Sample records for directed secondary substrate

  1. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  2. Substrate With Low Secondary Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    2000-01-01

    The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  3. Method and Apparatus for Producing a Substrate with Low Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    1998-01-01

    The present invention is directed to a method and apparatus for producing a highly-textured surface on a copper substrate with only extremely small amounts of texture-inducing seeding of masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  4. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C60

    NASA Astrophysics Data System (ADS)

    Golunski, M.; Verkhoturov, S. V.; Verkhoturov, D. S.; Schweikert, E. A.; Postawa, Z.

    2017-02-01

    Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C60 projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  5. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    PubMed Central

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  6. Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Baker, S L; Robinson, J C

    2006-02-22

    The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less

  7. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    PubMed

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  8. Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1985-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

  9. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  10. Structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal substrates

    NASA Astrophysics Data System (ADS)

    Shi, Jack J.; Wu, Judy Z.

    2012-12-01

    A theoretical study of a structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal SrTiO3 substrates is presented. Two possible types of film/substrate interface are considered, with one assuming complete coherence, while the other is defective as manifested by the presence of antiphase grain boundaries. Only in the former case does the increase of the vicinal angle of the substrate lead to a substantial change of the strain field in the film, resulting in a transition of the nanorod orientation from the normal to the in-plane direction of the film. The calculated threshold vicinal angle for the onset of the transition and lattice deformation of the YBa2Cu3O7-δ film due to the inclusion of the nanorods is in very good agreement with experimental observations. This result sheds lights on the understanding of the role of the film/substrate lattice mismatch in controlling self-assembly of dopant nanostructures in matrix films.

  11. Innovative FT-IR imaging of protein film secondary structure before and after heat treatment.

    PubMed

    Bonwell, Emily S; Wetzel, David L

    2009-11-11

    Changes in the secondary structure of globular protein occur during thermal processing. An infrared reflecting mirrored optical substrate that is unaffected by heat allows recording infrared spectra of protein films in a reflection absorption mode on the stage of an FT-IR microspectrometer. Hydrated films of myoglobin protein cast from solution on the mirrored substrate are interrogated before and after thermal denaturation to allow a direct comparison. Focal plane array imaging of 280 protein films allowed selection of the same area in the image from which to extract spectra. After treatment, 110 of 140 spectra from multiple films showed a dramatic shift from the alpha-helix form (1650 +/- 5 cm(-1)) to aggregated forms on either side of the original band. Seventy maxima were near 1625 cm(-1), and 40 shifted in the direction of 1670 cm(-1). The method developed was applied to films cast from two other commercial animal and plant protein sources.

  12. Vitreous carbon mask substrate for X-ray lithography

    DOEpatents

    Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  13. Motors and Their Tethers: The Role of Secondary Binding Sites in Processive Motility

    PubMed Central

    Kincaid, Margaret M.; King, Stephen J.

    2007-01-01

    Cytoskeletal motors convert the energy from binding and hydrolyzing ATP into conformational changes that direct movement along a cytoskeletal polymer substrate. These enzymes utilize different mechanisms to generate long-range motion on the order of a micron or more that is required for functions ranging from muscle contraction to transport of growth factors along a nerve axon. Several of the individual cytoskeletal motors are processive, meaning that they have the ability to take sequential steps along their polymer substrate without dissociating from the polymer. This ability to maintain contact with the polymer allows individual motors to move cargos quickly from one cellular location to another. Many of the processive motors have now been found to utilize secondary binding sites that aid in motor processivity. PMID:17172850

  14. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  15. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  16. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA.

    PubMed Central

    Harris, M E; Pace, N R

    1995-01-01

    The RNA subunit of ribonuclease P (RNase P RNA) is a catalytic RNA that cleaves precursor tRNAs to generate mature tRNA 5' ends. Little is known concerning the identity and arrangement of functional groups that constitute the active site of this ribozyme. We have used an RNase P RNA-substrate conjugate that undergoes rapid, accurate, and efficient self-cleavage in vitro to probe, by phosphorothioate modification-interference, functional groups required for catalysis. We identify four phosphate oxygens where substitution by sulfur significantly reduces the catalytic rate (50-200-fold). Interference at one site was partially rescued in the presence of manganese, suggesting a direct involvement in binding divalent metal ion cofactors required for catalysis. All sites are located in conserved sequence and secondary structure, and positioned adjacent to the substrate phosphate in a tertiary structure model of the ribozyme-substrate complex. The spatial arrangement of phosphorothioate-sensitive sites in RNase P RNA was found to resemble the distribution of analogous positions in the secondary and potential tertiary structures of other large catalytic RNAs. PMID:7585250

  17. Salt bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT

    PubMed Central

    Law, Christopher J.; Almqvist, Jonas; Bernstein, Adam; Goetz, Regina M.; Huang, Yafei; Soudant, Celine; Laaksonen, Aatto; Hovmöller, Sven; Wang, Da-Neng

    2008-01-01

    Summary Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate/phosphate antiporters. PMID:18395745

  18. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    PubMed

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  19. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  20. Comparison of secondary ion intensity enhancement from polymers on silicon and silver substrates by using Au-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.

    2008-12-01

    The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.

  1. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?

    PubMed

    Müller, Werner E G; Wang, Xiaohong; Proksch, Peter; Perry, Carole C; Osinga, Ronald; Gardères, Johan; Schröder, Heinz C

    2013-08-01

    The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future.

  2. Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.

    PubMed

    Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M

    2016-11-01

    Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.

  3. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction

    PubMed Central

    2018-01-01

    The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO2, and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO2, but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO2 substrate. PMID:29632886

  4. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction.

    PubMed

    Chapovetsky, Alon; Welborn, Matthew; Luna, John M; Haiges, Ralf; Miller, Thomas F; Marinescu, Smaranda C

    2018-03-28

    The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO 2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO 2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO 2 , and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO 2 , but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO 2 substrate.

  5. Cathodes for secondary electrochemical power-producing cells. [layers of porous substrates impregnated with S alternate with layers containing electrolyte

    DOEpatents

    Cairns, E.J.; Kyle, M.; Shimotake, H.

    1973-02-13

    A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.

  6. Some Surprising Implications of NMR-directed Simulations of Substrate Recognition and Binding by Cytochrome P450cam (CYP101A1).

    PubMed

    Asciutto, Eliana K; Pochapsky, Thomas C

    2018-04-27

    Cytochrome P450 cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1 H- 15 N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  8. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  9. Textured substrate tape and devices thereof

    DOEpatents

    Goyal, Amit

    2006-08-08

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  10. Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2.

    PubMed

    Carland, Jane E; Thomas, Michael; Mostyn, Shannon N; Subramanian, Nandhitha; O'Mara, Megan L; Ryan, Renae M; Vandenberg, Robert J

    2018-03-21

    Transporters in the SLC6 family play key roles in regulating neurotransmission and are the targets for a wide range of therapeutics. Important insights into the transport mechanisms and the specificity of drug interactions of SLC6 transporters have been obtained from the crystal structures of a bacterial homologue of the family, LeuT Aa , and more recently the Drosophila dopamine transporter and the human serotonin transporter. However, there is disputed evidence that the bacterial leucine transporter, LeuT Aa , contains two substrate binding sites that work cooperatively in the mechanism of transport, with the binding of a second substrate being required for the release of the substrate from the primary site. An alternate proposal is that there may be low affinity binding sites that serve to direct the flow of substrates to the primary site. We have used a combination of molecular dynamics simulations of substrate interactions with a homology model of GlyT2, together with radiolabeled amino acid uptake assays and electrophysiological analysis of wild-type and mutant transporters, to provide evidence that substrate selectivity of GlyT2 is determined entirely by the primary substrate binding site and, furthermore, if a secondary site exists then it is a low affinity nonselective amino acid binding site.

  11. On the use of copper-based substrates for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Vannozzi, A.; Fabbri, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Padilla, J. A.; Xuriguera, E.; De Felicis, D.; Bemporad, E.; Celentano, G.

    2014-05-01

    It is well known that the recrystallization texture of heavily cold-rolled pure copper is almost completely cubic. However, one of the main drawbacks concerning the use of pure copper cube-textured substrates for YBCO coated conductor is the reduced secondary recrystallization temperature. The onset of secondary recrystallization (i.e., the occurrence of abnormal grains with unpredictable orientation) in pure copper substrate was observed within the typical temperature range required for buffer layer and YBCO processing (600-850 °C). To avoid the formation of abnormal grains the effect of both grain size adjustment (GSA) and recrystallization annealing was analyzed. The combined use of a small initial grain size and a recrystallization two-step annealing (TSA) drastically reduced the presence of abnormal grains in pure copper tapes. Another way to overcome the limitation imposed by the formation of abnormal grains is to deposit a buffer layer at temperatures where secondary recrystallization does not occur. For example, La2Zr2O7 (LZO) film with a high degree of epitaxy was grown by metal-organic decomposition (MOD) at 1000 °C on pure copper substrate. In several samples the substrate underwent secondary recrystallization. Our experiments indicate that the motion of grain boundaries occurring during secondary recrystallization process does not affect the quality of LZO film.

  12. Structural insights into substrate specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    DOE PAGES

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; ...

    2015-05-20

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C 2’H) from sweet potato. By comparing these twomore » structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.« less

  13. Structural insights into substrate specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C 2’H) from sweet potato. By comparing these twomore » structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.« less

  14. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  15. Secondary ion mass spectrometry study of ex situ annealing of epitaxial GaAs grown on Si substrates

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Mccullough, O.; Cser, J.; Katz, J.

    1988-01-01

    Samples of epitaxial GaAs grown on (100) Si substrates using molecular beam epitaxy were annealed at four different temperatures, from 800 to 950 C. Following annealing, the samples were analyzed using secondary ion mass spectrometry. Depth profiles of Ga, As, and Si reveal optimum conditions for annealing, and place a lower limit on a damage threshold for GaAs/Si substrates.

  16. Influence of substrate type and temperature on the developmental morphology of Pandora neoaphidis (Zygomycetes: entomophthorales), a pathogen of the tobacco aphid (Homoptera: aphididae).

    PubMed

    Dara, S K; Semtner, P J

    1998-09-01

    Developmental morphology of Pandora neoaphidis was observed on the surfaces of the tobacco aphid, Myzus nicotianae, tobacco leaves (Nicotiana tabacum), and glass coverslips at 13 and 20 degrees C for 12 and 24 h postinoculation. Pandora neoaphidis responded similarly on the two living substrates, but differed on the inert coverslips. The proportions of ellipsoid conidia (primary and secondary) were similar on all substrates. Higher proportions of appressoria and lower proportions of round secondary conidia and germinating conidia occurred on the aphids and leaves than on the coverslips. Appressoria predominated over round secondary conidia and germinating conidia on the living substrates at 20 degrees C, but the opposite was seen at 13 degrees C. The proportions of ellipsoid conidia were similar at both temperatures. On coverslips, the proportions of appressoria and round secondary conidia were similar at both temperatures. However, the proportions of germinating and ellipsoid conidia were higher at 13 and 20 degrees C, respectively. Copyright 1998 Academic Press.

  17. Texturing Copper To Reduce Secondary Emission Of Electrons

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A.; Curren, Arthur N.; Roman, Robert F.

    1995-01-01

    Ion-beam process produces clean, deeply textured surfaces on copper substrates with reduced secondary electron emission. In process, molybdenum ring target positioned above and around copper substrate. Target potential repeatedly switched on and off. Switching module described in "High-Voltage MOSFET Switching Circuit" (LEW-15986). Useful for making collector electrodes for traveling-wave-tube and klystron microwave amplifiers, in which secondary emission of electrons undesirable because of reducing efficiency.

  18. Enhanced secondary ion emission with a bismuth cluster ion source

    NASA Astrophysics Data System (ADS)

    Nagy, G.; Walker, A. V.

    2007-04-01

    We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.

  19. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects. PMID:10839820

  20. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  1. Basic Residues R260 and K357 Affect the Conformational Dynamics of the Major Facilitator Superfamily Multidrug Transporter LmrP

    PubMed Central

    Wang, Wei; van Veen, Hendrik W.

    2012-01-01

    Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H+(Na+) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport. PMID:22761697

  2. Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications.

    PubMed

    Grigorescu, S; Hindié, M; Axente, E; Carreiras, F; Anselme, K; Werckmann, J; Mihailescu, I N; Gallet, O

    2013-07-01

    Laser direct write techniques represent a prospective alternative for engineering a new generation of hybrid biomaterials via the creation of patterns consisting of biological proteins onto practically any type of substrate. In this paper we report on the characterization of fibronectin features obtained onto titanium substrates by UV nanosecond laser transfer. Fourier-transform infrared spectroscopy measurements evidenced no modification in the secondary structure of the post-transferred protein. The molecular weight of the transferred protein was identical to the initial fibronectin, no fragment bands being found in the transferred protein's Western blot migration profile. The presence of the cell-binding domain sequence and the mannose groups within the transferred molecules was revealed by anti-fibronectin monoclonal antibody immunolabelling and FITC-Concanavalin-A staining, respectively. The in vitro tests performed with MC3T3-E1 osteoblast-like cells and Swiss-3T3 fibroblasts showed that the cells' morphology and spreading were strongly influenced by the presence of the fibronectin spots.

  3. Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design.

    PubMed

    Cassidy, Jennifer; Bruen, Larah; Rosini, Elena; Molla, Gianluca; Pollegioni, Loredano; Paradisi, Francesca

    2017-01-01

    An alcohol dehydrogenase from the halophilic archaeon Haloferax volcanii (HvADH2) has been engineered by rational design to broaden its substrate scope towards the conversion of a range of aromatic substrates, including flurbiprofenol, that is an intermediate of the non-steroidal anti-inflammatory drug, flurbiprofen. Wild-type HvADH2 showed minimal activity with flurbiprofenol (11.1 mU/mg). A homology model of HvADH2 was built and docking experiments with this substrate revealed that the biphenyl rings of flurbiprofenol formed strong interactions with residues F85 and F108, preventing its optimal binding in the active site. Mutations at position 85 however did not increase activity. Site directed mutagenesis at position F108 allowed the identification of three variants showing a significant (up to 2.3-fold) enhancement of activity towards flurbiprofenol, when compared to wild-type HvADH2. Interestingly, F108G variant did not show the classic inhibition in the presence of (R)-enantiomer when tested with rac-1-phenylethanol, underling its potential in racemic resolution of secondary alcohols.

  4. Oxygen adsorption on a Si(1 0 0) substrate: effects on secondary emission properties

    NASA Astrophysics Data System (ADS)

    Vogan, W. S.; Champion, R. L.

    2001-10-01

    Secondary anion and electron yields resulting from low-energy (50-500 eV) Na + bombardment of an oxygen-adsorbed Si(1 0 0) substrate have been measured as a function of oxygen exposure and of Na + impact energy. Adsorbate coverage ranges from none to over half a monolayer. The dominant sputtered anion was found to be O - with SiO 2- being a minor constituent. Kinetic energy distributions of the secondary anions and electrons were also measured. The presence of an adsorbate was observed to enhance secondary anion emission to a significant degree whereas secondary electron emission was minor, in sharp contrast to what has been observed for metallic substrates. The mechanism for secondary emission appears to involve electronic excitation of Si xO -; it is suggested that electron emission is governed by a process similar to Penning ionization, in which a vacancy created by the excitation of Si xO - may be filled by an electron from the valence band. The variation in the work function as oxygen accumulated on the surface was observed to be small.

  5. Feeding currents of the upside down jellyfish in the presence of background flow.

    PubMed

    Hamlet, Christina L; Miller, Laura A

    2012-11-01

    The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.

  6. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    PubMed

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.

  7. Common folds and transport mechanisms of secondary active transporters.

    PubMed

    Shi, Yigong

    2013-01-01

    Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.

  8. Drop impact on flowing liquid films: asymmetric splashing

    NASA Astrophysics Data System (ADS)

    Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar

    2015-11-01

    The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. The structural basis of secondary active transport mechanisms.

    PubMed

    Forrest, Lucy R; Krämer, Reinhard; Ziegler, Christine

    2011-02-01

    Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. An investigation of enhanced secondary ion emission under Au(n)+ (n = 1-7) bombardment.

    PubMed

    Nagy, G; Gelb, L D; Walker, A V

    2005-05-01

    We investigate the mechanism of the nonlinear secondary ion yield enhancement using Au(n)+ (n = 1, 2, 3, 5, 7) primary ions bombarding thin films of Irganox 1010, DL-phenylalanine and polystyrene on Si, Al, and Ag substrates. The largest differences in secondary ion yields are found using Au+, Au2+, and Au3+ primary ion beams. A smaller increase in secondary ion yield is observed using Au5+ and Au7+ primary ions. The yield enhancement is found to be larger on Si than on Al, while the ion yield is smaller using an Au+ beam on Si than on Al. Using Au(n)+ ion structures obtained from Density Functional Theory, we demonstrate that the secondary yield enhancement is not simply due to an increase in energy per area deposited into the surface (energy deposition density). Instead, based on simple mechanical arguments and molecular dynamics results from Medvedeva et al, we suggest a mechanism for nonlinear secondary ion yield enhancement wherein the action of multiple concerted Au impacts leads to efficient energy transfer to substrate atoms in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two, or three Au atoms, which explains well the large nonlinear yield enhancements observed going from Au+ to Au2+ to Au3+ primary ions. This model is also able to explain the observed substrate effect. For an Au+ ion passing through the more open Si surface, it contacts fewer substrate atoms than in the more dense Al surface. Less energy is deposited in the Si surface region by the Au+ primary ion and the secondary ion yield will be lower for adsorbates on Si than on Al. In the case of Au(n)+ the greater density of Al leads to earlier break-up of the primary ion and a consequent reduction in energy transfer to the near-surface region when compared with Si. This results in higher secondary ion yields and yield enhancements on silicon than aluminum substrates.

  11. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  12. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1

    PubMed Central

    Hearne, Jennifer L.; Colman, Roberta F.

    2005-01-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (KI = 0.36 μM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through α-helix 4 (residues 90–114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along α-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme’s affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites. PMID:16195544

  13. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1.

    PubMed

    Hearne, Jennifer L; Colman, Roberta F

    2005-10-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (K(I) = 0.36 microM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through alpha-helix 4 (residues 90-114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along alpha-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme's affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites.

  14. Creation and Ordering of Oxygen Vacancies at WO 3-δ and Perovskite Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kelvin H. L.; Li, Guoqiang; Spurgeon, Steven R.

    Changes in structure and composition resulting from oxygen deficiency can strongly impact the physical and chemical properties of transition metal oxides, which may lead to new functionalities for novel electronic devices. Oxygen vacancies (V o) can be readily formed to accomodate the lattice mismatch during epitixial thin film growth. In this paper, the effects of substrate strain and oxidizing power on the creation and distribution of V o in WO 3-δ thin films are investigated in detail. An 18O 2 isotope labeled time-of-flight secondary ion mass spectrometry study reveals that WO 3-δ films grown on SrTiO 3 substrates display amore » significantly larger oxygen vacancy gradient along the growth direction compared to those grown on LaAlO 3 substrates. This result is corroborated by scanning transmission electron microscopy imaging which reveals a large number of defects close to the interface to accommodate interfacial tensile strain, leading to the ordering of V o and the formation of semi-aligned Magnéli phases. The strain is gradually released and tetragonal phase with much better crystallinity is observed at the film/vacuum interface. The changes in structure resulting from oxygen defect creation are shown to have a direct impact on the electronic and optical properties of the films.« less

  15. Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

    PubMed

    Lee, Andrew J; Endo, Masayuki; Hobbs, Jamie K; Wälti, Christoph

    2018-01-23

    Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.

  16. Theoretical investigation about secondary deposition of thin-film formation by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Hagiwara, Ichiro; Kiet Tieu, A.; Kishimoto, Kikuo; Liu, Qiang

    2007-05-01

    The thin-film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin-film in short time as gas fluids through surface of substrate. Such growth mechanism has been mainly investigated on the basis of experiment. Due to immense cost of the experimental equipment and low level of current measurement technology, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin-film. In this simulation, three different cluster sizes of 203, 653, and 1563 atoms with different velocities (0, 10, 100, 1000, and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. To increase initial velocity not only enhanced the speed of epitaxial growth, adhesion between clusters and substrate, but also increased the degree of epitaxy for primary deposition and secondary deposition. Exfoliation pattern of thin-film was profoundly dependent on initial velocity through comparison between adhesion of primary and secondary deposition. Moreover, the epitaxial growth became well as the temperature of substrate was raised, and the degree of epitaxy of small cluster was larger than that of larger cluster, no matter of primary and secondary deposition.

  17. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  18. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE PAGES

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh; ...

    2015-02-18

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  19. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds

    NASA Astrophysics Data System (ADS)

    Liao, Kuangbiao; Pickel, Thomas C.; Boyarskikh, Vyacheslav; Bacsa, John; Musaev, Djamaladdin G.; Davies, Huw M. L.

    2017-11-01

    The synthesis of complex organic compounds usually relies on controlling the reactions of the functional groups. In recent years, it has become possible to carry out reactions directly on the C-H bonds, previously considered to be unreactive. One of the major challenges is to control the site-selectivity because most organic compounds have many similar C-H bonds. The most well developed procedures so far rely on the use of substrate control, in which the substrate has one inherently more reactive C-H bond or contains a directing group or the reaction is conducted intramolecularly so that a specific C-H bond is favoured. A more versatile but more challenging approach is to use catalysts to control which site in the substrate is functionalized. p450 enzymes exhibit C-H oxidation site-selectivity, in which the enzyme scaffold causes a specific C-H bond to be functionalized by placing it close to the iron-oxo haem complex. Several studies have aimed to emulate this enzymatic site-selectivity with designed transition-metal catalysts but it is difficult to achieve exceptionally high levels of site-selectivity. Recently, we reported a dirhodium catalyst for the site-selective functionalization of the most accessible non-activated (that is, not next to a functional group) secondary C-H bonds by means of rhodium-carbene-induced C-H insertion. Here we describe another dirhodium catalyst that has a very different reactivity profile. Instead of the secondary C-H bond, the new catalyst is capable of precise site-selectivity at the most accessible tertiary C-H bonds. Using this catalyst, we modify several natural products, including steroids and a vitamin E derivative, indicating the applicability of this method of synthesis to the late-stage functionalization of complex molecules. These studies show it is possible to achieve site-selectivity at different positions within a substrate simply by selecting the appropriate catalyst. We hope that this work will inspire the design of even more sophisticated catalysts, such that catalyst-controlled C-H functionalization becomes a broadly applied strategy for the synthesis of complex molecules.

  20. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    PubMed

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  1. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  2. Catalytic Mechanism of Short Ethoxy Chain Nonylphenol Dehydrogenase Belonging to a Polyethylene Glycol Dehydrogenase Group in the GMC Oxidoreductase Family

    PubMed Central

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-01

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149

  3. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family.

    PubMed

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-10

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.

