Jing; Peng, Xiaozhe

    2009-03-31

    How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.

  1. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  2. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow.

    PubMed

    Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.

  3. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow

    PubMed Central

    Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957

  4. Estimation of Blood Flow Rates in Large Microvascular Networks

    PubMed Central

    Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.

    2012-01-01

    Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980

  5. 4D flow MRI assessment of extracranial-intracranial bypass: qualitative and quantitative evaluation of the hemodynamics.

    PubMed

    Sekine, Tetsuro; Takagi, Ryo; Amano, Yasuo; Murai, Yasuo; Orita, Erika; Matsumura, Yoshio; Kumita, Shin-Ichiro

    2016-03-01

    Our aim was to assess the feasibility of using time-resolved 3D phase-contrast (4D flow) MRI to characterize extracranial-intracranial (EC-IC) bypass. We enrolled 32 patients who underwent EC-IC bypass (15 men, 17 women; mean age 66.4 years). In all, 16 underwent radial artery graft (RAG) bypass and 16 underwent superficial temporal artery (STA) bypass. 4D flow MRI, time-of-flight (TOF) magnetic resonance angiography (MRA), and computed tomography angiography (CTA) were performed. Bypass patency, flow direction, and blood flow volume (BFV) of each artery were determined by 4D flow MRI. Arterial diameters were measured by TOF-MRA and CTA. We compared RAG and STA bypasses by evaluating the flow direction and BFV of each artery. We evaluated the correlation between arterial diameters (measured by CTA or MRA) and the BFV and the detectability of flow direction (measured by 4D flow MRI) of each artery. 4D flow MRI confirmed the patency of each bypass artery. Flow direction of the M1 segment of the middle cerebral artery and BFV in the bypass artery differed between RAG and STA groups (p < 0.01). BFV in the bypass slightly correlated with the diameters on CTA (p < 0.05, R (2) = 0.287). Of the 29 arteries in the circle of Willis, nine were not depicted on 4D flow MRI. Cutoff values for arterial diameters on CTA and TOF-MRA for detecting the artery on 4D flow MRI were 2.4 and 1.8 mm, respectively. 4D flow MRI provided unique information for characterizing EC-IC bypasses, although this detectability is limited when addressing small arteries with slow flow.

  6. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    NASA Astrophysics Data System (ADS)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.

  7. High-definition flow Doppler ultrasonographic technique to assess hepatic vasculature compared with color or power Doppler ultrasonography: preliminary experience.

    PubMed

    Kim, Se Hyung; Lee, Jeong Min; Kim, Young Jun; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2008-10-01

    The purpose of this study was to introduce a new high-definition flow (HDF) Doppler technique and to compare its performance with those of color Doppler ultrasonography (CDU) and power Doppler ultrasonography (PDU) for assessment of hepatic vasculature in native and transplanted livers. High-definition flow was invented as a high-resolution bidirectional PDU technique. We obtained CDU, PDU, and HDF images of the hepatic artery (HA), portal vein (PV), and hepatic vein from 60 patients. They were divided into 2 groups: a liver transplantation group (group 1, n = 10) and a native liver group (group 2, n = 50). Two radiologists independently reviewed the cine images and graded them using a 4-point scale in terms of the clarity of the vessel margin and degree of depiction of the HA, flow filling, and flash artifacts. The degree of differentiation between the HA and PV was also evaluated. Flow directionality was recorded, and interobserver agreement was finally analyzed. Moderate to almost perfect agreement was achieved between radiologists for all parameters of each ultrasonographic technique. High-definition flow was significantly superior to both CDU and PDU with respect to all analyzed items except the degree of flash artifacts (P < .05). With regard to flash artifacts, CDU was significantly better than either PDU or HDF. High-definition flow provided directional information, as did CDU. The HDF technique provides better resolution for depicting hepatic vessels as well as their margins with less blooming compared with conventional Doppler ultrasonography in both native and transplanted liver. It also provides solid directional flow information. One point of concern, however, is the frequency of flash artifacts compared with that on CDU.

  8. A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain.

    PubMed

    Lin, Chih-Yung; Chuang, Chao-Chun; Hua, Tzu-En; Chen, Chun-Chao; Dickson, Barry J; Greenspan, Ralph J; Chiang, Ann-Shyn

    2013-05-30

    How the brain perceives sensory information and generates meaningful behavior depends critically on its underlying circuitry. The protocerebral bridge (PB) is a major part of the insect central complex (CX), a premotor center that may be analogous to the human basal ganglia. Here, by deconstructing hundreds of PB single neurons and reconstructing them into a common three-dimensional framework, we have constructed a comprehensive map of PB circuits with labeled polarity and predicted directions of information flow. Our analysis reveals a highly ordered information processing system that involves directed information flow among CX subunits through 194 distinct PB neuron types. Circuitry properties such as mirroring, convergence, divergence, tiling, reverberation, and parallel signal propagation were observed; their functional and evolutional significance is discussed. This layout of PB neuronal circuitry may provide guidelines for further investigations on transformation of sensory (e.g., visual) input into locomotor commands in fly brains. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  10. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-06-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  11. Information Flow through a Model of the C. elegans Klinotaxis Circuit

    PubMed Central

    Izquierdo, Eduardo J.; Williams, Paul L.; Beer, Randall D.

    2015-01-01

    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit’s state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis. PMID:26465883

  12. Information Flow through a Model of the C. elegans Klinotaxis Circuit.

    PubMed

    Izquierdo, Eduardo J; Williams, Paul L; Beer, Randall D

    2015-01-01

    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.

  13. Tourist-Centric Citizen Science in Denali National Park and Preserve

    ERIC Educational Resources Information Center

    Fischer, Heather A.

    2017-01-01

    Citizen Science programs create a bi-directional flow of knowledge between scientists and citizen volunteers; this flow democratizes science in order to create an informed public (Bonney et al. 2014; Brown, Kelly, and Whitall 2014). This democratization is a fundamental part of creating a science that can address today's pressing environmental,…

  14. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  15. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements

    PubMed Central

    Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo

    2017-01-01

    Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720

  16. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  17. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    NASA Astrophysics Data System (ADS)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  18. Phloem-sap-dynamics sensor device for monitoring photosynthates transportation in plant shoots

    NASA Astrophysics Data System (ADS)

    Yano, Yuya; Ono, Akihito; Terao, Kyohei; Suzuki, Takaaki; Takao, Hidekuni; Kobayashi, Tsuyoshi; Kataoka, Ikuo; Shimokawa, Fusao

    2018-06-01

    We propose a microscale phloem-sap-dynamics sensor device to obtain the index of an internal plant condition regarding the transportation of primary photosynthates in phloem, which is an essential indicator of stable crop production under controlled-growth environments. In detail, we integrated a conventional Granier sensor with a thermal-flow sensor and devised an improved sensor device to quantify such index, including the information on velocity and direction of the phloem-sap flow using the microelectromechanical systems (MEMS) technology. The experimental results showed that although the proposed sensor device was approximately only 1/10 the size of the conventional Granier sensor, it could generate an output nearly equal to that of the conventional sensor. Furthermore, experiments using mimicked plants demonstrated that the proposed device could measure minute flow velocities in the range of 0–200 µm/s, which are generally known as the phloem-sap flow velocity, and simultaneously detect the flow direction.

  19. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    PubMed Central

    Ito, Sosuke

    2016-01-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120

  20. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke

    2016-11-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.

  1. Describing and Modeling Workflow and Information Flow in Chronic Disease Care

    PubMed Central

    Unertl, Kim M.; Weinger, Matthew B.; Johnson, Kevin B.; Lorenzi, Nancy M.

    2009-01-01

    Objectives The goal of the study was to develop an in-depth understanding of work practices, workflow, and information flow in chronic disease care, to facilitate development of context-appropriate informatics tools. Design The study was conducted over a 10-month period in three ambulatory clinics providing chronic disease care. The authors iteratively collected data using direct observation and semi-structured interviews. Measurements The authors observed all aspects of care in three different chronic disease clinics for over 150 hours, including 157 patient-provider interactions. Observation focused on interactions among people, processes, and technology. Observation data were analyzed through an open coding approach. The authors then developed models of workflow and information flow using Hierarchical Task Analysis and Soft Systems Methodology. The authors also conducted nine semi-structured interviews to confirm and refine the models. Results The study had three primary outcomes: models of workflow for each clinic, models of information flow for each clinic, and an in-depth description of work practices and the role of health information technology (HIT) in the clinics. The authors identified gaps between the existing HIT functionality and the needs of chronic disease providers. Conclusions In response to the analysis of workflow and information flow, the authors developed ten guidelines for design of HIT to support chronic disease care, including recommendations to pursue modular approaches to design that would support disease-specific needs. The study demonstrates the importance of evaluating workflow and information flow in HIT design and implementation. PMID:19717802

  2. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    PubMed

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  3. Development of image processing techniques for applications in flow visualization and analysis

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman

    1991-01-01

    A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.

  4. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  5. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  6. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  7. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  8. Dr. Quincy, Move Over!

    ERIC Educational Resources Information Center

    Mason, David H.

    1988-01-01

    Introduces a life science classroom activity for developing a knowledge of the human skeletal system, environmental poisoning, and bone growth pattern. Provides the situation, an organizational flow chart, relevant information materials, and directions. (YP)

  9. Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin

    2016-11-01

    Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.

  10. Application of State-Space Smoothing to fMRI Data for Calculation of Lagged Transinformation between Human Brain Activations

    NASA Astrophysics Data System (ADS)

    Watanabe, Jobu

    2009-09-01

    Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.

  11. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  12. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.

  13. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy

    PubMed Central

    2011-01-01

    Background Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. Results In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. Conclusions TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox. PMID:22098775

  14. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy.

    PubMed

    Lindner, Michael; Vicente, Raul; Priesemann, Viola; Wibral, Michael

    2011-11-18

    Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.

  15. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  16. DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.

    1993-01-01

    Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.

  17. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  18. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach.

    PubMed

    Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.

  19. Computation of three-dimensional compressible boundary layers to fourth-order accuracy on wings and fuselages

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1990-01-01

    A solution method, fourth-order accurate in the body-normal direction and second-order accurate in the stream surface directions, to solve the compressible 3-D boundary layer equations is presented. The transformation used, the discretization details, and the solution procedure are described. Ten validation cases of varying complexity are presented and results of calculation given. The results range from subsonic flow to supersonic flow and involve 2-D or 3-D geometries. Applications to laminar flow past wing and fuselage-type bodies are discussed. An interface procedure is used to solve the surface Euler equations with the inviscid flow pressure field as the input to assure accurate boundary conditions at the boundary layer edge. Complete details of the computer program used and information necessary to run each of the test cases are given in the Appendix.

  20. A Systems Analysis of Strike Naval Aviation Training

    DTIC Science & Technology

    2013-06-01

    from external nodes (yellow) and flows through the model design (gray nodes). Arrows represent information flow direction and identify what...multiple times need to be established as external functions accessible by all subroutines • Variables and constants must be defined up-front, and...Downloaded Figure 37. Blocks In Figure 38, proficiency threshold breeches are highlighted to indicate when the resulting skill proficiency drops below the

  1. Unifying the RET design flow with portable modeling information

    NASA Astrophysics Data System (ADS)

    Sweis, Jason; Staud, Wolf; Naber, Bob; Laidig, Tom; Van Denbroeke, Doug

    2006-05-01

    The RET Design Flow has become a conglomeration of various point tools and methodologies. Deep sub-wavelength DFM requirements have forced the design and manufacturing communities into very tight collaboration. EDA is also driven to provide an infrastructure to facilitate communication for these communities. Having this infrastructure in place has a direct impact on productivity and quality for which the value added is emphasized here.

  2. Oil-Water Flow Investigations using Planar-Laser Induced Fluorescence and Particle Velocimetry

    NASA Astrophysics Data System (ADS)

    Ibarra, Roberto; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    The study of the complex behaviour of immiscible liquid-liquid flow in pipes requires the implementation of advanced measurement techniques in order to extract detailed in situ information. Laser-based diagnostic techniques allow the extraction of high-resolution space- and time resolve phase and velocity information, which aims to improve the fundamental understanding of these flows and to validate closure relations for advanced multiphase flow models. This work shows a novel simultaneous planar-laser induced fluorescence and particle velocimetry in stratified oil-water flows using two laser light sheets at two different wavelengths for fluids with different refractive indices at horizontal and upward pipe inclinations (<5°) in stratified flow conditions (i.e. separated layers). Complex flow structures are extracted from 2-D instantaneous velocity fields, which are strongly dependent on the pipe inclination at low velocities. The analysis of mean wall-normal velocity profiles and velocity fluctuations suggests the presence of single- and counter-rotating vortices in the azimuthal direction, especially in the oil layer, which can be attributed to the influence of the interfacial waves. Funding from BP, and the TMF Consortium is gratefully acknowledged.

  3. 32 CFR 247.4 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) A free flow of news and information shall be provided to all DoD personnel without censorship or... appropriated funds will be obtained in accordance with DoD Directive 5330.3. (u) Although DoD internet web...

  4. Perception of scene-relative object movement: Optic flow parsing and the contribution of monocular depth cues.

    PubMed

    Warren, Paul A; Rushton, Simon K

    2009-05-01

    We have recently suggested that the brain uses its sensitivity to optic flow in order to parse retinal motion into components arising due to self and object movement (e.g. Rushton, S. K., & Warren, P. A. (2005). Moving observers, 3D relative motion and the detection of object movement. Current Biology, 15, R542-R543). Here, we explore whether stereo disparity is necessary for flow parsing or whether other sources of depth information, which could theoretically constrain flow-field interpretation, are sufficient. Stationary observers viewed large field of view stimuli containing textured cubes, moving in a manner that was consistent with a complex observer movement through a stationary scene. Observers made speeded responses to report the perceived direction of movement of a probe object presented at different depths in the scene. Across conditions we varied the presence or absence of different binocular and monocular cues to depth order. In line with previous studies, results consistent with flow parsing (in terms of both perceived direction and response time) were found in the condition in which motion parallax and stereoscopic disparity were present. Observers were poorer at judging object movement when depth order was specified by parallax alone. However, as more monocular depth cues were added to the stimulus the results approached those found when the scene contained stereoscopic cues. We conclude that both monocular and binocular static depth information contribute to flow parsing. These findings are discussed in the context of potential architectures for a model of the flow parsing mechanism.

  5. Modelling of electronic excitation and radiation in the Direct Simulation Monte Carlo Macroscopic Chemistry Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.

    2012-10-01

    One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.

  6. Hydraulophones: Acoustic musical instruments and expressive user interfaces

    NASA Astrophysics Data System (ADS)

    Janzen, Ryan E.

    Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.

  7. Physical lumping methods for developing linear reduced models for high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Immel, S. M.; Hartley, Tom T.; Deabreu-Garcia, J. Alex

    1991-01-01

    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented.

  8. Application of Geographical Information System Arc/info Grid-Based Surface Hyrologic Modeling to the Eastern Hellas Region, Mars

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Harbert, W.; Crown, D. A.

    2001-05-01

    Geographical Information System GRID-based raster modeling of surface water runoff in the eastern Hellas region of Mars has been completed. We utilized the 0.0625 by 0.0625 degree topographic map of Mars collected by the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA) instrument to model watershed and surface runoff drainage systems. Scientific interpretation of these models with respect to ongoing geological mapping is presented in Mest et al., (2001). After importing a region of approximately 77,000,000 square kilometers into Arc/Info 8.0.2 we reprojected this digital elevation model (DEM) from a Mars sphere into a Mars ellipsoid. Using a simple cylindrical geographic projection and horizontal spatial units of decimal degrees and then an Albers projection with horizontal spatial units of meters, we completed basic hydrological modeling. Analysis of the raw DEM to determine slope, aspect, flow direction, watershed and flow accumulation grids demonstrated the need for correction of single pixel sink anomalies. After analysis of zonal elevation statistics associated with single pixel sinks, which identified 0.8 percent of the DEM points as having undefined surface water flow directions, we filled single pixel sink values of 89 meters or less. This correction is comparable with terrestrial DEMs that contain 0.9 percent to 4.7 percent of cells, which are sinks (Tarboton et al., 1991). The fill-corrected DEM was then used to determine slope, aspect, surface water flow direction and surface water flow accumulation. Within the region of interest 8,776 watersheds were identified. Using Arc/Info GRID flow direction and flow accumulation tools, regions of potential surface water flow accumulation were identified. These networks were then converted to a Strahler ordered stream network. Surface modeling produced Strahler orders one through six. As presented in Mest et al., (2001) comparisons of mapped features may prove compatible with drainage networks and watersheds derived using this methodology. Mest, Scott C., Crown, David A., and Harbert, William, 2001, Highland drainage basins and valley networks in the eastern Hellas Region of Mars, Abstract 1419, Lunar and Planetary Science XXXII Meeting Houston (CDROM). Tarboton D. G., Bras, R. L., and Rodriguez-Iturbe, 1991, On the Extraction of Channel Networks from Digital Elevation Data, Hydrological Processes, v. 5, 81-100. http://viking.eps.pitt.edu

  9. Of arrows and flows. Causality, determination, and specificity in the Central Dogma of molecular biology.

    PubMed

    Fantini, Bernardino

    2006-01-01

    From its first proposal, the Central Dogma had a graphical form, complete with arrows of different types, and this form quickly became its standard presentation. In different scientific contexts, arrows have different meanings and in this particular case the arrows indicated the flow of information among different macromolecules. A deeper analysis illustrates that the arrows also imply a causal statement, directly connected to the causal role of genetic information. The author suggests a distinction between two different kinds of causal links, defined as 'physical causality' and 'biological determination', both implied in the production of biological specificity.

  10. Make the Most of the Data You've Got: Bayesian Models and a Surrogate Species Approach to Assessing Benefits of Upstream Migration Flows for the Endangered Australian Grayling

    NASA Astrophysics Data System (ADS)

    Webb, J. Angus; Koster, Wayne M.; Stuart, Ivor G.; Reich, Paul; Stewardson, Michael J.

    2018-03-01

    Environmental water managers must make best use of allocations, and adaptive management is one means of improving effectiveness of environmental water delivery. Adaptive management relies on generation of new knowledge from monitoring and evaluation, but it is often difficult to make clear inferences from available monitoring data. Alternative approaches to assessment of flow benefits may offer an improved pathway to adaptive management. We developed Bayesian statistical models to inform adaptive management of the threatened Australian grayling ( Prototroctes maraena) in the coastal Thomson River, South-East Victoria Australia. The models assessed the importance of flows in spring and early summer (migration flows) for upstream dispersal and colonization of juveniles of this diadromous species. However, Australian grayling young-of-year were recorded in low numbers, and models provided no indication of the benefit of migration flows. To overcome this limitation, we applied the same models to young-of-year of a surrogate species (tupong— Pseudaphritis urvilli)—a more common diadromous species expected to respond to flow similarly to Australian grayling—and found strong positive responses to migration flows. Our results suggest two complementary approaches to supporting adaptive management of Australian grayling. First, refine monitoring approaches to allow direct measurement of effects of migration flows, a process currently under way. Second, while waiting for improved data, further investigate the use of tupong as a surrogate species. More generally, alternative approaches to assessment can improve knowledge to inform adaptive management, and this can occur while monitoring is being revised to directly target environmental responses of interest.

  11. Make the Most of the Data You've Got: Bayesian Models and a Surrogate Species Approach to Assessing Benefits of Upstream Migration Flows for the Endangered Australian Grayling.

    PubMed

    Webb, J Angus; Koster, Wayne M; Stuart, Ivor G; Reich, Paul; Stewardson, Michael J

    2018-03-01

    Environmental water managers must make best use of allocations, and adaptive management is one means of improving effectiveness of environmental water delivery. Adaptive management relies on generation of new knowledge from monitoring and evaluation, but it is often difficult to make clear inferences from available monitoring data. Alternative approaches to assessment of flow benefits may offer an improved pathway to adaptive management. We developed Bayesian statistical models to inform adaptive management of the threatened Australian grayling (Prototroctes maraena) in the coastal Thomson River, South-East Victoria Australia. The models assessed the importance of flows in spring and early summer (migration flows) for upstream dispersal and colonization of juveniles of this diadromous species. However, Australian grayling young-of-year were recorded in low numbers, and models provided no indication of the benefit of migration flows. To overcome this limitation, we applied the same models to young-of-year of a surrogate species (tupong-Pseudaphritis urvilli)-a more common diadromous species expected to respond to flow similarly to Australian grayling-and found strong positive responses to migration flows. Our results suggest two complementary approaches to supporting adaptive management of Australian grayling. First, refine monitoring approaches to allow direct measurement of effects of migration flows, a process currently under way. Second, while waiting for improved data, further investigate the use of tupong as a surrogate species. More generally, alternative approaches to assessment can improve knowledge to inform adaptive management, and this can occur while monitoring is being revised to directly target environmental responses of interest.

  12. Has the Change of Educational Paradigm Reached Every School and Every Class?

    ERIC Educational Resources Information Center

    Ozola, Sandra; Riemere, Inga

    2015-01-01

    This rapidly changing world demands new skills and competencies for students and teachers whose role as professionals is also changing. Traditional approach to teaching/learning process involves the directed flow of information from a teacher as sage to students as receivers. How effective this transmission of the information has been can be…

  13. 78 FR 70066 - 60-Day Notice of Proposed Information Collection: FHA Stakeholder Feedback for the New FHA Single...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... interested parties on the proposed collection of information. The purpose of this notice is to allow for 60 days of public comment. DATES: Comments Due Date: January 21, 2014. ADDRESSES: Interested persons are... simple, more directive language Aligning the flow of the handbook to the lender/mortgage process. Without...

  14. Identification of informative subgraphs in brain networks

    NASA Astrophysics Data System (ADS)

    Marinazzo, D.; Wu, G.; Pellicoro, M.; Stramaglia, S.

    2013-01-01

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. Here we present a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be inferred from the sign of the contribution.

  15. Three-Dimensional Grain Shape-Fabric from Unconsolidated Pyroclastic Density Current Deposits: Implications for Extracting Flow Direction and Insights on Rheology

    NASA Astrophysics Data System (ADS)

    Hawkins, T. T.; Brand, B. D.; Sarrochi, D.; Pollock, N.

    2016-12-01

    One of the greatest challenges volcanologists face is the ability to extrapolate information about eruption dynamics and emplacement conditions from deposits. Pyroclastic density current (PDC) deposits are particularly challenging given the wide range of initial current conditions, (e.g., granular, fluidized, concentrated, dilute), and rapid flow transformations due to interaction with evolving topography. Analysis of particle shape-fabric can be used to determine flow direction, and may help to understand the rheological characteristics of the flows. However, extracting shape-fabric information from outcrop (2D) apparent fabric is limited, especially when outcrop exposure is incomplete or lacks context. To better understand and quantify the complex flow dynamics reflected in PDC deposits, we study the complete shape-fabric data in 3D using oriented samples. In the field, the prospective sample is carved from the unconsolidated deposit in blocks, the dimensions of which depend on the average clast size in the sample. The sample is saturated in situ with a water-based sodium silicate solution, then wrapped in plaster-soaked gauze to form a protective cast. The orientation of the sample is recorded on the block faces. The samples dry for five days and are then extracted in intact blocks. In the lab, the sample is vacuum impregnated with sodium silicate and cured in an oven. The fully lithified sample is first cut along the plan view to identify orientations of the long axes of the grains (flow direction), and then cut in the two plains perpendicular to grain elongation. 3D fabric analysis is performed using high resolution images of the cut-faces using computer assisted image analysis software devoted to shape-fabric analysis. Here we present the results of samples taken from the 18 May 1980 PDC deposit facies, including massive, diffuse-stratified and cross-stratified lapilli tuff. We show a relationship between the strength of iso-orientation of the elongated particles and different facies architectures, which is used to interpret rheological conditions of the flow. We chose the 18 May PDC deposits because their well-exposed and well-studied outcrops provide context, which allow us to test the method and extract information useful for interpreting ancient deposits that lack context.

  16. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks.

    PubMed

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A

    2016-10-26

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.

  17. Body sway reflects leadership in joint music performance.

    PubMed

    Chang, Andrew; Livingstone, Steven R; Bosnyak, Dan J; Trainor, Laurel J

    2017-05-23

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers' ratings of the "goodness" of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships.

  18. Body sway reflects leadership in joint music performance

    PubMed Central

    Livingstone, Steven R.; Bosnyak, Dan J.; Trainor, Laurel J.

    2017-01-01

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers’ ratings of the “goodness” of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships. PMID:28484007

  19. Applications of connected vehicle infrastructure technologies to enhance transit service efficiency and safety.

    DOT National Transportation Integrated Search

    2016-09-30

    Implementing Connected Vehicle Infrastructure (CVI) applications for handheld devices into public transportation transit systems would provide transit agencies and their users with two-directional information flow from traveler-to-agencies, agencies-...

  20. Karl von Frisch lecture. Signals and flexibility in the dance communication of honeybees.

    PubMed

    Michelsen, Axel

    2003-03-01

    Progress in understanding dance communication in honeybees is reviewed. The behaviour of both dancers and follower bees contain flexible and stereotypic elements. The transfer of specific information about direction and distance probably involves more than one sensory modality. The follower bees need to stay behind the dancer (within the angle of wagging) during at least one waggle run in order to perceive the specific information. Within this zone, a small stationary air-flow receiver (like the antenna of a follower bee) experiences a well-defined maximum when the abdomen of the wagging dancer passes by. Within 1 mm from the tip of the abdomen, the maximum may be caused by oscillating flows generated by the wagging motion. At other positions and distances (up to several millimetres from the dancer) the maximum is due to a spatially narrow jet air flow generated by the vibrating wings. The time pattern of these maxima is a function of the angular position of the receiver relative to the axis of the waggle run and thus a potential cue for direction. In addition to the narrow jet air flows, the dancers can generate a broad jet. The jets are not automatic by-products of wing vibration, since they can be switched on and off when the dancer adjusts the position of her wings.