  4. Soil and substrate morphology as witnesses of present and former agricultural landscape management

    NASA Astrophysics Data System (ADS)

    Chartin, C.; Salvador-Blanes, S.; Hinschberger, F.; Bourennane, H.; Macaire, J.-J.

    2009-04-01

    Water and tillage erosion, combined with the effect of successive regrouping of the land campaigns, have sensibly modified the morphology of cultivated hillslopes. Nowadays, we can still observe over cultivated landscapes various anthropogenic structures (e.g. lynchets) that correspond to former and/or present field limits. The aim of this work is to spatially characterise the geometry of these various structures, and to assess their relation with soil variability. The 10 ha studied site corresponds to an hillslope located in a small calcareous watershed near Tours in the Parisian Basin (France). Soils are mainly Cambisols (calcaric), Epileptic cambisols (calcaric) and Colluvic cambisols. This watershed is characterised by the presence of many soil accumulation structures and has been submitted to an important regrouping of the lands since the 1960's. The existing structures were accurately located and defined through a topographical analysis (slope, profile curvature...), and then related to past and present field limits using aerial photographies and cadastral maps. Two main morphological structures, deeply marked in the topography, are identified. The most remarkable type corresponds to well developed lynchets located at the lower part of field limits. Secondary structures, less marked than lynchets, are linked to field limits which existed at least since 1836, but that disappeared from the 1960's. These secondary structures look like longitudinal bulges placed perpendicularly to the direction of the main slope. A soil survey on these two geomorphic structure types has been performed in order to determine their specific geometry. Lynchets are characterised by a large increase in the thickness of soils: from 35 cm at 24 m upslope to more than 120 cm on its top. But, in some cases, the elevation study shows a topographical discontinuity between the top of the accumulation and the field or road below, discontinuity that is more important than the maximum soil thickness observed in the lynchet. This implies that the substrate, which is mostly homogeneous, has been largely excavated below these limits certainly due to repeated tillage operations. Concerning the secondary structures, soil thickness increases slightly from 35 cm at 16 m up- and downslope the former field limit to 70 cm at the maximum of the bulges convexity. However, the slope morphology seems to show larger soil accumulation considering a regular substrate morphology along the hillslope profile. Here too, by combining soil thickness and surface topography, we show that the substrate has certainly been strongly remodelled at these former field limits by tillage erosion. The spatial variability of the various soils types is closely linked to the sequence of structures oriented perpendicularly to the direction of the main slope. Although the current topography is clearly marked by various structures linked to former and present field limits, it appears that soil thickness is not the only factor explaining these large variations in the slope morphology: long-term agricultural practices, certainly tillage, "shape" the substrate as well. It is thus important to take into account these substrate excavations for sediment budget studies. The use of tracers such as 137Cs will allow to understand the intensity of these morphological changes at the slope scale within the last decades.

  5. Microstructural studies by TEM of diamond films grown by combustion flame

    NASA Astrophysics Data System (ADS)

    Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.

    Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.

  6. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    PubMed

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  7. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  8. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1

    PubMed Central

    Simmons, Katie J; Jackson, Scott M; Brueckner, Florian; Patching, Simon G; Beckstein, Oliver; Ivanova, Ekaterina; Geng, Tian; Weyand, Simone; Drew, David; Lanigan, Joseph; Sharples, David J; Sansom, Mark SP; Iwata, So; Fishwick, Colin WG; Johnson, A Peter; Cameron, Alexander D; Henderson, Peter JF

    2014-01-01

    The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1. PMID:24952894

  9. High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Kim, Hyun-Jung (Inventor); Lee, Kunik (Inventor)

    2017-01-01

    An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.

  10. A new tubular hot-wire CVD for diamond coating

    NASA Astrophysics Data System (ADS)

    Motahari, Hamid; Bellah, Samad Moemen; Malekfar, Rasoul

    2017-06-01

    A new tubular hot-wire chemical vapor deposition (HWCVD) system using a tubular quartz vacuum chamber has been fabricated. The filaments in this system can heat the substrate and act as a gas activator and thermally activator for gas species at the same time. The nano- and microcrystalline diamond coatings on the surface of steel AISI 316 substrates have been grown. To assess the results, SEM and FESEM images and Raman spectroscopy investigations have been applied. The results reveal that micro- and nanocrystalline diamond structures have been formed in the coatings, but the disordered diamond and some non-diamond phases, such as graphitic carbons, are also present in the coating layers. The analytical measurements show the growth of diamond films with well-faceted crystals in (111) direction. However, intrinsic stress, secondary nucleation, and poor adhesion are the main issues of future research for this new designed HWCVD.

  11. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    PubMed

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  12. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    PubMed Central

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  13. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extent and Persistence of Secondary Water Quality Impacts after Enhanced Reductive Bioremediation

    DTIC Science & Technology

    2015-09-01

    7 2.3.5 Substrate Fermentation ...Conceptual Model of SWQI Production and Attenuation During ERB, large amounts of easily fermented organic substrates are added to the target treatment...area to degrade or immobilize the contaminants of concern (CoC). These substrates are fermented to hydrogen (H2), acetate, and other volatile

  15. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysismore » time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.« less

  16. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    PubMed

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metabolomics Reveal Optimal Grain Preprocessing (Milling) toward Rice Koji Fermentation.

    PubMed

    Lee, Sunmin; Lee, Da Eun; Singh, Digar; Lee, Choong Hwan

    2018-03-21

    A time-correlated mass spectrometry (MS)-based metabolic profiling was performed for rice koji made using the substrates with varying degrees of milling (DOM). Overall, 67 primary and secondary metabolites were observed as significantly discriminant among different samples. Notably, a higher abundance of carbohydrate (sugars, sugar alcohols, organic acids, and phenolic acids) and lipid (fatty acids and lysophospholipids) derived metabolites with enhanced hydrolytic enzyme activities were observed for koji made with DOM of 5-7 substrates at 36 h. The antioxidant secondary metabolites (flavonoids and phenolic acid) were relatively higher in koji with DOM of 0 substrates, followed by DOM of 5 > DOM of 7 > DOM of 9 and 11 at 96 h. Hence, we conjecture that the rice substrate preprocessing between DOM of 5 and 7 was potentially optimal toward koji fermentation, with the end product being rich in distinctive organoleptic, nutritional, and functional metabolites. The study rationalizes the substrate preprocessing steps vital for commercial koji making.

  18. Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential.

    PubMed

    Rajagopal, Rajinikanth; Béline, Fabrice

    2011-05-01

    This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique and adenylating enzymes together using a combination of active site-directed probes for the A domains in NRPSs should accelerate both the functional characterization and manipulation of the A domains in NRPSs.

  20. Anode for a secondary, high-temperature electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tani, Benjamin S.

    1976-01-01

    A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

  1. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    PubMed

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  2. Electron beam induced damage in ITO coated Kapton. [Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    Data for the stability of thin conductive indium tin oxide films on 0.003 inch thick Kapton substrates during exposure of the surface to electron beams are reported. The electron beam energy was 3 keV and the diameter was about 0.8 mm. Thermal effects and surface modifications are considered. For primary current greater than 0.6 microamperes, an obvious dark discoloration with diameter approximately that of the beam was produced. The structure of the discolored region was studied with the scanning electron microscope, and the findings are stated. Surface modifications were explored by AES, obtaining spectra and secondary emission coefficient as a function of time for different beam intensities. In all cases beam exposure results in a decrease of the secondary yield but because of thermal effects this change, as well as composition changes, cannot be directly interpreted in terms of electron beam dosage.

  3. Steric modifications tune the regioselectivity of the alkane oxidation catalyzed by non-heme iron complexes.

    PubMed

    He, Yu; Gorden, John D; Goldsmith, Christian R

    2011-12-19

    Iron complexes with the tetradentate N-donor ligand N,N'-di(phenylmethyl)-N,N'-bis(2-pyridinylmethyl)-1,2-cyclohexanediamine (bbpc) are reported. Despite the benzyl groups present on the amines, the iron compounds catalyze the oxygenation of cyclohexane to an extent similar to those employing less sterically encumbered ligands. The catalytic activity is strongly dependent on the counterion, with the highest activity and the strongest preference for alkane hydroxylation correlating to the most weakly coordinating anion, SbF(6)(-). The selectivity for the alcohol product over the ketone is amplified when acetic acid is present as an additive. When hydrocarbon substrates with both secondary and tertiary carbons are oxidized by H(2)O(2), the catalyst directs oxidation toward the secondary carbons to a greater degree than other previously reported iron-containing homogeneous catalysts. © 2011 American Chemical Society

  4. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments.

    PubMed

    LaGraff, John R; Chu-LaGraff, Quynh

    2006-05-09

    Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.

  5. Structural mechanisms of chaperone mediated protein disaggregation

    PubMed Central

    Sousa, Rui

    2014-01-01

    The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism—entropic pulling—may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context. PMID:25988153

  6. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    NASA Astrophysics Data System (ADS)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  7. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  8. Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ziwen; Xue, Zhongying; Zhang, Miao

    Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less

  9. Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices

    DOE PAGES

    Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...

    2017-05-31

    Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less

  10. Characterization of near-stoichiometric Ti:LiNbO(3) strip waveguides with varied substrate refractive index in the guiding layer.

    PubMed

    Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun

    2008-10-01

    We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.

  11. Buffer Layer Doping Concentration Measurement Using VT-VSUB Characteristics of GaN HEMT with p-GaN Substrate Layer

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Nakatani, Katsutoshi; Kawai, Hiroji; Ao, Jin-Ping; Ohno, Yasuo

    To improve the high voltage performance of AlGaN/GaN heterojunction field effect transistors (HFETs), we have fabricated AlGaN/GaN HFETs with p-GaN epi-layer on sapphire substrate with an ohmic contact to the p-GaN (p-sub HFET). Substrate bias dependent threshold voltage variation (VT-VSUB) was used to directly determine the doping concentration profile in the buffer layer. This VT-VSUB method was developed from Si MOSFET. For HFETs, the insulator is formed by epitaxially grown and heterogeneous semiconductor layer while for Si MOSFETs the insulator is amorphous SiO2. Except that HFETs have higher channel mobility due to the epitaxial insulator/semiconductor interface, HFETs and Si MOSFETs are basically the same in the respect of device physics. Based on these considerations, the feasibility of this VT-VSUB method for AlGaN/GaN HFETs was discussed. In the end, the buffer layer doping concentration was measured to be 2 × 1017cm-3, p-type, which is well consistent with the Mg concentration obtained from secondary ion mass spectroscopy (SIMS) measurement.

  12. Secondary ion emission from arachidic acid LB-layers under Ar +, Xe +, Ga + and SF 5+ primary ion bombardment

    NASA Astrophysics Data System (ADS)

    Stapel, D.; Brox, O.; Benninghoven, A.

    1999-02-01

    The influence of primary ion energy, mass and composition on sputtering and secondary ion emission of arachidic acid Langmuir-Blodgett mono- and multilayers, deposited on gold substrates, has been investigated. Ga +, Ar +, 129Xe+ and SF 5+ in the energy range 5-25 keV were used as primary ions. Yields Y, damage cross-sections σ, and ion formation efficiencies E have been determined for selected secondary ions, characterizing the molecular overlayer, the overlayer substrate interface and the substrate. We found a strong influence of layer thickness and of primary ion energy, mass and composition on Y, σ and E. Information depth increases with increasing ion energy and decreasing mass of primary ions, being higher for SF 5+ than for Xe +. Y, σ and E increase with increasing primary ion mass. They are considerably higher for a molecular (SF 5+) than for atomic ions of comparable mass ( 129Xe+). The experimental results supply information on the extension of impact cascades, generated in different substrate materials by different primary ion species and different energies. They demonstrate that in analytical SIMS application information depths can be minimized and yields and ion formation efficiencies can be maximized by the use of molecular primary ions.

  13. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  14. Indium-catalyzed direct chlorination of alcohols using chlorodimethylsilane-benzil as a selective and mild system.

    PubMed

    Yasuda, Makoto; Yamasaki, Satoshi; Onishi, Yoshiyuki; Baba, Akio

    2004-06-16

    The InCl3-catalyzed reaction of alcohols with chlorodimethylsilane (HSiMe2Cl) in the presence of benzil gave the corresponding organic chlorides under mild conditions. Benzil significantly changes the reaction course because the reducing product through dehydroxyhydration was obtained in the absence of benzil. The secondary or tertiary alcohols were effectively chlorinated. The substrates bearing acid-sensitive functional groups were also applied to this system. The highly selective chlorination of the tertiary site was observed in the competitive reaction between tertiary and primary alcohols. The highly coordinated hydrosilane generated from benzil and HSiMe2Cl is an important intermediate.

  15. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors.

    PubMed

    Wijeyekoon, Suren; Carere, Carlo R; West, Mark; Nath, Shresta; Gapes, Daniel

    2018-09-01

    Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Solution structural ensembles of substrate-free cytochrome P450(cam).

    PubMed

    Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C

    2012-04-24

    Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.

  17. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates

    PubMed Central

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  18. Investigating inner-sphere reorganization via secondary kinetic isotope effects in the C-H cleavage reaction catalyzed by soybean lipoxygenase: tunneling in the substrate backbone as well as the transferred hydrogen.

    PubMed

    Meyer, Matthew P; Klinman, Judith P

    2011-01-26

    This work describes the application of NMR to the measurement of secondary deuterium (2° (2)H) and carbon-13 ((13)C) kinetic isotope effects (KIEs) at positions 9-13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using LA labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° (2)H and (13)C KIEs on k(cat)/K(m) directly for 11,11-d2-LA, whereas the values for the 2° (2)H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° (2)H and (13)C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of nonclassical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 1981, 85, 3763] to model the inner-sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° (2)H KIEs.

  19. RICIN-inhibitor design. Final report, 15 April 1993-14 April 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, V.L.

    1996-05-01

    The purpose of this proposal was to provide information which will permit the design of transition state inhibitors for ricin A-chain. The original goals were to solve the transition state structure based on kinetic isotope effects. Substrates were synthesized and the conditions for assays optimized to provide catalytic rates at least 1000 fold greater than those published prior to this work. Reliable assay methods have been established to permit routine assays for ricin A-chain. Substrate analogues for N-ribohydrolase reactions have been designed to establish whether the reaction involves leaving-group activation or oxycarbonium ion formation. Based on these results, leaving groupmore » activation is a major contributor and oxycarbonium-ion formation is a secondary contribution in the mechanism of catalysis by ricin A-chain. Using this information, the first submicromolar inhibitor of ricin A-chain has been synthesized, tested and kinetically characterized. The development of powerful inhibitors will be a direct extrapolation of these results.« less

  20. Fermentation performance of lactic acid bacteria in different lupin substrates-influence and degradation ability of antinutritives and secondary plant metabolites.

    PubMed

    Fritsch, C; Vogel, R F; Toelstede, S

    2015-10-01

    The main objectives were to determine the influence of secondary plant metabolites and antinutritives in lupin seeds on the fermentation performance of lactic acid bacteria and to study their ability to degrade these substances. The suitability of lupin raw materials as fermentation substrates was examined. To evaluate the fermentation performance, microbial growth, metabolite formation and substrate uptake in three different lupin substrates was monitored. On the one hand, a lupin protein isolate, which contained only trace amounts of phytochemicals was used in the study. On the other hand, the flour of Lupinus angustifolius cv. Boregine and the flour of the alkaloid rich lupin Lupinus angustifolius cv. Azuro were inoculated with Bifidobacterium animalis subsp. lactis, Pediococcus pentosaceus, Lactobacillus plantarum and Lactococcus lactis subsp. lactis. The micro-organisms showed no significant differences in the fermentation performance on the different lupin flours. Similarly, the growth of most strains on lupin protein isolate was comparable to that on the lupin flours. The fermentation with Bifidobacterium animalis subsp. lactis led to a significant decrease in flatulence causing oligosaccharides. During fermentation with Lactobacillus plantarum the phytic acid content was partially degraded. Neither the secondary plant metabolites nor the antinutritives of lupin flour inhibited the growth or metabolic activity of the tested micro-organisms. Therefore, lupin flour is suitable for lactic fermentation. Some strains showed the ability to degrade oligosaccharides or phytic acid. This work contributes to the fundamental knowledge of the metabolism of lactic acid bacteria during fermentation of lupin substrates. Fermentation of lupin raw materials could be used to improve the nutritional value of the substrates due to the reduction of antinutritives. © 2015 The Society for Applied Microbiology.

  1. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling

    NASA Astrophysics Data System (ADS)

    Perez, Camilo; Faust, Belinda; Mehdipour, Ahmad Reza; Francesconi, Kevin A.; Forrest, Lucy R.; Ziegler, Christine

    2014-07-01

    The Na+-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.

  2. Bacterial volatiles attract gravid secondary screwworms (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    Bovine blood inoculated and incubated with bacteria was tested to determine if adults of secondary screwworm, Cochliomyia macellaria (F.), would respond to the volatiles produced and oviposit on the incubated substrates. Five species of gram-negative coliform (Enterobacteriaceae) bacteria (Klebsiell...

  3. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  4. Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate.

    PubMed

    Li, Zhenwei; Roccatano, Danilo; Lorenz, Michael; Martinez, Ronny; Schwaneberg, Ulrich

    2014-01-01

    A subtilisin E variant (M4) showing high activity and resistance towards guanidinium chloride (GdmCl) and sodium dodecylsulfate (SDS) was previously identified after three rounds of directed evolution [Li et al., ChemBioChem 2012, 13(5), 691-699.]. In this report, 10 additional positions, identified during directed subtilisin E evolution, were saturated on the previously reported SeSaM1-5 variant (S62/A153/G166/I205). Screening confirmed that chaotolerant variants included amino acid substitutions either in the active site, or the substrate binding pocket. Two variants, M5 (S62I/A153V/G166S/T224A/T240S) and M6 (S62I/A153V/G166S/I205V/N218S/T224A) were finally generated to maximize activity and stability in the presence of GdmCl or SDS. The inactivation concentration (IC50) of M6 using Suc-AAPF-pNA as substrate was significantly increased compared to M4 in the presence of GdmCl (IC50 (M4): 2.7M; IC50 (M6): 4.6M) and SDS (IC50 (M4): 1.5%; IC50 (M6): 4.0%). The half-life in 5M GdmCl was also significantly improved for M6 compared to M4 (t 1/2 (M4): 2min; t 1/2 (M6): 15min). M5 retained resistance towards GdmCl or SDS as in M4. The activity of M5 towards a complex protein substrate (Azocasein) was increased by ∼1.5 fold compared to M4 and M6. Circular dichroism (CD) analysis for subtilisin E wild type (WT) and three variants (M4, M5 and M6) indicated that secondary structures of all variants including wild type at 1-2M GdmCl (except M4) were not significantly perturbed, with unfolding occurring for WT and all three variants above 3M GdmCl. In SDS, the secondary structures of WT and all three variants remained intact at concentrations of 0.5 to 2.0% (w/v) SDS. Results suggest that subtilisin E inactivation occurred most likely due to inhibitory effect, since a general unfolding of the enzyme was not observed through circular dichroism. Such inhibition could be avoided by limiting the access of GdmCl and SDS to the active site and/or to residues involved in substrate binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  6. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  7. Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis

    PubMed Central

    Abe, Kouki; Katsuno, Hiroko; Toriyama, Michinori; Baba, Kentarou; Mori, Tomoyuki; Hakoshima, Toshio; Kanemura, Yonehiro; Watanabe, Rikiya; Inagaki, Naoyuki

    2018-01-01

    Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. PMID:29483251

  8. Positional Accuracy in Optical Trap-Assisted Nanolithography

    NASA Astrophysics Data System (ADS)

    Arnold, Craig B.; McLeod, Euan

    2009-03-01

    The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.

  9. Substrate-Directed Catalytic Selective Chemical Reactions.

    PubMed

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  10. An evaluation of direct PCR amplification

    PubMed Central

    Hall, Daniel E.; Roy, Reena

    2014-01-01

    Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837

  11. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  12. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

    PubMed Central

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-01-01

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less

  14. Chemoselective Amination of Propargylic C(sp3)–H Bonds via Co(II)-Based Metalloradical Catalysis**

    PubMed Central

    Li, Chaoqun; Jiang, Huiling; Lizardi, Christopher L.

    2014-01-01

    Highly chemoselective intramolecular amination of propargylic C(sp3)–H bonds has been demonstrated for N-bishomopropargylic sulfamoyl azides via Co(II)-based metalloradical catalysis. Supported by D2h-symmetric amidoporphyrin ligand 3,5-DitBu-IbuPhyrin, the Co(II)-catalyzed C–H amination process can proceed effectively under neutral and nonoxidative conditions without the need of any additives, generating N2 as the only byproduct. The metalloradical amination is suitable to both secondary and tertiary propargylic C–H substrates with an unusually high degree of functional group tolerance, providing a direct method for high-yielding synthesis of functionalized propargylamine derivatives. PMID:24840605

  15. Betaxanthins as Substrates for Tyrosinase. An Approach to the Role of Tyrosinase in the Biosynthetic Pathway of Betalains1

    PubMed Central

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2005-01-01

    Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme in melanin biosynthesis and in the enzymatic browning of fruits and vegetables. The role of tyrosinase in the secondary metabolism of plants still remains unclear, but its implication in betalain biosynthesis has been proposed. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In this article, the betaxanthins, tyrosine-betaxanthin (portulacaxanthin II) and dopaxanthin, are reported to be physiological substrates for tyrosinase. The direct activity of tyrosinase on selected betaxanthins is characterized in depth, and conversion of tyrosine-betaxanthin to dopaxanthin and its further oxidation to a series of compounds are described. Identity of the reaction products was studied by high-performance liquid chromatography and electrospray ionization-mass spectrometry. Masses determined for the reaction products were the same in all cases, 389 m/z ([M + H]+) and equal to that determined for betanidin. Data indicate that dopaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. Kinetic parameters for tyrosinase acting on dopaxanthin were evaluated, showing a high affinity for this substrate (Km = 84.3 μm). The biosynthetic scheme of betalains is reviewed and a branch is proposed based on the description of physiological substrates for tyrosinase. Lampranthus productus, Glottiphylum oligocarpum, and Glottiphylum pigmaeum are described as sources of stereopure (2S/S)-dopaxanthin. PMID:15805475

  16. Negative Regulation of Anthocynanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, J.Y.; Liu, C.; Felippes, F. F.

    2011-04-01

    Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phasemore » change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.« less

  17. Effect of Substrate Conversion on Performance of Microbial Fuel Cells and Anodic Microbial Communities.

    PubMed

    Zhao, Yang-Guo; Zhang, Yi; She, Zonglian; Shi, Yue; Wang, Min; Gao, Mengchun; Guo, Liang

    2017-09-01

    Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate. Secondary lactate feed enhanced the enrichment of bacterial populations dominating in first lactate feed. Electricity-producing bacteria, Geobacter spp., and beneficial helpers, Anaeromusa spp. and Pseudomonas spp., revived from a low abundance as lactate secondary supply, but microbial communities were hard to achieve former profiles in structure and composition. Hence, microbial community profiles tended to recover when outside environmental condition were restored. Different substrates selected unique functional microbial populations.

  18. Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Hanrahan, B.; Espinal, Y.; Neville, C.; Rudy, R.; Rivas, M.; Smith, A.; Kesim, M. T.; Alpay, S. P.

    2018-03-01

    An understanding of the pyroelectric coefficient and particularly its relationship with the applied electric field is critical to predicting the device performance for infrared imaging, energy harvesting, and solid-state cooling devices. In this work, we compare direct measurements of the pyroelectric effect under pulsed heating to the indirect extraction of the pyroelectric coefficient from adiabatic hysteresis loops and predictions from Landau-Devonshire theory for PbZr0.52Ti0.48O3 (PZT 52/48) on platinized silicon substrates. The differences between these measurements are explained through a series of careful measurements that quantify the magnitude and direction of the secondary and field-induced pyroelectric effects. The indirect measurement is shown to be up to 25% of the direct measurement at high fields, while the direct measurements and theoretical predictions converge at high fields as the film approaches a mono-domain state. These measurements highlight the importance of directly measuring the pyroelectric response in thin films, where non-intrinsic effects can be a significant proportion of the total observed pyroelectricity. Material and operating conditions are also discussed which could simultaneously maximize all contributions to pyroelectricity.

  19. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  20. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  1. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOEpatents

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2004-01-27

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  2. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOEpatents

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2001-01-01

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  3. Near infrared group IV optoelectronics and novel pre-cursors for CVD epitaxy

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey Michael

    Near infrared and mid infrared optoelectronic devices have become increasingly important for the telecommunications, security, and medical imaging industries. The addition of nitrogen to III-V alloys has been widely studied as a method of modifying the band gap for mid infrared (IR) applications. In xGa1-xSb1-y Ny/InAs strained-layer superlattices with type-II (staggered) energy offsets on GaSb substrates, were modeled using eight-band k˙p simulations to analyze the superlattice miniband energies. Three different zero-stress strain balance conditions are reported: fixed superlattice period thickness, fixed InAs well thickness, and fixed InxGa1-xSb 1-yNy barrier thickness. Optoelectronics have traditionally been the realm of III-V semiconductors due to their direct band gap, while integrated circuit chips have been the realm of Group IV semiconductors such as silicon because of its relative abundance and ease of use. Recently the alloying of Sn with Ge and Si has been shown to allow direct band-gap light emission. This presents the exciting prospect of integrating optoelectronics into current Group IV chip fabrication facilities. However, new approaches for low temperature growth are needed to realize these new SiGeSn alloys. Silicon-germanium epitaxy via ultra-high vacuum chemical vapor deposition has the advantage of allowing low process temperatures. Deposition processes are sensitive to substrate surface preparation and the time delay between oxide removal and epitaxial growth. A new monitoring process utilizing doped substrates and defect decoration etching is demonstrated to have controllable and unique sensitivity to interfacial contaminants. Doped substrates were prepared and subjected to various loading conditions prior to the growth of typical Si/SiGe bilayers. The defect densities were correlated to the concentration of interfacial oxygen suggesting this monitoring process may be an effective complement to monitoring via secondary ion mass spectrometry measurements. The deposition of silicon using tetrasilane as a vapor pre-cursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. In order to understand the suitability of tetrasilane for the growth of SiGe and SiGeSn alloys, the layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, atomic force microscopy, and secondary ion mass spectrometry. To date no n-type doping has been demonstrated in GeSn alloys grown via MBE. A GaP decomposition source was used to grow n-type phosphorus doped GeSn layers on p- Ge substrates. Doping concentrations were calibrated using SIMS measurements. GeSn/Ge heterojunction diodes were grown and fabricated into mesa devices. Diode parameters were extracted from current-voltage measurements. The effects of P and Sn concentrations, metallization, and mesa geometry on device performance are all discussed.

  4. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM hasmore » several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.« less

  5. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    PubMed Central

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  6. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies.

    PubMed

    Hagemann, H; Marcillat, O; Buchet, R; Vial, C

    2000-08-08

    Two distinct methods were used to investigate the role of Trp residues during Mg-ADP binding to cytosolic creatine kinase (CK) from rabbit muscle: (1) Raman spectroscopy, which is very sensitive to the environment of aromatic side-chain residues, and (2) reaction-induced infrared difference spectroscopy (RIDS) and photolabile substrate (ADP[Et(PhNO(2))]), combined with site-directed mutagenesis on the four Trp residues of CK. Our Raman results indicated that the environment of Trp and of Tyr were not affected during Mg-ADP binding to CK. Analysis of RIDS of wild-type CK, inactive W227Y, and active W210,217,272Y mutants suggested that Trp227 was not involved in the stacking interactions. Results are consistent with Trp227 being essential to prevent water molecules from entering in the active site [as suggested by Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994) Protein Sci. 3, 1058-1068] and that another Trp could in addition help to steer the nucleotide in the binding site, although it is not essential for the activity of CK. Raman and infrared spectra indicated that Mg-ADP binding does not involve large secondary structure changes. Only 3-4 residues absorbing in the amide I region are directly implicated in the Mg-ADP binding (corresponding to secondary structure changes less than 1%), suggesting that movement of protein domains due to Mg-nucleotide binding do not promote large secondary structure changes.

  7. Availability: A Metric for Nucleic Acid Strand Displacement Systems.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Padilla, Jennifer E; Hallstrom, Natalya; Goltry, Sara; Lee, Jeunghoon; Yurke, Bernard; Hughes, William L; Graugnard, Elton

    2017-01-20

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.

  8. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Tuccitto, N.; Torrisi, V.; Delfanti, I.; Licciardello, A.

    2008-12-01

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au n-) in comparison with the molecular ions (M -) and clusters (M xAu y-) by using Bi +, Bi 3+, Bi 5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  9. Microchannel plate fabrication using glass capillary arrays with Atomic Layer Deposition films for resistance and gain

    NASA Astrophysics Data System (ADS)

    Popecki, M. A.; Adams, B.; Craven, C. A.; Cremer, T.; Foley, M. R.; Lyashenko, A.; O'Mahony, A.; Minot, M. J.; Aviles, M.; Bond, J. L.; Stochaj, M. E.; Worstell, W.; Elam, J. W.; Mane, A. U.; Siegmund, O. H. W.; Ertley, C.; Kistler, L. M.; Granoff, M. S.

    2016-08-01

    Microchannel plates (MCPs) have been used for many years in space flight instrumentation as fast, lightweight electron multipliers. A new MCP fabrication method combines a glass substrate composed of hollow glass capillary arrays with thin film coatings to provide the resistive and secondary electron emissive properties. Using this technique, the gain, resistance, and glass properties may be chosen independently. Large-area MCPs are available at moderate cost. Secondary emission films of Al2O3 and MgO provide sustained high gain as charge is extracted from the MCP. Long lifetimes are possible, and a total extracted charge of 7 C/cm2 has been demonstrated. Background rates are low because the glass substrate has little radioactive potassium 40. Curved MCPs are easily fabricated with this technique to suit instrument symmetries, simplifying secondary electron steering and smoothing azimuthal efficiency.

  10. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  11. Expression of the cytoplasmic mevalonate pathway in chloroplasts to reduce substrate limitations for cytoplasmically-produced terpenoid secondary products

    USDA-ARS?s Scientific Manuscript database

    All products of isoprenoid metabolism originate with the C5 non-allylic substrate, isopentenyl pyrophosphate (IPP). IPP is produced in plants by two distinct pathways, the mevalonate pathway (MEV) in the cytosol and the 2 C methyl-D-erythritol 4 phosphate (MEP) pathway in plastids. A multi-gene a...

  12. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  14. Reversible vector ratchets for skyrmion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  15. Reversible vector ratchets for skyrmion systems

    DOE PAGES

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    2017-03-03

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  16. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    PubMed Central

    Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard

    2015-01-01

    Summary Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061

  17. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.

    PubMed

    Thorman, Rachel M; Kumar T P, Ragesh; Fairbrother, D Howard; Ingólfsson, Oddur

    2015-01-01

    Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  18. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    DOE PAGES

    Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.; ...

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less

  19. Method for adhering a coating to a substrate structure

    DOEpatents

    Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey

    2015-02-17

    A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  1. Stochastic steps in secondary active sugar transport

    PubMed Central

    Adelman, Joshua L.; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D. F.; Choe, Seungho; Abramson, Jeff; Rosenberg, John M.; Wright, Ernest M.; Grabe, Michael

    2016-01-01

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773

  2. Stochastic steps in secondary active sugar transport.

    PubMed

    Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael

    2016-07-05

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.

  3. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  4. Secondary. cap alpha. -deuterium kinetic isotope effects in solvolyses of ferrocenylmethyl acetate and benzoate in ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutic, D.; Asperger, S.; Borcic, S.

    1982-12-17

    Secondary ..cap alpha..-deuterium kinetic isotope effects (KIE) in solvolyses of ferrocenyldideuteriomethyl acetate and benzoate were determined in 96% (v/v) ethanol, at 25/sup 0/C, as k/sub H//k/sub D/ = 1.24 and 1.26, respectively. The KIEs were also determined in the presence of 0.1 mol dm/sup -3/ lithium perchlorate: the k/sub H//k/ sub D/ values were 1.23 and 1.22 for acetate and benzoate complexes, respectively. The maximum KIE for the C-O bond cleavage of a primary substrate is as large as, or larger than, that of secondary derivatives, which is estimated to be 1.23 per deuterium. The measured KIE of about 12%more » per D therefore represents a strongly reduced effect relative to its maximum. The solvolyses exhibit ''a special salt effect''. This effect indicates the presence of solvent-separated ion pairs and the return to tight pairs. As the maximum KIE is expected in solvolyses involving transformation of one type of ion pair into another, the strongly reduced ..cap alpha..-D KIE supports the structure involving direct participation of electrons that in the ground state are localized at the iron atom. The alkyl-oxygen cleavage is accompanied by 10-15% acyl-oxygen cleavage.« less

  5. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less

  6. Seeing Below the Drop: Direct Nano-to-microscale Imaging of Complex Interfaces involving Solid, Liquid, and Gas Phases

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Landin, Trevan; Walker, Marlon L.; Scott, John Henry J.; Varanasi, Kripa K.

    2012-11-01

    Nanostructured surfaces with special wetting properties have the potential to transform number of industries, including power generation, water desalination, gas and oil production, and microelectronics thermal management. Predicting the wetting properties of these surfaces requires detailed knowledge of the geometry and the composition of the contact volume linking the droplet to the underlying substrate. Surprisingly, a general nano-to-microscale method for direct imaging of such interfaces has previously not been developed. Here we introduce a three dimensional imaging method which resolves this one-hundred-year-old metrology gap in wetting research. Specifically, we demonstrate direct nano-to-microscale imaging of complex fluidic interfaces using cryofixation in combination with cryo-FIB/SEM. We show that application of this method yields previously unattainable quantitative information about the interfacial geometry of water condensed on silicon nanowire forests with hydrophilic and hydrophobic surface termination in the presence or absence of an intermediate water repelling oil. We also discuss imaging artifacts and the advantages of secondary and backscatter electron imaging, Energy Dispersive Spectrometry (EDS), and three dimensional FIB/SEM tomography.

  7. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  8. Substrate preparation effects on defect density in molecular beam epitaxial growth of CdTe on CdTe (100) and (211)B

    DOE PAGES

    Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...

    2017-07-01

    Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less

  9. Partial Reconstruction of Flavonoid and Isoflavonoid Biosynthesis in Yeast Using Soybean Type I and Type II Chalcone Isomerases1[w

    PubMed Central

    Ralston, Lyle; Subramanian, Senthil; Matsuno, Michiyo; Yu, Oliver

    2005-01-01

    Flavonoids and isoflavonoids are major plant secondary metabolites that mediate diverse biological functions and exert significant ecological impacts. These compounds play important roles in many essential physiological processes. In addition, flavonoids and isoflavonoids have direct but complex effects on human health, ranging from reducing cholesterol levels and preventing certain cancers to improving women's health. In this study, we cloned and functionally characterized five soybean (Glycine max) chalcone isomerases (CHIs), key enzymes in the phenylpropanoid pathway that produces flavonoids and isoflavonoids. Gene expression and kinetics analysis suggest that the soybean type I CHI, which uses naringenin chalcone as substrate, is coordinately regulated with other flavonoid-specific genes, while the type II CHIs, which use a variety of chalcone substrates, are coordinately regulated with an isoflavonoid-specific gene and specifically activated by nodulation signals. Furthermore, we found that some of the newly identified soybean CHIs do not require the 4′-hydroxy moiety on the substrate for high enzyme activity. We then engineered yeast (Saccharomyces cerevisiae) to produce flavonoid and isoflavonoid compounds. When one of the type II CHIs was coexpressed with an isoflavone synthase, the enzyme catalyzing the first committed step of isoflavonoid biosynthesis, various chalcone substrates added to the culture media were converted to an assortment of isoflavanones and isoflavones. We also reconstructed the flavonoid pathway by coexpressing CHI with either flavanone 3β-hydroxylase or flavone synthase II. The in vivo reconstruction of the flavonoid and isoflavonoid pathways in yeast provides a unique platform to study enzyme interactions and metabolic flux. PMID:15778463

  10. Alkyl Aryl Ether Bond Formation with PhenoFluor**

    PubMed Central

    Shen, Xiao; Neumann, Constanze N.; Kleinlein, Claudia; Claudia, Nathaniel W.; Ritter, Tobias

    2015-01-01

    An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation. PMID:25800679

  11. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea.

    PubMed

    Mulligan, Christopher; Fischer, Marcus; Thomas, Gavin H

    2011-01-01

    The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    PubMed

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  13. Direct transfer of graphene onto flexible substrates

    PubMed Central

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. K.; Mohan, S.; Bysakh, S.

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less

  15. Ultraclean and Direct Transfer of a Wafer-Scale MoS2 Thin Film onto a Plastic Substrate.

    PubMed

    Phan, Hoang Danh; Kim, Youngchan; Lee, Jinhwan; Liu, Renlong; Choi, Yongsuk; Cho, Jeong Ho; Lee, Changgu

    2017-02-01

    An ultraclean method to directly transfer a large-area MoS 2 film from the original growth substrate to a flexible substrate by using epoxy glue is developed. The transferred film is observed to be free of wrinkles and cracks and to be as smooth as the film synthesized on the original substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  17. Kynurenine Pathway Pathologies: do Nicotinamide and Other Pathway Co-Factors have a Therapeutic Role in Reduction of Symptom Severity, Including Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM)

    PubMed Central

    Blankfield, Adele

    2013-01-01

    The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management. PMID:23922501

  18. Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method.

    PubMed

    Shelke, H D; Lokhande, A C; Kim, J H; Lokhande, C D

    2017-11-15

    Cu 2 SnS 3 (CTS) thin films have been successfully deposited on a cost-effective stainless steel substrate by simple and inexpensive chemical bath deposition (CBD) method. The films are deliberated in provisos of their structural, morphological, optical and photoelectrochemical (PEC) properties before and after annealing treatment, using various physico-chemical techniques. The XRD studies showed the formation of triclinic phase of CTS films with nanocrystalline structure. Also, the crystallinity is enhanced with annealing and the secondary phase of Cu 2 S observed. Raman analysis confirmed the formation of CTS compound with secondary Cu 2 S phase. The SEM images also discovered mostly tiny spherical grains and significant progress in the size of grains after annealing. The films possess direct transitions with band gap energies of 1.35eV and 1.31eV before and after annealing, respectively. The improved photoconversion efficiency of CTS thin film based PEC cell is explained with the help of theoretical modeling of energy band diagram and correspondent circuit model of the impedance spectra. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides.

    PubMed

    Parajuli, Prakash; Pandey, Ramesh Prasad; Nguyen, Thi Huyen Trang; Dhakal, Dipesh; Sohng, Jae Kyung

    2018-04-01

    Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.

  20. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    PubMed

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  1. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  2. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  3. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    NASA Astrophysics Data System (ADS)

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C. K.; Wu, Qiaqing; Zhu, Dunming

    2016-05-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines.

  4. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    PubMed Central

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C.K.; Wu, Qiaqing; Zhu, Dunming

    2016-01-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090

  5. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis.

    PubMed

    Yazaki, Kazufumi; Kunihisa, Miyuki; Fujisaki, Takahiro; Sato, Fumihiko

    2002-02-22

    Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.

  6. Evaluation of Direct PCR Amplification Using Various Swabs and Washing Reagents.

    PubMed

    Altshuler, Hallie; Roy, Reena

    2015-11-01

    DNA profiles were generated via direct amplification from blood and saliva samples deposited on various types of swab substrates. Each of the six non-FTA substrates used in this research was punched with a Harris 1.2 mm puncher. After 0.1 μL of blood or 0.5 μL saliva, samples were deposited on each of these punches, samples were pretreated with one of four buffers and washing reagents. Amplification was performed using direct and nondirect autosomal and Y-STR kits. Autosomal and Y-STR profiles were successfully generated from most of these substrates when pretreated with buffer or washing reagents. Concordant profiles were obtained within and between the six substrates, the six amplification kits, and all four reagents. The direct amplification of substrates which do not contain lysing agent would be beneficial to the forensic community as the procedure can be used on evidence samples commonly found at crime scenes. © 2015 American Academy of Forensic Sciences.

  7. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    DOE PAGES

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...

    2016-01-27

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less

  8. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    PubMed Central

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali

    2016-01-01

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257

  9. Availability: A Metric for Nucleic Acid Strand Displacement Systems

    PubMed Central

    2016-01-01

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531

  10. Photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opachich, Yekaterina; MacPhee, Andrew

    A photocathode designs that leverage the grazing incidence geometry yield improvements through the introduction of recessed structures, such as cones, pyramids, pillars or cavities to the photocathode substrate surface. Improvements in yield of up to 20 times have been shown to occur in grazing incidence geometry disclosed herein due to a larger path length of the X-ray photons which better matches the secondary electron escape depth within the photocathode material. A photocathode includes a substrate having a first side and a second side, the first side configured to receive x-ray energy and the second side opposing the first side. Amore » structured surface is associated with the second side of the substrate such that the structured surface includes a plurality of recesses from the second side of the substrate into the substrate.« less

  11. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  12. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  13. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  14. Wrinkling instabilities in soft bilayered systems

    PubMed Central

    Budday, Silvia; Andres, Sebastian; Walter, Bastian

    2017-01-01

    Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385

  15. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    PubMed

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  16. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    NASA Astrophysics Data System (ADS)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; Kelliher, Andrew P.; Kaehr, Bryan; Hopkins, Patrick E.

    2018-01-01

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

  17. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

    NASA Astrophysics Data System (ADS)

    Folkers, Gerd; Trumpp-Kallmeyer, Susanne; Gutbrod, Oliver; Krickl, Sabine; Fetzer, Jürgen; Keil, Günther M.

    1991-10-01

    Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site into Asn. First investigations reveal that the enzymatic activity of the mutant protein is destroyed.

  18. Influence of miscut Y2O3-stabilized ZrO2 substrates on the azimuthal domain structure and ferroelectric properties of epitaxial La-substituted Bi4Ti3O12 films

    NASA Astrophysics Data System (ADS)

    Lee, Sung Kyun; Hesse, Dietrich; Gösele, Ulrich; Lee, Ho Nyung

    2006-09-01

    We have investigated the influence of both miscut angle and miscut direction of Y2O3-stabilized ZrO2 (YSZ) (100) single crystal substrates on the azimuthal domain structure of SrRuO3 electrode layers as well as of La-substituted Bi4Ti3O12 (BLT) ferroelectric thin films, both grown on these substrates by pulsed laser deposition. X-ray diffraction ϕ scan and pole figure characterizations revealed that the YSZ[011] miscut direction is more effective to uniformly reduce the number of azimuthal domain variants in the films than the YSZ[001] miscut direction. The BLT films on YSZ(100) substrates with miscut angle of 5° and [011] miscut direction involve only half the number of azimuthal domains, compared to the BLT films on exactly cut YSZ(100) substrates. Atomic force microscopy and plan-view transmission electron microscopy also confirmed that almost all BLT grains on these miscut YSZ(100) substrates are arranged along only two (out of four) specific azimuthal directions. The BLT films on YSZ(100) substrates with 5° miscut towards YSZ[011] showed an about 1.3 times higher remanent polarization (Pr=12.5μC /cm2) than the BLT films on exactly cut YSZ(100) substrates (Pr=9.5μC/cm2), due most probably to a lower areal density of azimuthal domain boundaries. It thus appears that reducing the structural domains can be an effective way to further enhance the ferroelectric properties of multiply twinned, epitaxial ferroelectric films.

  19. Virtual substrate method for nanomaterials characterization

    PubMed Central

    Da, Bo; Liu, Jiangwei; Yamamoto, Mahito; Ueda, Yoshihiro; Watanabe, Kazuyuki; Cuong, Nguyen Thanh; Li, Songlin; Tsukagoshi, Kazuhito; Yoshikawa, Hideki; Iwai, Hideo; Tanuma, Shigeo; Guo, Hongxuan; Gao, Zhaoshun; Sun, Xia; Ding, Zejun

    2017-01-01

    Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide ‘free-standing' information about supported nanomaterials. PMID:28548114

  20. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  1. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Ma, Junjie; Watanabe, Junji; Tang, Jinlong; Liu, Huiyu; Shen, Heyun

    2017-02-01

    An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.

  2. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, M.F.; Wetzel, R.G.

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less

  3. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  4. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.

    PubMed

    Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H

    2014-07-21

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.

  5. A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee1[W][OA

    PubMed Central

    Lallemand, Laura A.; Zubieta, Chloe; Lee, Soon Goo; Wang, Yechun; Acajjaoui, Samira; Timmins, Joanna; McSweeney, Sean; Jez, Joseph M.; McCarthy, James G.; McCarthy, Andrew A.

    2012-01-01

    Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds. PMID:22822210

  6. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers.

    PubMed

    Jones, P; Vogt, T

    2001-06-01

    Plants are exposed to a wide range of toxic and bioactive low-molecular-weight molecules from both exogenous and endogenous sources. Glycosylation is one of the primary sedative mechanisms that plants utilise in order to maintain metabolic homeostasis. Recently, a range of glycosyltransferases has been characterized in detail with regard to substrate specificity. The next step in increasing our understanding of the biology of glycosylation will require information regarding the exact role of individual glycosyltransferases in planta, as well as an insight into their potential involvement in metabolon-complexes. Hopefully, this will answer how a large number of glycosyltransferases with broad, rather than narrow, substrate specificity can be constrained in order to avoid interfering with other pathways of primary and secondary metabolism. These and other topics are discussed.

  7. Rolling process for producing biaxially textured substrates

    DOEpatents

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  8. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    PubMed Central

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  9. Analysis of nucleotides and oligonucleotides immobilized as self-assembled monolayers by static secondary ion mass spectrometry.