  1. Simple graph models of information spread in finite populations

    PubMed Central

    Voorhees, Burton; Ryder, Bergerud

    2015-01-01

    We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661

  2. On the causal structure between CO2 and global temperature

    PubMed Central

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  3. Does the central dogma still stand?

    PubMed

    Koonin, Eugene V

    2012-08-23

    Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.

  4. Contributions to the understanding of large-scale coherent structures in developing free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Liu, J. T. C.

    1986-01-01

    Advances in the mechanics of boundary layer flow are reported. The physical problems of large scale coherent structures in real, developing free turbulent shear flows, from the nonlinear aspects of hydrodynamic stability are addressed. The presence of fine grained turbulence in the problem, and its absence, lacks a small parameter. The problem is presented on the basis of conservation principles, which are the dynamics of the problem directed towards extracting the most physical information, however, it is emphasized that it must also involve approximations.

  5. Tracking the Subsurface Signal of Decadal Climate Warming to Quantify Vertical Groundwater Flow Rates

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Kurylyk, B. L.

    2017-12-01

    Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.

  6. The effect of topography on pyroclastic flow mobility

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E. S.

    2010-12-01

    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  7. Grouping of optic flow stimuli during binocular rivalry is driven by monocular information.

    PubMed

    Holten, Vivian; Stuit, Sjoerd M; Verstraten, Frans A J; van der Smagt, Maarten J

    2016-10-01

    During binocular rivalry, perception alternates between two dissimilar images, presented dichoptically. Although binocular rivalry is thought to result from competition at a local level, neighboring image parts with similar features tend to be perceived together for longer durations than image parts with dissimilar features. This simultaneous dominance of two image parts is called grouping during rivalry. Previous studies have shown that this grouping depends on a shared eye-of-origin to a much larger extent than on image content, irrespective of the complexity of a static image. In the current study, we examine whether grouping of dynamic optic flow patterns is also primarily driven by monocular (eye-of-origin) information. In addition, we examine whether image parameters, such as optic flow direction, and partial versus full visibility of the optic flow pattern, affect grouping durations during rivalry. The results show that grouping of optic flow is, as is known for static images, primarily affected by its eye-of-origin. Furthermore, global motion can affect grouping durations, but only under specific conditions. Namely, only when the two full optic flow patterns were presented locally. These results suggest that grouping during rivalry is primarily driven by monocular information even for motion stimuli thought to rely on higher-level motion areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach

    PubMed Central

    Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793

  9. On-line metabolic pathway analysis based on metabolic signal flow diagram.

    PubMed

    Shi, H; Shimizu, K

    In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. Copyright 1998 John Wiley & Sons, Inc.

  10. Manning’s equation and two-dimensional flow analogs

    NASA Astrophysics Data System (ADS)

    Hromadka, T. V., II; Whitley, R. J.; Jordan, N.; Meyer, T.

    2010-07-01

    SummaryTwo-dimensional (2D) flow models based on the well-known governing 2D flow equations are applied to floodplain analysis purposes. These 2D models numerically solve the governing flow equations simultaneously or explicitly on a discretization of the floodplain using grid tiles or similar tile cell geometry, called "elements". By use of automated information systems such as digital terrain modeling, digital elevation models, and GIS, large-scale topographic floodplain maps can be readily discretized into thousands of elements that densely cover the floodplain in an edge-to-edge form. However, the assumed principal flow directions of the flow model analog, as applied across an array of elements, typically do not align with the floodplain flow streamlines. This paper examines the mathematical underpinnings of a four-direction flow analog using an array of square elements with respect to floodplain flow streamlines that are not in alignment with the analog's principal flow directions. It is determined that application of Manning's equation to estimate the friction slope terms of the governing flow equations, in directions that are not coincident with the flow streamlines, may introduce a bias in modeling results, in the form of slight underestimation of flow depths. It is also determined that the maximum theoretical bias, occurs when a single square element is rotated by about 13°, and not 45° as would be intuitively thought. The bias as a function of rotation angle for an array of square elements follows approximately the bias for a single square element. For both the theoretical single square element and an array of square elements, the bias as a function of alignment angle follows a relatively constant value from about 5° to about 85°, centered at about 45°. This bias was first noted about a decade prior to the present paper, and the magnitude of this bias was estimated then to be about 20% at about 10° misalignment. An adjustment of Manning's n is investigated based on a considered steady state uniform flow problem, but the magnitude of the adjustment (about 20%) is on the order of the magnitude of the accepted ranges of friction factors. For usual cases where random streamline trajectory variability within the floodplain flow is greater than a few degrees from perfect alignment, the apparent bias appears to be implicitly included in the Manning's n values. It can be concluded that the array of square elements may be applied over the digital terrain model without respect to topographic flow directions.

  11. Multi-agent coordination in directed moving neighbourhood random networks

    NASA Astrophysics Data System (ADS)

    Shang, Yi-Lun

    2010-07-01

    This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results.

  12. Emerging interdependence between stock values during financial crashes.

    PubMed

    Rocchi, Jacopo; Tsui, Enoch Yan Lok; Saad, David

    2017-01-01

    To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets.

  13. Emerging interdependence between stock values during financial crashes

    PubMed Central

    Tsui, Enoch Yan Lok; Saad, David

    2017-01-01

    To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets. PMID:28542278

  14. Patient-physician relationships in the information age.

    PubMed

    Johnson, G L; Ramaprasad, A

    2000-01-01

    The ready and free availability of information that characterizes the Information Age--with health information on the Internet and direct-to-consumer advertising of prescription drugs as two of these major information sources--is bringing about significant changes in patient-physician relationships. By developing a matrix of intended and unintended consequences and desirable and undesirable consequences, it's possible to have a better understanding of the impact of the free flow of information on this traditional relationship. Ultimately, any marketing approach to these newly empowered patients must take their level of health care knowledge into consideration.

  15. Airport Information Retrieval System (AIRS) System Design

    DOT National Transportation Integrated Search

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  16. Water/Ice Heat Sink With Quick-Connect Couplings

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, Bruce

    1996-01-01

    Report presents additional detailed information on apparatus described in "Direct-Interface, Fusible Heat Sink" (ARC-11920). Describes entire apparatus, with special emphasis on features of quick-disconnect couplings governing flow of water under various operating conditions and plumbing configuration.

  17. Influence of Coanda surface curvature on performance of bladeless fan

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  18. Flow and compaction properties of hypromellose: new directly compressible versus the established grades.

    PubMed

    Grdešič, Peter; Vrečer, Franc; Ilić, Ilija

    2016-11-01

    Information about flow and compaction properties of hypromellose (HPMC) polymers is essential for the technologists who are facing challenges regarding poor flow and compaction while developing new controlled release matrix tablets. There is a profound lack of studies in this field and none of the published ones deal with the compaction of the newly introduced HPMC grades specifically designed for direct compression (DC). The objective behind this study was the evaluation of flow and compaction properties of six different grades of HPMC substitution type 2208 polymers, including two second generation directly compressible grades from Dow Chemical Company (K100LV, K15M, K4M CR, K4M DC, K100M CR and K100M DC). Flow properties were determined using flow time and Carr index. Compaction properties were quantified using "out-of-die" Heckel and modified Walker models as well as tensile strength profile and elastic recovery. We used statistical approach to analyze the results. Due to larger, rounder and smoother particles both DC grades showed distinctly better flow properties compared to their non-DC counterparts. Overall, K15M showed the best compaction properties, closely followed by K100LV. K100M grades showed superior compaction properties over K4M grades. The new, second generation DC grades had poorer compaction properties, however, they exhibited better flow properties on the other hand. Considering all compaction results, the Heckel model gave better description of compressibility compared to the Walker model, so it may be preferred in case of studying HPMC polymers and other similar materials.

  19. Modeling Groundwater Flow System of a Drainage Basin in the Basement Complex Environment of Southwestern Nigera

    NASA Astrophysics Data System (ADS)

    Akinwumiju, Akinola S.; Olorunfemi, Martins O.

    2018-05-01

    This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.

  20. Information flow and work productivity through integrated information technology

    NASA Technical Reports Server (NTRS)

    Wigand, R. T.

    1985-01-01

    The work environment surrounding integrated office systems is reviewed. The known effects of automated office technologies is synthesized and their known impact on work efficiency is reviewed. These effects are explored with regard to their impact on networks, work flow/processes, as well as organizational structure and power. Particular emphasis is given to structural changes due to the introduction of newer information technologies in organizations. The new information technologies have restructed the average organization's middle banks and, as a consequence, they have shrunk drastically. Organizational pyramids have flattened with fewer levels since executives have realized that they can get ahold of the needed information via the new technologies quicker and directly and do not have to rely on middle-level managers. Power shifts are typically accompanied with the introduction of these technologies resulting in the generation of a new form of organizational power.

  1. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    PubMed

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  2. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  3. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Cancer.gov

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  4. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  5. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm

    PubMed Central

    Iyer, Swathi; Shafran, Izhak; Grayson, David; Gates, Kathleen; Nigg, Joel; Fair, Damien

    2013-01-01

    Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determines this relationship by using Pearson's correlation on BOLD fMRI timeseries. However, it has been recognized that there are at least two key limitations to this method. First, it is not possible to resolve the direct and indirect connections/influences. Second, the direction of information flow between the regions cannot be differentiated. In the current paper, we follow-up on recent work by Smith et al (2011), and apply a Bayesian approach called the PC algorithm to both simulated data and empirical data to determine whether these two factors can be discerned with group average, as opposed to single subject, functional connectivity data. When applied on simulated individual subjects, the algorithm performs well determining indirect and direct connection but fails in determining directionality. However, when applied at group level, PC algorithm gives strong results for both indirect and direct connections and the direction of information flow. Applying the algorithm on empirical data, using a diffusion-weighted imaging (DWI) structural connectivity matrix as the baseline, the PC algorithm outperformed the direct correlations. We conclude that, under certain conditions, the PC algorithm leads to an improved estimate of brain network structure compared to the traditional connectivity analysis based on correlations. PMID:23501054

  6. Music Listening modulates Functional Connectivity and Information Flow in the Human Brain.

    PubMed

    Karmonik, Christof; Brandt, Anthony; Anderson, Jeff; Brooks, Forrest; Lytle, Julie; Silverman, Elliott; Frazier, Jeff T

    2016-07-27

    Listening to familiar music has recently been reported to be beneficial during recovery from stroke. A better understanding of changes in functional connectivity and information flow is warranted in order to further optimize and target this approach through music therapy. Twelve healthy volunteers listened to seven different auditory samples during an fMRI scanning session: a musical piece chosen by the volunteer that evokes a strong emotional response (referred to as: "self-selected emotional"), two unfamiliar music pieces (Invention #1 by J. S. Bach* and Gagaku - Japanese classical opera, referred to as "unfamiliar"), the Bach piece repeated with visual guidance (DML: Directed Music Listening) and three spoken language pieces (unfamiliar African click language, an excerpt of emotionally charged language, and an unemotional reading of a news bulletin). Functional connectivity and betweenness (BTW) maps, a measure for information flow, were created with a graph-theoretical approach. Distinct variation in functional connectivity was found for different music pieces consistently for all subjects. Largest brain areas were recruited for processing self-selected music with emotional attachment or culturally unfamiliar music. Maps of information flow correlated significantly with fMRI BOLD activation maps (p<0.05). Observed differences in BOLD activation and functional connectivity may help explain previously observed beneficial effects in stroke recovery, as increased blood flow to damaged brain areas stimulated by active engagement through music listening may have supported a state more conducive to therapy.

  7. Non-Invasive Mapping of Intraventricular Flow Patterns in Patients Treated with Left Ventricular Assist Devices

    NASA Astrophysics Data System (ADS)

    Miramontes, Marissa; Rossini, Lorenzo; Braun, Oscar; Brambatti, Michela; Almeida, Shone; Mizeracki, Adam; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Kahn, Andrew; Adler, Eric; Del Álamo, Juan C.

    2017-11-01

    In heart failure patients, left ventricular (LV) assist devices (LVADs) decrease mortality and improve quality of life. We hypothesize echo color Doppler velocimetry (echo-CDV), an echocardiographic flow mapping modality, can non-invasively characterize the effect of LVAD support, optimize the device, thereby decreasing the stoke rate present in these patients. We used echo-CDV to image LV flow at baseline LVAD speed and during a ramp test in LVAD patients (Heartmate II, N =10). We tracked diastolic vortices and mapped blood stasis and cumulative shear. Compared to dilated cardiomyopathy (DCM) patients without LVADs, the flow had a less prominent diastolic vortex ring, and transited directly from mitral valve to cannula. Residence time and shear were significantly lower compared to healthy controls and DCMs. Aortic regurgitation and a large LV vortex presence or a direct mitral jet towards the cannula affected blood stasis region location and size. Flow patterns, residence time and shear depended on LV geometry, valve function and LVAD speed in a patient specific manner. This new methodology could be used with standard echo, hemodynamics and clinical information to find the flow optimizing LAVD setting minimizing stasis for each patient.

  8. Adaptive hydrological flow field modeling based on water body extraction and surface information

    NASA Astrophysics Data System (ADS)

    Puttinaovarat, Supattra; Horkaew, Paramate; Khaimook, Kanit; Polnigongit, Weerapong

    2015-01-01

    Hydrological flow characteristic is one of the prime indicators for assessing flood. It plays a major part in determining drainage capability of the affected basin and also in the subsequent simulation and rainfall-runoff prediction. Thus far, flow directions were typically derived from terrain data which for flat landscapes are obscured by other man-made structures, hence undermining the practical potential. In the absence (or diminutive) of terrain slopes, water passages have a more pronounced effect on flow directions than elevations. This paper, therefore, presents detailed analyses and implementation of hydrological flow modeling from satellite and topographic images. Herein, gradual assignment based on support vector machine was applied to modified normalized difference water index and a digital surface model, in order to ensure reliable water labeling while suppressing modality-inherited artifacts and noise. Gradient vector flow was subsequently employed to reconstruct the flow field. Experiments comparing the proposed scheme with conventional water boundary delineation and flow reconstruction were presented. Respective assessments revealed its advantage over the generic stream burning. Specifically, it could extract water body from studied areas with 98.70% precision, 99.83% recall, 98.76% accuracy, and 99.26% F-measure. The correlations between resultant flows and those obtained from the stream burning were as high as 0.80±0.04 (p≤0.01 in all resolutions).

  9. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    NASA Astrophysics Data System (ADS)

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.

    2016-10-01

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.

  10. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    PubMed Central

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.

    2016-01-01

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community. PMID:27782207

  11. Using cosmic microwave background radiation analysis tools for flow anisotropies in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.

    2010-03-15

    Recently we have shown that there are crucial similarities in the physics of cosmic microwave background radiation (CMBR) anisotropies and the flow anisotropies in relativistic heavy-ion collision experiments (RHICE). We also argued that, following CMBR anisotropy analysis, a plot of root-mean-square values of the flow coefficients, calculated in a laboratory-fixed frame for RHICE, can yield important information about the nature of initial state anisotropies and their evolution. Here we demonstrate the strength of this technique by showing that elliptic flow for noncentral collisions can be directly determined from such a plot without any need for the determination of the eventmore » plane.« less

  12. Pedestrian simulation and distribution in urban space based on visibility analysis and agent simulation

    NASA Astrophysics Data System (ADS)

    Ying, Shen; Li, Lin; Gao, Yurong

    2009-10-01

    Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.

  13. West-directed thrusting south of the eastern Himalayan syntaxis indicates clockwise crustal flow at the indenter corner during the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Haproff, Peter J.; Zuza, Andrew V.; Yin, An

    2018-01-01

    Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.

  14. Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2007-02-01

    Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.

  15. Connectomics-based analysis of information flow in the Drosophila brain.

    PubMed

    Shih, Chi-Tin; Sporns, Olaf; Yuan, Shou-Li; Su, Ta-Shun; Lin, Yen-Jen; Chuang, Chao-Chun; Wang, Ting-Yuan; Lo, Chung-Chuang; Greenspan, Ralph J; Chiang, Ann-Shyn

    2015-05-18

    Understanding the overall patterns of information flow within the brain has become a major goal of neuroscience. In the current study, we produced a first draft of the Drosophila connectome at the mesoscopic scale, reconstructed from 12,995 images of neuron projections collected in FlyCircuit (version 1.1). Neuron polarities were predicted according to morphological criteria, with nodes of the network corresponding to brain regions designated as local processing units (LPUs). The weight of each directed edge linking a pair of LPUs was determined by the number of neuron terminals that connected one LPU to the other. The resulting network showed hierarchical structure and small-world characteristics and consisted of five functional modules that corresponded to sensory modalities (olfactory, mechanoauditory, and two visual) and the pre-motor center. Rich-club organization was present in this network and involved LPUs in all sensory centers, and rich-club members formed a putative motor center of the brain. Major intra- and inter-modular loops were also identified that could play important roles for recurrent and reverberant information flow. The present analysis revealed whole-brain patterns of network structure and information flow. Additionally, we propose that the overall organizational scheme showed fundamental similarities to the network structure of the mammalian brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Archer, Eric D. (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  17. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  18. Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States

    USGS Publications Warehouse

    Wolock, David

    2003-01-01

    This dataset represents point locations and flow characteristics for current (as of November 20, 2001) and historical U.S. Geological Survey (USGS) streamgages in the conterminous United States. The flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The attributes associated with each streamgage include: Station number Station name Station latitude (decimal degrees in North American Datum of 1983, NAD 83) Station longitude (decimal degrees in NAD 83) First date (year, month, day) of streamflow data Last date (year, month, day) of streamflow data Number of days of streamflow data Minimum and maximum daily flow for the period of record (cubic feet per second) Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) Average and standard deviation of daily flow for the period of record (cubic feet per second) Mean annual base-flow index (BFI: see supplemental information) computed for the period of record (fraction, ranging from 0 to 1) Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) Number of years of data used to compute the base-flow index (years) Reported drainage area (square miles) Reported contributing drainage area (square miles) National Water Information System (NWIS)-Web page URL for streamgage Hydrologic Unit Code (HUC, 8 digit) Hydrologic landscape region (HLR) River Reach File 1 (RF1) segment identification number (E2RF1##) Station numbers, names, locations, and drainage areas were acquired through the National Water Information System (NWIS)-Web (http://water.usgs.gov/nwis) on November 20, 2001. The streamflow data used to compute flow characteristics were copied from the Water server (water.usgs.gov:/www/htdocs/nwisweb/data1/discharge/) on November 2, 2001. The missing value indicator for all attributes is -99. Some streamflow characteristics are missing for: (1) streamgages measuring flow subject to tidal effects, which cause flow to reverse directions, (2) streamgages with site information but no streamflow data at the time the data were retrieved, and (3) streamgages with record length too short to compute the base-flow index.

  19. Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Kucharek, H.; Clark, G.; O'Neill, M.; Petersen, L.; Bzowski, M.; Saul, L.; Wurz, P.; Fuselier, S. A.; Izmodenov, V. V.; McComas, D. J.; Müller, H. R.; Alexashov, D. B.

    2009-08-01

    Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly- α backscattering observations and the two Voyager crossings of the termination shock.

  20. Inference of topology and the nature of synapses, and the flow of information in neuronal networks

    NASA Astrophysics Data System (ADS)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.

    2018-02-01

    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  1. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  2. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  3. Nursing Information Flow in Long-Term Care Facilities.

    PubMed

    Wei, Quan; Courtney, Karen L

    2018-04-01

     Long-term care (LTC), residential care requiring 24-hour nursing services, plays an important role in the health care service delivery system. The purpose of this study was to identify the needed clinical information and information flow to support LTC Registered Nurses (RNs) in care collaboration and clinical decision making.  This descriptive qualitative study combines direct observations and semistructured interviews, conducted at Alberta's LTC facilities between May 2014 and August 2015. The constant comparative method (CCM) of joint coding was used for data analysis.  Nine RNs from six LTC facilities participated in the study. The RN practice environment includes two essential RN information management aspects: information resources and information spaces. Ten commonly used information resources by RNs included: (1) RN-personal notes; (2) facility-specific templates/forms; (3) nursing processes/tasks; (4) paper-based resident profile; (5) daily care plans; (6) RN-notebooks; (7) medication administration records (MARs); (8) reporting software application (RAI-MDS); (9) people (care providers); and (10) references (i.e., books). Nurses used a combination of shared information spaces, such as the Nurses Station or RN-notebook, and personal information spaces, such as personal notebooks or "sticky" notes. Four essential RN information management functions were identified: collection, classification, storage, and distribution. Six sets of information were necessary to perform RN care tasks and communication, including: (1) admission, discharge, and transfer (ADT); (2) assessment; (3) care plan; (4) intervention (with two subsets: medication and care procedure); (5) report; and (6) reference. Based on the RN information management system requirements, a graphic information flow model was constructed.  This baseline study identified key components of a current LTC nursing information management system. The information flow model may assist health information technology (HIT) developers to consolidate the design of HIT solutions for LTC, and serve as a communication tool between nurses and information technology (IT) staff to refine requirements and support further LTC HIT research. Schattauer GmbH Stuttgart.

  4. Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat

    PubMed Central

    Alcaraz, Fabien; Fresno, Virginie; Marchand, Alain R; Kremer, Eric J; Coutureau, Etienne

    2018-01-01

    Highly distributed neural circuits are thought to support adaptive decision-making in volatile and complex environments. Notably, the functional interactions between prefrontal and reciprocally connected thalamic nuclei areas may be important when choices are guided by current goal value or action-outcome contingency. We examined the functional involvement of selected thalamocortical and corticothalamic pathways connecting the dorsomedial prefrontal cortex (dmPFC) and the mediodorsal thalamus (MD) in the behaving rat. Using a chemogenetic approach to inhibit projection-defined dmPFC and MD neurons during an instrumental learning task, we show that thalamocortical and corticothalamic pathways differentially support goal attributes. Both pathways participate in adaptation to the current goal value, but only thalamocortical neurons are required to integrate current causal relationships. These data indicate that antiparallel flow of information within thalamocortical circuits may convey qualitatively distinct aspects of adaptive decision-making and highlight the importance of the direction of information flow within neural circuits. PMID:29405119

  5. Does the central dogma still stand?

    PubMed Central

    2012-01-01

    Abstract Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general ‘look-ahead effect’ of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits. Reviewers This article was reviewed by Jerzy Jurka, Pierre Pontarotti and Juergen Brosius. For the complete reviews, see the Reviewers’ Reports section. PMID:22913395

  6. A FRAMEWORK FOR ATTRIBUTE-BASED COMMUNITY DETECTION WITH APPLICATIONS TO INTEGRATED FUNCTIONAL GENOMICS.

    PubMed

    Yu, Han; Hageman Blair, Rachael

    2016-01-01

    Understanding community structure in networks has received considerable attention in recent years. Detecting and leveraging community structure holds promise for understanding and potentially intervening with the spread of influence. Network features of this type have important implications in a number of research areas, including, marketing, social networks, and biology. However, an overwhelming majority of traditional approaches to community detection cannot readily incorporate information of node attributes. Integrating structural and attribute information is a major challenge. We propose a exible iterative method; inverse regularized Markov Clustering (irMCL), to network clustering via the manipulation of the transition probability matrix (aka stochastic flow) corresponding to a graph. Similar to traditional Markov Clustering, irMCL iterates between "expand" and "inflate" operations, which aim to strengthen the intra-cluster flow, while weakening the inter-cluster flow. Attribute information is directly incorporated into the iterative method through a sigmoid (logistic function) that naturally dampens attribute influence that is contradictory to the stochastic flow through the network. We demonstrate advantages and the exibility of our approach using simulations and real data. We highlight an application that integrates breast cancer gene expression data set and a functional network defined via KEGG pathways reveal significant modules for survival.

  7. Analysis of information flows among individual companies in the KOSDAQ market

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Yong; Oh, Gabjin

    2016-08-01

    In this paper, we employ the variance decomposition method to measure the strength and the direction of interconnections among companies in the KOSDAQ (Korean Securities Dealers Automated Quotation) stock market. We analyze the 200 companies listed on the KOSDAQ market from January 2001 to December 2015. We find that the systemic risk, measured by using the interconnections, increases substantially during periods of financial crisis such as the bankruptcy of Lehman brothers and the European financial crisis. In particular, we find that the increases in the aggregated information flows can be used to predict the increment of the market volatility that may occur during a sub-prime financial crisis period.

  8. What Is Trying to Happen Here? Using Mindfulness to Enhance the Quality of Patient Encounters

    PubMed Central

    Knowles, Philip

    2008-01-01

    Mind can be considered as a process that regulates the flow of sensory inputs and information, much of it largely unobserved. Mindful self-awareness is a disciplined means of directing attention to the thoughts, affect, intentions, and physiologic shifts that occur moment to moment. These, along with the perception of signals observed from another person, shape behavior in an ongoing interaction. The flow of inputs and information has implications for the formation of an empathetic relationship. Empathy is known to be an essential aspect of successful clinician-patient communication. This article describes the characteristics and practices of mindful self-awareness as a way of promoting optimal outcomes in patient encounters. PMID:21364814

  9. Privacy impact assessment in the design of transnational public health information systems: the BIRO project.

    PubMed

    Di Iorio, C T; Carinci, F; Azzopardi, J; Baglioni, V; Beck, P; Cunningham, S; Evripidou, A; Leese, G; Loevaas, K F; Olympios, G; Federici, M Orsini; Pruna, S; Palladino, P; Skeie, S; Taverner, P; Traynor, V; Benedetti, M Massi

    2009-12-01

    To foster the development of a privacy-protective, sustainable cross-border information system in the framework of a European public health project. A targeted privacy impact assessment was implemented to identify the best architecture for a European information system for diabetes directly tapping into clinical registries. Four steps were used to provide input to software designers and developers: a structured literature search, analysis of data flow scenarios or options, creation of an ad hoc questionnaire and conduction of a Delphi procedure. The literature search identified a core set of relevant papers on privacy (n = 11). Technicians envisaged three candidate system architectures, with associated data flows, to source an information flow questionnaire that was submitted to the Delphi panel for the selection of the best architecture. A detailed scheme envisaging an "aggregation by group of patients" was finally chosen, based upon the exchange of finely tuned summary tables. Public health information systems should be carefully engineered only after a clear strategy for privacy protection has been planned, to avoid breaching current regulations and future concerns and to optimise the development of statistical routines. The BIRO (Best Information Through Regional Outcomes) project delivers a specific method of privacy impact assessment that can be conveniently used in similar situations across Europe.

  10. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  11. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE PAGES

    Sutherland, John C.

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  12. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John C.

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  13. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear.

    PubMed

    Sutherland, John C

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonal orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configurations. Approaches for measuring the dichroic increment ratio with modern dichrometers are discussed. Copyright © 2017. Published by Elsevier Inc.

  14. Measuring surface flow velocity with smartphones: potential for citizen observatories

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  15. 2D modeling of direct laser metal deposition process using a finite particle method

    NASA Astrophysics Data System (ADS)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  16. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  17. Correlation of heat transfer for the zero pressure gradient hypersonic laminar boundary layer for several gases

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1973-01-01

    A theoretical study of heat transfer for zero pressure gradient hypersonic laminar boundary layers for various gases with particular application to the flows produced in an expansion tube facility was conducted. A correlation based on results obtained from solutions to the governing equations for five gases was formulated. Particular attention was directed toward the laminar boundary layer shock tube splitter plates in carbon dioxide flows generated by high speed shock waves. Computer analysis of the splitter plate boundary layer flow provided information that is useful in interpreting experimental data obtained in shock tube gas radiation studies.

  18. Transfer Entropy and Transient Limits of Computation

    PubMed Central

    Prokopenko, Mikhail; Lizier, Joseph T.

    2014-01-01

    Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation. PMID:24953547

  19. Computation of the bluff-body sound generation by a self-consistent mean flow formulation

    NASA Astrophysics Data System (ADS)

    Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.

    2018-03-01

    The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.

  20. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented in an appendix.

  1. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  2. Systematic Differences in Signal Emitting and Receiving Revealed by PageRank Analysis of a Human Protein Interactome

    PubMed Central

    Li, Xiu-Qing

    2012-01-01

    Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell. PMID:23028653

  3. Towards a General Turbulence Model for Planetary Boundary Layers Based on Direct Statistical Simulation

    NASA Astrophysics Data System (ADS)

    Skitka, J.; Marston, B.; Fox-Kemper, B.

    2016-02-01

    Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.

  4. Representation of vestibular and visual cues to self-motion in ventral intraparietal (VIP) cortex

    PubMed Central

    Chen, Aihua; Deangelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately half of VIP cells show significant directional selectivity in response to optic flow, half show tuning to vestibular stimuli, and one-third show multisensory responses. Visual and vestibular direction preferences of multisensory VIP neurons could be congruent or opposite. When visual and vestibular stimuli were combined, VIP responses could be dominated by either input, unlike medial superior temporal area (MSTd) where optic flow tuning typically dominates or the visual posterior sylvian area (VPS) where vestibular tuning dominates. Optic flow selectivity in VIP was weaker than in MSTd but stronger than in VPS. In contrast, vestibular tuning for translation was strongest in VPS, intermediate in VIP, and weakest in MSTd. To characterize response dynamics, direction-time data were fit with a spatiotemporal model in which temporal responses were modeled as weighted sums of velocity, acceleration, and position components. Vestibular responses in VIP reflected balanced contributions of velocity and acceleration, whereas visual responses were dominated by velocity. Timing of vestibular responses in VIP was significantly faster than in MSTd, whereas timing of optic flow responses did not differ significantly among areas. These findings suggest that VIP may be proximal to MSTd in terms of vestibular processing but hierarchically similar to MSTd in terms of optic flow processing. PMID:21849564

  5. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  6. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  7. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  8. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  9. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  10. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  11. Information Transfer in the Brain: Insights from a Unified Approach

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Wu, Guorong; Pellicoro, Mario; Stramaglia, Sebastiano

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. In this chapter we propose some approaches rooted in this framework for the analysis of neuroimaging data. First we will explore how the transfer of information depends on the network structure, showing how for hierarchical networks the information flow pattern is characterized by exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a signature of the law of diminishing marginal returns. This was reported to be true also for effective connectivity networks from human EEG data. Then we address the problem of partial conditioning to a limited subset of variables, chosen as the most informative ones for the driver node.We will then propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be associated to the sign of the contribution. Applications are reported for EEG and fMRI data.

  12. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit further study and monitoring of the volcanic activity in the area. This is of concern due to the large numbers of refugees fleeing into Zaire where they are being positioned at the base of Mt. Nyiragongo. The refugees located at the base of the volcano are in direct hazard of suffocation by gas emission and destruction by lava flow. The results from this summer study will be used to secure future funding to enable continuation of this project.

  13. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  14. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.

    PubMed

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  15. Labyrinth Seal Analysis. Volume 3. Analytical and Experimental Development of a Design Model for Labyrinth Seals

    DTIC Science & Technology

    1986-01-01

    the information that has been determined experimentally. The Labyrinth Seal Analysis program was, therefore, directed to the develop - ment of an...labyrinth seal performance, the program included the development of an improved empirical design model to pro- j. .,’ vide the calculation of the flow... program . * Phase I was directed to the analytical development of both an *analysis* model and an improvwd empirical *design" model. Supporting rig tests

  16. Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P

    2010-12-03

    The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk ofmore » intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are instantiated, a risk consequence analysis can be performed by injecting contaminant at chosen points in the system and propagating the event through the overarching system to arrive at morbidity and mortality figures. A generic chocolate snack cake model, consisting of fluid milk, liquid eggs, and cocoa, is described as an intended proof of concept for multi-ingredient food systems. We aim for an eventual tool that can be used directly by policy makers and planners.« less

  17. Improving chemical species tomography of turbulent flows using covariance estimation.

    PubMed

    Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J

    2017-05-01

    Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.

  18. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    PubMed

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  19. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan

    PubMed Central

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-01-01

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management. PMID:27857230

  20. Go big or die out: Bifurcation and bimodality in submarine sediment flow behaviour

    NASA Astrophysics Data System (ADS)

    Talling, P.; Paull, C. K.; Lintern, G.; Gwiazda, R.; Cartigny, M.; Hughes Clarke, J. E.; Xu, J.; Clare, M. A.; Parsons, D. R.; Simmons, S.; Maier, K. L.; Gales, J. A.; Hage, S.; McGann, M.; Pope, E.; Rosenberger, K. J.; Stacey, C.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Chapplow, N.; Vendettuoli, D.

    2017-12-01

    Submarine flows of sediment (turbidity currents) flush globally significant volumes of sediment and organic carbon into deep-sea basins. These flows create the largest sediment accumulations on Earth, which hold valuable oil and gas reserves. These flows affect global carbon burial, how deep-sea ecosystems function, and pose a hazard to offshore infrastructure. Only river systems transport such large amounts of sediment across such long distances. However, there are remarkably few direct measurements from active submarine flows, which is a stark contrast to >1 million direct observations from rivers. Here we present unusually detailed information on frequency, power and runout distance of multiple submarine flows at two contrasting locations. The first data set comes from Monterey Canyon, offshore California, which is fed by littoral cells. The second site is a river-fed delta in Bute Inlet, British Columbia. In both cases, the timing and runout distance of submarine flows was documented using instruments on multiple moorings placed along the 50-km long flow pathway. A striking observation is that flow behaviour and runout is strongly bimodal in both locations. Flows tend to either dissipate rapidly, or runout through the entire mooring arrays. We thus test whether i) the character of short or long runout flows can be distinguished at the first mooring and ii) whether long and short runout flows have different triggers. It has been proposed that submarine flows have two modes of behaviour; either eroding and accelerating, or depositing and dissipating. These field data support such a view of bifurcation and bimodality in flow behaviour. However, some short runout flows resemble their longer runout cousins at the first mooring, and there is no clear relationship between flow trigger and runout. Thus, some flows reach a point where their character is no longer dependent on their initial trigger or initial structure, but on factors acting along the flow pathway.

  1. Harbor seals (Phoca vitulina) can perceive optic flow under water.

    PubMed

    Gläser, Nele; Mauck, Björn; Kandil, Farid I; Lappe, Markus; Dehnhardt, Guido; Hanke, Frederike D

    2014-01-01

    Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal's accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.

  2. Harbor Seals (Phoca vitulina) Can Perceive Optic Flow under Water

    PubMed Central

    Gläser, Nele; Mauck, Björn; Kandil, Farid I.; Lappe, Markus; Dehnhardt, Guido; Hanke, Frederike D.

    2014-01-01

    Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal's accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes. PMID:25058490

  3. Precise nanoliter fluid handling system with integrated high-speed flow sensor.

    PubMed

    Haber, Carsten; Boillat, Marc; van der Schoot, Bart

    2005-04-01

    A system for accurate low-volume delivery of liquids in the micro- to nanoliter range makes use of an integrated miniature flow sensor as part of an intelligent feedback control loop driving a micro-solenoid valve. The flow sensor is hydraulically connected with the pressurized system liquid in the dispensing channel and located downstream from the pressure source, above the solenoid valve. The sensor operates in a differential mode and responds in real-time to the internal flow-pulse resulting from the brief opening interval of the solenoid valve leading to a rapid ejection of a fluid droplet. The integral of the flow-pulse delivered by the sensor is directly proportional to the volume of the ejected droplet from the nozzle. The quantitative information is utilized to provide active control of the effectively dispensed or aspirated volume by adjusting the solenoid valve accordingly. This process significantly enhances the precision of the fluid delivery. The system furthermore compensates automatically for any changes in the viscosity of the dispensed liquid. The data delivered by the flow sensor can be saved and backtracked in order to confirm and validate the aspiration and dispensing process in its entirety. The collected dispense information can be used for quality control assessments and automatically be made part of an electronic record.

  4. An Information Transmission Measure for the Analysis of Effective Connectivity among Cortical Neurons

    PubMed Central

    Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.

    2014-01-01

    We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617

  5. Flow direction measurement criteria and techniques planned for the 40- by 80-/80- x 120-foot wind tunnel integrated systems tests

    NASA Technical Reports Server (NTRS)

    Zell, P. T.; Hoffmann, J.; Sandlin, D. R.

    1985-01-01

    A study was performed in order to develop the criteria for the selection of flow direction indicators for use in the Integrated Systems Tests (ISTs) of the 40 by 80/80 by 120 Foot Wind Tunnel System. The problems, requirements, and limitations of flow direction measurement in the wind tunnel were investigated. The locations and types of flow direction measurements planned in the facility were discussed. A review of current methods of flow direction measurement was made and the most suitable technique for each location was chosen. A flow direction vane for each location was chosen. A flow direction vane that employs a Hall Effect Transducer was then developed and evaluated for application during the ISTs.

  6. Selective Use of Optical Variables to Control Forward Speed

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.

  7. The value of long-term monitoring in the development of ground-water-flow models

    USGS Publications Warehouse

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  8. DSMC Computations for Regions of Shock/Shock and Shock/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Moss, James N.

    2001-01-01

    This paper presents the results of a numerical study of hypersonic interacting flows at flow conditions that include those for which experiments have been conducted in the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel and the ONERA R5Ch low-density wind tunnel. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 9.3 to 11.4 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The results presented highlight the sensitivity of the calculations to grid resolution, provide results concerning the conditions for incipient separation, and provide information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  9. Changing the Ecology of Climate Communication in Your Organization (Invited)

    NASA Astrophysics Data System (ADS)

    Chambliss, L.; Lewenstein, B.

    2013-12-01

    After decades of frustration, scientists have an exciting opportunity to provide the research-based insights necessary for us all to foster a more sustainable future. Yet, individual scientists and researchers are more effective in their communication and public engagement to the extent their organization supports and facilitates such outreach. This presentation will offer strategies for enhancing multi-disciplinary organizational capabilities in climate change communication and public engagement that go beyond the traditional force-feeding of information and data to a largely unreceptive public. Two essential components of a healthy ecology of climate communication at the organizational level are 1) a multi-disciplinary approach and 2) direct engagement with external audiences and stakeholders so that information is flowing in multiple directions. The traditional flow of fact-based information- from scientist through organization/institution to the public - is rarely effective. We will discuss a New York state-focused, research-based effort that is a workable model for how scientists can engage local and state agencies, corporations, NGOs, business leaders, and other actors. In this case, researches collaborated with diverse stakeholders to create a suite of community events, products and online tools with science-based information carefully crafted and targeted to avoid politicization. This effort facilitated education and planning for community, agricultural and business planners who are making decisions now with 20-to 50-year time frames. As an example of a responsive information flow, a community conference 'Climate Smart and Climate Ready' targeted to local and regional planners included sessions on grief and fear, in addition to assessments of regional impact by sector, after input from stakeholders indicated a strong need to blend science delivery with acknowledgment of the emotional field. We will also examine successful ways science-based organizations have become more climate literate and engaged. Having a central entity that brings together the talents of scientists from multiple disciplines is a huge boost to understanding and responding to the changing communication landscape. We will discuss direct ways the scientific community can engage their organization and the public (or more targeted stakeholders) in an integrated and circular pattern of science information delivery. We will also look at indirect methods for raising general awareness of climate change and increasing organizational buy-in, such as harnessing the multi-disciplinary motivation to be energy efficient (nearly all businesses and NGOs) or meet public climate/carbon-reduction commitments (Universities.)

  10. Eye wash water flow direction study: an evaluation of the effectiveness of eye wash devices with opposite directional water flow.

    PubMed

    Fogt, Jennifer S; Jones-Jordan, Lisa A; Barr, Joseph T

    2018-01-01

    New designs of eye wash stations have been developed in which the direction of water flow from the fountain has been reversed, with two water streams originating nasally in both eyes and flowing toward the temporal side of each eye. No study has been done to determine the ideal direction of water flow coming from the eye wash in relation to the eye. Ophthalmic eye examinations were conducted before and after the use of two eye wash stations with opposite water flow directionality. Fluorescein was instilled in both eyes before using an eye wash to measure the effectiveness of the water flow. Subjects were surveyed upon their experiences using the eye washes. Ophthalmic examination found no significant difference in the efficacy of the eye washes with nasal-to-temporal water flow when compared to temporal-to-nasal water flow direction.

  11. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  12. A new CFD based non-invasive method for functional diagnosis of coronary stenosis.

    PubMed

    Xie, Xinzhou; Zheng, Minwen; Wen, Didi; Li, Yabing; Xie, Songyun

    2018-03-22

    Accurate functional diagnosis of coronary stenosis is vital for decision making in coronary revascularization. With recent advances in computational fluid dynamics (CFD), fractional flow reserve (FFR) can be derived non-invasively from coronary computed tomography angiography images (FFR CT ) for functional measurement of stenosis. However, the accuracy of FFR CT is limited due to the approximate modeling approach of maximal hyperemia conditions. To overcome this problem, a new CFD based non-invasive method is proposed. Instead of modeling maximal hyperemia condition, a series of boundary conditions are specified and those simulated results are combined to provide a pressure-flow curve for a stenosis. Then, functional diagnosis of stenosis is assessed based on parameters derived from the obtained pressure-flow curve. The proposed method is applied to both idealized and patient-specific models, and validated with invasive FFR in six patients. Results show that additional hemodynamic information about the flow resistances of a stenosis is provided, which cannot be directly obtained from anatomy information. Parameters derived from the simulated pressure-flow curve show a linear and significant correlations with invasive FFR (r > 0.95, P < 0.05). The proposed method can assess flow resistances by the pressure-flow curve derived parameters without modeling of maximal hyperemia condition, which is a new promising approach for non-invasive functional assessment of coronary stenosis.

  13. A Statistical Weather-Driven Streamflow Model: Enabling future flow predictions in data-scarce headwater streams

    NASA Astrophysics Data System (ADS)

    Rosner, A.; Letcher, B. H.; Vogel, R. M.

    2014-12-01

    Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.

  14. Information retrieval from holographic interferograms: Fundamentals and problems

    NASA Technical Reports Server (NTRS)

    Vest, Charles M.

    1987-01-01

    Holographic interferograms can contain large amounts of information about flow and temperature fields. Their information content can be very high because they can be viewed from many different directions. This multidirectionality, and fringe localization add to the information contained in the fringe pattern if diffuse illumination is used. Additional information, and increased accuracy can be obtained through the use of dual reference wave holography to add reference fringes or to effect discrete phase shift or hetrodyne interferometry. Automated analysis of fringes is possible if interferograms are of simple structure and good quality. However, in practice a large number of practical problems can arise, so that a difficult image processing task results.

  15. Gas Flows in Rocket Motors. Volume 3. Appendix D. Computer Code Listings

    DTIC Science & Technology

    1989-08-01

    Information Service, where it will be available to the general public, including foreign nationals. Prepared for the Astronautics Laboratory (AFSC) Air Force...SYMIMETRIC TRANSONIC NOZZLE FLOW~ IN CENEPAL COORDINATE SYSTEM C+ USING TIME ITERATIVE CD/’CD SCHEME * c VIITH THIN-LAYER APPROXIMATED NAVIER-STOIKE’S...Q( 1,1, 2) ,RHOU( 1, 1)), DIMENSION ADD(4) DIMENSION PRE(4,4), PADD (4) C SAI-DIRECTION ENTRY ADDX COF:F=O.125D0*OMEGAX DO 70 J=I,,JL DO 70 I=1,IL IF

  16. Compatibility of information and mode of control: The case for natural control systems

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1993-01-01

    The operation of control systems has been determined largely by mechanical constraints. Compatibility with the characteristics of the operator is a secondary consideration, with the result that control may never be optimal, control workload may interfere with performance of secondary tasks, and learning may be more difficult and protracted than necessary. With the introduction of a computer in the control loop, the mode of operation can be adapted to the operator, rather than vice versa. The concept of natural control is introduced to describe a system that supports control of the information used by the operator in achieving an intended goal. As an example, control of speed during simulated approach to a pad by helicopter pilots is used to contrast path-speed control with direct control of global optical flow-pattern information. Differences are evidenced in the performance domains of control activity, speed, and global optical flow velocity.

  17. Extracting topographic structure from digital elevation data for geographic information-system analysis

    USGS Publications Warehouse

    Jenson, Susan K.; Domingue, Julia O.

    1988-01-01

    The first phase of analysis is a conditioning phase that generates three data sets: the original OEM with depressions filled, a data set indicating the flow direction for each cell, and a flow accumulation data set in which each cell receives a value equal to the total number of cells that drain to it. The original OEM and these three derivative data sets can then be processed in a variety of ways to optionally delineate drainage networks, overland paths, watersheds for userspecified locations, sub-watersheds for the major tributaries of a drainage network, or pour point linkages between watersheds. The computer-generated drainage lines and watershed polygons and the pour point linkage information can be transferred to vector-based geographic information systems for futher analysis. Comparisons between these computergenerated features and their manually delineated counterparts generally show close agreement, indicating that these software tools will save analyst time spent in manual interpretation and digitizing.

  18. Distribution and directional fabric of ash-flow sheets in the northwestern Mogollon Plateau, New Mexico.

    NASA Technical Reports Server (NTRS)

    Rhodes, R. C.; Smith, E. I.

    1972-01-01

    Individual ash-flow sheets distributed over wide areas in the Mogollon-Datil volcanic province can be delineated and related by flow direction techniques to specific source cauldrons. Two major mid-Tertiary ash flows in the Mogollon Plateau have measurable microscopic directional fabric indicative of primary flow direction imprinted in the ash-flow sheets during late-stage laminar flow. Regional stratigraphic relationships and flow patterns of the ash-flow sheets indicate a late Tertiary origin of the Mogollon Plateau depression. They also show that Basin-Range faulting in southwestern New Mexico was not initiated until after emplacement of the younger ash flow (23 m.y. B.P.). Directional fabric is an inherent property of many calc-alkalic ash-flow sheets and measurement of preferred orientation provides a powerful tool in unravelling the geologic history of complex volcanic terrane.

  19. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  20. Hypersonic Shock Interactions About a 25 deg/65 deg Sharp Double Cone

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Glass, Christopher E.

    2002-01-01

    This paper presents the results of a numerical study of shock interactions resulting from Mach 10 air flow about a sharp double cone. Computations are made with the direct simulation Monte Carlo (DSMC) method by using two different codes: the G2 code of Bird and the DAC (DSMC Analysis Code) code of LeBeau. The flow conditions are the pretest nominal free-stream conditions specified for the ONERA R5Ch low-density wind tunnel. The focus is on the sensitivity of the interactions to grid resolution while providing information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  1. [Venous Doppler color echography: importance and inconveniences].

    PubMed

    Laroche, J P; Dauzat, M; Muller, G; Janbon, C

    1993-01-01

    Color Doppler is a technique which performs a real-time opacification of the vascular system with blue indicating reverse flow and red indicating forward flow (directional color coding). In venous pathology, the use of color Doppler improves significantly the anatomical evaluation of the inferior vena cava, the iliac vein, the deep femoral vein, and the sural system. Color Doppler facilitates the study of deep venous thrombosis (providing useful information to differentiate ancient from most recent thrombus) and also the study of post-thrombotic conditions (assessment of reverse flow, repermeation phenomena). Finally, color Doppler produces a better insight for the study of varicose veins, especially with regard to mapping, identification of communicante veins, and study of the external saphenous vein.

  2. Quantitative methods to direct exploration based on hydrogeologic information

    USGS Publications Warehouse

    Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.

    2006-01-01

    Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.

  3. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.

    PubMed

    Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J

    2007-01-01

    This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.

  4. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey

    PubMed Central

    Scott, Brian H.; Leccese, Paul A.; Saleem, Kadharbatcha S.; Kikuchi, Yukiko; Mullarkey, Matthew P.; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C.

    2017-01-01

    Abstract In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. PMID:26620266

  5. 78 FR 64470 - Availability of FSIS Compliance Guide for a Systematic Approach to the Humane Handling of Livestock

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... benefits for producers, processors, and consumers which tend to expedite an orderly flow of livestock and... implement handling practices that minimize distress and injury to livestock; (3) Periodically evaluate... to export information to regulations, directives, and notices. Customers can add or delete...

  6. COMMUNICATION IN THE SPACE AGE, THE USE OF SATELLITES BY THE MASS MEDIA.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    THE FULL IMPACT OF SATELLITE COMMUNICATION WILL BE REALIZED ONLY WHEN IT BECOMES FEASIBLE TO SPACECAST DIRECTLY INTO HOMES, FACILITATING INEXPENSIVE LONG-DISTANCE CALLS AND ENABLING CONFERENCES TO BE HELD VIA TELEPHONE AND CLOSED-CIRCUIT TELEVISION. BUSINESS TRAVEL WILL DIMINISH. SPACE COMMUNICATION, BY INCREASING THE FLOW OF INFORMATION AND ITS…

  7. Material point method of modelling and simulation of reacting flow of oxygen

    NASA Astrophysics Data System (ADS)

    Mason, Matthew; Chen, Kuan; Hu, Patrick G.

    2014-07-01

    Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.

  8. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Boyd, Iain; Haas, Brian L.

    1994-01-01

    Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

  9. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  10. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

  11. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    PubMed

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  13. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  14. [The application of Doppler broadening and Doppler shift to spectral analysis].

    PubMed

    Xu, Wei; Fang, Zi-shen

    2002-08-01

    The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.

  15. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.

  16. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  17. Spared Ability to Perceive Direction of Locomotor Heading and Scene-Relative Object Movement Despite Inability to Perceive Relative Motion

    PubMed Central

    Vaina, Lucia M.; Buonanno, Ferdinando; Rushton, Simon K.

    2014-01-01

    Background All contemporary models of perception of locomotor heading from optic flow (the characteristic patterns of retinal motion that result from self-movement) begin with relative motion. Therefore it would be expected that an impairment on perception of relative motion should impact on the ability to judge heading and other 3D motion tasks. Material/Methods We report two patients with occipital lobe lesions whom we tested on a battery of motion tasks. Patients were impaired on all tests that involved relative motion in plane (motion discontinuity, form from differences in motion direction or speed). Despite this they retained the ability to judge their direction of heading relative to a target. A potential confound is that observers can derive information about heading from scale changes bypassing the need to use optic flow. Therefore we ran further experiments in which we isolated optic flow and scale change. Results Patients’ performance was in normal ranges on both tests. The finding that ability to perceive heading can be retained despite an impairment on ability to judge relative motion questions the assumption that heading perception proceeds from initial processing of relative motion. Furthermore, on a collision detection task, SS and SR’s performance was significantly better for simulated forward movement of the observer in the 3D scene, than for the static observer. This suggests that in spite of severe deficits on relative motion in the frontoparlel (xy) plane, information from self-motion helped identification objects moving along an intercept 3D relative motion trajectory. Conclusions This result suggests a potential use of a flow parsing strategy to detect in a 3D world the trajectory of moving objects when the observer is moving forward. These results have implications for developing rehabilitation strategies for deficits in visually guided navigation. PMID:25183375

  18. [Research progress of ecosystem service flow.

    PubMed

    Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan

    2016-07-01

    With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.

  19. Redesigning flow injection after 40 years of development: Flow programming.

    PubMed

    Ruzicka, Jaromir Jarda

    2018-01-01

    Automation of reagent based assays, by means of Flow Injection (FI), is based on sample processing, in which a sample flows continuously towards and through a detector for quantification of the target analyte. The Achilles heel of this methodology, the legacy of Auto Analyzer®, is continuous reagent consumption, and continuous generation of chemical waste. However, flow programming, assisted by recent advances in precise pumping, combined with the lab-on-valve technique, allows the FI manifold to be designed around a single confluence point through which sample and reagents are sequentially directed by means of a series of flow reversals. This approach results in sample/reagent mixing analogous to the traditional FI, reduces sample and reagent consumption, and uses the stop flow technique for enhancement of the yield of chemical reactions. The feasibility of programmable Flow Injection (pFI) is documented by example of commonly used spectrophotometric assays of, phosphate, nitrate, nitrite and glucose. Experimental details and additional information are available in online tutorial http://www.flowinjectiontutorial.com/. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  1. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  2. The Efficient Utilization of Open Source Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baty, Samuel R.