    PubMed

    Patrick, J S; Cooks, R G; Pachuta, S J

    1994-11-01

    Nucleic acid constituents can be bound to a metal surface in the form of self-assembled monolayers. Binding is achieved either through ionic interactions with a self-assembled 2-aminoethanethiol monolayer or by direct covalent binding of a dithiophosphate oligonucleotide to a metal surface through a sulfur-metal bond. Nucleotides, polynucleotides (both normal and a dithiophosphate analog) and double-stranded DNA have all been bound to surfaces. When the surfaces are interrogated using static secondary ion mass spectrometry (SIMS), the surface-bound nucleic acid constituents are observed in the form of the characteristic protonated nucleic acid base ions (BH2+). While a silver foil substrate was found to provide the highest absolute signal, vapor-deposited gold yields the best signal-to-noise ratio for ionically bound deoxyguanosine monophosphate. Under comparable conditions, a Cs+ projectile produces a 10-fold increase in the secondary ion signal relative to a Ga+ projectile. The experiment has been extended to a triple-quadrupole instrument where tandem mass spectrometric experiments on ionically immobilized dGMP showed the characteristic loss of ammonia from the released BH2+ ion. When a 'biomimetic' surface formed by ionically immobilizing double-stranded DNA is exposed to a solution containing ethidium bromide, ions corresponding to the non-covalent adduct are readily detectable using SIMS. This adduct and the nucleic acid constituents can be monitored at levels below 10 fmol.

  10. Direct Y-STR amplification of body fluids deposited on commonly found crime scene substrates.

    PubMed

    Dargay, Amanda; Roy, Reena

    2016-04-01

    Body fluids detected on commonly found crime scene substrates require extraction, purification and quantitation of DNA prior to amplification and generation of short tandem repeat (STR) DNA profiles. In this research Y-STR profiles were generated via direct amplification of blood and saliva deposited on 12 different substrates. These included cigarette butts, straws, grass, leaves, woodchips and seven different types of fabric. After depositing either 0.1 μL of blood or 0.5 μL of saliva, each substrate containing the dry body fluid stain was punched using a Harris 1.2 mm micro-punch. Each of these punched substrates, a total of 720 samples, containing minute amount of blood or saliva was either amplified directly without any pre-treatment, or was treated with one of the four washing reagents or buffer. In each of these five experimental groups the substrates containing the body fluid remained in the amplification reagent during the thermal cycling process. Each sample was amplified with the three direct Y-STR amplification kits; AmpFℓSTR(®) Yfiler(®) Direct, Yfiler(®) Plus Amplification Kits and the PowerPlex(®) Y23 System. Complete and concordant Y-STR profiles were successfully obtained from most of these 12 challenging crime scene objects when the stains were analyzed by at least one of the five experimental groups. The reagents and buffer were interchangeable among the three amplification kits, however, pre-treatment with these solutions did not appear to enhance the quality or the number of the full profiles generated with direct amplification. This study demonstrates that blood and saliva deposited on these simulated crime scene objects can be amplified directly. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less

  12. Coarse grained modeling of directed assembly to form functional nanoporous films

    NASA Astrophysics Data System (ADS)

    Al Khatib, Amir

    A coarse-grained (CG) simulation of polyethylene glycol (PEG) and Polymethylsilsesquixane nanoparticle (PMSSQ) referred to as (NP) at different sizes and concentrations were done using the Martini coarse-grained (CG) force field. The interactions between CG PEG and CG NP were parameterized from the chemical compound of each molecule and based on Martini force field. NP particles migrates to the surface of the substrate in an agreement with the experimental output at high temperature of 800K. This demonstration of nanoparticles-polymer film to direct it to self-assemble a systematically spatial pattern using the substrate surface energy as the key gating parameter. Validation of the model comparing molecular dynamics simulations with experimental data collected from previous study. NP interaction with the substrate at low interactions energy using Lennard-Johns potential were able to direct the NP to self-assemble in a hexagonal shape up to 4 layers above the substrate. This thesis established that substrate surface energy is a key gating parameter to direct the collective behavior of functional nanoparticles to form thin nanoporous films with spatially predetermined optical/dielectric constants.

  13. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  14. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  15. The influence of the surrounding gas on drop impact onto a wet substrate

    NASA Astrophysics Data System (ADS)

    Deegan, Robert; Zhang, Li; Toole, Jameson

    2011-11-01

    The impact of a droplet with a wet or solid substrate creates a spray of secondary droplets. The effect of the surrounding gas on this process was widely neglected prior to the work of Xu, Zhang, & Nagel which showed that lowering the gas pressure suppresses splashing for impact with a dry solid substrate. Here we present the results of our experimental investigation of the effect of the surrounding gas on the evolution of splashes from a wet substrate. We varied the density and pressure of the surrounding gas. We find quantitative changes to the onset thresholds of splashing and on the size distribution of, but no qualitative changes. The effects are most pronounced on the evolution of the ejecta sheet.

  16. Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbur, Jonathan C.; Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu

    2016-05-15

    A facile ultraviolet assisted metalized laser printing technique is demonstrated through the ability to control selective photodeposition of silver on flexible substrates after atomic layer deposition pretreatment with zinc oxide and titania. The photodeposition of noble metals such as silver onto high surface area, polymer supported semiconductor metal oxides exhibits a new route for nanoparticle surface modification of photoactive enhanced substrates. Photodeposited silver is subsequently characterized using low voltage secondary electron microscopy, x-ray diffraction, and time of flight secondary ion mass spectroscopy. At the nanoscale, the formation of specific morphologies, flake and particle, is highlighted after silver is photodeposited onmore » zinc oxide and titania coated substrates, respectively. The results indicate that the morphology and composition of the silver after photodeposition has a strong dependency on the morphology, crystallinity, and impurity content of the underlying semiconductor oxide. At the macroscale, this work demonstrates how the nanoscale features rapidly coalesce into a printed pattern through the use of masks or an X-Y gantry stage with virtually unlimited design control.« less

  17. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.

    PubMed

    Hughes, Richard K; Yousafzai, Faridoon K; Ashton, Ruth; Chechetkin, Ivan R; Fairhurst, Shirley A; Hamberg, Mats; Casey, Rod

    2008-09-01

    In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is warranted, whereas significance of F287 may arise from a strong hydrophobic interaction between the alkyl group(s) of the substrate and the phenyl ring of F287. We believe that G288 is crucial because of its size. Any other residue with a relatively bulky side chain will hinder the access of substrate to the active site. The effects of the mutations suggests that subtle protein conformational changes in the putative substrate-binding pocket regulate the formation of a fully active monomer-micelle complex with low-spin haem iron and that structural communication exists between the substrate- and micelle-binding sites of CYP74C3. Conservation in CYP74 sequence alignments suggests that N285, F287, and G288 in CYP74C3 and the equivalent residues at positions in other CYP74 enzymes are likely to be critical to catalysis. To support this we show that G324 in CYP74D4 (Arabidopsis AOS), equivalent to G288 in CYP74C3, is a primary determinant of positional specificity. We suggest that the overall structure of CYP74 enzymes is likely to be very similar to those described for classical P450 monooxygenase enzymes. 2008 Wiley-Liss, Inc.

  18. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.

    PubMed

    Soumya, Neelagiri; Kumar, I Sravan; Shivaprasad, S; Gorakh, Landage Nitin; Dinesh, Neeradi; Swamy, Kayala Kambagiri; Singh, Sushma

    2015-04-01

    An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  20. Gradient doping - a case study with Ti-Fe2O3 towards an improved photoelectrochemical response.

    PubMed

    Srivastav, Anupam; Verma, Anuradha; Banerjee, Anamika; Khan, Saif A; Gupta, Mukul; Satsangi, Vibha Rani; Shrivastav, Rohit; Dass, Sahab

    2016-12-07

    The present study investigates the effect of gradient doping on modifying the photoelectrochemical response of Ti-doped Fe 2 O 3 photoanodes for their use in sunlight based water splitting for hydrogen evolution. The deposition of a thin film over the ITO (tin doped indium oxide) substrate was carried out using a spray pyrolysis method. The concentration of dopant was varied from 0.5-8.0 at% and two sets of samples were also prepared with low to high (0.5-8%) and high to low (8-0.5%) dopant concentrations in the direction towards the substrate. The prepared thin films were characterized using X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS) and UV-visible Spectroscopy. The photoelectrochemical studies revealed that the deposition of dopant layers with a low to high concentration towards the substrate exhibited a highly improved photoresponse (200 times) in comparison to the pristine sample and a two fold enhancement in comparison to 2% Ti-doped Fe 2 O 3 . The improvement in the photoresponse has been attributed to the values of a high flat band potential, low resistance, high open circuit voltage, carrier separation efficiency, applied bias photon-to-current conversion efficiency (ABPE), and incident photon-to-current conversion efficiency (IPCE). A reduced charge transfer resistance has been demonstrated with Nyquist plots.

  1. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, T.; Ginley, D.

    1988-05-31

    In a process for deposition of material onto a substrate, for example, the deposition of metals for dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit. 3 figs.

  2. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, Timothy; Ginley, David

    1992-01-01

    In a process for deposition of material onto a substrate, for example, the deposition of metals or dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit.

  3. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.

    PubMed

    Li, Yueming; Zhang, Qian; Li, Jinghong

    2010-11-15

    It is one of main challenges to find the suitable materials to enhance the direct electron transfer between the electrode and redox protein for direct electrochemistry field. Nano-structured metal oxides have attracted considerable interest because of unique properties, well biocompatibility, and good stability. In this paper, the copper oxide nanowire bundles (CuO NWBs) were prepared via a template route, and the bioelectrochemical performances of hemoglobin (Hb) on the CuO NWBs modified glass carbon electrodes (denoted as Hb-CuO NWBs/GC) were studied. TEM and XRD were used to characterize the morphology and structure of the as synthesized CuO NWBs. Fourier transform-infrared spectroscopy (FT-IR) proved that Hb in the CuO NWBs matrix could retain its native secondary structure. A pair of well-defined and quasi-reversible redox peaks at approximately -0.325 V (vs. Ag/AgCl saturated KCl) were shown in the cyclic voltammogram curve for the Hb-CuO NWBs/GC electrode, which indicated the direct electrochemical behavior. The Hb-CuO NWBs/GC electrode also displayed a good electrocatalytic activity toward the reduction of hydrogen peroxide. These results indicate that the CuO NWBs are good substrates for immobilization of biomolecules and might be promising in the fields of (bio) electrochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.

    2017-03-01

    An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.

  5. Line-of-sight deposition method

    DOEpatents

    Patten, J.W.; McClanahan, E.D.; Bayne, M.A.

    1980-04-16

    A line-of-sight method of depositing a film having substantially 100% of theoretical density on a substrate. A pressure vessel contains a target source having a surface thereof capable of emitting particles therefrom and a substrate with the source surface and the substrate surface positioned such that the source surface is substantially parallel to the direction of the particles impinging upon the substrate surface, the distance between the most remote portion of the substrate surface receiving the particles and the source surface emitting the particles in a direction parallel to the substrate surface being relatively small. The pressure in the vessel is maintained less than about 5 microns to prevent scattering and permit line-of-sight deposition. By this method the angles of incidence of the particles impinging upon the substrate surface are in the range of from about 45/sup 0/ to 90/sup 0/ even when the target surface area is greatly expanded to increase the deposition rate.

  6. Line-of-sight deposition method

    DOEpatents

    Patten, James W.; McClanahan, Edwin D.; Bayne, Michael A.

    1981-01-01

    A line-of-sight method of depositing a film having substantially 100% of theoretical density on a substrate. A pressure vessel contains a target source having a surface thereof capable of emitting particles therefrom and a substrate with the source surface and the substrate surface positioned such that the source surface is substantially parallel to the direction of the particles impinging upon the substrate surface, the distance between the most remote portion of the substrate surface receiving the particles and the source surface emitting the particles in a direction parallel to the substrate surface being relatively small. The pressure in the vessel is maintained less than about 5 microns to prevent scattering and permit line-of-sight deposition. By this method the angles of incidence of the particles impinging upon the substrate surface are in the range of from about 45.degree. to 90.degree. even when the target surface area is greatly expanded to increase the deposition rate.

  7. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Riley, P A

    1994-11-15

    The effect of thiol compounds on the monophenolase activity of tyrosinase was investigated using 4-hydroxyanisole as the substrate and dithiothreitol (DTT) as the model thiol compound. We have demonstrated three actions of DTT on tyrosinase-catalysed reactions: (1) direct reduction of the copper at the active site of the enzyme; (2) generation of secondary, oxidizable species by adduct formation with the o-quinone reaction product, 4-MOB, which leads to an increase in the total oxygen utilization by the reaction system; and (3) reversible inhibition of the enzyme. We confirm our previous observation that, at approx. 10 mol of DTT/mol of enzyme, the lag phase associated with monohydric phenol oxidation by tyrosinase is abolished. We suggest that this is due to reduction of the copper at the active site of the enzyme by DTT, since (a) reduction of active-site copper in situ by DTT was demonstrated by [Cu(I)]2-carbon monoxide complex formation and (b) abolition of the lag at low DTT concentration occurs without effect on the maximum rate of reaction or on the total amount of oxygen utilized. At concentrations of DTT above that required to abolish the lag, we found that the initial velocity of the reaction increased with increasing DTT, with a concomitant increase in the total oxygen utilization. This is due to the formation of DTT-4-methoxy-o-benzoquinone (4-MOB) adducts which provide additional dihydric phenol substrate either directly or by reducing nascent 4-MOB. We present n.m.r. evidence for the formation of mono- and di-aromatic DTT adducts with 4-MOB, consistent with a suggested reoxidation scheme in the presence of tyrosinase. Inhibition of the enzyme at concentrations of DTT above 300 pmol/unit of enzyme was released on exhaustion of DTT by adduct formation with 4-MOB as it was generated.

  8. Emerging applications of label-free optical biosensors

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  9. Cell-free protein synthesis energized by slowly-metabolized maltodextrin

    PubMed Central

    Wang, Yiran; Zhang, Y-H Percival

    2009-01-01

    Background Cell-free protein synthesis (CFPS) is a rapid and high throughput technology for obtaining proteins from their genes. The primary energy source ATP is regenerated from the secondary energy source through substrate phosphorylation in CFPS. Results Distinct from common secondary energy sources (e.g., phosphoenolpyruvate – PEP, glucose-6-phosphate), maltodextrin was used for energizing CFPS through substrate phosphorylation and the glycolytic pathway because (i) maltodextrin can be slowly catabolized by maltodextrin phosphorylase for continuous ATP regeneration, (ii) maltodextrin phosphorylation can recycle one phosphate per reaction for glucose-1-phosphate generation, and (iii) the maltodextrin chain-shortening reaction can produce one ATP per glucose equivalent more than glucose can. Three model proteins, esterase 2 from Alicyclobacillus acidocaldarius, green fluorescent protein, and xylose reductase from Neurospora crassa were synthesized for demonstration. Conclusion Slowly-metabolized maltodextrin as a low-cost secondary energy compound for CFPS produced higher levels of proteins than PEP, glucose, and glucose-6-phospahte. The enhancement of protein synthesis was largely attributed to better-controlled phosphate levels (recycling of inorganic phosphate) and a more homeostatic reaction environment. PMID:19558718

  10. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    NASA Astrophysics Data System (ADS)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.

  11. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  12. Photoelectrochemical molecular comb

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.

    2006-08-15

    A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.

  13. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  14. High Temperature Solar Reflector, Its Preparation and Use

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A. (Inventor)

    1999-01-01

    A coating-substrate combination having high specular reflectivity at high temperatures reaching 8000 C in a vacuum is described. The substrate comprises pure nickel metal or a nickel-containing metal alloy such as stainless steel having a highly polished reflective surface. The coating is a layer of silver deposited on the substrate to a thickness of 300 A to 3000 A. A 300 A to 5000 A protective coating of silica, alumina or magnesium fluoride is used to cover the silver and to protect it from oxidation. The combination is useful as a parabolic shaped secondary concentrator for collecting solar radiation for generating power or thermal energy for satellite uses. The reflective layer and protective coating preferably are applied to the reflective surface of the substrate by electron beam evaporation or by ion sputtering.

  15. Dynamic-compliance and viscosity of PET and PEN

    NASA Astrophysics Data System (ADS)

    Weick, Brian L.

    2016-05-01

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  16. Dynamic-compliance and viscosity of PET and PEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weick, Brian L.

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  17. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  18. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    PubMed

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  19. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016 International Society for Neurochemistry.

  20. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    PubMed

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  1. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    PubMed

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  2. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  3. XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates

    NASA Astrophysics Data System (ADS)

    Priante, F.; Salim, M.; Ottaviano, L.; Perrozzi, F.

    2018-02-01

    The reduction of graphene oxide (GO) has been extensively studied in literature in order to let GO partially recover the properties of graphene. Most of the techniques proposed to reduce GO are based on high temperature annealing or chemical reduction. A new procedure, based on the direct reduction of GO by etched Si substrate, was recently proposed in literature. In the present work, we accurately investigated the Si-GO interaction with x-ray photoelectron spectroscopy. In order to avoid external substrate oxidation factors we used EtOH as the GO solvent instead of water, and thermal annealing was carried out in UHV. We investigated the effect of Si(100), Si(111) and Au substrates on GO, to probe the role played by both the substrate composition and substrate orientation during the reduction process. A similar degree of GO reduction was observed for all samples but only after thermal annealing, ruling out the direct reduction effect of the substrate.

  4. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et al. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12199. Nguyen et al. Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Phys. Chem. Chem. Phys. 2012, 14, 9702. Walser et al. Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. J. Phys. Chem. A 2007, 111, 1907.

  5. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  6. Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles

    NASA Technical Reports Server (NTRS)

    Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.

    1989-01-01

    The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.

  7. Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Kohl, Thomas O; Ascoli, Carl A

    2017-07-05

    The indirect competitive ELISA (indirect cELISA) pits plate-immobilized antigen against antigens in solution for binding to antigen-specific antibody. The antigens in solution are in the test sample and are first incubated with antigen-specific antibody. These antibody-antigen complexes are then added to microtiter plates whose wells have been coated with purified antigen. The wells are washed to remove unbound antigen-antibody complexes and free antigen. A reporter-labeled secondary antibody is then added followed by the addition of substrate. Substrate hydrolysis yields a signal that is inversely proportional to antigen concentration within the sample. This is because when antigen concentration is high in the test sample, most of the antibody is bound before adding the solution to the plate. Most of the antibody remains in solution (as complexes) and is thus washed away before the addition of the reporter-labeled secondary antibody and substrate. Thus, the higher the antigen concentration in the test sample, the weaker the resultant signal in the detection step. The indirect cELISA is often used for competitive detection and quantification of antibodies against viral diseases in biological samples. © 2017 Cold Spring Harbor Laboratory Press.

  8. AGCVIII Kinases: at the crossroads of cellular signaling

    USDA-ARS?s Scientific Manuscript database

    AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...

  9. Evolution of Texture from a Single Crystal Ti-6Al-4V Substrate During Electron Beam Directed Energy Deposition

    NASA Astrophysics Data System (ADS)

    Butler, Todd M.; Brice, Craig A.; Tayon, Wesley A.; Semiatin, S. Lee; Pilchak, Adam L.

    2017-10-01

    Additive manufacturing of Ti-6Al-4V commonly produces 〈001〉 β -fiber textures aligned with the build direction. We have performed wire-feed electron beam directed energy deposition on the {112} β plane of a single prior β-grain. The build initially grew epitaxially from the substrate with the preferred 〈001〉 growth direction significantly angled away from the build direction. However, continued layer deposition drove the formation of a 〈001〉 β -fiber texture aligned with the build direction and the direction of the strongest thermal gradient.

  10. Stereochemical and positional specificity of the lipase/acyltransferase produced by Aeromonas hydrophila.

    PubMed

    Robertson, D L; Hilton, S; Buckley, J T

    1992-06-02

    Aeromonas species secrete a glycerophospholipid-cholesterol acyltransferase (GCAT) which shares many properties with mammalian plasma lecithin-cholesterol acetyltransferase (LCAT). We have studied the stereochemical and positional specificity of GCAT against a variety of lipid substrates using NMR spectroscopy as well as other assay methods. The results show that both the primary and secondary acyl ester bonds of L-phosphatidylcholine can be hydrolyzed but only the sn-2 fatty acid can be transferred to cholesterol. The enzyme has an absolute requirement for the L configuration at the sn-2 position of phosphatidylcholine. The secondary ester bond of D-phosphatidylcholine cannot be hydrolyzed, and this lipid is not a substrate for acyl transfer. In contrast to the phospholipases, but similar to LCAT, the enzyme does not interact stereochemically with the phosphorus of phosphatidylcholine. In fact, the phosphorus is not required for enzyme activity, as GCAT will also hydrolyze monolayers of diglyceride, although at much lower rates.

  11. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  12. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    PubMed

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  13. CVD diamond substrate for microelectronics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burden, J.; Gat, R.

    1996-11-01

    Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less

  14. High power RF window deposition apparatus, method, and device

    DOEpatents

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  15. Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl

    PubMed Central

    Spletstoser, Jared T.; White, Jonathan M.; Tunoori, Ashok Rao; Georg, Gunda I.

    2008-01-01

    An investigation of the use of Cp2Zr(H)Cl (Schwartz’s reagent) to reduce a variety of amides to the corresponding aldehydes under very mild reaction conditions and in high yields is reported. A range of tertiary amides, including Weinreb’s amide, can be converted directly to the corresponding aldehydes with remarkable chemoselectivity. Primary and secondary amides proved to be viable substrates for reduction as well, although the yields were somewhat diminished compared to the corresponding tertiary amides. Results from NMR experiments suggested the presence of a stable, 18-electron zirconacycle intermediate that presumably affords the aldehyde upon water or silica gel workup. A series of competition experiments revealed a preference of the reagent for substrates in which the lone pair of the nitrogen is electron releasing and thus more delocalized across the amide bond by resonance. This trend accounts for the observed excellent selectivity for tertiary amides versus esters. Experiments regarding the solvent dependence of the reaction suggested a kinetic profile similar to that postulated for the hydrozirconation of alkenes and alkynes. Addition of p-anisidine to the reaction intermediate resulted in the formation of the corresponding imine mimicking the addition of water that forms the aldehyde. PMID:17315870

  16. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  17. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. 2009 Elsevier Inc. All rights reserved.

  18. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Jennifer C., E-mail: jennifer.wilson@griffith.edu.au; Laloo, Andrew Elohim; Singh, Sanjesh

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to themore » clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.« less

  19. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.

    PubMed Central

    Derbyshire, V; Grindley, N D; Joyce, C M

    1991-01-01

    We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions. PMID:1989882

  20. Genetic Control and Evolution of Anthocyanin Methylation1[W

    PubMed Central

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P.; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-01-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins’ structural diversity. PMID:24830298

  1. Effectiveness of Diffusion Barrier Coatings for Mo-Re Embedded in C/SiC and C/C

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Shenoy, Ravi N.; Wang, Zeng-Mei; Halbig, Michael C.