    These are a set of slides on the efficient utilization of open source information. Open source information consists of a vast set of information from a variety of sources. Not only does the quantity of open source information pose a problem, the quality of such information can hinder efforts. To show this, two case studies are mentioned: Iran and North Korea, in order to see how open source information can be utilized. The huge breadth and depth of open source information can complicate an analysis, especially because open information has no guarantee of accuracy. Open source information can provide keymore » insights either directly or indirectly: looking at supporting factors (flow of scientists, products and waste from mines, government budgets, etc.); direct factors (statements, tests, deployments). Fundamentally, it is the independent verification of information that allows for a more complete picture to be formed. Overlapping sources allow for more precise bounds on times, weights, temperatures, yields or other issues of interest in order to determine capability. Ultimately, a "good" answer almost never comes from an individual, but rather requires the utilization of a wide range of skill sets held by a team of people.« less

  3. Apparent dispersion in transient groundwater flow

    USGS Publications Warehouse

    Goode, Daniel J.; Konikow, Leonard F.

    1990-01-01

    This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity is acting in a direction that is not the assumed flow direction. This increase is a function of the angle between the transient flow vector and the assumed steady state flow direction and the ratio of transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if storativity is assumed to be zero, such that the flow field responds instantly to boundary condition changes.

  4. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  5. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    USGS Publications Warehouse

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."

  6. Simulation of three lahars in the Mount St Helens area, Washington using a one-dimensional, unsteady-state streamflow model

    USGS Publications Warehouse

    Laenen, Antonius; Hansen, R.P.

    1988-01-01

    A one-dimensional, unsteady-state, open-channel model was used to analytically reproduce three lahar events. Factors contributing to the success of the modeling were: (1) the lahars were confined to a channel, (2) channel roughness was defined by field information, and (3) the volume of the flow remained relatively unchanged for the duration of the peak. Manning 's 'n ' values used in computing conveyance in the model were subject to the changing rheology of the debris flow and were calculated from field cross-section information (velocities used in these calculations were derived from super-elevation or run-up formulas). For the events modeled in this exercise, Manning 's 'n ' calculations ranged from 0.020 to 0.099. In all lahar simulations, the rheology of the flow changed in a downstream direction during the course of the event. Chen 's 'U ', the mudflow consistency index, changed approximately an order of magnitude for each event. The ' u ' values ranged from 5-2,260 kg/m for three events modeled. The empirical approach adopted in this paper is useful as a tool to help predict debris-flow behavior, but does not lead to understanding the physical processes of debris flows. (Author 's abstract)

  7. Improving agricultural commodity supply-chain to promote economic activities in rural area

    NASA Astrophysics Data System (ADS)

    Padjung, R.

    2018-05-01

    Long supply chain of agricultural commodities has become concern to governments particularly in large countries such as Indonesia as it causes high price disparity between farm-gate and retailer. Policies to overcome such problem are usually by shortening the chain, by which farmers sell the products directly to retailers. Using an action research in AEDEF (Aceh Economic Development Financing Facilities) Program, conducted in the province of Nangro Aceh Darussalam (NAD) Indonesia, the paper shows that shortening the commodity supply chain is not the best solution to such problem, as it causes loss of jobs in the villages. High price disparity between farm-gate and retailer is not necessary brought about by long supply-chain but by the efficiency of the chain instead. Efficiency of the chain can be improved by creating enabling business environment such that every actors and players work in a fair manner. This can be achieved by transparency in price and quality grade. With development achieved in Information and Communication Technology (ICT), having a good and reliable flow of such information is not difficult. In addition to information flow, the availability and quality of infrastructure to support flow of goods from farm-gate to end-user is of reasonably important.

  8. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... the locations of automatic fire warning sensors and the intended air flow direction at these locations...) requires that a qualified person examine the automatic fire sensor and warning device systems on a weekly....1103-8(b) requires that a record of the weekly automatic fire sensor functional tests be maintained by...

  9. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  10. Frequency tuning allows flow direction control in microfluidic networks with passive features.

    PubMed

    Jain, Rahil; Lutz, Barry

    2017-05-02

    Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the origin of flow reversal behavior that may be addressed by the further study of the circuit model behavior or dynamic modeling of the fluid-solid mechanics of the valve under the AC flow.

  11. Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.

    PubMed

    Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry

    2017-01-01

    The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.

  12. Diagnostic Features of Lava Flows in Satellite and Airborne Images (Invited)

    NASA Astrophysics Data System (ADS)

    Rowland, S. K.; Bruno, B. C.; Comeau, D.; Mouginis-Mark, P. J.; Fagents, S. A.; Harris, A. J.

    2013-12-01

    Characteristic surface features on lava flows can be seen in, and measured from, nadir and oblique airborne and space borne images. Some are diagnostic of volumetric flow rate, lava-transport mode, rheology, and composition. These in turn can be used to infer eruption styles, magma chamber stress regimes, volcanic histories, etc. Where independent methods can determine these properties, the image-based methods can be refined and (tentatively) extended to other planets. For example, the planimetric outline of a lava flow is determined by the lava's volumetric flow rate and rheology, the strength of the cooled skin relative to that of the fluid interior, and the extent to which a flow can conform to, or over-run, pre-existing topography. Fluid, skin-strength-dominated lava such as pāhoehoe, has a very convoluted outline; more viscous, interior-strength-dominated lava such as ';a';ā (as well as more silicic compositions) have more linear outlines. This can be quantified by the fractal dimension, which increases with convolution. Spatial resolution and degradation of the flow margin are important caveats. Flow margins are relatively easy to measure with IKONOS and QuickBird (Earth), HiRISE (Mars), and LROC NAC (Moon) data, all of which have spatial resolutions < 1 m. They become more difficult to measure in Landsat (30 m), THEMIS vis. (Mars; 18 m), or Magellan (75 m; Venus) data. Also useful is the ratio between the radius of curvature of the flow front and the flow length, which is small for long narrow (fluid) flows, and large for short stubby (viscous) flows. Even incipient channels display shear zones across which there were sharp velocity gradients, and these are preserved on flow surfaces. Tube-fed flows may display lines of skylights that indicate master tubes. Whether a flow is channel-fed ';a';ā or tube-fed pāhoehoe is determined by the volumetric flow rate, which is almost always directly related to the eruption rate. This may be related to the driving pressure in the magma chamber. Relative age information from stratigraphic, cross-cutting, and weathering relationships, in combination with eruption style information, can be used to determine changes in volcanic behavior through time. Diagnostic features on part of the 1907 Mauna Loa SW rift zone flow. Flow margin (red, B), shear planes (green, C), and clefts between pressure ridges (blue, D). If the only information available were that in B, C, or D, it would still be possible to identify this as a high volumetric flow-rate channel-fed ';a';ā flow.

  13. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  14. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    PubMed

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  15. Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and seasonal variation in snow cover in the Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Carlson, P. R. (Principal Investigator); Harden, D. R.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery used in conjunction with the surface-drift cards indicated a southerly flow direction of the central California near surface coastal currents during mid-June 1973. The near-surface currents off northern California and southern Oregon were more complex. Some drift cards were recovered north and some south of their release points; however, the prevalent direction of flow was northerly. General agreement in flow direction of coastal currents obtained from ERTS-1 imagery and drift card data reinforces the image interpretation. Complete seasonal coverage of nearshore circulation interpreted from ERTS-1 imagery will provide information necessary for proper coastal zone management. Extent of snow cover can be readily delimited on ERTS-1 band 5. In the central Sierra Nevada Mountains this past winter season, the snow line, as recorded by ERTS-1, reached an elevation of less than 1500 meters in January but had melted back to between 2500 and 3000 meters by the end of May. ERTS-1 imagery seems to provide sufficient resolution to make it a useful tool for monitoring changes in snow cover in the Sierra Nevada Mountains.

  16. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    NASA Astrophysics Data System (ADS)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4) uncertainties in forecasting lava flow advance can be easily misunderstood; (5) simple, jargon-free language reaches the largest audience; (6) repetition of information and using different approaches is helpful; and (7) embedding scientists within the emergency management and communication framework helps unify critical messages.

  17. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid-solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge-Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier-Stokes solver.

  18. Insights into asthenospheric anisotropy and deformation in Mainland China

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2018-03-01

    Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.

  19. Serotonergic Psychedelics Temporarily Modify Information Transfer in Humans

    PubMed Central

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel

    2015-01-01

    Background: Psychedelics induce intense modifications in the sensorium, the sense of “self,” and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Methods: Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. Results: The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. Conclusions: These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. PMID:25820842

  20. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  1. Discharge and nutrient transport between lakes in a hydrologically complex area of Voyageurs National Park, Minnesota, 2010-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Wakeman, Eric; Maki, Ryan P.

    2016-01-01

    An acoustic Doppler velocity meter (ADVM) was deployed in the narrows between Namakan and Kabetogama Lakes in Voyageurs National Park, Minnesota, from November 3, 2010, through October 3, 2012. The ADVM can account for wind, seiche, and changing flow direction in hydrologically complex areas. The objectives were to (1) estimate discharge and document the direction of water flow, (2) assess whether specific conductance can be used to determine flow direction, and (3) document nutrient and chlorophyll a concentrations at the narrows. The discharge direction through the narrows was seasonal. Water generally flowed out of Kabetogama Lake and into Namakan Lake throughout the ice-covered season. During spring, water flow was generally from Namakan Lake to Kabetogama Lake. During the summer and fall, the water flowed in both directions, affected in part by wind. Water flowed into Namakan Lake 70% of water year 2011 and 56% of water year 2012. Nutrient and chlorophyll a concentrations were highest during the summer months when water-flow direction was unpredictable. The use of an ADVM was effective for assessing flow direction and provided flow direction under ice. The results indicated the eutrophic Kabetogama Lake may have a negative effect on the more pristine Namakan Lake. The results also provide data on the effects of the current water-level management plan and may help determine if adjustments are necessary to help protect the aquatic ecosystem of Voyageurs National Park.

  2. Using field inversion to quantify functional errors in turbulence closures

    NASA Astrophysics Data System (ADS)

    Singh, Anand Pratap; Duraisamy, Karthik

    2016-04-01

    A data-informed approach is presented with the objective of quantifying errors and uncertainties in the functional forms of turbulence closure models. The approach creates modeling information from higher-fidelity simulations and experimental data. Specifically, a Bayesian formalism is adopted to infer discrepancies in the source terms of transport equations. A key enabling idea is the transformation of the functional inversion procedure (which is inherently infinite-dimensional) into a finite-dimensional problem in which the distribution of the unknown function is estimated at discrete mesh locations in the computational domain. This allows for the use of an efficient adjoint-driven inversion procedure. The output of the inversion is a full-field of discrepancy that provides hitherto inaccessible modeling information. The utility of the approach is demonstrated by applying it to a number of problems including channel flow, shock-boundary layer interactions, and flows with curvature and separation. In all these cases, the posterior model correlates well with the data. Furthermore, it is shown that even if limited data (such as surface pressures) are used, the accuracy of the inferred solution is improved over the entire computational domain. The results suggest that, by directly addressing the connection between physical data and model discrepancies, the field inversion approach materially enhances the value of computational and experimental data for model improvement. The resulting information can be used by the modeler as a guiding tool to design more accurate model forms, or serve as input to machine learning algorithms to directly replace deficient modeling terms.

  3. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems

    NASA Astrophysics Data System (ADS)

    Paparrizos, Spyridon; Maris, Fotios

    2017-05-01

    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  4. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  5. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  6. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  7. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  8. Miniature Flow-Direction/Pitot-Static Pressure Probes

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  9. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    PubMed

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Statistical representation of a spray as a point process

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.

    2000-10-01

    The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.

  11. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  12. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  13. Uncovering the spatial structure of mobility networks

    NASA Astrophysics Data System (ADS)

    Louail, Thomas; Lenormand, Maxime; Picornell, Miguel; García Cantú, Oliva; Herranz, Ricardo; Frias-Martinez, Enrique; Ramasco, José J.; Barthelemy, Marc

    2015-01-01

    The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has relevance for many applications. An important example is seen in origin-destination matrices, which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method, which extracts a coarse-grained signature of mobility networks, under the form of a 2 × 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in 31 Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally, the method allows the determination of categories of networks, and in the mobility case, the classification of cities according to their commuting structure.

  14. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  15. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  16. Structural Relationships among Self-Regulated Learning, Learning Flow, Satisfaction, and Learning Persistence in Cyber Universities

    ERIC Educational Resources Information Center

    Joo, Young Ju; Joung, Sunyoung; Kim, Jiyeon

    2014-01-01

    Learning persistence in a cyber-learning environment is not only an index determining the success or failure of individual learners but also a source of important information to establish the management direction of educational programs in an organization. Accordingly, learners need to be motivated to continue to grow in order to ensure both…

  17. Thermal characterization of TiCxOy thin films

    NASA Astrophysics Data System (ADS)

    Fernandes, A. C.; Vaz, F.; Gören, A.; Junge, K. H.; Gibkes, J.; Bein, B. K.; Macedo, F.

    2008-01-01

    Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.

  18. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.

  19. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  20. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  1. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  2. Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Deschenes, Timothy R.; Boyd, Iain D.

    2011-05-01

    The Modular Particle-Continuum (MPC) method is used to simulate partially-rarefied, hypersonic flow over a sting-mounted planetary probe configuration. This hybrid method uses computational fluid dynamics (CFD) to solve the Navier-Stokes equations in regions that are continuum, while using direct simulation Monte Carlo (DSMC) in portions of the flow that are rarefied. The MPC method uses state-based coupling to pass information between the two flow solvers and decouples both time-step and mesh densities required by each solver. It is parallelized for distributed memory systems using dynamic domain decomposition and internal energy modes can be consistently modeled to be out of equilibrium with the translational mode in both solvers. The MPC results are compared to both full DSMC and CFD predictions and available experimental measurements. By using DSMC in only regions where the flow is nonequilibrium, the MPC method is able to reproduce full DSMC results down to the level of velocity and rotational energy probability density functions while requiring a fraction of the computational time.

  3. Development of a Compact Captive Balloon and Its Level Supporting

    NASA Astrophysics Data System (ADS)

    Nakao, Tatsuya; Fujiwara, Kazuhito; Furukawa, Motoyasu; Hiroe, Tetsuyuki

    Many kinds of observation techniques have been developed to obtain the properties of atmospheric conditions. The advanced observation techniques of the flow in relatively large scale are remote sensing by satellite facilities, long range observations by radar or Doppler Sodar, etc., while data from conventional climometers set at fixed places are merely limited information about local scale flow. Captive balloons are also available and feasible for the observation of local flows if their standing mechanics are robust against the strong wind and the motion of balloon are stable for all wind direction and the change of wind direction. In this paper, a compact captive balloon (about 2m diam.) for flow measurement is proposed and the preservation of balloon height level and the stabilization of its motion are challenged by using a kite. The relation between force balances acted on the balloon and the balloon height or position was estimated and confirmed in experiments. Although the lift force of single kite worked successfully, it is found that the performance of plural kites is less in the traction of balloon since the interaction of their tensions. The compact balloon supported by the kite enabled the over 300m floating by virtue of the small size causing only low air resistance.

  4. An In-Well Point Velocity Probe for the rapid determination of groundwater velocity at the centimeter-scale

    NASA Astrophysics Data System (ADS)

    Osorno, Trevor C.; Devlin, J. F.; Firdous, Rubina

    2018-02-01

    The In-Well Point Velocity Probe (IWPVP) is a novel device designed for obtaining rapid, initial measurements of groundwater velocity at the centimeter-scale using a standard monitoring well to access the subsurface. IWPVP measurements of groundwater speed are quantified on the basis of a mini-tracer test that is conducted within the body of the probe. Information regarding horizontal flow directions is obtained from differential responses at detectors placed in the four quadrants of the probe. The viability of the IWPVP design was confirmed by (1) numerical modeling that accounted for laminar flow in the porous medium outside the well and turbulent flow inside the well (and probe), and (2) a series of laboratory tank experiments in which the probe was calibrated to quantify seepage rates in a medium-grain sand. Laboratory tests were completed in less than 20 min in all cases, when seepage velocity was between 50 and 400 cm/day. The magnitude of the groundwater velocity was determined with a precision of ±7% on average, and accuracy of ±11% for seepage velocities up to 400 cm/day. The flow direction was determined within ±15°. The IWPVP appears to be a viable tool for rapid assessment of groundwater velocity.

  5. Direction of ground-water flow in the surficial aquifer in the vicinity of impact areas G-10 and K-2, Camp Lejeune Marine Corps Base, North Carolina, 2004

    USGS Publications Warehouse

    Harden, Stephen L.; Howe, Stephen S.; Terziotti, Silvia

    2004-01-01

    Marine Corps Base Camp Lejeune is located in Onslow County in the North Carolina Coastal Plain. In support of North Carolina Department of Environment and Natural Resource requirements, Camp Lejeune is developing a site closure plan for two Resource Conservation and Recovery Act (RCRA) regulated open burn/open detonation (OB/OD) facilities located within Impact Area K-2 and Impact Area G-10, respectively. Both Impact Areas are used for training activities involving live artillery fire. The two OB/OD facilities are used to treat RCRA regulated waste munitions. To provide Base officials with information needed for assessing the quality of ground water at these sites, hydrologic data were used to characterize groundwater flow directions and hydraulic gradients in the surficial aquifer underlying the Impact Areas. Water-level data in the unconfined surficial aquifer and potentiometric head data in the underlying Castle Hayne aquifer were compiled from existing and newly drilled wells. Water-table contour maps were developed for Impact Areas K-2 and G-10 to examine the direction of ground-water flow in the surficial aquifer. The primary directions of ground-water flow beneath K-2 are southward and eastward toward discharge zones along the New River and its tributaries. Beneath interior areas of G-10, water in the surficial aquifer flows outward in all directions toward discharge zones along local streams that drain westward to the New River or to streams that drain southward and eastward to the Intracoastal Waterway and the Atlantic Ocean. Long-term water-level data for the period October 1994 through September 2004 at selected Camp Lejeune well sites were used to examine trends in ground-water levels and vertical hydraulic gradients between the surficial and Castle Hayne aquifers. Evaluation of water-level data for three wells in the surficial aquifer indicated no significant trends for this period of record. The apparent water-level declines in two of the three Castle Hayne wells examined are likely the result of local pumping of the Castle Hayne aquifer. Vertical hydraulic gradients determined for two well cluster sites indicate a downward flow of water from the surficial aquifer into the underlying Castle Hayne aquifer.

  6. Ionization based multi-directional flow sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  7. A line source tracer test - a better method for assessing high groundwater velocity

    NASA Astrophysics Data System (ADS)

    Magal, E.; Weisbrod, N.; Yakirevich, A.; Kurtzman, D.; Yechieli, Y.

    2009-12-01

    A line source injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurface characterized by high water fluxes. Modifying the common techniques of injecting a tracer into a well was necessary after frequently-used methods of natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. In a field experiment, tracers were injected into 8-m long line injection system constructed below the water table almost perpendicular to the assumed flow direction. The injection system was divided to four separate segments (each 2 m long) enabling the injection of four different tracers along the line source. An array of five boreholes located in an area of 10x10 m downstream was used for monitoring the tracers' transport. Two dye tracers (Uranine and Na Naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments and two tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected to the other two segments. The tracers were detected 0.7 to 2.3 hours after injection in four of the five observation wells, located 2.3 to 10 m from the injection system, respectively. Groundwater velocities were calculated directly from the tracers' arrival times and by fitting the observed breakthrough curves to simulations with one and two dimensions analytical solutions for conservative tracer transport. The groundwater velocity was determined to be ~100 m/d. The longitudinal dispersivity value, generated from fitting the tracer breakthrough curves, was in a range of 0.2-3m. The groundwater flow direction was derived based on the arrival of the tracers and was found to be consistent with the apparent direction of the hydraulic gradient. The hydraulic conductivity derived from the groundwater velocity was ~1200 m/d, which is in the upper range of gravel sediment.

  8. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  9. CALINX (California Information Exchange): a multi-stakeholder statewide initiative to improve healthcare information flows.

    PubMed

    Hopkins, D S; Oswald, N; McCaffrey, K; Bressler, S; Davidson, N; Vela, L

    2000-01-01

    Given the diffusion of responsibilities for gathering and reporting healthcare information in a managed care environment, California stakeholders are taking concrete steps to break the deadlock on data and information flows that has characterized the industry for some time. The California Information Exchange (CALINX) was established to facilitate the implementation of the Health Insurance Portability and Accountability Act (HIPAA) standards in California and to create trust for data exchange between trading partners, without which data exchange still will not occur. Strategic directions are set by the chief executives of key associations and organizations representing purchasers, plans, providers, and consumers. Multi-stakeholder workgroups have produced detailed data guidelines for the HIPAA standards along with rules for exchange of key data sets between trading partners. These rules address frequency, timeliness, and accuracy of data submission. Both the data guidelines and the rules have been tested in live demonstration projects, and the results of these projects have been reported to substantiate the business case for implementation. Further incentives are being built into contracts between purchasers and plans, and between plans and providers. CALINX is currently promoting widespread adoption of the data guidelines and rules for exchange with all members of the industry.

  10. Predicting plasticity with soft vibrational modes: from dislocations to glasses.

    PubMed

    Rottler, Jörg; Schoenholz, Samuel S; Liu, Andrea J

    2014-04-01

    We show that quasilocalized low-frequency modes in the vibrational spectrum can be used to construct soft spots, or regions vulnerable to rearrangement, which serve as a universal tool for the identification of flow defects in solids. We show that soft spots not only encode spatial information, via their location, but also directional information, via directors for particles within each soft spot. Single crystals with isolated dislocations exhibit low-frequency phonon modes that localize at the core, and their polarization pattern predicts the motion of atoms during elementary dislocation glide in two and three dimensions in exquisite detail. Even in polycrystals and disordered solids, we find that the directors associated with particles in soft spots are highly correlated with the direction of particle displacements in rearrangements.

  11. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  12. Percutaneous Direct Puncture Embolization with N-butyl-cyanoacrylate for High-flow Priapism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokue, Hiroyuki, E-mail: tokue@s2.dion.ne.jp; Shibuya, Kei; Ueno, Hiroyuki

    There are many treatment options in high-flow priapism. Those mentioned most often are watchful waiting, Doppler-guided compression, endovascular highly selective embolization, and surgery. We present a case of high-flow priapism in a 57-year-old man treated by percutaneous direct puncture embolization of a post-traumatic left cavernosal arteriovenous fistula using N-butyl-cyanoacrylate. Erectile function was preserved during a 12-month follow-up. No patients with percutaneous direct puncture embolization for high-flow priapism have been reported previously. Percutaneous direct puncture embolization is a potentially useful and safe method for management of high-flow priapism.

  13. Field and laboratory determination of water-surface elevation and velocity using noncontact measurements

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.

    2016-01-01

    Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.

  14. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains

    PubMed Central

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism. PMID:25389392

  15. Flow field and dissolved oxygen distributions in the outer channel of the Orbal oxidation ditch by monitor and CFD simulation.

    PubMed

    Guo, Xuesong; Zhou, Xin; Chen, Qiuwen; Liu, Junxin

    2013-04-01

    In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are not well understood. Therefore, in this study, the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing (China) were monitored under actual operation conditions. The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling. In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel. As a result, the DO was also heterogeneously distributed in the outer channel, with concentration gradients occurring along the flow direction as well as in the cross-section. This heterogeneous DO distribution created many anoxic and aerobic zones, which may have facilitated simultaneous nitrification-denitrification in the channel. These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch.

  16. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  17. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    NASA Astrophysics Data System (ADS)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  18. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  19. EEG entropy measures indicate decrease of cortical information processing in Disorders of Consciousness.

    PubMed

    Thul, Alexander; Lechinger, Julia; Donis, Johann; Michitsch, Gabriele; Pichler, Gerald; Kochs, Eberhard F; Jordan, Denis; Ilg, Rüdiger; Schabus, Manuel

    2016-02-01

    Clinical assessments that rely on behavioral responses to differentiate Disorders of Consciousness are at times inapt because of some patients' motor disabilities. To objectify patients' conditions of reduced consciousness the present study evaluated the use of electroencephalography to measure residual brain activity. We analyzed entropy values of 18 scalp EEG channels of 15 severely brain-damaged patients with clinically diagnosed Minimally-Conscious-State (MCS) or Unresponsive-Wakefulness-Syndrome (UWS) and compared the results to a sample of 24 control subjects. Permutation entropy (PeEn) and symbolic transfer entropy (STEn), reflecting information processes in the EEG, were calculated for all subjects. Participants were tested on a modified active own-name paradigm to identify correlates of active instruction following. PeEn showed reduced local information content in the EEG in patients, that was most pronounced in UWS. STEn analysis revealed altered directed information flow in the EEG of patients, indicating impaired feed-backward connectivity. Responses to auditory stimulation yielded differences in entropy measures, indicating reduced information processing in MCS and UWS. Local EEG information content and information flow are affected in Disorders of Consciousness. This suggests local cortical information capacity and feedback information transfer as neural correlates of consciousness. The utilized EEG entropy analyses were able to relate to patient groups with different Disorders of Consciousness. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Stretching of passive tracers and implications for mantle mixing

    NASA Astrophysics Data System (ADS)

    Conjeepuram, N.; Kellogg, L. H.