    2001-01-01

    Advanced high-temperature cooling applications may often require the elevated-temperature capability of carbon/silicon carbide or carbon/carbon composites in combination with the hermetic capability of metallic tubes. In this paper, the effects of C/SiC and C/C on tubes fabricated from several different refractory metals were evaluated. Though Mo, Nb, and Re were evaluated in the present study, the primary effort was directed toward two alloys of Mo-Re, namely, arc cast Mo-41Re and powder metallurgy Mo-47.5Re. Samples of these refractory metals were subjected to either the PyC/SiC deposition or embedding in C/C. MoSi2(Ge), R512E, and TiB2 coatings were included on several of the samples as potential diffusion barriers. The effects of the processing and thermal exposure on the samples were evaluated by conducting burst tests, microhardness surveys, and scanning electron microscopic examination (using either secondary electron or back scattered electron imaging and energy dispersive spectroscopy). The results showed that a layer of brittle Mo-carbide formed on the substrates of both the uncoated Mo-41Re and the uncoated Mo-47.5Re, subsequent to the C/C or the PyC/SiC processing. Both the R512E and the MoSi2(Ge) coatings were effective in preventing not only the diffusion of C into the Mo-Re substrate, but also the formation of the Mo-carbides. However, none of the coatings were effective at preventing both C and Si diffusion without some degradation of the substrate.

  2. Efavirenz Primary and Secondary Metabolism In Vitro and In Vivo: Identification of Novel Metabolic Pathways and Cytochrome P450 2A6 as the Principal Catalyst of Efavirenz 7-Hydroxylation

    PubMed Central

    Ogburn, Evan T.; Jones, David R.; Masters, Andrea R.; Xu, Cong; Guo, Yingying

    2010-01-01

    Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo. PMID:20335270

  3. In Vitro Screening of Synthetic Fluorogenic Substrates for Detection of Cancer Procoagulant Activity.

    PubMed

    Krause, Jason; Frost, Carminita L

    2018-04-01

    Cancer procoagulant (CP), a direct activator of coagulation factor X, is among one of the tumour cell products or activities which may promote fibrin formation and has been suggested to be selectively associated with the malignant phenotype. At present, the most reliable assay for the quantification of CP activity is the three-stage chromogenic assay which utilises the ability of CP to activate factor X. In this assay, the activation of factor X leads to the formation of activated thrombin from prothrombin and the eventual hydrolyses of a thrombin chromogenic substrate which contains a p-nitroaniline leaving group. The complexity of the three-stage chromogenic assay suggests a need for a direct method of assaying CP activity. This study focuses on the design of a fluorogenic substrate that would enable the direct quantification of CP activity. The results of the study show two promising substrates for the determination of CP activity: Boc-PQVR-AMC and PQVR-AMC. Further analysis showed that Boc-PQVR-AMC could be excluded as a potential substrate for CP since it was also cleaved by collagenase.

  4. Strain and mechanical properties of the VCM multilayer sheet and their composites using the digital speckle correlation method.

    PubMed

    Zhang, Dehai; Xie, Guizhong; Li, Yanqin; Liu, Jianxiu

    2015-09-01

    The digital speckle correlation method (DSCM) is introduced to solve the challenging problems in the related geometric measurement. Theoretical calculations of strain are deduced using the DSCM. Corresponding strains along x and y directions are obtained from uniaxial tension experiments and digital speckle measurements, using the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad films, nondeep drawing substrate, and deep-drawing substrate sheet as the targeted experimental objects. The results show that the maximum strains along the x direction of the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad film, nondeep drawing substrate, and deep-drawing substrate sheet are 68.473%, 48.632%, 91.632%, 50.784% and 40.068%, respectively, while the maximum strains along the y direction are -2.657%, -15.381%, 2.826%, -9.780% and -7.783%, respectively. The mechanical properties of the VCM multilayer sheet are between those of the substrate and clad film, while mechanical properties of the VCM deep-drawing multilayer sheet are superior to those of the VCM nondeep drawing multi-layer sheet.

  5. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    NASA Astrophysics Data System (ADS)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  6. Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mendoza, C. D.; Caldas, P. G.; Freire, F. L.; Maia da Costa, M. E. H.

    2018-07-01

    The integration of graphene into nanoelectronic devices is dependent on the availability of direct deposition processes, which can provide uniform, large-area and high-quality graphene on semiconductor substrates such as Ge or Si. In this work, we synthesised graphene directly on p-type Ge (1 0 0) substrates by chemical vapour deposition. The influence of the CH4:H2 flow ratio on the graphene growth was investigated. Raman Spectroscopy, Raman mapping, Scanning Electron Microscopy, Atomic Force Microscopy and Scanning Tunnelling Microscopy/Scanning Tunnelling Spectroscopy results showed that good quality and homogeneous monolayer graphene over a large area can be achieved on Ge substrates directly with optimal growth conditions.

  7. Analysis of ABCB phosphoglycoproteins (PGPs) and their contribution to monocot biomass, structural stability, and productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Angus Stuart

    2014-09-23

    Efforts to manipulate production of plant secondary cell walls to improve the quality of biofuel feedstocks are currently limited by an inability to regulate the transport of small molecule components out of the cell. Plant ABCB p-glycoproteins are a small family of plasma membrane organic molecule transporters that have become primary targets for this effort, as they can potentially be harnessed to control the export of aromatic compounds and organic acids. However, unlike promiscuous mammalian ABCBs that function in multidrug resistance, all plant ABCB proteins characterized to date exhibit relatively narrow substrate specificity. Although ABCBs exhibit a highly conserved architecture,more » efforts to modify ABCB activity have been hampered by a lack of structural information largely because an eukaryotic ABCB protein crystal structure has yet to be obtained. Structure/ function analyses have been further impeded by the lack of a common heterologous expression system that can be used to characterize recombinant ABCB proteins, as many cannot be functionally expressed in S. cereviseae or other systems where proteins with analogous function can be readily knocked out. Using experimentally-determined plant ABCB substrate affinities and the crystal structure of the bacterial Sav1866 “half” ABC transporter, we have developed sequence/structure models for ABCBs that provide a testable context for mutational analysis of plant ABCB transporters. We have also developed a flexible heterologous expression system in Schizosaccharomyces pombe in which all endogenous ABC transporters have been knocked out. The effectiveness of this system for transport studies has been demonstrated by the successful functional expression all of the known PIN, AUX/LAX and ABCB auxin transporters. Our central hypothesis is that the domains of the ABCB proteins that we have identified as substrate docking sites and regulators of transport directionality can be altered or swapped to alter the transport characteristics of the proteins. We propose to combine computer modelling, mutational analyses, and complementation of well characterized Arabidopsis abcb4,14,and 19 mutants to elucidate ABCB function. The long term objective of this project is to enhance ABCB transport of cell wall components, to manipulate the direction of ABCB substrate transport, and, ultimately, to produce “designer” ABC transporters that can be used to modify plant feedstock quality.« less

  8. Studies of the stability of water-soluble polypeptoid helices and investigation of synthetic, biomimetic substrates for the development of a thermally triggered, enzymatically crosslinked hydrogel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanborn, Tracy Joella

    Due to the unique 3D structures of proteins, these biopolymers are able to perform a myriad of vital functions and activities in vivo. Peptidomimetic oligomers are being synthesized to mimic the structure and function of natural peptides. We have examined the stability of secondary structure of a poly-N-substituted glycine (peptoid) and developed synthetic substrates for transglutaminase enzymes. We synthesized an amphipathic, helical, 36 residue peptoid to study the stability of peptoid secondary structure using circular dichroism. We saw no significant dependence of helical structure on concentration, solvent, or temperature. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role, of steric forces in their structural stabilization. The structured polypeptoids studied here have potential as robust mimics of helical polypeptides of therapeutic interest. The ability of transglutaminases to crosslink peptidomimetic substrates was also investigated. There is a medical need for robust, biocompatible hydrogels that can be rapidly crosslinked in situ, for application as surgical adhesives, bone-inductive materials, or for drug delivery. We have taken an enzymatic approach to the creation of a novel gelation system that fits these requirements, utilizing transglutaminase enzymes, thermo-responsive liposomes, and a biomimetic enzyme substrate based on a peptide-polymer conjugate. At room temperature, the hydrogel system is a solution. Upon heating to 37°C, the calcium-loaded liposomes release calcium that activates Factor XIII in the presence of thrombin, producing a gel within 9 minutes. Rheological studies demonstrated that the hydrogel behaves as a robust, elastic solid, while scanning electron microscopy studies revealed that the hydrogel has a very dense morphology overall. We also investigated the ability of transglutaminases to crosslink non-natural, peptoid-based substrates. The activity of five lysine-containing peptoid substrates and two glutamine-containing peptoid substrates with proteinogenic side chains were compared to their peptide analogs. Lysine-containing peptoid substrates were crosslinked by the transglutaminase but at a much lower rate, producing at most 28% of the crosslinked product that its peptide counterpart produced. Of the two glutamine-containing peptoid substrates investigated, one did not show any crosslinked product formation, while the other was insoluble in aqueous solution.

  9. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOEpatents

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  10. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity

    NASA Astrophysics Data System (ADS)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-01

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  11. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  12. Micromotors Powered by Enzyme Catalysis.

    PubMed

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-09

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.

  13. Cross-guide Moreno directional coupler in empty substrate integrated waveguide

    NASA Astrophysics Data System (ADS)

    Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.

    2017-05-01

    Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.

  14. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    PubMed

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  15. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  16. Method of deposition of silicon carbide layers on substrates

    DOEpatents

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  17. Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael

    2017-02-01

    Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.

  18. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  19. Diffusion at the boundary between the film and substrate upon the electrocrystallization of zinc on a copper substrate

    NASA Astrophysics Data System (ADS)

    Shtapenko, E. Ph.; Zabludovsky, V. A.; Dudkina, V. V.

    2015-03-01

    In this paper, we present the results of experimental investigations of the diffusion layer formed at the film-substrate interface upon the electrodeposition of zinc films on a copper substrate. The investigations have shown that, in the transient layer, the deposited metal is diffused into the material of the substrate. The depth of the diffusion layer and, consequently, the concentrations of the incorporated zinc atoms depend strongly on the conditions of electrocrystallization, which vary from 1.5 μm when using direct current to 4 μm when using direct current in combination with laser-stimulated deposition (LSD). The X-ray diffraction investigations of the transient layer at the film-substrate interface have shown that, upon electrocrystallization using pulsed current in rigid regimes with the application of the LSD, a CuZn2 phase is formed in the diffusion layer. This indicates that the diffusion of zinc into copper occurs via two mechanisms, i.e., grainboundary and bulk. The obtained values of the coefficient of diffusion of zinc adatoms in polycrystalline copper are equal to 1.75 × 10-15 m2/s when using direct current and 1.74 × 10-13 m2/s when using LSD.

  20. Structural profiling of individual glycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetection matched with Direct IR-MALDI-o-TOF mass spectrometry.

    PubMed

    Souady, Jamal; Soltwisch, Jens; Dreisewerd, Klaus; Haier, Jörg; Peter-Katalinić, Jasna; Müthing, Johannes

    2009-11-15

    The thin-layer chromatography (TLC) immunoenzyme overlay assay is a widely used tool for antibody-mediated identification of glycosphingolipids (GSLs) in mixtures. However, because the majority of GSLs is left unexamined in a chromatogram of a single assay, we developed a novel method that permits detection of various GSLs by sequential multiple immunostaining combined with individual coloring of GSLs in the same chromatogram. Specific staining was achieved by means of primary anti-GSL antibodies, directed against lactosylceramide, globotriaosylceramide, and globotetraosylceramide, in conjunction with alkaline phosphatase (AP)- or horseradish peroxidase (HRP)-conjugated secondary antibodies together with the appropriate chromogenic substrates. Triple coloring with 5-bromo-4-chloro-3-indolyl phosphate (BCIP)-AP, Fast Red-AP, and 3,3'-diaminobenzidine (DAB)-HRP resulted in blue, red, and black precipitates, respectively, following three sequential immunostaining rounds. Structures of antibody-detected GSLs were determined by direct coupling of TLC with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. This combinatorial technique was used to demonstrate structural GSL profiling of crude lipid extracts from human hepatocellular cancer. This powerful technology allows efficient structural characterization of GSLs in small tissue samples and marks a further step forward in the emerging field of glycosphingolipidomics.

  1. Directed Self-Assembly of Star-Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism.

    PubMed

    Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming

    2018-04-01

    Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    PubMed Central

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  3. Direct α-C-H bond functionalization of unprotected cyclic amines

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  4. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    PubMed

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  5. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    PubMed Central

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  6. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  7. Control of nanoparticle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Wan; Hwang, Nong-Moon; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin

    2017-11-01

    The effect of applying a bias to the substrate on the size and amount of charged crystalline silicon nanoparticles deposited on the substrate was investigated in the inductively coupled plasma chemical vapor deposition process. By inserting the grounded grid with meshes above the substrate, the region just above the substrate was separated from the plasma. Thereby, crystalline Si nanoparticles formed by the gas-phase reaction in the plasma could be deposited directly on the substrate, successfully avoiding the formation of a film. Moreover, the size and the amount of deposited nanoparticles could be changed by applying direct current bias to the substrate. When the grid of 1 × 1-mm-sized mesh was used, the nanoparticle flux was increased as the negative substrate bias increased from 0 to - 50 V. On the other hand, when a positive bias was applied to the substrate, Si nanoparticles were not deposited at all. Regardless of substrate bias voltages, the most frequently observed nanoparticles synthesized with the grid of 1 × 1-mm-sized mesh had the size range of 10-12 nm in common. When the square mesh grid of 2-mm size was used, as the substrate bias was increased from - 50 to 50 V, the size of the nanoparticles observed most frequently increased from the range of 8-10 to 40-45 nm but the amount that was deposited on the substrate decreased.

  8. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  9. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  10. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.

    PubMed

    Worden, Evan J; Dong, Ken C; Martin, Andreas

    2017-09-07

    Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion can lock to a Hall angle greater than the clean limit value and then jump back to the lower value at higher drives. The skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to the nondissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the external drive. We find that these effects are robust for different types of periodic substrates. Using a simple model for a skyrmion interacting with a single pinning site, we can capture the behavior of the change in the Hall angle with increasing external drive. When the skyrmion moves through the pinning site, its trajectory exhibits a side step phenomenon since the Magnus term induces a curvature in the skyrmion orbit. As the drive increases, this curvature is reduced and the side step effect is also reduced. Increasing the strength of the Magnus term reduces the range of impact parameters over which the skyrmion can be captured by a pinning site, which is one of the reasons that strong Magnus force effects reduce the pinning in skyrmion systems.

  12. Effect of Substrate Wetting on the Morphology and Dynamics of Phase Separating Multi-Component Mixture

    NASA Astrophysics Data System (ADS)

    Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul

    2017-11-01

    We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.

  13. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  14. Distribution and Catabolic Diversity of 3-Chlorobenzoic Acid Degrading Bacteria Isolated from Geographically-Separated Pristine Soils

    DTIC Science & Technology

    1994-08-01

    influence on the structure of 3-CBA degrading populations. This suggests that if substrate exposure is important, secondary metabolites produced during the...enrichments were treated with 50 gIg 3-CBAgodry-soil- 1 and secondary enrichments were performed with 50 p.g 3-CBA ml-1 d•tfined medium. Isolates were...not attempt to determine metabolites or if transformations were biologically mediated. As a result, it was not clear whether disappearance of a

  15. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  16. The bacterial dicarboxylate transporter, VcINDY, uses a two-domain elevator-type mechanism

    PubMed Central

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A.; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R.; Mindell, Joseph A.

    2016-01-01

    Secondary transporters use alternating access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters utilize a “rocking bundle” motion, where the protein moves around an immobile substrate binding site. However, the glutamate transporter homolog, GltPh, translocates its substrate binding site vertically across the membrane, an “elevator” mechanism. Here, we used the “repeat swap” approach to computationally predict the outward-facing state of the Na+/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial “elevator”-like movement of vcINDY’s substrate binding site, with a vertical translation of ~15 Å and a rotation of ~43°; multiple disulfide crosslinks which completely inhibit transport provide experimental confirmation and demonstrate that such movement is essential. In contrast, crosslinks across the VcINDY dimer interface preserve transport, revealing an absence of large scale coupling between protomers. PMID:26828963

  17. Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.

    PubMed

    Hu, Wanhui; Wu, Huiwen; Zhang, Hong; Gong, Weibin; Perrett, Sarah

    2015-10-01

    Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) (1)H, (13)C, (15)N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382-554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.

  18. System and method for floating-substrate passive voltage contrast

    DOEpatents

    Jenkins, Mark W [Albuquerque, NM; Cole, Jr., Edward I.; Tangyunyong, Paiboon [Albuquerque, NM; Soden, Jerry M [Placitas, NM; Walraven, Jeremy A [Albuquerque, NM; Pimentel, Alejandro A [Albuquerque, NM

    2009-04-28

    A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.

  19. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process.

    PubMed

    Yoon, Taeshik; Shin, Woo Cheol; Kim, Taek Yong; Mun, Jeong Hun; Kim, Taek-Soo; Cho, Byung Jin

    2012-03-14

    Direct measurement of the adhesion energy of monolayer graphene as-grown on metal substrates is important to better understand its bonding mechanism and control the mechanical release of the graphene from the substrates, but it has not been reported yet. We report the adhesion energy of large-area monolayer graphene synthesized on copper measured by double cantilever beam fracture mechanics testing. The adhesion energy of 0.72 ± 0.07 J m(-2) was found. Knowing the directly measured value, we further demonstrate the etching-free renewable transfer process of monolayer graphene that utilizes the repetition of the mechanical delamination followed by the regrowth of monolayer graphene on a copper substrate. © 2012 American Chemical Society

  20. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less

  1. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.

    2015-07-01

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.

  2. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  3. Thin film with oriented cracks on a flexible substrate

    DOEpatents

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  4. Method of deposition of silicon carbide layers on substrates and product

    DOEpatents

    Angelini, Peter; DeVore, Charles E.; Lackey, Walter J.; Blanco, Raymond E.; Stinton, David P.

    1984-01-01

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at about 800.degree. C. to 1050.degree. C. when the substrates have been confined within a suitable coating environment.

  5. Remote site-selective C-H activation directed by a catalytic bifunctional template.

    PubMed

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-23

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  6. High Corrosion Resistance Offered by Multi-Walled Carbon Nanotubes Directly Grown Over Mild Steel Substrate

    NASA Astrophysics Data System (ADS)

    Arora, Sweety; Rekha, M. Y.; Gupta, Abhay; Srivastava, Chandan

    2018-02-01

    The inert and hydrophobic nature of carbon nanotubes (CNTs) makes them a potential material for corrosion protection coatings. In this work, a uniform coating of multi-walled CNTs (MWCNTs) was formed over a mild steel substrate by direct decomposition of a ferrocene-benzene mixture over the substrate which was kept inside a chemical vapor deposition setup at a temperature of 800°C. The MWCNTs formed over the substrate were characterized using x-ray diffraction, Raman spectroscopy and transmission electron microscopy techniques. Corrosion behavior of the bare and MWCNT-coated mild steel substrate was examined through potentiodynamic polarization and electrochemical impedance spectroscopy methods. A significant improvement in the corrosion resistance in terms of the reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the MWCNT-coated mild steel plate. Corrosion resistance increased due to MWCNT coating.

  7. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  8. A novel compact model for on-chip stacked transformers in RF-CMOS technology

    NASA Astrophysics Data System (ADS)

    Jun, Liu; Jincai, Wen; Qian, Zhao; Lingling, Sun

    2013-08-01

    A novel compact model for on-chip stacked transformers is presented. The proposed model topology gives a clear distinction to the eddy current, resistive and capacitive losses of the primary and secondary coils in the substrate. A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided. The model is further verified by the excellent match between the measured and simulated S -parameters on the extracted parameters for a 1 : 1 stacked transformer manufactured in a commercial RF-CMOS technology.

  9. Electric Propulsion Induced Secondary Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  10. Revealing cytokine-induced changes in the extracellular matrix with secondary ion mass spectrometry

    PubMed Central

    Taylor, Adam J; Ratner, Buddy D; Buttery, Lee DK; Alexander, Morgan R

    2015-01-01

    Cell-secreted matrices (CSMs), where extracellular matrix (ECM) deposited by monolayer cell cultures are decellularized, have been increasingly used to produce surfaces that may be reseeded with cells. Such surfaces are useful to help us understand cell-ECM interactions in a microenvironment closer to the in vivo situation than synthetic substrates with adsorbed proteins. We describe the production of CSMs from mouse primary osteoblasts (mPObs) exposed to cytokine challenge during matrix secretion, mimicking in vivo inflammatory environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) data revealed that CSMs with cytokine challenge at day 7 or day 12 of culture can be chemically distinguished from one another and from untreated CSM using multivariate analysis. Comparison of the differences with reference spectra from adsorbed protein mixtures points towards cytokine challenge resulting in a decrease in collagen content. This is supported by immunocytochemical and histological staining, demonstrating a 44% loss of collagen mass and a 32% loss in collagen I coverage. CSM surfaces demonstrate greater cell adhesion than adsorbed ECM proteins. When mPObs were reseeded onto cytokine-challenged CSMs they exhibited reduced adhesion and elongated morphology compared to untreated CSMs. Such changes may direct subsequent cell fate and function and provide insights into pathological responses at sites of inflammation. PMID:25523877

  11. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    DOE PAGES

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; ...

    2018-01-30

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. In this study, we find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substratemore » preparation. In conclusion, these findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.« less

  12. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. In this study, we find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substratemore » preparation. In conclusion, these findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.« less

  13. Dip-Coating Fabrication of Solar Cells

    NASA Technical Reports Server (NTRS)

    Koepke, B.; Suave, D.

    1982-01-01

    Inexpensive silicon solar cells made by simple dip technique. Cooling shoes direct flow of helium on graphite-coated ceramic substrate to solidify film of liquid silicon on graphite surface as substrate is withdrawn from molten silicon. After heaters control cooling of film and substrate to prevent cracking. Gas jets exit at points about 10 mm from substrate surfaces and 6 to 10 mm above melt surface.

  14. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    PubMed

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. In situ elasticity modulation with dynamic substrates to direct cell phenotype

    PubMed Central

    Kloxin, April M.; Benton, Julie A.; Anseth, Kristi S.

    2009-01-01

    Microenvironment elasticity influences critical cell functions such as differentiation, cytoskeletal organization, and process extension. Unfortunately, few materials allow elasticity modulation in real-time to probe its direct effect on these dynamic cellular processes. Here, a new approach is presented for the photochemical modulation of elasticity within the cell's microenvironment at any point in time. A photodegradable hydrogel was irradiated and degraded under cytocompatible conditions to generate a wide range of elastic moduli similar to soft tissues and characterized using rheometry and atomic force microscopy (AFM). The effect of the elastic modulus on valvular interstitial cell (VIC) activation into myofibroblasts was explored. In these studies, gradient samples were used to identify moduli that either promote or suppress VIC myofibroblastic activation. With this knowledge, VICs were cultured on a high modulus, activating hydrogel substrate, and uniquely, results show that decreasing the substrate modulus with irradiation reverses this activation, demonstrating that myofibroblasts can be de-activated solely by changing the modulus of the underlying substrate. This finding is important for the rational design of biomaterials for tissue regeneration and offers insight into fibrotic disease progression. These photodegradable hydrogels demonstrate the capability to both probe and direct cell function through dynamic changes in substrate elasticity. PMID:19788947

  16. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization

    PubMed Central

    2015-01-01

    A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628

  17. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    PubMed

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from γ = 5.1 × 10 -6 to 9.7 × 10 -7 . After adjusting for reactive surface areas, we estimate uptake coefficients for limonene on HNO 3 -processed mineral aerosol on the order of (1-6) × 10 -6 . Although this heterogeneous reaction will not impact the atmospheric lifetime of gaseous limonene, it does provide a new pathway for mineral aerosol to acquire secondary organic matter from biogenic hydrocarbons, which in turn will alter the physical properties of mineral dust.

  18. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  19. Improving American Schools: A National Perspective.

    ERIC Educational Resources Information Center

    Jennings, John F.

    Although the amount of federal aid available directly to secondary schools is small, cutbacks in federal aid can have a significant impact on secondary education because several direct aid programs receiving major funding from federal sources affect secondary education indirectly. All education is also affected by federal tax deductions for state…

  20. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.

  1. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Low-Temperature Growth of Amorphous Silicon Films and Direct Fabrication of Solar Cells on Flexible Polyimide and Photo-Paper Substrates

    NASA Astrophysics Data System (ADS)

    Madaka, Ramakrishna; Kanneboina, Venkanna; Agarwal, Pratima

    2018-05-01

    Direct deposition of hydrogenated amorphous silicon (a-Si:H) thin films and fabrication of solar cells on polyimide (PI) and photo-paper (PP) substrates using a rf-plasma-enhanced chemical vapor deposition technique is reported. Intrinsic amorphous silicon films were deposited on PI and PP substrates by varying the substrate temperature (T s) over 70-150°C to optimize the deposition parameters for best quality films. The films deposited on both PI and PP substrates at a temperature as low as 70°C showed a photosensitivity (σ ph/σ d) of nearly 4 orders of magnitude which increased to 5-6 orders of magnitude when the substrate temperature was increased to 130-150°C. The increase in σ ph/σ d is due to the presence of a few nanometer-sized crystallites embedded in the film. Solar cells (n-i-p) were fabricated directly on PI, PP and Corning 1737 glass (Corning) at 150°C for different thicknesses of an intrinsic amorphous silicon layer (i-layer). With the increase in i-layer thickness from 330 nm to 700 nm, the solar cell efficiency was found to increase from 3.81% to 5.02% on the Corning substrate whereas on the flexible PI substrate an increase from 3.38% to 4.38% was observed. On the other hand, in the case of cells on PP, the i-layer thickness was varied from 200 nm to 700 nm and the best cell efficiency 1.54% was obtained for the 200-nm-thick i-layer. The fabrication of a-Si (n-i-p) solar cells on photo-paper is presented for the first time.

  3. Substrate independent approach for synthesis of graphene platelet networks.

    PubMed

    Shashurin, A; Fang, X; Zemlyanov, D; Keidar, M

    2017-06-23

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO 2 ), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al 2 O 3 ). The mismatch between the atomic structures of sp 2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  4. Substrate independent approach for synthesis of graphene platelet networks

    NASA Astrophysics Data System (ADS)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  5. Direct Printing of Graphene onto Plastic Substrates.

    NASA Astrophysics Data System (ADS)

    Hines, Daniel; Lock, Evgeniya; Walton, Scott; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn; Sheehan, Paul; Lee, Woo; Robinson, Jeremy

    2011-03-01

    Graphene films have been synthesized on metal foils using CVD growth and have the potential to be compatible with roll-to-roll printing. To be usable in electronic devices, these films need to be removed from the metallic substrate. Currently this is accomplished by spin coating a polymer film over the graphene and chemically etching away the metal substrate. We have developed a direct printing method that allows graphene films to be printed off the metal substrate onto a polymer substrate. This printing process does not generate chemical waste, is compatible with roll-to-toll processing and renders the metal foil reusable. Adhesion of the graphene film to the polymer substrate is established by attaching perfluorophenylazides (PFPA) azide linker molecules to a plasma activated polymer surface. The transfer printing was performed by placing the PFPA treated polymer surface in contact with a graphene covered Cu foil and heating under pressure. Graphene films successfully printed onto a polystyrene substrate have been characterized by Raman spectroscopy and electrical measurements revealed the presence of Gr on the polymer surface. Details of the printing process along with characteristics of the graphene film after printing will be presented.

  6. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, P.; Hayes, R.E.

    1984-12-04

    Disclosed is a process for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve the first layer a sufficient amount to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  7. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, Peter; Hayes, Russell E.

    1986-01-01

    A process is disclosed for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve a sufficient amount of the first layer to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent to the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  8. Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247.

    PubMed Central

    Li, Y K; Chir, J; Chen, F Y

    2001-01-01

    A family 3 beta-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been cloned and overexpressed. The mechanistic action of the enzyme was probed by NMR spectroscopy and kinetic investigations, including substrate reactivity, secondary kinetic isotope effects and inhibition studies. The stereochemistry of enzymic hydrolysis was identified as occurring with the retention of an anomeric configuration, indicating a double-displacement reaction. Based on the k(cat) values with a series of aryl glucosides, a Bronsted plot with a concave-downward shape was constructed. This biphasic behaviour is consistent with a two-step mechanism involving the formation and breakdown of a glucosyl-enzyme intermediate. The large Bronsted constant (beta=-0.85) for the leaving-group-dependent portion (pK(a) of leaving phenols >7) indicates substantial bond cleavage at the transition state. Secondary deuterium kinetic isotope effects with 2,4-dinitrophenyl beta-D-glucopyanoside, o-nitrophenyl beta-D-glucopyanoside and p-cyanophenyl beta-D-glucopyanoside as substrates were 1.17+/-0.02, 1.19+/-0.02 and 1.04+/-0.02 respectively. These results support an S(N)1-like mechanism for the deglucosylation step and an S(N)2-like mechanism for the glucosylation step. Site-directed mutagenesis was also performed to study essential amino acid residues. The activities (k(cat)/K(m)) of the D247G and D247N mutants were 30000- and 200000-fold lower respectively than that of the wild-type enzyme, whereas the D247E mutant retained 20% of wild-type activity. These results indicate that Asp-247 is an essential amino acid. It is likely that this residue functions as a nucleophile in the reaction. This conclusion is supported by the kinetics of the irreversible inactivation of the wild-type enzyme by conduritol-B-epoxide, compared with the much slower inhibition of the D247E mutant and the lack of irreversible inhibition of the D247G mutant. PMID:11311148

  9. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Couradeau, Estelle; Roush, Daniel; Guida, Brandon Scott; Garcia-Pichel, Ferran

    2017-01-01

    Endolithic microbial communities are prominent features of intertidal marine habitats, where they colonize a variety of substrates, contributing to their erosion. Almost 2 centuries worth of naturalistic studies focused on a few true-boring (euendolithic) phototrophs, but substrate preference has received little attention. The Isla de Mona (Puerto Rico) intertidal zone offers a unique setting to investigate substrate specificity of endolithic communities since various phosphate rock, limestone and dolostone outcrops occur there. High-throughput 16S rDNA genetic sampling, enhanced by targeted cultivation, revealed that, while euendolithic cyanobacteria were dominant operational taxonomic units (OTUs), the communities were invariably of high diversity, well beyond that reported in traditional studies and implying an unexpected metabolic complexity potentially contributed by secondary colonizers. While the overall community composition did not show differences traceable to the nature of the mineral substrate, we detected specialization among particular euendolithic cyanobacterial clades towards the type of substrate they excavate but only at the OTU phylogenetic level, implying that close relatives have specialized recurrently into particular substrates. The cationic mineral component was determinant in this preference, suggesting the existence in nature of alternatives to the boring mechanism described in culture that is based exclusively on transcellular calcium transport.

  10. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.

    PubMed

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2012-03-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.

  11. Fabrication of Superconducting Quantum Interference Device Magnetometers on a Glass Epoxy Polyimide Resin Substrate with Copper Terminals

    NASA Astrophysics Data System (ADS)

    Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen

    We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.

  12. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  13. Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrate via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin

    2006-11-01

    Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.

  14. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-07-31

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized.more » As a result, skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.« less

  15. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking.

    PubMed Central

    Harris, M E; Kazantsev, A V; Chen, J L; Pace, N R

    1997-01-01

    Bacterial ribonuclease P (RNase P), an endonuclease involved in tRNA maturation, is a ribonucleoprotein containing a catalytic RNA. The secondary structure of this ribozyme is well-established, and a low-resolution model of the three-dimensional structure of the ribozyme-substrate complex has been proposed based on site-specific crosslinking and phylogenetic comparative data [Harris ME et al., 1994 EMBO J 13:3953-3963]. However, several substructures of that model were poorly constrained by the available data. In the present analysis, additional constraints between elements within the Escherichia coli RNase P RNA-pre-tRNA complex were determined by intra- and intermolecular crosslinking experiments. Circularly permuted RNase P RNAs were used to position an azidophenacyl photoactive crosslinking agent specifically at strategic sites within the ribozyme-substrate complex. Crosslink sites were mapped by primer extension and confirmed by analysis of the mobility of the crosslinked RNA lariats on denaturing acrylamide gels relative to circular and linear RNA standards. Crosslinked species generally retained significant catalytic activity, indicating that the results reflect the native ribozyme structure. The crosslinking results support the general configuration of the structure model and predicate new positions and orientations for helices that were previously poorly constrained by the data set. The expanded library of crosslinking constraints was used, together with secondary and tertiary structure identified by phylogenetic sequence comparisons, to refine significantly the model of RNase P RNA with bound substrate pre-tRNA. The crosslinking results and data from chemical-modification and mutational studies are discussed in the context of the current structural perspective on this ribozyme. PMID:9174092

  16. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  17. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds.

    PubMed

    Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J

    2017-10-31

    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.

  18. In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2017-03-01

    Natowicz syndrome (mucopolysaccharidoses type 9) is a lysosomal storage disorder caused by deficient or defective human hyaluronidase 1. The disorder is not well studied at the molecular level. Therefore, a new in silico approach was proposed to study the molecular basis on which one clinically observed mutation, Glu268Lys, results in a defective enzyme. The native and mutant structures were subjected to comparative analyses using a conformational sampling approach for geometrical variables viz, RMSF, RMSD, and Ramachandran plot. In addition, the strength of a Cys207-Cys221 disulfide bond and electrostatic interaction between Arg265 and Asp206 were studied, as they are known to be involved in the catalytic activity of the enzyme. Native and mutant E268K showed statistically significant variations with p < 0.05 in RMSD, Ramachandran plot, strengths of disulfide bond, and electrostatic interactions. Further, single model analysis showed variations between native and mutant structures in terms of intra-protein interactions, hydrogen bond dilution, secondary structure, and dihedral angles. Docking analysis predicted the mutant to have a less favorable substrate binding energy compared to the native protein. Additionally, steered MD analysis indicated that the substrate should have more affinity to the native than mutant enzymes. The observed changes theoretically explain the less favorable binding energy of substrate towards mutant E268K, thereby providing a structural basis for its reduced catalytic activity. Hence, our study provides a basis for understanding the disruption in the molecular mechanism of human hyaluronidase 1 by mutation E268K, which may prove useful for the development of synthetic chaperones as a treatment option for Natowicz syndrome.

  19. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds

    PubMed Central

    Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S.; Inagaki, Fumio

    2017-01-01

    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates. PMID:29078310

  20. Plant ALDH10 Family

    PubMed Central

    Kopečný, David; Končitíková, Radka; Tylichová, Martina; Vigouroux, Armelle; Moskalíková, Hana; Soural, Miroslav; Šebela, Marek; Moréra, Solange

    2013-01-01

    Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development. PMID:23408433

  1. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation.

    PubMed

    Itaya, Asuka; Zhong, Xuehua; Bundschuh, Ralf; Qi, Yijun; Wang, Ying; Takeda, Ryuta; Harris, Ann R; Molina, Carlos; Nelson, Richard S; Ding, Biao

    2007-03-01

    RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.

  2. Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons.

    PubMed

    Rosenberg, Richard A; Mishra, Debabrata; Naaman, Ron

    2015-06-15

    The search to understand the origin of homochirality in nature has been ongoing since the time of Pasteur. Previous work has shown that DNA can act as a spin filter for low-energy electrons and that spin-polarized secondary electrons produced by X-ray irradiation of a magnetic substrate can induce chiral selective chemistry. In the present work it is demonstrated that secondary electrons from a substrate that are transmitted through a chiral overlayer cause enantiomeric selective chemistry in an adsorbed adlayer. We determine the quantum yields (QYs) for dissociation of (R)- or (S)-epichlorohydrin adsorbed on a chiral self-assembled layer of DNA on gold and on bare gold (for control). The results show that there is a significant difference in the QYs between the two enantiomers when adsorbed on DNA, but none when they are adsorbed on bare Au. We propose that the effect results from natural spin filtering effects cause by the chiral monolayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  4. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques

    Treesearch

    Q.Q. Wang; Z. He; Z. Zhu; Y.-H.P. Zhang; Y. Ni; X.L. Luo; J.Y. Zhu

    2012-01-01

    Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were...

  6. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates

    NASA Astrophysics Data System (ADS)

    Mahato, J. C.; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B. N.

    2017-10-01

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types—flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi2 and Si are A-type. In the ridged NWs CoSi2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  7. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates.

    PubMed

    Mahato, J C; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B N

    2017-10-20

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi 2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types-flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi 2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi 2 and Si are A-type. In the ridged NWs CoSi 2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  8. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.

    PubMed

    Ip, Hermia; Stratton, Kelly; Zgurskaya, Helen; Liu, Jun

    2003-12-12

    The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.

  9. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seongmin; Verdine, Gregory L.; Harvard)

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less

  10. DC heating induced shape transformation of Ge structures on ultraclean Si(5 5 12) surfaces.

    PubMed

    Dash, J K; Rath, A; Juluri, R R; Raman, P Santhana; Müller, K; Rosenauer, A; Satyam, P V

    2011-04-06

    We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.

  11. Characterization of MgO/Al2O3 Composite Film Prepared by DC Magnetron Sputtering and Its Secondary Electron Emission Properties

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Zhou, Fan; Wang, Jinshu; Liu, Wei; Zhang, Quan; Yin, Qiao

    2018-07-01

    Magnesium oxide (MgO) and MgO/Al2O3 composite thin films were prepared on silver substrates by DC magnetron sputtering technique and their secondary electron yields ( δ) and working durability under constant electron bombardment were investigated. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses reveal that uniform MgO/Al2O3 composite films were developed and residual Al exists in the films after sputtering of the Mg-Al alloy in an Ar-O2 mixed atmosphere on silver substrates heated at 400°C. The MgO/Al2O3 composite films show superior δ as high as 11.6 and much better resistance to electron bombardment than that of pure MgO films. Good secondary electron emission (SEE) properties of the MgO/Al2O3 film are probably due to the presence of alumina in the film, which has higher bond dissociation energy than MgO, as well as the presence of residual Al in the film, which contributes to effective electron transport in the film and diminished surface charging during SEE. With superior SEE performance, MgO/Al2O3 films have potential for practical electron multipliers in various vacuum electron devices.

  12. Biophysically Inspired Rational Design of Structured Chimeric Substrates for DNAzyme Cascade Engineering

    PubMed Central

    Lakin, Matthew R.; Brown, Carl W.; Horwitz, Eli K.; Fanning, M. Leigh; West, Hannah E.; Stefanovic, Darko; Graves, Steven W.

    2014-01-01

    The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes) are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics. PMID:25347066

  13. Enzymatic Activity and Susceptibility to Antifungal Agents of Brazilian Environmental Isolates of Hortaea werneckii.

    PubMed

    Formoso, Andrea; Heidrich, Daiane; Felix, Ciro Ramón; Tenório, Anne Carolyne; Leite, Belize R; Pagani, Danielle M; Ortiz-Monsalve, Santiago; Ramírez-Castrillón, Mauricio; Landell, Melissa Fontes; Scroferneker, Maria L; Valente, Patricia

    2015-12-01

    Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested.

  14. High quality GaAs single photon emitters on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.

    2013-12-04

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.

  15. Competition H(D) Kinetic Isotope Effects in the Autoxidation of Hydrocarbons

    PubMed Central

    Muchalski, Hubert; Levonyak, Alexander J.; Xu, Libin; Ingold, Keith U.; Porter, Ned A.

    2016-01-01

    Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (~7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling. PMID:25533605

  16. Interdiffusion effect on strained La0.8Ba0.2MnO3 thin films by off-axis sputtering on SrTiO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.

    2007-02-01

    Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.

  17. The Transfer of a Holographic Structure from Dihromated Gelatin Layers on a Polymethylmethacrylate Substrate

    NASA Astrophysics Data System (ADS)

    Ganzherli, N. M.; Gulyaev, S. N.; Maurer, I. A.; Khazvalieva, D. R.

    2018-03-01

    The possibility of the transfer of a holographic structure that was originally registered on layers of dichromated gelatin (DCG) onto a substrate material of polymethylmethacrylate (PMMA) has been shown. The use of a selective destructive effect of short-wave UV radiation with a wavelength that is less than 270 nm is the basis of the mechanism of formation of secondary relief-phase holographic structure on the surface of PMMA. The optimization of processing modes and selection of developing compositions which are based on isopropanol and methylisobutylketone (MIBK) have been carried out, which made it possible to create reliefphase holographic gratings with high diffraction efficiency (DE) of about 25% and the maximum depth of the surface relief of the order of 1 μm on the substrates of PMMA.

  18. Competition H(D) kinetic isotope effects in the autoxidation of hydrocarbons.

    PubMed

    Muchalski, Hubert; Levonyak, Alexander J; Xu, Libin; Ingold, Keith U; Porter, Ned A

    2015-01-14

    Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (∼7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling.

  19. Transport of underdamped active particles in ratchet potentials.

    PubMed

    Ai, Bao-Quan; Li, Feng-Guo

    2017-03-29

    We study the rectified transport of underdamped active noninteracting particles in an asymmetric periodic potential. It is found that the ratchet effect of active noninteracting particles occurs in a single direction (along the easy direction of the substrate asymmetry) in the overdamped limit. However, when the inertia is considered, it is possible to observe reversals of the ratchet effect, where the motion is along the hard direction of the substrate asymmetry. By changing the friction coefficient or the self-propulsion force, the average velocity can change its direction several times. Therefore, by suitably tailoring the parameters, underdamped active particles with different self-propulsion forces can move in different directions and can be separated.

  20. Power inverters

    DOEpatents

    Miller, David H [Redondo Beach, CA; Korich, Mark D [Chino Hills, CA; Smith, Gregory S [Woodland Hills, CA

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  1. Solid state direct bonding of polymers by vacuum ultraviolet light below 160 nm

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Yamamoto, Takatoki

    2017-10-01

    This work investigated the application of vacuum ultraviolet (VUV) irradiation to the bonding of various substrates, including glass, polycarbonate (PC), cyclic olefin polymer (COP), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA). This method has the advantage of being able to bond various substrates without the application of heat or adhesives, and therefore may be very useful in the fabrication of micro/nanoscale structures composed of polymers. In contrast to previous applications of this technique, the present study used VUV radiation at wavelengths at and below 160 nm so as to take advantage of the higher energy in this range. Bonding was assessed based on measuring the shear stress of various test specimens subjected to VUV irradiation and then pressed together, and a number of analytical methods were also employed to examine the irradiated surfaces in order to elucidate the morphological and chemical changes following VUV treatment. These analyses included water contact angle measurements, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), time of flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). Poor bonding was identified between combinations consisting of PMMA/PC, PMMA/COP, PMMA/PMMA, PMMA/glass, and PC/COP, whereas all other combinations resulted in successful bonding with the bonding stress values such as PC/PC = 2.0 MPa, PC/glass = 10.7 MPa and COP/COP = 1.7 MPa, respectively.

  2. Genetic Control and Evolution of Anthocyanin Methylation.

    PubMed

    Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald

    2014-07-01

    Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins' structural diversity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  3. Fingerprint detection

    DOEpatents

    Saunders, George C.

    1992-01-01

    A method for detection and visualization of latent fingerprints is provided and includes contacting a substrate containing a latent print thereon with a colloidal metal composition for time sufficient to allow reaction of said colloidal metal composition with said latent print, and preserving or recording the observable print. Further, the method for detection and visualization of latent fingerprints can include contacting the metal composition-latent print reaction product with a secondary metal-containing solution for time sufficient to allow precipitation of said secondary metal thereby enhancing the visibility of the latent print, and preserving or recording the observable print.

  4. High resolution printing of charge

    DOEpatents

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  5. Direct printing and reduction of graphite oxide for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  6. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  7. Ratchet Effects in Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.

  8. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change ofmore » a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  10. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  11. Residual stress analysis for oxide thin film deposition on flexible substrate using finite element method

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui

    2011-09-01

    Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.

  12. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility

    PubMed Central

    Ng, Mei Rosa; Besser, Achim

    2012-01-01

    The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067

  13. Ketones as directing groups in photocatalytic sp3 C–H fluorination† †Electronic supplementary information (ESI) available. CCDC 1556373, 1556374 and 1556555. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc02703f

    PubMed Central

    Bume, Desta Doro; Pitts, Cody Ross; Ghorbani, Fereshte; Harry, Stefan Andrew; Capilato, Joseph N.; Siegler, Maxime A.

    2017-01-01

    The ubiquitous ketone carbonyl group generally deactivates substrates toward radical-based fluorinations, especially sites closest to it. Herein, ketones are used instead to direct aliphatic fluorination using Selectfluor, catalytic benzil, and visible light. Selective β- and γ-fluorination are demonstrated on rigid mono-, di-, tri-, and tetracyclic (steroidal) substrates employing both cyclic and exocyclic aliphatic ketones as directing groups. PMID:29147517

  14. Cube-textured nickel substrates for high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, E.D.; Goyal, A.; Lee, D.F.