    2007-12-01

    Mid ocean ridge basalts(MORB) and ocean island basalts(OIB) have fundamentally different geochemical signatures. Understanding this difference requires a fundamental knowledge of the mixing processes that led to their formation. Quantitative methods used to assess mixing include examining the distribution of passive tracers, attaching time-evolution information to simulate decay of radioactive isotopes, and, for chaotic flows, calculating the Lyapunov exponent, which characterizes whether two nearby particles diverge at an exponential rate. Although effective, these methods are indirect measures of the two fundamental processes associated with mixing namely, stretching and folding. Building on work done by Kellogg and Turcotte, we present a method to compute the stretching and thinning of a passive, ellipsoidal tracer in three orthogonal directions in isoviscous, incompressible three dimensional flows. We also compute the Lyapunov exponents associated with the given system based on the quantitative measures of stretching and thinning. We test our method with two analytical and three numerical flow fields which exhibit Lagrangian turbulence. The ABC and STF class of analytical flows are a three and two parameter class of flows respectively and have been well studied for fast dynamo action. Since they generate both periodic and chaotic particle paths depending either on the starting point or on the choice of the parameters, they provide a good foundation to understand mixing. The numerical flow fields are similar to the geometries used by Ferrachat and Ricard (1998) and emulate a ridge - transform system. We also compute the stable and unstable manifolds associated with the numerical flow fields to illustrate the directions of rapid and slow mixing. We find that stretching in chaotic flow fields is significantly more effective than regular or periodic flow fields. Consequently, chaotic mixing is far more efficient than regular mixing. We also find that in the numerical flow field, there is a fundamental topological difference in the regions exhibiting slow or regular mixing for different model geometries.

  1. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    NASA Astrophysics Data System (ADS)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  2. Flow cytometric analysis of normal and neoplastic mast cells: role in diagnosis and follow-up of mast cell disease.

    PubMed

    Escribano, Luis; Garcia Montero, Andres C; Núñez, Rosa; Orfao, Alberto

    2006-08-01

    Human mast cells (MCs) are directly derived from human pluripotent CD34+ stem and progenitor hematopoietic cells with stem cell factor being a critical growth factor supporting human MC proliferation, differentiation, and survival. Because of the advantages that flow cytometry offers (it allows rapid, objective, and sensitive multiparameter analysis of high numbers of cells from a sample, with information being provided on the basis of a single cell), it has become the method of choice in the past decade for immunophenotypic identification, enumeration, and characterization of human MCs in bone marrow and other tissue specimens.

  3. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    PubMed

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  4. A language of health in action: Read Codes, classifications and groupings.

    PubMed Central

    Stuart-Buttle, C. D.; Read, J. D.; Sanderson, H. F.; Sutton, Y. M.

    1996-01-01

    A cornerstone of the Information Management and Technology Strategy of the National Health Service's (NHS) Executive is fully operational, person-based clinical information systems, from which flow all of the data needed for direct and indirect care of patients by healthcare providers, and local and national management of the NHS. The currency of these data flows are firstly Read-coded clinical terms, secondly the classifications, the International, Classification of Disease and Health Related Problems, 10th Revision (ICD-10) and The Office of Population Censuses and Surveys Classification of Surgical Operations and Procedures, 4th Revision (OPCS-4), and thirdly Healthcare Resource Groups and Health Benefit Groups, all of which together are called the "language of health", an essential element of the electronic clinical record. This paper briefly describes the three main constituents of the language, and how, together with person-based, fully operational clinical information systems, it enables more effective and efficient healthcare delivery. It also describes how the remaining projects of the IM&T Strategy complete the key components necessary to provide the systems that will enable the flow of person-based data, collected once at the point of care and shared amongst all legitimate users via the electronic patient record. PMID:8947631

  5. Urban Stormwater Runoff: A New Class of Environmental Flow Problem

    PubMed Central

    Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257

  6. Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona

    USGS Publications Warehouse

    Condes de la Torre, Alberto

    1970-01-01

    Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.

  7. Which catchment characteristics control the temporal dependence structure of daily river flows?

    NASA Astrophysics Data System (ADS)

    Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim

    2014-05-01

    A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.

  8. Characterising the Architecture of New Zealand's Geothermal Structural Fluid Flow Networks Using Borehole Images

    NASA Astrophysics Data System (ADS)

    McNamara, David; Milicich, Sarah; Massiot, Cécile

    2017-04-01

    Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.

  9. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.

    PubMed

    Martin, Graham R

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as "a bill guided by an eye" and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control.

  10. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    PubMed Central

    Martin, Graham R.

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as “a bill guided by an eye” and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control. PMID:29163020

  11. Obstetric Ultrasound

    PubMed Central

    Nicholson, Stuart F.; Nimrod, Carl A.

    1988-01-01

    This article addresses the current indications for an obstetric ultrasound and describes the findings that it is reasonable to expect when reading an ultrasound report. The authors discuss several common obstetrical problems focussing the attention on the usefulness of the imaging information. Finally, they provide a glimpse into the future direction of obstetric ultrasound by discussing vaginal scanning, Doppler assessment of fetal blood flow, and routine ultrasound in pregnancy. PMID:21253229

  12. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-11-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  13. Relation of coronary flow pattern to myocardial blush grade in patients with first acute myocardial infarction

    PubMed Central

    Hoffmann, R; Haager, P; Lepper, W; Franke, A; Hanrath, P

    2003-01-01

    Background: Analysis of myocardial blush grade (MBG) and coronary flow velocity pattern has been used to obtain direct or indirect information about microvascular damage and reperfusion injury after percutaneous transluminal coronary angiography for acute myocardial infarction. Objective: To evaluate the relation between coronary blood flow velocity pattern and MBG immediately after angioplasty plus stenting for acute myocardial infarction. Design: The coronary blood flow velocity pattern in the infarct related artery was determined immediately after angioplasty in 35 patients with their first acute myocardial infarct using a Doppler guide wire. Measurements were related to MBG as a direct index of microvascular function in the infarct zone. Results: Coronary flow velocity patterns were different between patients with absent myocardial blush (n = 14), reduced blush (n = 7), or normal blush (n = 14). The following variables (mean (SD)) differed significantly between the three groups: systolic peak flow velocity (cm/s): absent blush 10.9 (4.2), reduced blush 14.2 (6.4), normal blush 19.2 (11.2); p = 0.036; diastolic deceleration rate (ms): absent blush 103 (58), reduced blush 80 (65), normal blush 50 (19); p = 0.025; and diastolic–systolic velocity ratio: absent blush 4.06 (2.18), reduced blush 2.02 (0.55), normal blush 1.88 (1.03); p = 0.002. In a multivariate analysis MBG was the only variable with a significant impact on the diastolic deceleration rate (p = 0.034,) while age, infarct location, time to revascularisation, infarct vessel diameter, and maximum creatine kinase had no significant impact. Conclusions: The coronary flow velocity pattern in the infarct related epicardial artery is primarily determined by the microvascular function of the dependent myocardium, as reflected by MBG. PMID:12975402

  14. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  15. PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu

    2014-11-01

    Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less

  16. Serotonergic psychedelics temporarily modify information transfer in humans.

    PubMed

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel; Riba, Jordi

    2015-03-28

    Psychedelics induce intense modifications in the sensorium, the sense of "self," and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  17. Gust prediction via artificial hair sensor array and neural network

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.

    2017-04-01

    Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.

  18. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  19. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.

  20. Explosive percolation on directed networks due to monotonic flow of activity

    NASA Astrophysics Data System (ADS)

    Waagen, Alex; D'Souza, Raissa M.; Lu, Tsai-Ching

    2017-07-01

    An important class of real-world networks has directed edges, and in addition, some rank ordering on the nodes, for instance the popularity of users in online social networks. Yet, nearly all research related to explosive percolation has been restricted to undirected networks. Furthermore, information on such rank-ordered networks typically flows from higher-ranked to lower-ranked individuals, such as follower relations, replies, and retweets on Twitter. Here we introduce a simple percolation process on an ordered, directed network where edges are added monotonically with respect to the rank ordering. We show with a numerical approach that the emergence of a dominant strongly connected component appears to be discontinuous. Large-scale connectivity occurs at very high density compared with most percolation processes, and this holds not just for the strongly connected component structure but for the weakly connected component structure as well. We present analysis with branching processes, which explains this unusual behavior and gives basic intuition for the underlying mechanisms. We also show that before the emergence of a dominant strongly connected component, multiple giant strongly connected components may exist simultaneously. By adding a competitive percolation rule with a small bias to link uses of similar rank, we show this leads to formation of two distinct components, one of high-ranked users, and one of low-ranked users, with little flow between the two components.

  1. Fuel cell and membrane therefore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aindow, Tai-Tsui

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less

  2. Predicting storm runoff from different land-use classes using a geographical information system-based distributed model

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.

    2006-02-01

    A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.

  3. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  4. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  5. Development of a Small Area Sniffer

    NASA Technical Reports Server (NTRS)

    Meade, Laurie A.

    1995-01-01

    The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.

  6. A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines

    NASA Technical Reports Server (NTRS)

    Wu, Chung-Hua

    1993-01-01

    This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.

  7. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)

    PubMed Central

    Lee, Wah-Keat; Socha, John J

    2009-01-01

    Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159

  8. 21 CFR 870.1240 - Flow-directed catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flow-directed catheter. 870.1240 Section 870.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1240 Flow-directed catheter...

  9. 21 CFR 870.1240 - Flow-directed catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flow-directed catheter. 870.1240 Section 870.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1240 Flow-directed catheter...

  10. Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Reτ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2% for the mean flow, below 1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the three components of the turbulent dissipation. Relatively fine grids and long statistical averaging times are required. An analysis of dissipation spectra demonstrates that the enhanced resolution is necessary for an accurate representation of the smallest physical scales in the turbulent dissipation. The results are related to the physics of turbulent channel flow in several ways. First, the reproducibility supports the hitherto unproven theoretical hypothesis that the statistically stationary state of turbulent channel flow is unique. Second, the peaks of dissipation spectra provide information on length scales of the small-scale turbulence. Third, the computed means and fluctuations of the convective, pressure, and viscous terms in the momentum equation show the importance of the different forces in the momentum equation relative to each other. The Galilean transformation that leads to minimum peak fluctuation of the convective term is determined. Fourth, an analysis of higher-order statistics is performed. The skewness of the longitudinal derivative of the streamwise velocity is stronger than expected (-1.5 at y+ = 30). This skewness and also the strong near-wall intermittency of the normal velocity are related to coherent structures.

  11. CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.

    2010-06-01

    This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.

  12. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  13. Inter-City Virtual Water Transfers Within a Large Metropolitan Area: A Case Study of the Phoenix Metropolitan Area in the United States

    NASA Astrophysics Data System (ADS)

    Rushforth, R.; Ruddell, B. L.

    2014-12-01

    Water footprints have been proposed as potential sustainability indicators, but these analyses have thus far focused at the country-level or regional scale. However, for many countries, especially the United States, the most relevant level of water decision-making is the city. For water footprinting to inform urban sustainability, the boundaries for analysis must match the relevant boundaries for decision-making and economic development. Initial studies into city-level water footprints have provided insight into how large cities across the globe—Delhi, Lagos, Berlin, Beijing, York—create virtual water trade linkages with distant hinterlands. This study hypothesizes that for large cities the most direct and manageable virtual water flows exist at the metropolitan area scale and thus should provide the most policy-relevant information. This study represents an initial attempt at quantifying intra-metropolitan area virtual water flows. A modified commodity-by-industry input-output model was used to determine virtual water flows destined to, occurring within, and emanating from the Phoenix metropolitan area (PMA). Virtual water flows to and from the PMA were calculated for each PMA city using water consumption data as well as economic and industry statistics. Intra-PMA virtual water trade was determined using county-level traffic flow data, water consumption data, and economic and industry statistics. The findings show that there are archetypal cities within metropolitan areas and that each type of city has a distinct water footprint profile that is related to the value added economic processes occuring within their boundaries. These findings can be used to inform local water managers about the resilience of outsourced water supplies.

  14. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo; Walker, George P. L.; Herrero-Bervera, Emilio

    1995-05-01

    We sampled five basaltic lava flow-units from Xitle volcano, Mexico City, to study the variation of anisotropy of magnetic susceptibility within their cooling boundaries. We find that the mean maximum susceptibility parallels the geologically-inferred flow direction in the units that were emplaced on a steeper slope, whereas for those on a negligible slope the mean intermediate susceptibility points in the flow direction. We propose, however, that the maximum susceptibility always points in the direction of local movement, and that a change in slope produces a deviation of the local motion from that of the unit as a whole. The axis of susceptibility closest to the geologically-inferred flow direction usually plunges upflow in the basal part of the flow unit, comprising an imbrication which clearly marks the flow azimuth of the lava. Thus, the scenario of emplacement may influence the results in a predictable way. We suggest that the degree of anisotropy could bear a direct relationship to either the viscosity of the lava, the morphology of the flows or both, based on a comparison with lavas from Azufre (Argentina) and Ko'olau (O'ahu) volcanoes. Also, we suggest that the shape of the susceptibility ellipsoid may be related to the degree of internal deformation of the lava flows. We also compare the two methods currently available to calculate regions of confidence around the mean principal susceptibilities.

  15. Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials.

    PubMed

    Wilmes, Katharina Anna; Schleimer, Jan-Hendrik; Schreiber, Susanne

    2017-04-01

    Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

    PubMed Central

    Cui, Qiu Hong; Peng, Qian; Luo, Yi; Jiang, Yuqian; Yan, Yongli; Wei, Cong; Shuai, Zhigang; Sun, Cheng; Yao, Jiannian; Zhao, Yong Sheng

    2018-01-01

    The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire–based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing. PMID:29556529

  17. Directions of flow of the water-bearing stratum in Friuli (NE Italy)

    NASA Astrophysics Data System (ADS)

    Cucchi, F.; Affatato, A.; Andrian, L.; Devoto, S.; Mereu, A.; Oberti, S.; Piano, C.; Rondi, V.; Zini, L.

    2003-04-01

    Flow directions of the water -- bearing stratum were executed with a Thermal Flowmeter in the Northern Friuli Plain. This type of instrument used is made up by a heater, a compass and various sensors of temperature. It is connected to an outside computer. It measures the induced thermal currents and identifies the direction and the intensity of the flow. The Thermal Flowmeter can be used in wells of little diameter and for big depths. The campaign of measures, about a hundred, confirms the general correspondence between the directions of the flows obtained from the water table and those measured through the Flowmeter in the permeable bodies with primary permeability. Different flow directions compared to the general picture were noticed in the conglomerate bodies, because of a secondary permeability. Direction changes are also noticed for the heterogeneity of the sediments which constitute the aquifer to big and to little scale.

  18. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiang; Fan, Liang-Shih, E-mail: fan.1@osu.edu

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information suchmore » as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid–solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge–Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier–Stokes solver. - Highlights: • The IBM is embedded in the LBM using Runge–Kutta time schemes. • The effectiveness of the present IB-LBM is validated by benchmark applications. • For the first time, the IB-LBM achieves the second-order accuracy. • The numerical stability of the present IB-LBM is better than previous methods.« less

  19. Coupling channel evolution monitoring and RFID tracking in a large, wandering, gravel-bed river: Insights into sediment routing on geomorphic continuity through a riffle-pool sequence

    NASA Astrophysics Data System (ADS)

    Chapuis, Margot; Dufour, Simon; Provansal, Mireille; Couvert, Bernard; de Linares, Matthieu

    2015-02-01

    Bedload transport and bedform mobility in large gravel-bed rivers are not easily monitored, especially during floods. Large reaches present difficulties in bed access during flows for flow measurements. Because of these logistical issues, the current knowledge about bedload transport processes and bedform mobility lacks field-based information, while this missing information would precisely match river management needs. The lack of information linking channel evolution and particle displacements is even more striking in wandering reaches. The Durance River is a large, wandering, gravel-bed river (catchment area: 14,280 km2; mean width: 240 m), located in the southern French Alps and highly impacted by flow diversion and gravel mining. In order to improve current understanding of the link between sediment transport processes and river bed morphodynamics, we set up a sediment particle survey in the channel using Radio Frequency Identification (RFID) tracking and topographic surveys (GPS RTK and scour chains) for a 4-year recurrence interval flood. By combining topographic changes before and after a flood, intraflood erosion/deposition patterns from scour chains, differential routing of tracer particles, and spatial distribution of bed shear stress through a complex reach, this paper aims to define the critical shear stress for significant sediment mobility in this setting. Gravel tracking highlights displacement patterns in agreement with bar downstream migration and transport of particles across the riffle within this single flood event. Because no velocity measurements were possible during flood, a TELEMAC three-dimensional model helped interpret particle displacements by estimating spatial distribution of shear stresses and flow directions at peak flow. Although RFID tracking in a large, wandering, gravel-bed river does have some technical limitations (burial, recovery process time-consuming), it provides useful information on sediment routing through a riffle-pool sequence.

  20. Collective flow measurements with HADES in Au+Au collisions at 1.23A GeV

    NASA Astrophysics Data System (ADS)

    Kardan, Behruz; Hades Collaboration

    2017-11-01

    HADES has a large acceptance combined with a good mass-resolution and therefore allows the study of dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the statistics of seven billion Au-Au collisions at 1.23A GeV recorded in 2012, the investigation of higher-order flow harmonics is possible. At the BEVALAC and SIS18 directed and elliptic flow has been measured for pions, charged kaons, protons, neutrons and fragments, but higher-order harmonics have not yet been studied. They provide additional important information on the properties of the dense hadronic medium produced in heavy-ion collisions. We present here a high-statistics, multidifferential measurement of v1 and v2 for protons in Au+Au collisions at 1.23A GeV.

  1. Techniques of contributing-area delineation for analysis of nonpoint-source contamination of Long Island, New York

    USGS Publications Warehouse

    Misut, P.

    1995-01-01

    Ninety shallow monitoring wells on Long Island, N.Y., were used to test the hypothesis that the correlation between the detection of volatile organic compounds (VOC's) at a well and explanatory variables representing land use, population density, and hydrogeologic conditions around the well is affected by the size and shape of the area defined as the contributing area. Explanatory variables are quantified through overlay of various specified contributing areas on 1:24 000-scale landuse and population-density geographic information system (GIS) coverages. Four methods of contributing-area delineation were used: (a) centering a circle of selected radius on the well site, (b) orienting a triangular area along the direction of horizontal ground-water flow to the well, (c) generating a shaped based on direction and magnitude of horizontal flow to the well, and (d) generating a shape based on three-dimensional particle pathlines backtracked from the well screen to the water table. The strongest correlations with VOC detections were obtained from circles of 400- to 1 000-meter radius. Improvement in correlation through delineations based on ground-water flow would require geographic overlay on more highly detailed GIS coverages than those used in the study.

  2. Fuel cell repeater unit including frame and separator plate

    DOEpatents

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  3. Macaque Parieto-Insular Vestibular Cortex: Responses to self-motion and optic flow

    PubMed Central

    Chen, Aihua; DeAngelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency, and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency, and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed roughly uniformly for translation, but showing a preference for roll rotation. Spatio-temporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception. PMID:20181599

  4. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas

    2002-03-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  5. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas

    2001-11-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  6. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A theoretical study of resin flows for thermosetting materials during prepreg processing

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  8. Challenges to nurses' efforts of retrieving, documenting, and communicating patient care information.

    PubMed

    Keenan, Gail; Yakel, Elizabeth; Dunn Lopez, Karen; Tschannen, Dana; Ford, Yvonne B

    2013-01-01

    To examine information flow, a vital component of a patient's care and outcomes, in a sample of multiple hospital nursing units to uncover potential sources of error and opportunities for systematic improvement. This was a qualitative study of a sample of eight medical-surgical nursing units from four diverse hospitals in one US state. We conducted direct work observations of nursing staff's communication patterns for entire shifts (8 or 12 h) for a total of 200 h and gathered related documentation artifacts for analyses. Data were coded using qualitative content analysis procedures and then synthesized and organized thematically to characterize current practices. Three major themes emerged from the analyses, which represent serious vulnerabilities in the flow of patient care information during nurse hand-offs and to the entire interdisciplinary team across time and settings. The three themes are: (1) variation in nurse documentation and communication; (2) the absence of a centralized care overview in the patient's electronic health record, ie, easily accessible by the entire care team; and (3) rarity of interdisciplinary communication. The care information flow vulnerabilities are a catalyst for multiple types of serious and undetectable clinical errors. We have two major recommendations to address the gaps: (1) to standardize the format, content, and words used to document core information, such as the plan of care, and make this easily accessible to all team members; (2) to conduct extensive usability testing to ensure that tools in the electronic health record help the disconnected interdisciplinary team members to maintain a shared understanding of the patient's plan.

  9. Challenges to nurses' efforts of retrieving, documenting, and communicating patient care information

    PubMed Central

    Yakel, Elizabeth; Dunn Lopez, Karen; Tschannen, Dana; Ford, Yvonne B

    2013-01-01

    Objective To examine information flow, a vital component of a patient's care and outcomes, in a sample of multiple hospital nursing units to uncover potential sources of error and opportunities for systematic improvement. Design This was a qualitative study of a sample of eight medical–surgical nursing units from four diverse hospitals in one US state. We conducted direct work observations of nursing staff's communication patterns for entire shifts (8 or 12 h) for a total of 200 h and gathered related documentation artifacts for analyses. Data were coded using qualitative content analysis procedures and then synthesized and organized thematically to characterize current practices. Results Three major themes emerged from the analyses, which represent serious vulnerabilities in the flow of patient care information during nurse hand-offs and to the entire interdisciplinary team across time and settings. The three themes are: (1) variation in nurse documentation and communication; (2) the absence of a centralized care overview in the patient's electronic health record, ie, easily accessible by the entire care team; and (3) rarity of interdisciplinary communication. Conclusion The care information flow vulnerabilities are a catalyst for multiple types of serious and undetectable clinical errors. We have two major recommendations to address the gaps: (1) to standardize the format, content, and words used to document core information, such as the plan of care, and make this easily accessible to all team members; (2) to conduct extensive usability testing to ensure that tools in the electronic health record help the disconnected interdisciplinary team members to maintain a shared understanding of the patient's plan. PMID:22822042

  10. [Impacts on skin blood flow under moving cupping along meridians in different directions].

    PubMed

    Tian, Yu-Ying; Wang, Guang-Jun; Huang, Tao; Jia, Shu-Yong; Zhang, Yu-Qin; Zhang, Wei-Bo

    2013-03-01

    To compare the impacts on skin blood flow between moving cupping following the meridian running direction and that against the running direction. JLG-2 meridian cupping drainage instru ment was used for moving cupping on the back along the Bladder Meridian running course in either single direction for 20 times. The cupping device was Bian stone cup, 44 mm in inner diameter, negative pressure from -0.03 to -0.04 MPa. PeriScan PIM II laser Doppler perfusion imager was used to observe the changes in skin blood flow on the running course of the Bladder Meridian with cup moved up and down and in the same region on the contralateral Bladder Meridian. Blood flow was measured before cupping, at the immediate time after cupping and 10 min after cupping separately. Fourteen healthy volunteers received the test. The measuring region was subdivided into a moving cupping area, an upstream area, a downstream area, a contralateral moving cupping area, a contralateral upstream area and a contralateral downstream area. The mean blood flow was calculated in each area. Blood flow was increased significantly in each area and was more apparently increased in the moving cupping area. In comparison of the changing rate of blood flow between cupping following the meridian running direction and that against the running direction, it was only found that the changing rate in the upstream area of moving cupping against the running direction was significantly higher than that following the running direction (P < 0.05). The differences were not statistically significant in comparison among the other areas. Additionally, the changing rates of blood flow in the upstream and downstream area of the Bladder Meridian were increased significantly as compared with the contralateral Bladder Meridian. The local effects are similar between moving cupping following the meridian running direction and that against the running direction. The abscopal effect of moving cupping against the running direction is superior to that following the running direction. It is suggested that the dual-directional moving cupping is applicable for the treatment of local disorders and the abscopal effect is better with moving cupping against the meridian running direction.

  11. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto

    2016-06-01

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  12. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  13. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  14. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.

    PubMed

    Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian

    2017-07-27

    When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.

  15. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methodsmore » and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.« less

  16. Simulation of Ground-Water Flow in the Shenandoah Valley, Virginia and West Virginia, Using Variable-Direction Anisotropy in Hydraulic Conductivity to Represent Bedrock Structure

    USGS Publications Warehouse

    Yager, Richard M.; Southworth, Scott C.; Voss, Clifford I.

    2008-01-01

    Ground-water flow was simulated using variable-direction anisotropy in hydraulic conductivity to represent the folded, fractured sedimentary rocks that underlie the Shenandoah Valley in Virginia and West Virginia. The anisotropy is a consequence of the orientations of fractures that provide preferential flow paths through the rock, such that the direction of maximum hydraulic conductivity is oriented within bedding planes, which generally strike N30 deg E; the direction of minimum hydraulic conductivity is perpendicular to the bedding. The finite-element model SUTRA was used to specify variable directions of the hydraulic-conductivity tensor in order to represent changes in the strike and dip of the bedding throughout the valley. The folded rocks in the valley are collectively referred to as the Massanutten synclinorium, which contains about a 5-km thick section of clastic and carbonate rocks. For the model, the bedrock was divided into four units: a 300-m thick top unit with 10 equally spaced layers through which most ground water is assumed to flow, and three lower units each containing 5 layers of increasing thickness that correspond to the three major rock units in the valley: clastic, carbonate and metamorphic rocks. A separate zone in the carbonate rocks that is overlain by colluvial gravel - called the western-toe carbonate unit - was also distinguished. Hydraulic-conductivity values were estimated through model calibration for each of the four rock units, using data from 354 wells and 23 streamflow-gaging stations. Conductivity tensors for metamorphic and western-toe carbonate rocks were assumed to be isotropic, while conductivity tensors for carbonate and clastic rocks were assumed to be anisotropic. The directions of the conductivity tensor for carbonate and clastic rocks were interpolated for each mesh element from a stack of 'form surfaces' that provided a three-dimensional representation of bedrock structure. Model simulations were run with (1) variable strike and dip, in which conductivity tensors were aligned with the strike and dip of the bedding, and (2) uniform strike in which conductivity tensors were assumed to be horizontally isotropic with the maximum conductivity direction parallel to the N30 deg E axis of the valley and the minimum conductivity direction perpendicular to the horizontal plane. Simulated flow penetrated deeper into the aquifer system with the uniform-strike tensor than with the variable-strike-and-dip tensor. Sensitivity analyses suggest that additional information on recharge rates would increase confidence in the estimated parameter values. Two applications of the model were conducted - the first, to determine depth of recent ground-water flow by simulating the distribution of ground-water ages, showed that most shallow ground water is less than 10 years old. Ground-water age distributions computed by variable-strike-and-dip and uniform-strike models were similar, but differed beneath Massanutten Mountain in the center of the valley. The variable-strike-and-dip model simulated flow from west to east parallel to the bedding of the carbonate rocks beneath Massanutten Mountain, while the uniform-strike model, in which flow was largely controlled by topography, simulated this same area as an east-west ground-water divide. The second application, which delineated capture zones for selected well fields in the valley, showed that capture zones delineated with both models were similar in plan view, but differed in vertical extent. Capture zones simulated by the variable-strike-and-dip model extended downdip with the bedding of carbonate rock and were relatively shallow, while those simulated by the uniform-strike model extended to the bottom of the flow system, which is unrealistic. These results suggest that simulations of ground-water flow through folded fractured rock can be constructed using SUTRA to represent variable orientations of the hydraulic-conductivity tensor and produce a

  17. Hydrogeologic framework, groundwater movement, and water budget in the Chimacum Creek basin and vicinity, Jefferson County, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

    2011-01-01

    This report presents information used to characterize the groundwater flow system in the Chimacum Creek basin. It includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal fluctuations in groundwater level; interactions between aquifers and the surface-water system; and a groundwater budget. The study area covers 124 square miles in northeastern Jefferson County, Washington, and includes the Chimacum Creek basin, which drains an area of about 37 square miles. The area is underlain by a north-thickening sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and igneous bedrock units that crop out along the margins and western interior of the study area. Six hydrogeologic units consisting of unconsolidated aquifers and confining units, along with an underlying bedrock unit, were identified. A surficial hydrogeologic map was developed and used with well information from 187 drillers' logs to construct 4 hydrogeologic sections, and maps showing the extent and thickness of the units. Natural recharge was estimated using precipitation-recharge relation regression equations developed for western Washington, and estimates were calculated for return flow from data on domestic indoor and outdoor use and irrigated agriculture. Results from synoptic streamflow measurements and water table elevations determined from monthly measurements at monitoring wells are presented and compared with those from a study conducted during 2002-03. A water budget was calculated comprising long-term average recharge, domestic public-supply withdrawals and return flow, self-supplied domestic withdrawals and return flow, and irrigated agricultural withdrawals and return flow.

  18. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  19. Visual sensory networks and effective information transfer in animal groups.

    PubMed

    Strandburg-Peshkin, Ariana; Twomey, Colin R; Bode, Nikolai W F; Kao, Albert B; Katz, Yael; Ioannou, Christos C; Rosenthal, Sara B; Torney, Colin J; Wu, Hai Shan; Levin, Simon A; Couzin, Iain D

    2013-09-09

    Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative spatial positions: each individual is considered to interact with all neighbors within a fixed distance (metric range), a fixed number of nearest neighbors (topological range), a 'shell' of near neighbors (Voronoi range), or some combination (Figure 1A). However, conclusive evidence to support these assumptions is lacking. Here, we employ a novel approach that considers individual movement decisions to be based explicitly on the sensory information available to the organism. In other words, we consider that while spatial relations do inform interactions between individuals, they do so indirectly, through individuals' detection of sensory cues. We reconstruct computationally the visual field of each individual throughout experiments designed to investigate information propagation within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual sensing allows us to more accurately predict the propagation of behavioral change in these groups during leadership events. Furthermore, we find that structural properties of visual interaction networks differ markedly from those of metric and topological counterparts, suggesting that previous assumptions may not appropriately reflect information flow in animal groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart

    PubMed Central

    2017-01-01

    Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943

  1. Bidirectional Pressure-Regulator System

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth; Miller, John R.

    2008-01-01

    A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.

  2. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  3. Information Content in Medline Record Files

    DTIC Science & Technology

    2003-01-01

    digits to appear red. Raynaud’s Phenomenon can be a primary or secondary disorder. When Raynaud’s symptoms appear alone without an apparent...appear anatomically normal after the ischemic events. When an identifiable cause or a specific associated disease accompanies Raynaud’s symptoms , it is...drugs. Thus, while the symptoms and signs of Raynaud’s Phenomenon occur as a direct consequence of reduced blood flow due to 9 reversible blood vessel

  4. Intraoperative sonographic assessment of graft patency during extracranial-intracranial bypass.

    PubMed

    Badie, B; Lee, F T; Pozniak, M A; Strother, C M

    2000-09-01

    Extracranial-intracranial (EC-IC) bypass may be necessary to facilitate treatment of unclippable posterior circulation fusiform aneurysms. Although intraoperative digital subtraction angiography (DSA) allows assessment of graft patency, this technique, because of difficulties inherent in performing selective catheterization and angiography in the operating room, has limitations. Duplex sonography, in contrast, is easily performed, and provides information regarding graft patency and blood flow direction during EC-IC bypass procedures. This latter information proved useful in determining the time of parent artery occlusion after two EC-IC bypass procedures performed for treatment of a fusiform midbasilar artery aneurysm.

  5. An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.

  6. Direct numerical simulation of curved turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moser, R. D.; Moin, P.

    1984-01-01

    Low Reynolds number, mildly curved, turbulent channel flow has been simulated numerically without subgrid scale models. A new spectral numerical method developed for this problem was used, and the computations were performed with 2 million degrees of freedom. A variety of statistical and structural information has been extracted from the computed flow fields. These include mean velocity, turbulence stresses, velocity skewness, and flatness factors, space time correlations and spectra, all the terms in the Reynolds stress balance equations, and contour and vector plots of instantaneous velocity fields. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides was in the Reynolds shear stress. This was accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Gortler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by affecting the underlying turbulence.

  7. Basic data for some recent Australian heat-flow measurements

    USGS Publications Warehouse

    Munroe, Robert J.; Sass, J.H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y.

    1975-01-01

    This report has been compiled to provide background information and detailed temperature and thermal conductivity data for the heat-flow values reported in Sass, Jaeger, and Munroe (in press). The data were collected as part of a joint heat-flow study by the Australian National University (ANU) and the U.S. Geological Survey (USGS) under the direction of J. C. Jaeger (ANU) and J. H. Sass (USGS). The format is similar to that used for basic data from United States heat-flow determinations (Sass and Munroe, 1974). Each section contains a state map showing the geographic distribution of heat-flow data followed by tables which list individual temperatures, thermal conductivities, and radiogenic heat production values. A companion volume (Bunker and others, 1975) gives details of the heat-production measurements together with individual radioelement concentrations. Localities are arranged in alphabetical order within each state. The methods and techniques of measurements have been described by Sass and others (1971a, b). Unusual methods or procedures which differ markedly from these techniques are noted and described in the comments sections of the tables.

  8. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Astrophysics Data System (ADS)

    Wang, Pao-Lien

    1992-09-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  9. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  10. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  11. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  12. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  13. A Novel Uncertainty Framework for Improving Discharge Data Quality Using Hydraulic Modelling.

    NASA Astrophysics Data System (ADS)

    Mansanarez, V.; Westerberg, I.; Lyon, S. W.; Lam, N.

    2017-12-01

    Flood risk assessments rely on accurate discharge data records. Establishing a reliable stage-discharge (SD) rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. We introduce an uncertainty framework using hydraulic modelling for developing SD rating curves and estimating their uncertainties. The proposed framework incorporates information from both the hydraulic configuration (bed slope, roughness, vegetation) and the information available in the stage-discharge observation data (gaugings). This method provides a direct estimation of the hydraulic configuration (slope, bed roughness and vegetation roughness). Discharge time series are estimated propagating stage records through posterior rating curve results.We applied this novel method to two Swedish hydrometric stations, accounting for uncertainties in the gaugings for the hydraulic model. Results from these applications were compared to discharge measurements and official discharge estimations.Sensitivity analysis was performed. We focused analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken.

  14. Detecting biological responses to flow management: Missed opportunities; future directions

    USGS Publications Warehouse

    Souchon, Y.; Sabaton, C.; Deibel, R.; Reiser, D.; Kershner, J.; Gard, M.; Katopodis, C.; Leonard, P.; Poff, N.L.; Miller, W.J.; Lamb, B.L.

    2008-01-01

    The conclusions of numerous stream restoration assessments all around the world are extremely clear and convergent: there has been insufficient appropriate monitoring to improve general knowledge and expertise. In the specialized field of instream flow alterations, we consider that there are several opportunities comparable to full-size experiments. Hundreds of water management decisions related to instream flow releases have been made by government agencies, native peoples, and non-governmental organizations around the world. These decisions are based on different methods and assumptions and many flow regimes have been adopted by formal or informal rules and regulations. Although, there have been significant advances in analytical capabilities, there has been very little validation monitoring of actual outcomes or research related to the response of aquatic dependent species to new flow regimes. In order to be able to detect these kinds of responses and to better guide decision, a general design template is proposed. The main steps of this template are described and discussed, in terms of objectives, hypotheses, variables, time scale, data management, and information, in the spirit of adaptive management. The adoption of such a framework is not always easy, due to differing interests of actors for the results, regarding the duration of monitoring, nature of funding and differential timetables between facilities managers and technicians. Nevertheless, implementation of such a framework could help researchers and practitioners to coordinate and federate their efforts to improve the general knowledge of the links between the habitat dynamics and biological aquatic responses. Copyright ?? 2008 John Wiley & Sons, Ltd.

  15. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Determination of the saturation parameter in a fast-flow CO2 active medium

    NASA Astrophysics Data System (ADS)

    Lebedev, V. F.; Lysikov, A. Yu; Ryazanova, A. V.; Shalygin, S. V.

    1990-05-01

    A diagnostic method was developed for determination of such an important characteristic of a CO2 active medium as the energy stored in the vibrational degrees of freedom of molecules, which can be determined directly from the experimentally measured powers of probe beams without the need for any additional information on the medium and without any numerical calculations. Measurements were carried out using a real fast-flow system, which satisfied the conditions of validity of the proposed diagnostic method, and the correctness of the approach was confirmed. The results obtained demonstrated the efficiency of the excitation of the medium when the pump conditions were varied.

  16. A flow cytometry assay to quantify intercellular exchange of membrane components† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00260b Click here for additional data file.

    PubMed Central

    Poulcharidis, Dimitrios; Belfor, Kimberley

    2017-01-01

    Membrane-compound exchange is vital for cell-to-cell communication, yet quantification of this process is difficult. Here we present a method using flow cytometry in combination with bioorthogonal and fluorescent labelling techniques to quantify the amount of exchange of cholesterol and sialylated compounds between cells. We demonstrate that direct cell–cell contact is the likely mechanism of sterol-exchange and show that by manipulating the contact time between cells using complementary coiled-coil peptides results in an enhanced exchange rate of membrane components between cells. PMID:28970937

  17. Stochastic modeling of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Fox, R. O.; Hill, J. C.; Gao, F.; Moser, R. D.; Rogers, M. M.

    1992-01-01

    Direct numerical simulations of a single-step irreversible chemical reaction with non-premixed reactants in forced isotropic turbulence at R(sub lambda) = 63, Da = 4.0, and Sc = 0.7 were made using 128 Fourier modes to obtain joint probability density functions (pdfs) and other statistical information to parameterize and test a Fokker-Planck turbulent mixing model. Preliminary results indicate that the modeled gradient stretching term for an inert scalar is independent of the initial conditions of the scalar field. The conditional pdf of scalar gradient magnitudes is found to be a function of the scalar until the reaction is largely completed. Alignment of concentration gradients with local strain rate and other features of the flow were also investigated.

  18. Investigation of Preferential Flow in Low Impact Development Practice

    NASA Astrophysics Data System (ADS)

    Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.

    2016-12-01

    The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path

  19. Simulation of aquifer tests and ground-water flowpaths at the local scale in fractured shales and sandstones of the Brunswick Group and Lockatong Formation, Lansdale, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Goode, Daniel J.; Senior, Lisa A.

    2000-01-01

    The U.S. Geological Survey, as part of technical assistance to the U.S. Environmental Protection Agency, has constructed and calibrated models of local-scale ground-water flow in and near Lansdale, Pa., where numerous sources of industrial contamination have been consolidated into the North Penn Area 6 Superfund Site. The local-scale models incorporate hydrogeologic structure of northwest-dipping beds with uniform hydraulic properties identified in previous studies. Computations associated with mapping the dipping-bed structure into the three-dimensional model grid are handled by a preprocessor using a programmed geographic information system (GIS). Hydraulic properties are identified by calibration of the models using measured water levels during pumping and recovery from aquifer tests at three sites. Reduced flow across low-permeability beds is explicitly simulated. The dipping high-permeability beds are extensive in the strike direction but are of limited extent in the dip direction. This model structure yields ground-water-flow patterns characteristic of anisotropic aquifers; preferred flow is in the strike direction. The transmissivities of high-permeability beds in the local-scale models range from 142 to 1,900 ft2/d (feet squared per day) (13 to 177 m2/d). The hydraulic conductivities of low-permeability parts of the aquifer range from 9.6 x 10-4 to 0.26 ft/d (feet per day) (2.9 x 10-4 to 0.079 m/d). Storage coefficients and specific storage are very low, indicating the confined nature of the aquifer system. The calibrated models are used to simulate contributing areas of wells under alternative, hypothetical ground-water-management practices. Predictive contributing areas indicate the general characteristics of ground-water flow towards wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration near the well and over an area that extends upgradient from the well. The contributing areas for two wells pumping at 10 gal/min (gallons per minute) extend about 1,500 ft (feet) upgradient from the wells. The contributing area is more complex at ground-water divides and can extend in more than one direction to capture recharge from more than 3,300 ft away, for pumping at a rate of 30 gal/min. Locally, all recharge in the area of the pumping well is not captured; recharge in the downgradient direction about 150 ft from the pumping well will flow to other discharge locations.

  20. Linear and Non-linear Information Flows In Rainfall Field

    NASA Astrophysics Data System (ADS)

    Molini, A.; La Barbera, P.; Lanza, L. G.

    The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from measured data.

  1. Assistance of intraoperative microvascular Doppler in the surgical obliteration of spinal dural arteriovenous fistula: cases description and technical considerations.

    PubMed

    Iacopino, D G; Conti, A; Giusa, M; Cardali, S; Tomasello, F

    2003-02-01

    Intraoperative microvascular Doppler may be valuable in assisting in the surgical obliteration of dural arteriovenous fistula of the spinal cord. It enables identification, through flow spectrum analysis, of the anatomic components and haemodynamic features of this type of vascular malformation. In two cases, intraoperative microvascular Doppler was used to assist in the surgical obliteration of dural arteriovenous fistula of the spinal cord. The fistulas were identified prior to the dura opening, and for this only minimally invasive surgery was required. Direct recordings of the arterialised draining vein and the nidus of the fistula demonstrated a pathological spectrum caused by the arterial supply and the disturbed venous outflow in which a high-resistance flow pattern and low diastolic flow resembling an arterial-like flow velocity were observed. The fistulas were obliterated by interruption of the draining vein, and Doppler measurements provided information on flow velocity changes in the medullary veins from an arterial to a venous pattern. The absence of any residual flow in the draining vein confirmed successful haemodynamic treatment. Intraoperative microvascular Doppler recording is valuable assistance in surgical closure of spinal arteriovenous fistula.

  2. The validity of multiphase DNS initialized on the basis of single--point statistics

    NASA Astrophysics Data System (ADS)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  3. Spatial organisation of ecologically-relevant high frequency flow properties and implications for habitat assessment.

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.

    2016-12-01

    Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.

  4. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    NASA Astrophysics Data System (ADS)

    Nobis, M.; Stücke, P.; Schmidt, M.; Riedel, M.

    2013-04-01

    The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV). The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  5. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  6. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.

  7. Large Directed Flow of Open Charm Mesons Probes the Three-Dimensional Distribution of Matter in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sandeep; BoŻek, Piotr

    2018-05-01

    Thermalized matter created in noncentral relativistic heavy-ion collisions is expected to be tilted in the reaction plane with respect to the beam axis. The most notable consequence of this forward-backward symmetry breaking is the observation of rapidity-odd directed flow for charged particles. On the other hand, the production points for heavy quarks are forward-backward symmetric and shifted in the transverse plane with respect to the fireball. The drag on heavy quarks from the asymmetrically distributed thermalized matter generates substantial directed flow for heavy flavor mesons. We predict a very large rapidity-odd directed flow of D mesons in noncentral Au-Au collisions at √{sN N}=200 GeV , several times larger than for charged particles. A possible experimental observation of a large directed flow for heavy flavor mesons would represent an almost direct probe of the three-dimensional distribution of matter in heavy-ion collisions.

  8. Monitoring Traffic Information with a Developed Acceleration Sensing Node.

    PubMed

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-12-05

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  9. Monitoring Traffic Information with a Developed Acceleration Sensing Node

    PubMed Central

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-01-01

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring. PMID:29206169

  10. Experimental investigation of performance and dynamic loading of an axial-flow marine hydrokinetic turbine with comparison to predicted design values from BEM computations

    NASA Astrophysics Data System (ADS)

    van Ness, Katherine; Hill, Craig; Aliseda, Alberto; Polagye, Brian

    2017-11-01

    Experimental measurements of a 0.45-m diameter, variable-pitch marine hydrokinetic (MHK) turbine were collected in a tow tank at different tip speed ratios and blade pitch angles. The coefficients of power and thrust are computed from direct measurements of torque, force and angular speed at the hub level. Loads on individual blades were measured with a six-degree of freedom load cell mounted at the root of one of the turbine blades. This information is used to validate the performance predictions provided by blade element model (BEM) simulations used in the turbine design, specifically the open-source code WTPerf developed by the National Renewable Energy Lab (NREL). Predictions of blade and hub loads by NREL's AeroDyn are also validated for the first time for an axial-flow MHK turbine. The influence of design twist angle, combined with the variable pitch angle, on the flow separation and subsequent blade loading will be analyzed with the complementary information from simulations and experiments. Funding for this research was provided by the United States Naval Facilities Engineering Command.

  11. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  12. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  13. Effects of confidence and anxiety on flow state in competition.

    PubMed

    Koehn, Stefan

    2013-01-01

    Confidence and anxiety are important variables that underlie the experience of flow in sport. Specifically, research has indicated that confidence displays a positive relationship and anxiety a negative relationship with flow. The aim of this study was to assess potential direct and indirect effects of confidence and anxiety dimensions on flow state in tennis competition. A sample of 59 junior tennis players completed measures of Competitive State Anxiety Inventory-2d and Flow State Scale-2. Following predictive analysis, results showed significant positive correlations between confidence (intensity and direction) and anxiety symptoms (only directional perceptions) with flow state. Standard multiple regression analysis indicated confidence as the only significant predictor of flow. The results confirmed a protective function of confidence against debilitating anxiety interpretations, but there were no significant interaction effects between confidence and anxiety on flow state.

  14. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  15. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability. The program has been verified by means of several simulations performed using appropriately designed features and by analyzing real samples.

  16. IBEX-Lo Observations of Secondary Interstellar Helium and Oxygen Distributions

    NASA Astrophysics Data System (ADS)

    Park, J.; Kucharek, H.; Moebius, E.; Kubiak, M. A.; Bzowski, M.; Galli, A.; McComas, D. J.

    2015-12-01

    Observations of the Interstellar Boundary EXplorer (IBEX) show, among other features, the pristine interstellar neutral gas flow and additional populations associated with neutral helium and oxygen. Kubiak et al. (2014, ApJS, 213, 29) discovered the "Warm Breeze", or additional He component, which is slower and warmer than the primary interstellar He population and its flow direction differs by about 19° from the interstellar neutral (ISN) flow. Park et al. (2015, ApJS, In Press) studied the combined count rate maps of heavy neutral atoms with three statistical analysis methods and found an extended tail of the ISN O flow, centered around 190° in ecliptic longitude and +15° in ecliptic latitude, or approximately 38° from the ISN O and Ne flow peak. The most likely sources for the Warm Breeze and the extended O tail may be secondary populations of interstellar He and O, created by charge exchange between ISN atoms and interstellar ions in the outer heliosheath. The charge exchange between interstellar He atoms and He+ ions is the most important reaction to generate the secondary neutral He in the outer heliosheath, with a reaction rate of 1.7×10-10 s-1 and a mean free path of ~950 AU. For O+, the charge exchange with interstellar H atoms with a rate ~1.0×10-9 s-1 and a mean free path of ~100 AU is most important. Because the differences in the reaction rates and atomic masses for He and O result in different velocity distributions in the outer heliosheath, the directional distributions of these populations at Earth orbit are not identical. In this study, we use the IBEX flux maps of the observed helium and oxygen atoms to compare their directional distributions. These observed distributions may provide constraints and information to improve our current understanding of the interactions in the outer heliosheath.

  17. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance.

    PubMed

    Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Characterizing the sources, range, and environmental influences of radon 222 and its decay products

    NASA Astrophysics Data System (ADS)

    Nero, A. V.; Sextro, R. G.; Doyle, S. M.; Moed, B. A.; Nazaroff, W. W.; Revzan, K. L.; Schwehr, M. B.

    1985-06-01

    Recent results from our group directly assist efforts to identify and control excessive concentrations of radon 222 and its decay products in residential environments. We have demonstrated directly the importance of pressure-induced flow of soil gas for transport of radon from the ground into houses. Analysis of available information from measurements of concentration in US homes has resulted in a quantitative appreciation of the distribution of indoor levels, including the degree of dependence on geographic location. Experiments on the effectiveness of air cleaning devices for removal of particles and radon decay products indicate the potential and limitations of this approach to control.

  19. Radiating columnar joints in Gyeongju, Korea as a educational site

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kim, J. H.; Jang, Y. D.

    2015-12-01

    Gyeongju is located in the central eastern part of South Korea. There are various directional columnar joint sets in Tertiary trachytic basalt formation along the shore. In particular, rare radiating columnar joints occur in this area. Columnar joints are parallel, prismatic columns that are formed as a result of contraction during the rapid cooling of lava flow, forming a three dimensional fracture network. In general, the radius and direction of the rock column represent the cooling rate and surface respectively. Radiating direction of columns here indicates that dome- or lobe-shaped lava was cooled from its surface to the core during the viscous lava flow. The fact that the trachytic textures of plagioclase laths are indistinct suggests that the radiating columnar joints are equivalent to the frontal end of the lava lobes. This area is currently has a shore trail course, which is being developed into a picturesque educational park. There are corresponding information boards on the trail near each type of columnar joints to explain not only the forming process and geological mechanisms but the importance of nature conservation to visitors, especially students. A variety of educational materials and educational programs linked to regular school curriculum are also being developed.

  20. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... to prevent the in-line flow indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to the masks. This condition could consequently result in occupants...

  1. Feature-Based Statistical Analysis of Combustion Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J; Krishnamoorthy, V; Liu, S

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing andmore » reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.« less

  2. Information processing and dynamics in minimally cognitive agents.

    PubMed

    Beer, Randall D; Williams, Paul L

    2015-01-01

    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science. Copyright © 2014 Cognitive Science Society, Inc.

  3. How different is the time-averaged field from that of a geocentric axial dipole ? Making the best of paleomagnetic directional data using the statistical Giant Gaussian Process approach.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Khokhlov, A.; Johnson, C. L.

    2012-12-01

    It is well known that the geometry of the recent time-averaged paleomagnetic field (TAF) is very close to that of a geocentric axial dipole (GAD). Yet, numerous numerical dynamo simulations show that some departures from such a simple geometry is to be expected, not least because of the heterogeneous thermal core-mantle boundary conditions that the convecting mantle imposes on the geodynamo. Indeed, many TAF models recovered from averaging lava flow paleomagnetic directional data (the most numerous and reliable of all data) would suggest this is the case. However, assessing the significance of such minor departures from the GAD is particularly challenging, because non-linear directional data are sensitive not only to the time-averaged component of the field, but also to its time fluctuating component, known as the paleosecular variation (PSV). This means that in addition to data errors, PSV also must be taken into account when assessing any lava flow directional data based claims of departures of the TAF from the GAD. Furthermore, because of limited age information for these data , it is necessary to assess departures from the GAD by resorting to a statistical approach. We report recent progress using an approach we have suggested and further developed (Khokhlov et al., Geophysical Journal International, 2001, 2006) to test the compatibility of combined time-averaged (TAF) and paleosecular variation (PSV) field models, against any lava flow paleomagnetic database, asssuming that these TAF and PSV models are defined within the Giant Gaussian Process statistical framework. In particular we will show how sensitive statistical measures of the compatibility of a combined set of TAF and PSV models with a given directional database can be defined. These measures can be used to test published TAF and PSV models with updated 0-5 Ma lava flow paleomagnetic data sets. They also lay the groundwork for designing inverse methods better suited to seek the minimum required departure of the TAF from the GAD.

  4. Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells.

    PubMed

    Strassburg, Sandra; Hodson, Nigel W; Hill, Patrick I; Richardson, Stephen M; Hoyland, Judith A

    2012-01-01

    Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.

  5. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Šimůnek, Jirka; Nimmo, John R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.

  6. [Doppler echocardiography of tricuspid insufficiency. Methods of quantification].

    PubMed

    Loubeyre, C; Tribouilloy, C; Adam, M C; Mirode, A; Trojette, F; Lesbre, J P

    1994-01-01

    Evaluation of tricuspid incompetence has benefitted considerably from the development of Doppler ultrasound. In addition to direct analysis of the valves, which provides information about the mechanism involved, this method is able to provide an accurate evaluation, mainly through use of the Doppler mode. In addition to new criteria being evaluated (mainly the convergence zone of the regurgitant jet), some indices are recognised as good quantitative parameters: extension of the regurgitant jet into the right atrium, anterograde tricuspid flow, laminar nature of the regurgitant flow, analysis of the flow in the supra-hepatic veins, this is only semi-quantitative, since the calculation of the regurgitation fraction from the pulsed Doppler does not seem to be reliable; This accurate semi-quantitative evaluation is made possible by careful and consistent use of all the criteria available. The authors set out to discuss the value of the various evaluation criteria mentioned in the literature and try to define a practical approach.