    1998-02-01

    The biaxial textures created in metals by rolling and annealing make them useful substrates for the growth of long lengths of biaxially textured material. The growth of overlayers such as high-temperature superconductors (HTS) require flat substrates with a single, sharp texture. A sharp cube texture is produced in high-purity Ni by rolling and annealing. The authors report the effect of rolling reduction and annealing conditions on the sharpness of the cube texture, the incidence of other orientations, the grain size, and the surface topography. A combination of high reduction, and high temperature annealing in a reducing atmosphere leads to >more » 99% cube texture, with mosaic of 9.0{degree} about the rolling direction (RD), 6.5{degree} about the transverse direction (TD), and 5.0{degree} about the normal direction (ND).« less

  15. Shapiro spikes and negative mobility for skyrmion motion on quasi-one-dimensional periodic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-01-12

    Using a simple numerical model of skyrmions in a two-dimensional system interacting with a quasi-one-dimensional periodic substrate under combined dc and ac drives where the dc drive is applied perpendicular to the substrate periodicity, we show that a rich variety of novel phase-locking dynamics can occur due to the influence of the Magnus term on the skyrmion dynamics. Instead of Shapiro steps, the velocity response in the direction of the dc drive exhibits a series of spikes, including extended dc drive intervals over which the skyrmions move in the direction opposite to the dc drive, producing negative mobility. Also, theremore » are specific dc drive values at which the skyrmions move exactly perpendicular to the dc drive direction, giving a condition of absolute transverse mobility.« less

  16. One-way water permeable valve via water-based superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Mates, Joseph E.; Megaridis, Constantine M.

    2013-11-01

    Spray-cast superhydrophobic coatings have shown promise in commercial applications for fluid management due to their intrinsic low-cost, large-area capabilities and substrate independence (Schutzius et al. 2011). A technique of applying a light (< 2 gsm) water-based superhydrophobic coating on inherently hydrophilic cellulosic substrates to generate a preferred directionality for water absorption and transmission is presented. The mechanism described allows water to pass through a thin treated porous substrate in one direction under negligible pressure, but does not allow water to return from the opposite direction unless much greater pressure is applied. This pressure disparity ``window'' effectively creates a one-way fluid valve, with envisioned applications ranging from personal hygiene products, to oil-water separation and filtration. Combining SEM imaging with theoretical robustness factors (Tuteja et al. 2008), the penetration pressures are found to be tunable for application-specific designs by choosing a substrate based on limiting factors of fiber diameter and spacing. The process can also be modified with the addition of functionalized (e.g. antibacterial, conductive) nanoparticle fillers suited for the desired application.

  17. Attachment dynamics of Photosystem I on nano-tailored surfaces for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Bruce, Barry D.; Khomami, Bamin

    2010-03-01

    Photosystem I (PSI), a biological photodiode, is a supra-molecular protein complex that charge separates upon exposure to light. Effective use of photo-electrochemical activities of PSI for hybrid photovoltaic (PV) device fabrications requires optimal encapsulation of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface attachment dynamics of PSI deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate/Au SAM substrates, thereby resulting in complex structural arrangements which affect the electron transfer and capture pathway of PSI. We present surface topographical, specific adsorption and polarization fluorescence characterizations of PSI/Au SAM substrates to elucidate the protein-surface interaction kinetics as well as the directional attachment dynamics of PSI. Our final goal is to enable site-specific homogeneous attachment of directionally aligned PSI onto chemically tailored nano-patterned substrates.

  18. Inertial sensing microelectromechanical (MEM) safe-arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM

    2009-05-12

    Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.

  19. Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Speck, Florian; Seyller, Thomas; Lopes, Joao Marcelo J.; Riechert, Henning

    2016-07-01

    The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al2O3(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.

  20. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  1. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    PubMed

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  2. Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin

    PubMed Central

    Missirlis, Dimitris; Haraszti, Tamás; Scheele, Catharina v. C.; Wiegand, Tina; Diaz, Carolina; Neubauer, Stefanie; Rechenmacher, Florian; Kessler, Horst; Spatz, Joachim P.

    2016-01-01

    The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration. PMID:26987342

  3. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  4. Light Management in Transparent Conducting Oxides by Direct Fabrication of Periodic Surface Arrays

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Sachse, C.; Lasagni, A. F.

    Line- and hexagonal-like periodic textures were fabricated on aluminium zinc oxide (AZO) using direct laser interference patterning method. It was found that hexagonally patterned surfaces show a higher performance in both transparency and diffraction properties compared to line-like textured and non-patterned substrates. Furthermore, the electrical resistance of the processed AZO coated substrates remained below the tolerance values for transparent conducting electrodes.

  5. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    PubMed

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  6. Effect of substrate morphology slope distributions on light scattering, nc-Si:H film growth, and solar cell performance.

    PubMed

    Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro

    2014-12-24

    Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

  7. Direct /TEM/ observation of the catalytic oxidation of amorphous carbon by Pd particles

    NASA Technical Reports Server (NTRS)

    Moorhead, R. D.; Poppa, H.; Heinemann, K.

    1980-01-01

    The catalytic oxidation of amorphous carbon substrates by Pd particles is observed by in situ transmission electron microscopy. Various modes of selective attack of the carbon substrate in the immediate neighborhood of Pd particles are observed, which can be correlated with different degrees of particle mobility. Using amorphous substrates we have been able to demonstrate that the particle-substrate interaction is influenced by the structure of the particle. This has not previously been noted.

  8. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE PAGES

    Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...

    2017-01-17

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  9. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sándor, Csand; Libál, Andras; Reichhardt, Charles

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  10. Nematodes Relevance in Soil Quality Management and their Significance as Biomarkers in Aquatic Substrates: Review.

    PubMed

    Akpheokhai, Leonard I; Oribhabor, Blessing J

    2016-01-01

    The interaction of man with the ecosystem is a major factor causing environmental pollution and its attendant consequences such as climate change in our world today. Patents relating to nematodes' relevance in soil quality management and their significance as biomarkers in aquatic substrates were reviewed. Nematodes are useful in rapid, easy and inexpensive method for testing the toxicity of substance (e.g. aquatic substrates). This review paper sets out to examine and discuss the issue of soil pollution, functions of nematodes in soil and aquatic substrates as well as bio-indicators in soil health management in terrestrial ecology. The information used were on the basis of secondary sources from previous research. It is abundantly clear that the population dynamics of plant parasitic or free-living nematodes have useful potentials as biomonitor for soil health and other forms of environmental contamination through agricultural activities, industrial pollution and oil spillage, and the analysis of nematode community structure could be used as complementary information obtained from conventional soil testing approaches.

  11. Thermal process induced change of conductivity in As-doped ZnO

    NASA Astrophysics Data System (ADS)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  12. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).

    PubMed

    Landmann, Christian; Hücherig, Stefanie; Fink, Barbara; Hoffmann, Thomas; Dittlein, Daniela; Coiner, Heather A; Schwab, Wilfried

    2011-08-01

    One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.

  13. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    PubMed

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    NASA Astrophysics Data System (ADS)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.

  15. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  16. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  17. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods.

    PubMed

    Pasulka, Alexis L; Thamatrakoln, Kimberlee; Kopf, Sebastian H; Guan, Yunbin; Poulos, Bonnie; Moradian, Annie; Sweredoski, Michael J; Hess, Sonja; Sullivan, Mathew B; Bidle, Kay D; Orphan, Victoria J

    2018-02-01

    While the collective impact of marine viruses has become more apparent over the last decade, a deeper understanding of virus-host dynamics and the role of viruses in nutrient cycling would benefit from direct observations at the single-virus level. We describe two new complementary approaches - stable isotope probing coupled with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT) - for studying the activity and biogeochemical influence of marine viruses. These tools were developed and tested using several ecologically relevant model systems (Emiliania huxleyi/EhV207, Synechococcus sp. WH8101/Syn1 and Escherichia coli/T7). By resolving carbon and nitrogen enrichment in viral particles, we demonstrate the power of nanoSIMS tracer experiments in obtaining quantitative estimates for the total number of viruses produced directly from a particular production pathway (by isotopically labelling host substrates). Additionally, we show through laboratory experiments and a pilot field study that BONCAT can be used to directly quantify viral production (via epifluorescence microscopy) with minor sample manipulation and no dependency on conversion factors. This technique can also be used to detect newly synthesized viral proteins. Together these tools will help fill critical gaps in our understanding of the biogeochemical impact of viruses in the ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH

    NASA Astrophysics Data System (ADS)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-05-01

    The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

  19. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2012-11-06

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  20. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae.

    PubMed

    Ditsche, Petra; Michels, Jan; Kovalev, Alexander; Koop, Jochen; Gorb, Stanislav

    2014-03-06

    While terrestrial insects can usually attach directly to a substrate, for aquatic insects the situation is more complicated owing to the presence of a biofilm on the primary substrates. This important fact has been neither the subject of investigation nor commonly taken into account in the interpretation of functional aspects of attachment in mobile freshwater animals. In this study, we investigate the impact of a biofilm on the attachment of living mayfly larvae. We performed in vivo attachment experiments in a flow channel using different substrates with defined surface roughness. Additionally, we measured friction forces directly generated by dissected tarsal claws on the same substrates. On substrates with smooth or slightly rough surfaces, which have little or no surface irregularities large enough for the claws to grasp, the presence of a biofilm significantly increases the friction force of claws. Consequently, larvae can endure higher flow velocities on these smooth substrates. The opposite effect takes place on rough substrates, where the friction force of claws decreases in the presence of a biofilm. Consequently, a biofilm is a critical ecological structure for these larvae, and other aquatic organisms, not only as a food source but also as a factor influencing attachment ability.

  1. Substrate effect on the growth of Sn thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suvankar; Menon, Krishnakumar S. R.

    2018-05-01

    Growth of tin (Sn) on Ag(001), Ag(111) and W(110) substrate has been studied at elevated temperatures (473 K) using x-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED). For Sn growth on silver substrates, it is noticed that both Sn 3d and Ag 3d core-level spectra shift in the higher binding energy direction due to the formation of surface alloy with the substrate. In both cases, surface alloy finally transforms into bulk alloy finally reaching bulk Sn value. For Sn growth on W(110) only Sn 3d core-level spectra shift in the higher binding energy direction due to surface core-level effect whereas no shift for tungsten core-level was noticed confirming no alloy formation. Sn is incorporated into the surface of substrate silver layer by removing every alternate or every third silver atoms to relieve the surface tensile stress as confirmed by LEED. On the other hand, tungsten being hard, Sn forms an overlayer structure by sitting in different energetically available positions rather than forming an alloy as energetically also it is not possible. Sn forms alloy with soft substrate silver and form overlayer films with tungsten. These studies are important in understanding the growth mechanism of Sn films on metal substrates.

  2. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  3. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  4. Ecophysiology of horse chestnut (Aesculus Hippocastanum L.) in degraded and restored urban sites

    Treesearch

    Jacek Oleksyn; Brian D. Kloeppel; Szymon Lukasiewicz; Piotr Karolewski; Peter B. Reich

    2007-01-01

    We explored changes in growth, phenology, net CO2 assimilation rate, water use efficiency, secondary defense compounds, substrate and foliage nutrient concentration of a degraded urban horse chestnut (Aesculus hippocastanum L.) site restored for three years using mulching (tree branches including foliage) and fertilization (...

  5. Methods to introduce sub-micrometer, symmetry-breaking surface corrugation to silicon substrates to increase light trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang Eon; Hoard, Brittany R.; Han, Sang M.

    Provided is a method for fabricating a nanopatterned surface. The method includes forming a mask on a substrate, patterning the substrate to include a plurality of symmetry-breaking surface corrugations, and removing the mask. The mask includes a pattern defined by mask material portions that cover first surface portions of the substrate and a plurality of mask space portions that expose second surface portions of the substrate, wherein the plurality of mask space portions are arranged in a lattice arrangement having a row and column, and the row is not oriented parallel to a [110] direction of the substrate. The patterningmore » the substrate includes anisotropically removing portions of the substrate exposed by the plurality of spaces.« less

  6. In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing

    DOEpatents

    Li, Jian; Levi, Dean; Contreras, Miguel; Glynn, Stephen

    2015-09-15

    A method of fabricating a photovoltaic device 100, includes the steps of providing a glass substrate 102, depositing a molybdenum layer 104 on a surface of the glass substrate, directing light through the glass substrate to the near-substrate region of the molybdenum layer 206, detecting an optical property of the near-substrate region of the molybdenum layer after interaction with the incident light 208 and determining a density of the near-substrate region of the molybdenum layer from the detected optical property 210. A molybdenum deposition parameter may be controlled based upon the determined density of the near-substrate region of the molybdenum layer 218. A non-contact method measures a density of the near-substrate region of a molybdenum layer and a deposition chamber 300.

  7. Secondary emission from dust grains: Comparison of experimental and model results

    NASA Astrophysics Data System (ADS)

    Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.

    The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.

  8. Implementation of Geographic Information System (GIS) in Secondary Geography Curriculum in Hong Kong: Current Situations and Future Directions

    ERIC Educational Resources Information Center

    Lam, Chi-Chung; Lai, Edith; Wong, Janice

    2009-01-01

    Using geographic information system (GIS) in teaching and learning geography is an important direction in the secondary geography curriculum in Hong Kong. In the present study, interviews were conducted individually with 28 geography teachers from different secondary schools in Hong Kong, with a view to finding their views on the inclusion of GIS…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard

    In this study, we investigate the directional distributions of the secondary interstellar neutral (ISN) He and O populations at Earth's orbit. The secondary populations are created by charge exchange between ISN atoms and interstellar ions in the outer heliosheath. Using the IBEX -Lo He and O observations during the winter–spring seasons (early December to early June) in 2009–2011, we produced all-sky maps for He and O atoms with sputtering corrections. These sky maps include the directional distributions of the primary ISN gas and secondary populations. Our investigations reveal that the secondary He and O populations are observed in the eclipticmore » longitude range 160°–210°. The peak longitudes of the secondary He and O appear to be 14°–34° and 38°–43° away from the peak longitude of the primary interstellar gas flow, respectively. These results indicate that the secondary populations have lower bulk speeds relative to the Sun and their flow directions deviate from the primary gas flow. These results may indicate that one side of the outer heliosheath is thicker than the other side relative to the flow direction of the primary interstellar gas flow.« less

  10. Method and apparatus for laser/plasma chemical processing of substrates

    DOEpatents

    Gee, J.M.; Hargis, P.J. Jr.

    1984-07-21

    A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.

  11. Dynamics of primary and secondary microbubbles created by laser-induced breakdown of an optically trapped nanoparticle

    PubMed Central

    Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.

    2012-01-01

    Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669

  12. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.

    PubMed

    Murakami, Keiichi; Sasano, Yusuke; Tomizawa, Masaki; Shibuya, Masatoshi; Kwon, Eunsang; Iwabuchi, Yoshiharu

    2014-12-17

    The development and characterization of enantioselective organocatalytic oxidative kinetic resolution (OKR) of racemic secondary alcohols using chiral alkoxyamines as precatalysts are described. A number of chiral alkoxyamines have been synthesized, and their structure-enantioselectivity correlation study in OKR has led us to identify a promising precatalyst, namely, 7-benzyl-3-n-butyl-4-oxa-5-azahomoadamantane, which affords various chiral aliphatic secondary alcohols (ee up to >99%, k(rel) up to 296). In a mechanistic study, chlorine-containing oxoammonium species were identified as the active species generated in situ from the alkoxyamine precatalyst, and it was revealed that the chlorine atom is crucial for high reactivity and enantioselectivity. The present OKR is the first successful example applicable to various unactivated aliphatic secondary alcohols, including heterocyclic alcohols with high enantioselectivity, the synthetic application of which is demonstrated by the synthesis of a bioactive compound.

  13. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide.

    PubMed

    Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong; Nam, Wonwoo; Sun, Wei

    2017-11-01

    The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R - and S -enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.

  14. Transversely-illuminated high current photoconductive switches with geometry-constrained conductivity path

    DOEpatents

    Nelson, Scott D.

    2016-05-10

    A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.

  15. Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy.

    PubMed

    Cating, Emma E M; Pinion, Christopher W; Van Goethem, Erika M; Gabriel, Michelle M; Cahoon, James F; Papanikolas, John M

    2016-01-13

    Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.

  16. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  17. Multistructural biomimetic substrates for controlled cellular differentiation

    NASA Astrophysics Data System (ADS)

    Orza, Anamaria I.; Mihu, Carmen; Soritau, Olga; Diudea, Mircea; Florea, Adrian; Matei, Horea; Balici, Stefana; Mudalige, Thilak; Kanarpardy, Ganesh K.; Biris, Alexandru S.

    2014-02-01

    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues.

  18. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    NASA Astrophysics Data System (ADS)

    Ohya, K.; Yamanaka, T.

    2013-11-01

    Charging of a SiO2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers (<250 nm) is strongly suppressed due to wide depth and lateral distributions of the He ions in the layer, the voltage of which is much lower than that for the Ga ions and the electrons, where the distributions are much more localized. When the irradiation approaches the edge of a 100-nm-high SiO2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO2 layer.

  19. Scanning nozzle plating system. [for etching or plating metals on substrates without masking

    NASA Technical Reports Server (NTRS)

    Oliver, G. D. (Inventor)

    1974-01-01

    A plating system is described in which a substrate to be plated is supported on a stationary platform. A nozzle assembly with a small nozzle is supplied with a plating solution under high pressure, so that a constant-flow stream of solution is directed to the substrate. The nozzle assembly is moved relative to the substrate at a selected rate and movement pattern. A potential difference (voltage) is provided between the substrate and the solution in the assembly. The voltage amplitude is modulated so that only when the amplitude is above a minimum known value plating takes place.

  20. Investigation of HP Turbine Blade Failure in a Military Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra

    2017-04-01

    Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.

  1. Ion-/proton-conducting apparatus and method

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  2. LWIR HgCdTe Detectors Grown on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.

    2008-09-01

    Long-wavelength infrared (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.

  3. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  4. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  5. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  6. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  7. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  8. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  9. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  10. Investigation into the role of NaCl deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    Morphological aspects of the conversion to Na2SO4 of NaCl deposits over the temperature range 500-700 C, in air with added SO2 and H2O. Progress of the reaction was observed by withdrawing samples at various times and examining them under the scanning electron microscope using EDAX to assess the extent of chloride to sulfate conversion. These initial results show that the conversion to Na2SO4 proceeds directly on the sodium chloride surface as well as on the surrounding substrate due to evaporation of NaCl from the solid particle. The mechanism of this reaction could involve reaction in the vapor to produce Na2SO4 which then deposits, alternatively Na2SO4 could form directly on the substrate surface due to direct reaction there between the vapors NaCl, SO2 and O2.

  11. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.

    PubMed

    Tyagi, Sadhna; Pleiss, Juergen

    2006-06-25

    A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.

  12. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya

    2015-03-02

    A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.

  13. Direct printing and reduction of graphite oxide for flexible supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart powermore » applications.« less

  14. The epitaxial growth of wurtzite ZnO films on LiNbO 3 (0 0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Yin, J.; Liu, Z. G.; Liu, H.; Wang, X. S.; Zhu, T.; Liu, J. M.

    2000-12-01

    ZnO epitaxial films were deposited on LiNbO 3 (0 0 0 1) substrates by pulsed laser deposition. The smaller lattice misfit (-8.5%) between ZnO along <1 0 1¯ 0>- direction and LiNbO 3 (0 0 0 1) along <1 1 2¯ 0>- direction, as compared with that in the case of normally used sapphire (0 0 0 1) substrates, favored the epitaxial growth of ZnO films. The transmittance spectra of ZnO films deposited in vacuum after annealed in pure oxygen show a sharp absorption edge at 375.6 nm (E g=3.31 eV) .

  15. The RNA Polymerase II Trigger Loop Functions in Substrate Selection and is Directly Targeted by α-amanitin

    PubMed Central

    Kaplan, Craig D.; Larsson, Karl-Magnus; Kornberg, Roger D.

    2008-01-01

    Summary Structural, biochemical and genetic studies have led to proposals that a mobile element of multi-subunit RNA polymerases, the Trigger Loop (TL), plays a critical role in catalysis and can be targeted by antibiotic inhibitors. Here we present evidence that the Saccharomyces cerevisiae RNA Polymerase II (Pol II) TL participates in substrate selection. Amino acid substitutions within the Pol II TL preferentially alter substrate usage and enzyme fidelity, as does inhibition of transcription by α-amanitin. Finally, substitution of His1085 in the TL specifically renders Pol II highly resistant to α-amanitin, indicating a functional interaction between His1085 and α-amanitin that is supported by re-refinement of an α-amanitin-Pol II crystal structure. We propose that α-amanitin inhibited Pol II elongation, which is slow and exhibits reduced substrate selectivity, results from direct α-amanitin interference with the TL. PMID:18538653

  16. The Impact of the Direct Teacher Feedback Strategy on the EFL Secondary Stage Students' Writing Performance

    ERIC Educational Resources Information Center

    Elashri, Ismail Ibrahim Elshirbini Abdel Fattah

    2013-01-01

    This study aimed at developing some writing skills for second year secondary stage students through the direct teacher feedback strategy. Hence, the problem of the study was stated in the following statement: "The students at Al Azhar secondary schools are not good at writing. As a result their writing skills are weak." They need to be…

  17. Ion channel-transporter interactions

    PubMed Central

    Neverisky, Daniel L.; Abbott, Geoffrey W.

    2016-01-01

    All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective, and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H+/K+-ATPases and Na+/K+-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion, and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term “chansporters”, explore their biological roles, and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality. PMID:27098917

  18. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  19. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1996-04-02

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  20. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1994-04-26

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  1. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  2. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1996-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  3. Carbon Nanotube Patterning on a Metal Substrate

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor)

    2016-01-01

    A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure.

  4. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.

    1988-01-01

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.

  5. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, R.L.; Guilford, R.P.; Stichman, J.H.

    1987-06-29

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.

  6. Thin film deposition using rarefied gas jet

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The rarefied gas jet of aluminium is studied at Mach number Ma =(U_j /√{ kbTj / m }) in the range .01

  7. Remote site-selective C-H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  8. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle.

    PubMed

    Gao, Hua-De; Thanasekaran, Pounraj; Chiang, Chao-Wei; Hong, Jia-Lin; Liu, Yen-Chun; Chang, Yu-Hsu; Lee, Hsien-Ming

    2015-07-28

    Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.

  9. Anisotropic growth and formation mechanism investigation of 1D ZnO nanorods in spin-coating sol-gel process.

    PubMed

    Song, Yijian; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-01-01

    ZnO nanorods are fabricated on glass substrate by spin-coating sol-gel process using non-basic aged solution and annealing. Sample solutions reserved in room temperature for different time (one day, one month, two months and four months) are prepared for the experiment. The morphology study indicates that the aging time has direct influence on the final products. This is verified by the Transmission Electron Microscopy and Photon Correlation Spectroscopy study. Small crystalline nanoparticles would gradually nucleate and aggregate in the sol during the aging process. They act as nucleation site for the secondary crystal growth into nanorods during anneal. Both the size of crystalline particles in the sol and the size of nanorods will grow bigger as the aging time increases. The products' structure and optical property are further studied by X-ray diffraction spectroscopy, Photoluminescence and Raman spectroscopy. This work also helps to further clarify the formation mechanism of ZnO nanorods by solution-based method.

  10. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  11. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids.