  7. The influence of following on bidirectional flow through a doorway

    NASA Astrophysics Data System (ADS)

    Graves, Amy; Diamond, Rachel; Saakashvili, Eduard

    Pedestrian dynamics is a subset of the study of self-propelled particles. We simulate two species of pedestrians undergoing bidirectional flow through a narrow doorway. Using the Helbing-Monlár-Farkas-Vicsek Social Force Model, our pedestrians are soft discs that experience psychosocial and physical contact forces. We vary the ``following'' parameter which determines the degree to which a pedestrian matches its direction of movement to the average of nearby, same-species pedestrians. Current density, efficiency and statistics of bursts and lags are calculated. These indicate that choosing different following parameters for each species affects the efficacy of transport - greater following being associated with lower efficacy. The information entropy associated with velocity and the long time tails of the complementary CDF of lag times are additional indicators of the dynamical consequences of following during bidirectional flow. Acknowledgement is made to the donors of the ACS Petrolium Research Fund, and the Vandervelde-Cheung Fund of Swarthmore College.

  8. Simulation of Acoustic Scattering from a Trailing Edge

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Brentner, Kenneth S.; Lockard, David P.; Lilley, Geoffrey M.

    1999-01-01

    Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.

  9. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  10. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    NASA Astrophysics Data System (ADS)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  11. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.

  12. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less

  13. Multisensory control of a straight locomotor trajectory.

    PubMed

    Hanna, Maxim; Fung, Joyce; Lamontagne, Anouk

    2017-01-01

    Locomotor steering is contingent upon orienting oneself spatially in the environment. When the head is turned while walking, the optic flow projected onto the retina is a complex pattern comprising of a translational and a rotational component. We have created a unique paradigm to simulate different optic flows in a virtual environment. We hypothesized that non-visual (vestibular and somatosensory) cues are required for proper control of a straight trajectory while walking. This research study included 9 healthy young subjects walking in a large physical space (40×25m2) while the virtual environment is viewed in a helmet-mounted display. They were instructed to walk straight in the physical world while being exposed to three conditions: (1) self-initiated active head turns (AHT: 40° right, left, or none); (2) visually simulated head turns (SHT); and (3) visually simulated head turns with no target element (SHT_NT). Conditions 1 and 2 involved an eye-level target which subjects were instructed to fixate, whereas condition 3 was similar to condition 2 but with no target. Identical retinal flow patterns were present in the AHT and SHT conditions whereas non-visual cues differed in that a head rotation was sensed only in AHT but not in SHT. Body motions were captured by a 12-camera Vicon system. Horizontal orientations of the head and body segments, as well as the trajectory of the body's centre of mass were analyzed. SHT and SNT_NT yielded similar results. Heading and body segment orientations changed in the direction opposite to the head turns in SHT conditions. Heading remained unchanged across head turn directions in AHT. Results suggest that non-visual information is used in the control of heading while being exposed to changing rotational optic flows. The small magnitude of the changes in SHT conditions suggests that the CNS can re-weight relevant sources of information to minimize heading errors in the presence of sensory conflicts.

  14. Reexamining Computational Support for Intelligence Analysis: A Functional Design for a Future Capability

    DTIC Science & Technology

    2016-07-14

    applicability of the sensor model in the context under consideration. A similar information flow can be considered for obtaining direct reliability of an... Modeling , Bex Concepts Human Intelligence Simulation USE CASES Army: Opns in Megacities, Syrian Civil War Navy: Piracy (NATO, Book), Autonomous ISR...2007) 6 [25] Bex, F. and Verheij, B ., Story Schemes for Argumentation about the Facts of a Crime, Computational Models of Narrative: Papers from the

  15. Rainfall Generated Debris flows on Mount Shasta: July 21, 2015

    NASA Astrophysics Data System (ADS)

    Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.

    2015-12-01

    Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash flood events and possible effective road designs for stream crossings and road surface drainage.

  16. Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio

    NASA Astrophysics Data System (ADS)

    Yano, T.; Nishino, K.; Kawamura, H.; Ueno, I.; Matsumoto, S.

    2015-02-01

    This paper reports the experimental results on the instability and associated roll structures (RSs) of Marangoni convection in liquid bridges formed under the microgravity environment on the International Space Station. The geometry of interest is high aspect ratio (AR = height/diameter ≥ 1.0) liquid bridges of high Prandtl number fluids (Pr = 67 and 207) suspended between coaxial disks heated differentially. The unsteady flow field and associated RSs were revealed with the three-dimensional particle tracking velocimetry. It is found that the flow field after the onset of instability exhibits oscillations with azimuthal mode number m = 1 and associated RSs traveling in the axial direction. The RSs travel in the same direction as the surface flow (co-flow direction) for 1.00 ≤ AR ≤ 1.25 while they travel in the opposite direction (counter-flow direction) for AR ≥ 1.50, thus showing the change of traveling directions with AR. This traveling direction for AR ≥ 1.50 is reversed to the co-flow direction when the temperature difference between the disks is increased to the condition far beyond the critical one. This change of traveling directions is accompanied by the increase of the oscillation frequency. The characteristics of the RSs for AR ≥ 1.50, such as the azimuthal mode of oscillation, the dimensionless oscillation frequency, and the traveling direction, are in reasonable agreement with those of the previous sounding rocket experiment for AR = 2.50 and those of the linear stability analysis of an infinite liquid bridge.

  17. Minimalism context-aware displays.

    PubMed

    Cai, Yang

    2004-12-01

    Despite the rapid development of cyber technologies, today we still have very limited attention and communication bandwidth to process the increasing information flow. The goal of the study is to develop a context-aware filter to match the information load with particular needs and capacities. The functions include bandwidth-resolution trade-off and user context modeling. From the empirical lab studies, it is found that the resolution of images can be reduced in order of magnitude if the viewer knows that he/she is looking for particular features. The adaptive display queue is optimized with real-time operational conditions and user's inquiry history. Instead of measuring operator's behavior directly, ubiquitous computing models are developed to anticipate user's behavior from the operational environment data. A case study of the video stream monitoring for transit security is discussed in the paper. In addition, the author addresses the future direction of coherent human-machine vision systems.

  18. Information Flow in Teachers' Organizations in Israel During Confrontations with Employers: I

    ERIC Educational Resources Information Center

    Glasman, Naftaly S.

    1975-01-01

    First part of an article examining the content of information flow; the amount of information released; the mechanism of the flow; the factors affecting the content, amount, and mechanism; and the corollaries of information flow and the characteristics of the school system. Includes the questions put to the teachers. (Author/IRT)

  19. Low pressure drop, multi-slit virtual impactor

    DOEpatents

    Bergman, Werner

    2002-01-01

    Fluid flow is directed into a multiplicity of slit nozzles positioned so that the fluid flow is directed into a gap between the nozzles and (a) a number of receiving chambers and (b) a number of exhaust chambers. The nozzles and chambers are select so that the fluid flow will be separated into a first particle flow component with larger and a second particle flow component with the smaller particles.

  20. Cross-stream migration of active particles

    NASA Astrophysics Data System (ADS)

    Uspal, William; Katuri, Jaideep; Simmchen, Juliane; Miguel-Lopez, Albert; Sanchez, Samuel

    For natural microswimmers, the interplay of swimming activity and external flow can promote robust directed motion, e.g. propulsion against (upstream rheotaxis) or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model system, we report on a strong directional response that naturally emerges for spherical active particles in a channel flow. The particles align their propulsion axis to be perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model that captures this spontaneous transverse orientational order. We show how the directional response emerges from the interplay of external shear flow and swimmer/surface interactions (e.g., hydrodynamic interactions) that originate in swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that show good agreement with the experimental probability distributions. Our findings show that the qualitative response of microswimmers to flow is sensitive to the detailed interaction between individual microswimmers and bounding surfaces.

  1. CytometryML binary data standards

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.

    2005-03-01

    CytometryML is a proposed new Analytical Cytology (Cytomics) data standard, which is based on a common set of XML schemas for encoding flow cytometry and digital microscopy text based data types (metadata). CytometryML schemas reference both DICOM (Digital Imaging and Communications in Medicine) codes and FCS keywords. Flow Cytometry Standard (FCS) list-mode has been mapped to the DICOM Waveform Information Object. The separation of the large binary data objects (list mode and image data) from the XML description of the metadata permits the metadata to be directly displayed, analyzed, and reported with standard commercial software packages; the direct use of XML languages; and direct interfacing with clinical information systems. The separation of the binary data into its own files simplifies parsing because all extraneous header data has been eliminated. The storage of images as two-dimensional arrays without any extraneous data, such as in the Adobe Photoshop RAW format, facilitates the development by scientists of their own analysis and visualization software. Adobe Photoshop provided the display infrastructure and the translation facility to interconvert between the image data from commercial formats and RAW format. Similarly, the storage and parsing of list mode binary data type with a group of parameters that are specified at compilation time is straight forward. However when the user is permitted at run-time to select a subset of the parameters and/or specify results of mathematical manipulations, the development of special software was required. The use of CytometryML will permit investigators to be able to create their own interoperable data analysis software and to employ commercially available software to disseminate their data.

  2. Directional analysis of cardiac motion field from gated fluorodeoxyglucose PET images using the Discrete Helmholtz Hodge Decomposition.

    PubMed

    Sims, J A; Giorgi, M C; Oliveira, M A; Meneghetti, J C; Gutierrez, M A

    2018-04-01

    Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD). Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD. Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators. The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Remembering the past and imagining the future

    PubMed Central

    Byrne, Patrick; Becker, Suzanna; Burgess, Neil

    2009-01-01

    The neural mechanisms underlying spatial cognition are modelled, integrating neuronal, systems and behavioural data, and addressing the relationships between long-term memory, short-term memory and imagery, and between egocentric and allocentric and visual and idiothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory as egocentric parietal representations driven by perception, retrieval and imagery, and modulated by directed attention. Both encoding and retrieval/ imagery require translation between egocentric and allocentric representations, mediated by posterior parietal and retrosplenial areas and utilizing head direction representations in Papez’s circuit. Thus hippocampus effectively indexes information by real or imagined location, while Papez’s circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows “spatial updating” of representations, while prefrontal simulated motor efference allows mental exploration. The alternating temporo-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs. PMID:17500630

  4. Process connectivity in a naturally prograding river delta

    NASA Astrophysics Data System (ADS)

    Sendrowski, Alicia; Passalacqua, Paola

    2017-03-01

    River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.

  5. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    PubMed

    Gibbs, David L; Shmulevich, Ilya

    2017-06-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  6. Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors.

    PubMed

    Muthuraman, Muthuraman; Raethjen, Jan; Koirala, Nabin; Anwar, Abdul Rauf; Mideksa, Kidist G; Elble, Rodger; Groppa, Sergiu; Deuschl, Günter

    2018-06-01

    Cerebello-thalamo-cortical loops play a major role in the emergence of pathological tremors and voluntary rhythmic movements. It is unclear whether these loops differ anatomically or functionally in different types of tremor. We compared age- and sex-matched groups of patients with Parkinson's disease or essential tremor and healthy controls (n = 34 per group). High-density 256-channel EEG and multi-channel EMG from extensor and flexor muscles of both wrists were recorded simultaneously while extending the hands against gravity with the forearms supported. Tremor was thereby recorded from patients, and voluntarily mimicked tremor was recorded from healthy controls. Tomographic maps of EEG-EMG coherence were constructed using a beamformer algorithm coherent source analysis. The direction and strength of information flow between different coherent sources were estimated using time-resolved partial-directed coherence analyses. Tremor severity and motor performance measures were correlated with connection strengths between coherent sources. The topography of oscillatory coherent sources in the cerebellum differed significantly among the three groups, but the cortical sources in the primary sensorimotor region and premotor cortex were not significantly different. The cerebellar and cortical source combinations matched well with known cerebello-thalamo-cortical connections derived from functional MRI resting state analyses according to the Buckner-atlas. The cerebellar sources for Parkinson's tremor and essential tremor mapped primarily to primary sensorimotor cortex, but the cerebellar source for mimicked tremor mapped primarily to premotor cortex. Time-resolved partial-directed coherence analyses revealed activity flow mainly from cerebellum to sensorimotor cortex in Parkinson's tremor and essential tremor and mainly from cerebral cortex to cerebellum in mimicked tremor. EMG oscillation flowed mainly to the cerebellum in mimicked tremor, but oscillation flowed mainly from the cerebellum to EMG in Parkinson's and essential tremor. The topography of cerebellar involvement differed among Parkinson's, essential and mimicked tremors, suggesting different cerebellar mechanisms in tremorogenesis. Indistinguishable areas of sensorimotor cortex and premotor cerebral cortex were involved in all three tremors. Information flow analyses suggest that sensory feedback and cortical efferent copy input to cerebellum are needed to produce mimicked tremor, but tremor in Parkinson's disease and essential tremor do not depend on these mechanisms. Despite the subtle differences in cerebellar source topography, we found no evidence that the cerebellum is the source of oscillation in essential tremor or that the cortico-bulbo-cerebello-thalamocortical loop plays different tremorogenic roles in Parkinson's and essential tremor. Additional studies are needed to decipher the seemingly subtle differences in cerebellocortical function in Parkinson's and essential tremors.

  7. Hydrogeologic Framework, Groundwater Movement, and Water Budget in Tributary Subbasins and Vicinity, Lower Skagit River Basin, Skagit and Snohomish Counties, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Johnson, Kenneth H.; Sumioka, Steven S.; Olsen, Theresa D.; Fasser, Elisabeth T.; Huffman, Raegan L.

    2009-01-01

    A study to characterize the groundwater-flow system in four tributary subbasins and vicinity of the lower Skagit River basin was conducted by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology in evaluating the effects of potential groundwater withdrawals and consumptive use on tributary streamflows. This report presents information used to characterize the groundwater and surface-water flow system in the subbasins, and includes descriptions of the geology and hydrogeologic framework of the subbasins; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater-level fluctuations; interactions between aquifers and the surface-water system; and a water budget for the subbasins. The study area covers about 247 mi2 along the Skagit River and its tributary subbasins (East Fork Nookachamps Creek, Nookachamps Creek, Carpenter Creek, and Fisher Creek) in southwestern Skagit County and northwestern Snohomish County, Washington. The geology of the area records a complex history of accretion along the continental margin, mountain building, deposition of terrestrial and marine sediments, igneous intrusion, and the repeated advance and retreat of continental glaciers. A simplified surficial geologic map was developed from previous mapping in the area, and geologic units were grouped into nine hydrogeologic units consisting of aquifers and confining units. A surficial hydrogeologic unit map was constructed and, with lithologic information from 296 drillers'logs, was used to produce unit extent and thickness maps and four hydrogeologic sections. Groundwater in unconsolidated aquifers generally flows towards the northwest and west in the direction of the Skagit River and Puget Sound. This generalized flow pattern is likely complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater-flow directions in the sedimentary aquifer likely reflect local topographic relief (radial flow from bedrock highs) and more regional westward flow from the mountains to the Puget Sound. The largest groundwater-level fluctuations observed during the monitoring period (October 2006 through September 2008) occurred in wells completed in the sedimentary aquifer, and ranged from about 3 to 27 feet. Water levels in wells completed in unconsolidated hydrogeologic units exhibited seasonal variations ranging from less than 1 to about 10 feet. Synoptic streamflow measurements made in August 2007 and June 2008 indicate a total groundwater discharge to creeks in the tributary subbasin area of about 13.15 and 129.6 cubic feet per second (9,520 and 93,830 acre-feet per year), respectively. Streamflow measurements illustrate a general pattern in which the upper reaches of creeks in the study area tended to gain flow from the groundwater system, and lower creek reaches tended to lose water. Large inflows from tributaries to major creeks in the study area suggest the presence of groundwater discharge from upland areas underlain by bedrock. The groundwater system within the subbasins received an average (September 1, 2006 to August 31, 2008) of about 92,400 acre-feet or about 18 inches of recharge from precipitation a year. Most of this recharge (65 percent) discharges to creeks, and only about 3 percent is withdrawn from wells. The remaining groundwater recharge (32 percent) leaves the subbasin groundwater system as discharge to the Skagit River and Puget Sound.

  8. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  9. Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers

    DOE PAGES

    Merritt, Elizabeth Catherine; Doss, Forrest William

    2016-07-06

    The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. Lastly, the evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less

  10. Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, E. C., E-mail: emerritt@lanl.gov; Doss, F. W.

    2016-07-15

    The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. The evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less

  11. In situ realization of asymmetric ratchet structures within microchannels by directionally guided light transmission and their directional flow behavior.

    PubMed

    Bae, Won-Gyu; Kim, Sang Moon; Choi, Se-Jin; Oh, Sang Geun; Yoon, Hyunsik; Char, Kookheon; Suh, Kahp Y

    2014-05-01

    An asymmetric ratchet structure within microchannels is demonstrated by directionally guided light transmission for controlled liquid flow. A direct and facile method is presented to realize programmed asymmetric structures, which control the fluid direction and speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tracking time-varying causality and directionality of information flow using an error reduction ratio test with applications to electroencephalography data.

    PubMed

    Zhao, Yifan; Billings, Steve A; Wei, Hualiang; Sarrigiannis, Ptolemaios G

    2012-11-01

    This paper introduces an error reduction ratio-causality (ERR-causality) test that can be used to detect and track causal relationships between two signals. In comparison to the traditional Granger method, one significant advantage of the new ERR-causality test is that it can effectively detect the time-varying direction of linear or nonlinear causality between two signals without fitting a complete model. Another important advantage is that the ERR-causality test can detect both the direction of interactions and estimate the relative time shift between the two signals. Numerical examples are provided to illustrate the effectiveness of the new method together with the determination of the causality between electroencephalograph signals from different cortical sites for patients during an epileptic seizure.

  13. Transient Macroscopic Chemistry in the DSMC Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.

    2008-12-01

    In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.

  14. Gene flow in Prunus species in the context of novel trait risk assessment.

    PubMed

    Cici, S Zahra H; Van Acker, Rene C

    2010-01-01

    Prunus species are important commercial fruit (plums, apricot, peach and cherries), nut (almond) and ornamental trees cultivated broadly worldwide. This review compiles information from available literature on Prunus species in regard to gene flow and hybridization within this complex of species. The review serves as a resource for environmental risk assessment related to pollen mediated gene flow and the release of transgenic Prunus. It reveals that Prunus species, especially plums and cherries show high potential for transgene flow. A range of characteristics including; genetic diversity, genetic bridging capacity, inter- and intra-specific genetic compatibility, self sterility (in most species), high frequency of open pollination, insect assisted pollination, perennial nature, complex phenotypic architecture (canopy height, heterogeneous crown, number of flowers produced in an individual plant), tendency to escape from cultivation, and the existence of ornamental and road side Prunus species suggest that there is a tremendous and complicated ability for pollen mediated gene movement among Prunus species. Ploidy differences among Prunus species do not necessarily provide genetic segregation. The characteristics of Prunu s species highlight the complexity of maintaining coexistence between GM and non-GM Prunus if there were commercial production of GM Prunus species. The results of this review suggest that the commercialization of one GM Prunus species can create coexistence issues for commercial non-GM Prunus production. Despite advances in molecular markers and genetic analysis in agroecology, there remains limited information on the ecological diversity, metapopulation nature, population dynamics, and direct measures of gene flow among different subgenera represented in the Prunus genus. Robust environmental impact, biosafety and coexistence assessments for GM Prunus species will require better understanding of the mechanisms of gene flow and hybridization among species within the Prunus species complex. © ISBR, EDP Sciences, 2011.

  15. Effect of Air Swirler Configuration on Lean Direct Injector Flow Structure and Combustion Performance with a 7-Point Lean Direct Injector Array

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2017-01-01

    Studies of various injector configurations in a 7-point Lean Direct Injector (LDI) array are reported for both non-reacting (cold) flow and for Jet-A/air reacting flows. For cold flow, central recirculation zone (CRZ) formation is investigated and for reacting flows, combustor operability and dynamics are of interest. 2D Particle Image Velocimetry (PIV) measurements are described for the cold flow experiments and flame chemiluminescence imaging and dynamic pressure results are discussed for the reacting flow cases. PIV results indicate that for this configuration the close spacing between swirler elements leads to strong interaction that affects whether a CRZ forms, and pilot recess and counter-swirl helps to isolate swirlers from one another. Dynamics results focus on features identified near 500-Hz.

  16. Comparing observations and morphodynamic numerical modeling of upper-flow-regime bedforms in fjords and outcrop

    NASA Astrophysics Data System (ADS)

    Hubbard, Stephen; Kostic, Svetlana; Englert, Rebecca; Coutts, Daniel; Covault, Jacob

    2017-04-01

    Recent bathymetric observations of fjord prodeltas in British Columbia, Canada, reveal evidence for multi-phase channel erosion and deposition. These processes are interpreted to be related to the upstream migration of upper-flow-regime bedforms, namely cyclic steps. We integrate data from high-resolution bathymetric surveys and monitoring to inform morphodynamic numerical models of turbidity currents and associated bedforms in the Squamish prodelta. These models are applied to the interpretation of upper-flow-regime bedforms, including cyclic steps, antidunes, and/or transitional bedforms, in Late Cretaceous submarine conduit strata of the Nanaimo Group at Gabriola Island, British Columbia. In the Squamish prodelta, as bedforms migrate, >90% of the deposits are reworked, making morphology- and facies-based recognition challenging. Sedimentary bodies are 5-30 m long, 0.5-2 m thick and <30 m wide. The Nanaimo Group comprises scour fills of similar scale composed of structureless sandstone, with laminated siltstone locally overlying basal erosion surfaces. Backset stratification is locally observed; packages of 2-4 backset beds, each of which are up to 60 cm thick and up to 15 m long (along dip), commonly share composite basal erosion surfaces. Numerous scour fills are recognized over thin sections (<4 m), indicating limited aggradation and preservation of the bedforms. Preliminary morphodynamic numerical modeling indicates that Squamish and Nanaimo bedforms could be transitional upper-flow-regime bedforms between cyclic steps and antidunes. It is likely that cyclic steps and related upper-flow-regime bedforms are common in strata deposited on high gradient submarine slopes. Evidence for updip-migrating cyclic step and related deposits inform a revised interpretation of a high gradient setting dominated by supercritical flow, or alternating supercritical and subcritical flow in the Nanaimo Group. Integrating direct observations, morphodynamic numerical modeling, and outcrop characterization better constrains fundamental processes that operate in deep-water depositional systems; our analyses aims to further deduce the stratigraphy and preservation potential of upper flow-regime bedforms.

  17. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis

    PubMed Central

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-01-01

    Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996

  18. Morphometrics applied to medical entomology.

    PubMed

    Dujardin, Jean-Pierre

    2008-12-01

    Morphometrics underwent a revolution more than one decade ago. In the modern morphometrics, the estimate of size is now contained in a single variable reflecting variation in many directions, as many as there are landmarks under study, and shape is defined as their relative positions after correcting for size, position and orientation. With these informative data, and the corresponding software freely available to conduct complex analyses, significant biological and epidemiological features can be quantified more accurately. We discuss the evolutionary significance of the environmental impact on metric variability, mentioning the importance of concepts like genetic assimilation, genetic accommodation, and epigenetics. We provide examples of measuring the effect of selection on metric variation by comparing (unpublished) Qst values with corresponding (published) Fst. The primary needs of medical entomologists are to distinguish species, especially cryptic species, and to detect them where they are not expected. We explain how geometric morphometrics could apply to these questions, and where there are deficiencies preventing the approach from being utilized at its maximum potential. Medical entomologists in connection with control programs aim to identify isolated populations where the risk of reinfestation after treatment would be low ("biogeographical islands"). Identifying them can be obtained from estimating the number of migrants per generation. Direct assessment of movement remains the most valid approach, but it scores active movement only. Genetic methods estimating gene flow levels among interbreeding populations are commonly used, but gene flow does not necessarily mean the current flow of migrants. Methods using the morphometric variation are neither suited to evaluate gene flow, nor are they adapted to estimate the flow of migrants. They may provide, however, the information needed to create a preliminary map pointing to relevant areas where one could invest in using molecular machinery. In case of reinfesting specimens after treatment, the question relates to the likely source of reinfesting specimens: are they a residual sample not affected by the control measures, or are they individuals migrating from surrounding, untreated foci? We explain why the morphometric approach may be adapted to answer such question. Thus, we describe the differences between estimating the flow of migrants and identifying the source of reinfestation after treatment: although morphometrics is not suited to deal with the former, it may be an appropriate tool to address the latter.

  19. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish

    PubMed Central

    Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian

    2017-01-01

    When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water1. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal’s frame of reference2. In spite of this, many aquatic animals consistently orient and swim against oncoming flows (a behavior known as rheotaxis) even in the absence of visual cues3,4. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioral data that support a novel algorithm based on such local velocity gradients that fish use to efficiently avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, measure its temporal change following swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioral algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviors in moving fluids. PMID:28700578

  20. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  1. Low-complexity stochastic modeling of wall-bounded shear flows

    NASA Astrophysics Data System (ADS)

    Zare, Armin

    Turbulent flows are ubiquitous in nature and they appear in many engineering applications. Transition to turbulence, in general, increases skin-friction drag in air/water vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of wind turbines. While traditional flow control techniques combine physical intuition with costly experiments, their effectiveness can be significantly enhanced by control design based on low-complexity models and optimization. In this dissertation, we develop a theoretical and computational framework for the low-complexity stochastic modeling of wall-bounded shear flows. Part I of the dissertation is devoted to the development of a modeling framework which incorporates data-driven techniques to refine physics-based models. We consider the problem of completing partially known sample statistics in a way that is consistent with underlying stochastically driven linear dynamics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in a parsimonious manner. To this end, we formulate optimization problems to identify the dynamics and directionality of input excitation in order to explain and complete available covariance data. For problem sizes that general-purpose solvers cannot handle, we develop customized optimization algorithms based on alternating direction methods. The solution to the optimization problem provides information about critical directions that have maximal effect in bringing model and statistics in agreement. In Part II, we employ our modeling framework to account for statistical signatures of turbulent channel flow using low-complexity stochastic dynamical models. We demonstrate that white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes equations. We also examine the efficacy of stochastically forced linearized NS equations and their parabolized equivalents in the receptivity analysis of velocity fluctuations to external sources of excitation as well as capturing the effect of the slowly-varying base flow on streamwise streaks and Tollmien-Schlichting waves. In Part III, we develop a model-based approach to design surface actuation of turbulent channel flow in the form of streamwise traveling waves. This approach is capable of identifying the drag reducing trends of traveling waves in a simulation-free manner. We also use the stochastically forced linearized NS equations to examine the Reynolds number independent effects of spanwise wall oscillations on drag reduction in turbulent channel flows. This allows us to extend the predictive capability of our simulation-free approach to high Reynolds numbers.

  2. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  4. Turboprop engine and method of operating the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klees, G.W.; Johnson, P.E.

    1986-02-11

    This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less

  5. A database on post-fire erosion rates and debris flows in Mediterranean-Basin watersheds

    NASA Astrophysics Data System (ADS)

    Parise, M.; Cannon, S. H.

    2009-04-01

    Wildfires can affect many Mediterranean countries on a yearly bases, producing damage and economic losses, both as direct effect of the fires and as consequent events, including erosion and sedimentation in the recently burned areas. Even though most of the wildfires occur in Spain, Portugal, southern France, Italy and Greece, it can be stated that no one of the Mediterranean countries is completely immune by such hazards. In addition to destruction of the vegetation, and in addition to direct losses to the built-up environment, further effects may also be registered as a consequence of the fire, even weeks or months after its occurrence. Wildfire can have, in fact, profound effects on the hydrologic response of watersheds, and debris-flow activity is among the most destructive consequences of these effects, often causing extensive damage to human infrastructure. Wildfires are today continuously monitored by several European institutions, and forecasting of the conditions (weather, temperature, wind, etc.) more likely conducive to their occurrence is often available in real time. On the other hand, not much is known about the processes that occur as a consequence of the fire, including erosion and debris flows. These are often underestimated, and become object of study only after some catastrophic event has occurred. This is in strong contrast with all the established techniques of risk mitigation; as a result, no prevention action is generally considered, and the society relies only on the emergency phase following a disaster. Aimed at contributing to gather information about the occurrence of erosional and debris-flow activity in recently burned Mediterranean areas, and at making available these information to land planners and scientists, a specific database has been compiled and presented in this contribution. To date, scientific literature on the topic in Europe has never been catalogued, and was dispersed in a number of different journals and in conference proceedings. The database derives from critical analysis of the existing literature, integrated by case studies directly studied by the authors. Studies on recently burned areas in the Mediterranean basin are most frequently carried out on small experimental plots, often with simulated rainfall A problem of scale therefore exists when trying to extrapolate the erosion rates (also reported as sediment yields or as sediment losses) from these studies to a watershed scale. Very few articles, on the other hand, were found that document the watershed-scale response of basins to rainfall-induced erosion and debris flows following wildfires. The few reported cases of debris flows in the Mediterranean Basin describe erosion of sediment from the hillslopes and the channels (sometimes down to bedrock), and, for a limited number of sites, failure of discrete landslides. This information indicates that debris-flow generation from recently burned areas in the Mediterranean basin appears to occur primarily through sediment bulking processes. Nevertheless, the database so far compiled shows a distribution of post-fire erosion and debris flows in the western Mediterranean basin (Spain, essentially, but also Portugal), followed by the eastern Mediterranean area (Israel), and then by France, Italy and Greece. Even though still in a preliminary version, that needs to be integrated and updated from further sources, our data compilation allows for the unique opportunity to examine issues related to the generation of post-wildfire debris flows across a variety of environments and under a variety of conditions, and to move from a qualitative conception of the controls on post-fire debris-flow generation to the definition of specific conditions that result in their occurrence. Future activities of the project will include: i) updating and integration of the preliminary version of the database; ii) development of models that can be used to identify the probability of debris-flow occurrence and the magnitude of the event for pre- and post-fire hazard assessment in Mediterranean climates; iii) definition of rainfall thresholds for post-fire debris-flow events in Mediterranean climates, as a tool to provide guidance for preliminary warning systems.

  6. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  7. Ultrasonic flow metering system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  8. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  9. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2014-01-01

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032

  10. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  11. Simulations to verify horizontal flow measurements from a borehole flowmeter.

    PubMed

    James, Scott C; Jepsen, Richard A; Beauheim, Richard L; Pedler, William H; Mandell, Wayne A

    2006-01-01

    This paper reports on experiments and simulations of subsurface flow from a slotted acrylic tube deployed in a sand-tank flow chamber for two different purposes. In the first instance, the slotted tube is used to represent a single fracture intersected by an uncased well. In the second instance, the slotted tube is used to represent a multislot well screen within a porous medium. In both cases, the scanning colloidal borescope flowmeter (SCBFM) measures ground water velocity within the well by imaging colloids traveling through a well to measure their speed and direction. Measurements are compared against model simulations. For the case of a slotted tube representing a single fracture, SCBFM and model results agree with respect to the flow direction and to within a factor of 1.5 for the speed near the well's center. Model and experimental agreement lend confidence that for an uncased well drilled in a fractured-rock medium, a calibrated SCBFM could be used to identify and quantify flowing features. Next, the SCBFM was deployed in a four-column multislotted casing with slots aligned with the flow direction. Another numerical model was developed to estimate the flow field within this well screen to evaluate the potential usefulness of employing the SCBFM in a screened well to estimate flow speed and direction in the surrounding porous medium. Results indicate that if the slots are not aligned with the flow, the SCBFM may only provide order-of-magnitude speed measurements and direction measurements with an uncertainty of approximately +/-25 degrees .

  12. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    USGS Publications Warehouse

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped into these guilds and related to hydrologic attributes of a specific class of river using probabilistic response curves. 5. Probabilistic models based on riparian response guilds enable prediction of the likelihood of change in each of the response guilds given projected changes in flow, and facilitate examination of trade-offs and risks associated with various flow management strategies. Riparian response guilds can be decomposed to the species level for individual projects or used to develop flow management guidelines for regional water management plans. ?? 2009 Published.

  13. Circulation on the Inner-Shelf of Long Bay, South Carolina: Vertical Current Variability and Evidence for Cross-Shelf Variation in Near-Bed Currents

    NASA Astrophysics Data System (ADS)

    Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.

    2004-12-01

    Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.

  14. Time-lapse Mise-á-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer

    NASA Astrophysics Data System (ADS)

    Perri, Maria Teresa; De Vita, Pantaleone; Masciale, Rita; Portoghese, Ivan; Chirico, Giovanni Battista; Cassiani, Giorgio

    2018-06-01

    The main goal of this study is to evaluate the reliability of the Mise-á-la-Masse (MALM) technique associated with saline tracer tests for the characterization of groundwater flow direction and velocity. The experimental site is located in the upper part of the Alento River alluvial plain (Campania Region, Southern Italy). In this paper we present the hydrogeological setting, the experimental setup and the relevant field results. Subsequently, we compare those data against the simulated results obtained with a 3D resistivity model of the test area, coupled with a model describing the Advection - Dispersion equation for continuous tracer injection. In particular, we calculate a series of 3D forward solutions starting from a reference model, all derived from electrical tomography results, but taking into consideration different values of mean flow velocity and directions. Each electrical resistivity 3D model is used to produce synthetic voltage maps for MALM surveys. Finally, the synthetic MALM voltage maps are compared with the ones measured in the field in order to assess the information content of the MALM dataset with respect to the groundwater field characteristics. The results demonstrate that the information content of the MALM data is sufficient to define important characteristics of the aquifer geometry and properties. This work shows how a combination of three-dimensional time-lapse modeling of flow, tracer transport and electrical current can substantially contribute towards a quantitative interpretation of MALM measurements during a saline tracer test. This approach can thus revive the use of MALM as a practical, low cost field technique for tracer test monitoring and aquifer hydrodynamic characterization.

  15. Extracting Prior Distributions from a Large Dataset of In-Situ Measurements to Support SWOT-based Estimation of River Discharge

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Gleason, C. J.

    2017-12-01

    The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.

  16. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  17. Study of collective flows of protons and π^{{-}}_{} -mesons in p+C, Ta and He+Li, C collisions at momenta of 4.2, 4.5 and 10 AGeV/c

    NASA Astrophysics Data System (ADS)

    Chkhaidze, L.; Chlachidze, G.; Djobava, T.; Galoyan, A.; Kharkhelauri, L.; Togoo, R.; Uzhinsky, V.

    2016-11-01

    Collective flows of protons and π- -mesons are studied at the momenta of 4.2, 4.5 and 10AGeV/ c for p+C, Ta and He+Li, C interactions. The data were obtained from the streamer chamber (SKM-200-GIBS) and from the Propane Bubble Chamber (PBC-500) systems utilized at JINR. A method of Danielewicz and Odyniec has been employed in determining a directed transverse flow of particles. The values of the transverse flow parameter and the strength of the anisotropic emission were defined for each interacting nuclear pair. It is found that the directed flows of protons and pions decrease with increasing the energy and the mass numbers of colliding nucleus pairs. The π^{{-}}_{} -meson and proton flows exhibit opposite directions in all studied interactions, and the flows of protons are directed in the reaction plane. The Ultra-relativistic Quantum Molecular Dynamical Model (UrQMD) coupled with the Statistical Multi-fragmentation Model (SMM), satisfactorily describes the obtained experimental results.

  18. Collective network routing

    DOEpatents

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  19. Global case management: Scotland. Real-time monitoring of patient flow as an instrument to optimize quality of care in acute receiving units.

    PubMed

    Thuemmler, Christoph; Morris, Carole

    2005-01-01

    Recent audits within our hospital suggest that especially during peak phases the patient flow from our acute admission units downstream into hospital beds is not directed in the most efficient way and patients may be placed inappropriately. This inevitably causes time delays and potentially increases the risk of malpractice as patients have to spend an extended period of time in admission areas with a high workload and very busy staff. Using latest information technology, such as wireless local area networks and handheld devices, can improve the efficiency of patient management and can increase the quality of care by helping to avoid unnecessary treatment delays in overcrowded admission areas.

  20. Software design specification. Part 2: Orbital Flight Test (OFT) detailed design specification. Volume 3: Applications. Book 2: System management

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The functions performed by the systems management (SM) application software are described along with the design employed to accomplish these functions. The operational sequences (OPS) control segments and the cyclic processes they control are defined. The SM specialist function control (SPEC) segments and the display controlled 'on-demand' processes that are invoked by either an OPS or SPEC control segment as a direct result of an item entry to a display are included. Each processing element in the SM application is described including an input/output table and a structured control flow diagram. The flow through the module and other information pertinent to that process and its interfaces to other processes are included.

  1. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  2. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  3. Changes and Challenges in the Flow of International Human Capital: China's Experience

    ERIC Educational Resources Information Center

    Pan, Su-Yan

    2010-01-01

    This article tracks the changes in the directions of the international flow of Chinese human capital between the 1870s and 2000s. Although many studies on international academic flow adopt the pull-and-push approach, this article argues that the direction of human capital flow is not determined solely by an individual's choice when faced with a…

  4. Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE

    DOE PAGES

    Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...

    2017-01-27

    Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less

  5. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  6. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    PubMed

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  7. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  8. Gravity receptors and responses

    NASA Technical Reports Server (NTRS)

    Brown, Allan H.

    1989-01-01

    The overall process of gravity sensing and response processes in plants may be divided conveniently into at least four components or stages: Stimulus susception (a physical event, characteristically the input to the G receptor system of environmental information about the G force magnitude, its vector direction, or both); information perception (an influence of susception on some biological structure or process that can be described as the transformation of environmental information into a biologicallly meaningful change); information transport (the export, if required, of an influence (often chemical) to cells and organs other than those at the sensor location); and biological response (almost always (in plants) a growth change of some kind). Some analysts of the process identify, between information perception and information transport, an additional stage, transduction, which would emphasize the importance of a transformation from one form of information to another, for example from mechanical statolith displacement to an electric, chemical, or other alteration that was its indirect result. These four (or five) stages are temporally sequential. Even if all that occurs at each stage can not be confidently identified, it seems evident that during transduction and transport, matters dealt with are found relatively late in the information flow rather than at the perception stage. As more and more is learned about the roles played by plant hormones which condition the G responses, the mechanism(s) of perception which should be are not necessarily better understood. However, if by asking the right questions and being lucky with experiments perhaps the discovery of how some process (such as sedimentation of protoplasmic organelles) dictates what happens down stream in the information flow sequence may be made.

  9. Electroosmotic Flow Reversal Outside Glass Nanopores

    PubMed Central

    2015-01-01

    We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior. PMID:25490120

  10. Intracellular fluid flow in rapidly moving cells

    PubMed Central

    Keren, Kinneret; Yam, Patricia T.; Kinkhabwala, Anika; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    Cytosolic fluid dynamics have been implicated in cell motility1–5 because of the hydrodynamic forces they induce and because of their influence on transport of components of the actin machinery to the leading edge. To investigate the existence and the direction of fluid flow in rapidly moving cells, we introduced inert quantum dots into the lamellipodia of fish epithelial keratocytes and analysed their distribution and motion. Our results indicate that fluid flow is directed from the cell body towards the leading edge in the cell frame of reference, at about 40% of cell speed. We propose that this forward-directed flow is driven by increased hydrostatic pressure generated at the rear of the cell by myosin contraction, and show that inhibition of myosin II activity by blebbistatin reverses the direction of fluid flow and leads to a decrease in keratocyte speed. We present a physical model for fluid pressure and flow in moving cells that quantitatively accounts for our experimental data. PMID:19767741

  11. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  12. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  13. Synthetic Seismograms Derived from Oceanographic Data in the Campeche Canyon, Deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez-Orduno, A.; Fucugauchi, J. U.; Monreal, M.; Perez-Cruz, G.; Salas de León, D. A.

    2013-05-01

    The seismic reflection method has been successfully applied worldwide to investigate subsurface conditions to support important business decisions in the oil industry. When applied in the marine environment, useful reflection information is limited to events on and below the sea floor; Information from the water column, if any, is disregarded. Seismic oceanography is emerging as a new technique that utilize the reflection information within the water column to infer thermal-density contrasts associated with oceanographic processes, such as cyclonic-anticyclonic eddies, ascending-descending water flows, and water flows related to rapid topographic changes on the sea floor. A seismic investigation to infer such oceanographic changes in one sector of the Campeche Canyon is in progress as a research matter at the Instituto de Ciencias del Mar y Limnologia from the University of Mexico (UNAM). First steps of the investigation consisted of creating synthetic seismograms based on oceanographic information (temperature and density) derived from direct observation on a series of close spaced depth points along vertical profiles. Details of the selected algorithms used for the transformation of the oceanographic data to acoustic impedances data sets and further construction of synthetic seismograms on each site and their representation as synthetic seismic sections, are presented in this work, as well as the road ahead in the investigation.

  14. Exploring the Complex Pattern of Information Spreading in Online Blog Communities

    PubMed Central

    Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A.

    2015-01-01

    Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors. PMID:25985081

  15. Exploring the complex pattern of information spreading in online blog communities.

    PubMed

    Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A

    2015-01-01

    Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors.

  16. An evaluation of borehole flowmeters used to measure horizontal ground-water flow in limestones of Indiana, Kentucky, and Tennessee, 1999

    USGS Publications Warehouse

    Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.

    2001-01-01

    Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.

  17. Cilia driven flow networks in the brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  18. Study of vortex generator influence on the flow in the wake of high-lift system wing

    NASA Astrophysics Data System (ADS)

    Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.

    2016-10-01

    Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were performed on the VG effects on the flow in the intensive separation zone on flaps. A number of VG types is considered that differ by configuration, size, location in relation to the area of flow separation on the flap, as well as the orientation relative to the incoming flow. The major part of standard of VG positions is investigated. The VG influence on head velocity loss and the characteristics of the amplitude-frequency spectra of pressure fluctuations in the wake of the wing are obtained, as well as the flow spectra are obtained by means of fluorescent mini-tufts.

  19. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  20. Study of the Interrelationships between Minimum Flow Release Policies and Hydroelectric Power Development in New England.

    DTIC Science & Technology

    1981-06-01

    available information from Public Utilities comaissions responsible for establishing PURPA rates in each state. 1.4 PRINCIPAL FINDINGS The direct effect all... PURPA rates. However, many of those categorized as private and public developers are private and public utilities. This reflects the interest in hydro...The Public Utility Regulatory Policies Act ( PURPA ) of 1978 empowered FERC to prescribe rules requiring utilities to purchase power from and sell power

  1. State and Local Intelligence Fusion Centers: An Evaluative Approach in Modeling a State Fusion Center

    DTIC Science & Technology

    2005-09-01

    appropriate use and dissemination. When information begins to flow in both directions, national and local entities can benefit from the developing...Linc Radios • Cell Phones • Laptops 88 4. The various systems, both traditional and “high-tech,” used by GISAC to disseminate terrorism...1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: State

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less

  4. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  5. Direct observation of cerebrospinal fluid bulk flow in the brain

    NASA Astrophysics Data System (ADS)

    Mestre, Humberto; Tithof, Jeffrey; Thomas, John; Kelley, Douglas; Nedergaard, Maiken

    2017-11-01

    Cerebrospinal fluid (CSF) serves a vital role in normal brain function. Its adequate flow and exchange with interstitial fluid through perivascular spaces (PVS) has been shown to be important in the clearance of toxic metabolites like amyloid- β, and its disturbance can cause severe neurological diseases. It has long been suspected that bulk flow may transport CSF, but limitations in imaging techniques have prevented direct observation of such flows in the PVS. In this talk, we describe a novel approach using high speed two photon laser scanning microscopy which has allowed for the first ever direct observation of CSF flow in the PVS of a mouse brain. By performing particle tracking velocimetry, we quantify the CSF bulk flow speeds and PVS geometry. This technique enables future studies of CSF flow disturbances on a new scale and will pave the way for evaluating the role of these fluxes in neurodegenerative disease. R01NS100366 (to M.N.).

  6. Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, S.; Gibson, J.

    1995-02-01

    In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwatermore » flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.« less

  7. Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery.

    PubMed

    Hojo, Masato; Arakawa, Yoshiki; Funaki, Takeshi; Yoshida, Kazumichi; Kikuchi, Takayuki; Takagi, Yasushi; Araki, Yoshio; Ishii, Akira; Kunieda, Takeharu; Takahashi, Jun C; Miyamoto, Susumu

    2014-01-01

    Hemangioblastomas remain a surgical challenge because of their arteriovenous malformation-like character. Recently, indocyanine green (ICG) videoangiography has been applied to neurosurgical vascular surgery. The aim of this study was to evaluate the usefulness of tumor blood flow imaging by intraoperative ICG videoangiography in surgery for hemangioblastomas. Twenty intraoperative ICG videoangiography procedures were performed in 12 patients with hemangioblastomas. Seven lesions were located in the cerebellum, two lesions were in the medulla oblongata, and three lesions were in the spinal cord. Ten procedures were performed before or during dissection, and 10 procedures were performed after tumor resection. ICG videoangiography could provide dynamic images of blood flow in the tumor and its related vessels under surgical view. Interpretation of these dynamic images of tumor blood flow was useful for discrimination of transit feeders (feeders en passage) and also for estimation of unexposed feeders covered with brain parenchyma. Postresection ICG videoangiography could confirm complete tumor resection and normalized blood flow in surrounding vessels. In surgery for hemangioblastomas, careful interpretation of dynamic ICG images can provide useful information on transit feeders and unexposed hidden vessels that cannot be directly visualized by ICG. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. 77 FR 13162 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... (``PFOF'') program that helps its Specialists \\5\\ and Directed Registered Options Traders [[Page 13163... flow provider directing some or all of its order flow to that Specialist or Directed ROT. This program is funded through fees paid by Registered Options Traders (``ROTs''), Specialists and Directed ROTs...

  9. Information system support as a critical success factor for chronic disease management: Necessary but not sufficient.

    PubMed

    Green, Carolyn J; Fortin, Patricia; Maclure, Malcolm; Macgregor, Art; Robinson, Sylvia

    2006-12-01

    Improvement of chronic disease management in primary care entails monitoring indicators of quality over time and across patients and practices. Informatics tools are needed, yet implementing them remains challenging. To identify critical success factors enabling the translation of clinical and operational knowledge about effective and efficient chronic care management into primary care practice. A prospective case study of positive deviants using key informant interviews, process observation, and document review. A chronic disease management (CDM) collaborative of primary care physicians with documented improvement in adherence to clinical practice guidelines using a web-based patient registry system with CDM guideline-based flow sheet. Thirty community-based physician participants using predominantly paper records, plus a project management team including the physician lead, project manager, evaluator and support team. A critical success factor (CSF) analysis of necessary and sufficient pathways to the translation of knowledge into clinical practice. A web-based CDM 'toolkit' was found to be a direct CSF that allowed this group of physicians to improve their practice by tracking patient care processes using evidence-based clinical practice guideline-based flow sheets. Moreover, the information and communication technology 'factor' was sufficient for success only as part of a set of seven direct CSF components including: health delivery system enhancements, organizational partnerships, funding mechanisms, project management, practice models, and formal knowledge translation practices. Indirect factors that orchestrated success through the direct factor components were also identified. A central insight of this analysis is that a comprehensive quality improvement model was the CSF that drew this set of factors into a functional framework for successful knowledge translation. In complex primary care settings environment where physicians have low adoption rates of electronic tools to support the care of patients with chronic conditions, successful implementation may require a set of interrelated system and technology factors.

  10. Hodge Decomposition of Information Flow on Small-World Networks.

    PubMed

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  11. Ways to study mid-crustal properties and behaviour - the great flow debate continues

    NASA Astrophysics Data System (ADS)

    Torvela, Taija

    2015-04-01

    The properties and behaviour of middle and lower crust during and at the late stages of an orogen remain largely elusive. Especially the theory so-called mid-crustal flow has been a centre of hot debates since its inception. Mid-crustal flow, resulting from proposed drastic weakening of thickened, partially molten middle and lower orogenic crust, is suggested to be the reason for the formation of e.g. the high-grade mid-crustal channel in the frontal Himalayas, and for the present eastward movement of the Tibetan upper crust. However, there are very few ways to observe the potential mid-crustal flow, directly or indirectly. One can use exposed analogues in old, eroded orogenic roots, or study currently exposed rocks in Himalayas or Tibet and attempt deducing the large-scale processes at depth from them. Another option is to use geophysical methods, such as seismic reflection/refraction data or seismic tomography. The biggest problem is, that a huge gap in terms of data and observation scale exists between these two approaches make observations - field data is usually collected at the scale of an outcrop, but can be extrapolated in a well exposed area for kilometres; however, the data lacks significant depth component, i.e. lacks 3D information, and, furthermore, the observed geometries in e.g. dome complexes are not unique in terms of their genesis, so that multiple genetic interpretations of a single geometry are often possible. Geophysical data on the other hand gives 3D information, but all detail is lost as geophysical data from the crust is usually at a scale of at least hundreds of meters or more. In this presentation, I will discuss these and other problems related to the verification vs. falsification of mid-crustal flow theory. I will also present a potential way to improve seismic reflection data, using seismic attributes, to gain more detailed information about the crustal structures and fabrics at depth, which may help in the study of Himalayas, Tibet, and other areas where more detailed information about the crustal structure would be beneficial.

  12. The Role of Advanced Information System Technology in Remote Sensing for NASA's Earth Science Enterprise in the 21st Century

    NASA Technical Reports Server (NTRS)

    Prescott, Glenn; Komar, George (Technical Monitor)

    2001-01-01

    Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.

  13. Learning to classify wakes from local sensory information

    NASA Astrophysics Data System (ADS)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  14. Developing a WebGIS for Geo-Visualization of Cancer.

    PubMed

    Khoshabi, Mostafa; Taleai, Mohammad; Motlagh, Ali; Hosseini Kamal, Farnaz

    2016-04-01

    Considering the hygiene facilities and sharing the data of diseases, considerable attempts to promote the public awareness have been made by various media; however, most of the provided information is based on numerical and verbal statistics, and may not provide suitable understanding for people in regard with the situation of diseases. The main aim of this study is to design an interactive WebGIS system in which people could simply produce and observe their favorite maps of different cancers and environmental parameters. They can use this tools to produce their personalized maps and explore various aspects of the cancer. A system has been developed by using WebGIS for convenience of ordinary users without any knowledge about geospatial information system (GIS) to observe the situation of the diseases and environmental conditions in terms of static and user-produced interactive maps. It has also provided the possibility of spatial comparison of the arbitrary parameters in the framework of bar and pie diagrams. This system has been designed and launched on cancer database of Iran where information of meteorological stations has been embedded as environmental parameters. The innovative idea in this study has received less attention in previous works including possibility of producing web-based Choropleth map so that users could easily select the parameters and algorithms for classification and interactive coloring in the system to produce their personalized maps. Development of WebGIS tools and increased cooperation of people in terms of inserting the spatial labels on the map to report a disease or using their views about reasons of occurring a specific cancer in a specific region may cause turning the process of mono-direction flow of information to users to a bi-directional flow of information. As a result, cancer specialists could use the knowledge of local people and residents of different regions of the country to better analyze the situation of various kinds of cancers.

  15. A hydrogeologic approach to identify land uses that overlie ground-water flow paths, Broward County, Florida

    USGS Publications Warehouse

    Sonenshein, R.S.

    1995-01-01

    A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.

  16. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  17. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  18. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2014-01-01

    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  19. Using Flow Characteristics in Three-Dimensional Power Doppler Ultrasound Imaging to Predict Complete Responses in Patients Undergoing Neoadjuvant Chemotherapy.

    PubMed

    Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren

    2017-05-01

    Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.

  20. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

Top