    PubMed

    Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir

    2017-06-01

    The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

  12. Energy status and oxidation reduction status in rat liver at high altitude /3.8 km/

    NASA Technical Reports Server (NTRS)

    Reed, R. D.; Pace, N.

    1980-01-01

    Adult male rats were exposed to 3.8-km altitude for intervals ranging from 1 h-60 d. Liver samples were taken under light ether anesthesia and were examined by enzymatic analyses. Within 1-6 h of hypoxic exposure, ATP levels decreased while ADP and AMP levels increased, producing a fall in calculated ATP/ADP and adenylate charge ratios. Concurrently, lactate/pyruvate and alpha-glycerophosphate/dihydroxyacetone phosphate ratios increased markedly. Direct measurements of cellular pyridine nucleotides indicated increased NADH/NAD and NADPH/NADP ratios. Levels of total adenosine phosphates and pyridine nucleotides decreased in a significant accompanying response. Many metabolite levels and calculated ratios returned to near-normal values within 1 week of exposure, indicating secondary intracellular adjustments to hypoxic stress; however, persistence of that stress is reflected in lactate concentrations and both substrate redox ratios. Results support and explore concepts that increased oxidation-reduction status and decreased energy status are primary events during hypoxia.

  13. Process Produces Low-Secondary-Electron-Emission Surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.; Roman, R. F.

    1986-01-01

    Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.

  14. Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera.

    PubMed

    Pandey, Vibha; Dhar, Yogeshwar Vikram; Gupta, Parul; Bag, Sumit K; Atri, Neelam; Asif, Mehar Hasan; Trivedi, Prabodh Kumar; Misra, Pratibha

    2015-04-16

    Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.

  15. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, E.T.; Deng, W.; Krumm, B.E.

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificitymore » between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.« less

  16. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  17. Surface Currents. Norwegian and Barents Seas.

    DTIC Science & Technology

    1980-01-01

    DIRECTION. 231 23 - 6 1 SECONDARY DIRECTION). 2 044 37- 10 06 f ’A, SPEEOS 1.0 KNOT PRIMARy DIRECTION. 0.6 KNOT1 I- t 043 SECONDARY DIRtTION). D I P 0 0...LONDON NWSED MAYPORT NWSED NAPLES NWSED PATUXENT RIVER NWSED ROOSEVELT ROADS NWSED SIGONELLA NWSED SOUDA BAY OTHER GOVT. NOAAINODC NOM ,/NCC SCCUMVVV

  18. Strong, non-magnetic, cube textured alloy substrates

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-02-01

    A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15.degree. in all directions.

  19. Comparison of preprocessing methods and storage times for touch DNA samples

    PubMed Central

    Dong, Hui; Wang, Jing; Zhang, Tao; Ge, Jian-ye; Dong, Ying-qiang; Sun, Qi-fan; Liu, Chao; Li, Cai-xia

    2017-01-01

    Aim To select appropriate preprocessing methods for different substrates by comparing the effects of four different preprocessing methods on touch DNA samples and to determine the effect of various storage times on the results of touch DNA sample analysis. Method Hand touch DNA samples were used to investigate the detection and inspection results of DNA on different substrates. Four preprocessing methods, including the direct cutting method, stubbing procedure, double swab technique, and vacuum cleaner method, were used in this study. DNA was extracted from mock samples with four different preprocessing methods. The best preprocess protocol determined from the study was further used to compare performance after various storage times. DNA extracted from all samples was quantified and amplified using standard procedures. Results The amounts of DNA and the number of alleles detected on the porous substrates were greater than those on the non-porous substrates. The performances of the four preprocessing methods varied with different substrates. The direct cutting method displayed advantages for porous substrates, and the vacuum cleaner method was advantageous for non-porous substrates. No significant degradation trend was observed as the storage times increased. Conclusion Different substrates require the use of different preprocessing method in order to obtain the highest DNA amount and allele number from touch DNA samples. This study provides a theoretical basis for explorations of touch DNA samples and may be used as a reference when dealing with touch DNA samples in case work. PMID:28252870

  20. Preferentially etched epitaxial liftoff of InP material

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); Deangelo, Frank L. (Inventor)

    1995-01-01

    The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.

  1. Preferentially Etched Epitaxial Liftoff of InP Material

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); DeAngelo, Frank L. (Inventor)

    1997-01-01

    The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.

  2. Glycine Betaine as a Direct Substrate for Methanogens (Methanococcoides spp.)

    PubMed Central

    Watkins, Andrew J.; Roussel, Erwan G.; Parkes, R. John

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  3. Phosphor thermometry system

    DOEpatents

    Beshears, David L.; Sitter, Jr., David N.; Andrews, William H.; Simpson, Marc L.; Abston, Ruth A.; Cates, Michael R.; Allison, Steve W.

    2000-01-01

    An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence. A processor analyzes the electrical signal to determine the decay characteristic of the luminescence and to determine the temperature of the phosphor from the decay characteristic.

  4. Ratchet Effects in Active Matter Systems

    DOE PAGES

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    2016-12-21

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  5. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    PubMed Central

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  6. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-02

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.

  7. Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions.

    PubMed

    Herrera-Melián, José Alberto; Guedes-Alonso, Rayco; Borreguero-Fabelo, Alejandro; Santana-Rodríguez, José Juan; Sosa-Ferrera, Zoraida

    2017-05-31

    Eight wastewater samples from a university campus were analysed between May and July of 2014 to determine the concentration of 14 natural and synthetic steroid hormones. An on-line solid-phase extraction combined with ultra-high performance liquid chromatography coupled with mass spectrometry (on-line SPE-UHPLC-MS/MS) was used as extraction, pre-concentration and detection method. In the samples studied, three oestrogens (17β-estradiol, estrone and estriol), two androgens (boldenone and testosterone), three progestogens (norgestrel, progesterone and norethisterone) and one glucocorticoid (prednisone) were detected. The removal of hormones was studied in primary and secondary constructed wetland mesocosms. The porous media of the primary constructed wetlands were palm tree mulch. These reactors were used to study the effect of water flow, i.e. horizontal (HF1) vs vertical (VF1). The latter was more efficient in the removal of 17β-estradiol (HF1: 30%, VF1: 50%), estrone (HF1: 63%, VF1: 85%), estriol (100% both), testosterone (HF1: 45%, VF1: 73%), boldenone (HF1:-77%, VF1: 100%) and progesterone (HF1: 84%, VF1: 99%). The effluent of HF1 was used as influent of three secondary constructed wetland mesocosms: two double-stage vertical flow constructed wetlands, one with gravel (VF2gravel) and one with palm mulch (VF2mulch), and a mineral-based, horizontal flow constructed wetland (HFmineral). VF2mulch was the most efficient of the secondary reactors, since it achieved the complete removal of the hormones studied with the exception of 17ß-estradiol. The significantly better removal of BOD and ammonia attained by VF2mulch suggests that the better aeration of mulch favoured the more efficient removal of hormones.

  8. A Structured Viroid RNA Serves as a Substrate for Dicer-Like Cleavage To Produce Biologically Active Small RNAs but Is Resistant to RNA-Induced Silencing Complex-Mediated Degradation▿

    PubMed Central

    Itaya, Asuka; Zhong, Xuehua; Bundschuh, Ralf; Qi, Yijun; Wang, Ying; Takeda, Ryuta; Harris, Ann R.; Molina, Carlos; Nelson, Richard S.; Ding, Biao

    2007-01-01

    RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures. PMID:17202210

  9. Sensitivity of macrobenthic secondary production to trawling in the English sector of the Greater North Sea: A biological trait approach

    NASA Astrophysics Data System (ADS)

    Bolam, S. G.; Coggan, R. C.; Eggleton, J.; Diesing, M.; Stephens, D.

    2014-01-01

    Demersal trawling constitutes the most significant human impact on both the structure and functioning of coastal seabed fauna. While a number of studies have assessed the impacts of trawling on faunal community structure and the degree to which different taxa are vulnerable to trawling, few have focused on how these impacts affect important ecological functions of the seabed. In this study, we use biological trait analysis (BTA) to assess the relative sensitivity of benthic macrofauna to trawling, in both the short- and long-term, and use this information to describe the spatial variation in sensitivity of secondary production for the Greater North Sea (GNS). Within the GNS, estimates of total production varied by almost three orders of magnitude, from 1.66 kJ m- 2 y- 1 to 968.9 kJ m- 2 y- 1. Large-scale patterns were observed in the proportion of secondary production derived from trawling-sensitive taxa. In the southern North Sea, total production is predominantly governed by taxa with low sensitivity to trawling, whereas production is relatively trawling-sensitive in the northern North Sea and western English Channel. In general, the more sensitive and productive regions are associated with poorly-sorted, gravelly or muddy sediments, while the less sensitive and less productive regions are associated with well-sorted, sandy substrates. These relationships between production sensitivity and environmental features are primarily due to variations in long-term recovery; total production of most assemblages is highly sensitive to the direct impacts of trawling. We discuss the implications of these findings for management 1decisions to improve the environmental sustainability of trawling.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony

    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof.more » The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.« less

  11. The characterization of photographic materials as substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughan, J.; Hortin, N.; Christie, S.; Kvasnik, F.; Scully, P. J.

    2005-06-01

    In this study, five types of photographic materials were obtained from commercial sources and characterized for use as substrates for surface enhanced Raman spectroscopy. The substrates are photographic emulsions coated on glass or paper support. The emulsions were developed to maximize the amount of metallic silver aggregated into clusters. The test analyte, Cresyl Violet, was deposited directly onto the substrate surface. The permeable nature of the supporting gelatin matrix enables the interaction between the target analyte and the solid silver clusters. The surface enhanced Raman spectra of a 2.75 × 10-7 M concentration of Cresyl Violet in ethanol were obtained using these photographic substrates. The Raman and resonant Raman enhancement of Cresyl Violet varies from substrate to substrate, as does the ratio of Raman to resonant Raman peak heights.

  12. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  13. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  14. Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates.

    PubMed

    Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven

    2015-03-02

    Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaporation-induced flow in an inviscid liquid line at any contact angle

    NASA Astrophysics Data System (ADS)

    Petsi, A. J.; Burganos, V. N.

    2006-04-01

    The problem of potential flow inside an evaporating liquid line, shaped as an infinitely long cylindrical segment lying on a flat surface, is considered and an analytical solution is obtained for any contact angle in (0,π) . In this way, microflow details inside linear liquid bodies evaporating on hydrophilic, hydrophobic, and strongly hydrophobic substrates can now be obtained. The mathematical formulation employs the velocity potential and stream function formulations in bipolar coordinates and the solution is obtained using the technique of Fourier transform. Both pinned and depinned contact lines are considered. The solution is applicable to any evaporation mechanism but for illustration purposes numerical results are presented here for the particular case of kinetically controlled evaporation. For hydrophilic substrates, the flow inside the evaporating liquid line is directed towards the edges for pinned contact lines, thus, promoting a coffee stain effect. The opposite flow direction is observed for depinned contact lines. However, for strongly hydrophobic substrates, flow is directed outwards for both pinned and depinned contact lines, but owing to its low magnitude compared to that on hydrophilic substrates, a craterlike colloidal deposit should be expected rather than a ringlike deposit, in agreement with experimental observations.

  16. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  17. Ultra-fast laser microprocessing of medical polymers for cell engineering applications.

    PubMed

    Ortiz, R; Moreno-Flores, S; Quintana, I; Vivanco, MdM; Sarasua, J R; Toca-Herrera, J L

    2014-04-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000μm(2)). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An easy-to-perform photometric assay for methyltransferase activity measurements.

    PubMed

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook.

    PubMed

    Stanger, Frédéric V; de Beer, Tjaart A P; Dranow, David M; Schirmer, Tilman; Phan, Isabelle; Dehio, Christoph

    2017-01-03

    The BID (Bep intracellular delivery) domain functions as secretion signal in a subfamily of protein substrates of bacterial type IV secretion (T4S) systems. It mediates transfer of (1) relaxases and the attached DNA during bacterial conjugation, and (2) numerous Bartonella effector proteins (Beps) during protein transfer into host cells infected by pathogenic Bartonella species. Furthermore, BID domains of Beps have often evolved secondary effector functions within host cells. Here, we provide crystal structures for three representative BID domains and describe a novel conserved fold characterized by a compact, antiparallel four-helix bundle topped with a hook. The conserved hydrophobic core provides a rigid scaffold to a surface that, despite a few conserved exposed residues and similarities in charge distribution, displays significant variability. We propose that the genuine function of BID domains as T4S signal may primarily depend on their rigid structure, while the plasticity of their surface may facilitate adaptation to secondary effector functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Two-dimensional cross correlation analysis of protein unfolding: Portrayal of the thermal denaturation of CMP kinases in the absence and presence of substrates

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.

    2000-03-01

    The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.

  1. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less

  2. Elastic and dielectric anisotropy in barium strontium titanate thin films on orthorhombic neodymium gallate substrates

    NASA Astrophysics Data System (ADS)

    Simon, William Kurt

    Functional oxide thin films often focus on standard cubic substrates that impose an equal biaxial plane stress condition (sigma11 = sigma22) to the film. These internal stresses in thin films reach magnitudes not easily achieved in bulk materials and represent an important influence on the properties of thin films. Equal biaxial plane stress is a small sub-set of stress conditions. Anisotropic stress (sigma11 ≠ sigma 22) represents a wide range of influences that can be utilized to manipulate the properties of thin films. To investigate these conditions, heteroepitaxial thin films of paraelectric Ba0.6Sr0.4TiO3 (BST) were deposited on [100] and [110] oriented single crystal NdGaO 3 (NGO) substrates. Films were grown in the thickness range of 25 to 1200 nm by Pulsed Laser Deposition. The films grown on [100]NGO substrates were [110] oriented, while [110]NGO substrates resulted in [100] oriented BST films. The [100]BST films exhibit a small variation of the epitaxial misfit with direction: -2.6% and -2.8% along the [010]BST and [001 ]BST directions respectively. The epitaxial misfit for the [110]BST films show a greater variation with direction; -1.9% and -2.8% along the [1¯10]BST, and [001]BST directions respectively. The interfacial dislocations that form to relieve stress are found to be dependant on the growth orientation of the film and to contribute to the degree of elastic and dielectric anisotropy. The variation of the residual strains, with thickness and direction are correlated to the non-linear dielectric permittivity at 10 GHz. The relative permittivity is seen to vary from 150 to 500 with in-plane direction of a single [110]BST film. Tunabilities in the same film vary from 30 to 54%, with the greater tunability occurring along the directions with greater permittivity. Analysis of the non-linear polarization curves illustrate that the higher order permittivity terms, which are responsible for tunability, are all adversely affected by strain and reach an elastically saturated limit regardless of growth orientation or in-plane direction. Through the use of unequal epitaxial strains, anisotropy is imparted to the otherwise spherically symmetric permittivity tensor. This asymmetry allows a single film to have a variable response and fill a variety of performance requirements in microwave passive devices.

  3. Control method and system for use when growing thin-films on semiconductor-based materials

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  4. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of stereospecificity at C2 in some polyols. PMID:9461546

  5. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  6. Direct deposition of silver nanoplates on quartz surface by sequence pre-treatment hydroxylation and silanisation.

    PubMed

    Abu Bakar, Norhayati; Mat Salleh, Muhamad; Ali Umar, Akrajas; Shapter, Joseph George

    2017-01-01

    Silver nanoparticles deposited on quartz substrates are widely used as SERS substrates. The nanoparticles can be deposited directly from colloidal solution by dipping technique. However, the adhesion of the particles on the quartz surface is very poor. Normally the substrate is pre-treated with hydroxylation or silanisation process. In this paper, we have demonstrated that the application of the sequence pre-treatment hydroxylation and silanisation have improved the density of silver nanoplates desposited on the quartz surface. •Sequence hydroxylation and silanisation pre-treatment assists the deposition of the nanoplate on the surface.•Various immersion times of the quartz surface into the colloidal nanoplates determined size distributions and density surface of the nanoplates on the surface.

  7. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  8. Permeability of roads to movement of scrubland lizards and small mammals.

    PubMed

    Brehme, Cheryl S; Tracey, Jeff A; McClenaghan, Leroy R; Fisher, Robert N

    2013-08-01

    A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species. © 2013 Society for Conservation Biology.

  9. Permeability of roads to movement of scrubland lizards and small mammals

    USGS Publications Warehouse

    Brehme, Cheryl S.; Tracey, Jeff A.; McClenaghan, Leroy R.; Fisher, Robert N.

    2013-01-01

    A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoidpaved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads,but roads with heavy traffic may deter movement of a much wider range of small animal species.

  10. Effects of experimental conditions on the morphologies, structures and growth modes of pulsed laser-deposited CdS nanoneedles

    PubMed Central

    2014-01-01

    CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented. PMID:24559455

  11. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    NASA Astrophysics Data System (ADS)

    Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo

    2015-01-01

    NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness.

  12. Substrate misorientation induced strong increase in the hole concentration in Mg doped GaN grown by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suski, T.; Litwin-Staszewska, E.; Piotrzkowski, R.

    We demonstrate that relatively small GaN substrate misorientation can strongly change hole carrier concentration in Mg doped GaN layers grown by metalorganic vapor phase epitaxy. In this work intentionally misoriented GaN substrates (up to 2 deg. with respect to ideal <0001> plane) were employed. An increase in the hole carrier concentration to the level above 10{sup 18} cm{sup -3} and a decrease in GaN:Mg resistivity below 1 {omega} cm were achieved. Using secondary ion mass spectroscopy we found that Mg incorporation does not change with varying misorientation angle. This finding suggests that the compensation rate, i.e., a decrease in unintentionalmore » donor density, is responsible for the observed increase in the hole concentration. Analysis of the temperature dependence of electrical transport confirms this interpretation.« less

  13. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  14. Mechanical and tribological properties of crystalline aluminum nitride coatings deposited on stainless steel by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Mishra, S. C.; Mishra, P.; Limaye, P. K.; Singh, K.

    2015-11-01

    Aluminum nitride (AlN) coating is a potential candidate for addressing the problems of MHD pressure drop, tritium permeation and liquid metal corrosion of the test blanket module of fusion reactor. In this work, AlN coatings were grown on stainless steel by magnetron sputtering. Grazing incidence X-ray diffraction measurement revealed that formation of mixed phase (wurtzite and rock salt) AlN was favored at low discharge power and substrate negative biasing. However, at sufficiently high discharge power and substrate bias, (100) oriented wurtzite AlN was obtained. Secondary ion mass spectroscopy showed presence of oxygen in the coatings. The highest value of hardness and Young's modulus were 14.1 GPa and 215 GPa, respectively. Scratch test showed adhesive failure at a load of about 20 N. Wear test showed improved wear resistance of the coatings obtained at higher substrate bias.

  15. Ion-conducting ceramic apparatus, method, fabrication, and applications

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  16. Effect of substrate orientation on CdS homoepitaxy by molecular dynamics

    DOE PAGES

    Almeida, S.; Chavez, J. J.; Zhou, X. W.; ...

    2016-02-10

    CdS homoepitaxy growth was performed by molecular dynamics using different substrate orientations and structures in order to analyze the CdS crystallinity. As anticipated from thermodynamics of homoepitaxy, highly crystalline films with only point defects were obtained on substrates with rectangular surface geometries, including View the MathML source[112¯] zinc blende (ZB), [101¯0] wurtzite (WZ), [112¯0] WZ, [110][110] ZB, [010][010] ZB, and View the MathML source[1101110] ZB. In contrast, films grown on substrates with hexagonal surface geometries, corresponding to the [0001][0001] WZ and [111][111] ZB growth directions, showed structures with a large number of defects including; anti-sites, vacancies, stacking faults, twinning, andmore » polytypism. WZ and ZB transitions and grain boundaries are identified using a lattice identification algorithm and represented graphically in a structural map. A dislocation analysis was performed to detect, identify, and quantify linear defects within the atomistic data. Systematic simulations using different temperatures, deposition rates, and substrate polarities were perform to analyze the trends of dislocation densities on [0001][0001] WZ direction and showed persistent polytypism. As a result, the polytypism observed in the films grown on the substrates with hexagonal surface geometry is attributed to the similar formation energies of the WZ and ZB phases.« less

  17. Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents.

    PubMed

    Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C

    2011-01-01

    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.

  18. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Gupta, Anupam K.; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S.; Fu, Yanqing; Caspers, Philip; Buck, John R.

    2017-04-01

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20 %), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  19. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar.

    PubMed

    Müller, Rolf; Gupta, Anupam K; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S; Fu, Yanqing; Caspers, Philip; Buck, John R

    2017-04-14

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20%), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  20. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W.

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate comparedmore » to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill throughmore » the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.« less

  2. Physical processes in directed ion beam sputtering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1979-01-01

    The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.

  3. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic

    PubMed Central

    Arduíno, Daniela M.; Raquel Esteves, A.; Cortes, Luísa; Silva, Diana F.; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H.; Oliveira, Catarina R.; Cardoso, Sandra M.

    2012-01-01

    Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD. PMID:22843496

  4. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic.

    PubMed

    Arduíno, Daniela M; Esteves, A Raquel; Cortes, Luísa; Silva, Diana F; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H; Oliveira, Catarina R; Cardoso, Sandra M

    2012-11-01

    Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD.

  5. Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation.

    PubMed

    Grohe, Bernd

    2017-08-01

    Peptides descended from the salivary proteins statherin and histatin were recently identified in saliva and the acquired enamel pellicle (AEP), a proteomic layer coated on enamel. In particular, the statherin phosphopeptide DpSpSEEKFLR (DSS) was found to adsorb to enamel-like hydroxyapatite and inhibit plaque-related crystal formation. To determine the mechanism of these processes, we studied peptide-crystal interactions based on the sequences DSS and RKFHEKHHSHRGYR (RKF). The latter is a basic histatin sequence showing antimicrobial effects. To initiate crystallization we used calcium oxalate monohydrate (COM), a rather secondary phase in the oral environment, however highly amenable to experimental analyses of nucleation and growth processes. Using electron microscopy we found that the peptides DSS, DSS-RKF and DSS-DSS all inhibit crystal formation; with DSS-DSS showing the strongest effects while RKF showed no effect. In addition, using either enamel-like or mica substrates, we found that the ratio of the substrate's surface charge densities was directly correlated with the ratio of COM nucleation rates on theses surfaces. The findings suggest that mineralization processes on enamel/AEP-films are controllable by the degree of peptide phosphorylation/acidity and the level of the enamel surface charge density. Both parameters can, when well adjusted, help to overcome periodontal disease and dental calculus formation. In addition, the presence of antimicrobial RKF will reduce the buildup of bacterial plaque. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2013-04-17

    While metalloprotein design has now yielded a number of successful metal-bound and even catalytically active constructs, the question of where to put a metal site along a linear, repetitive sequence has not been thoroughly addressed. Often several possibilities in a given sequence may exist that would appear equivalent but may in fact differ for metal affinity, substrate access, or protein dynamics. We present a systematic variation of active site location for a hydrolytically active ZnHis3O site contained within a de novo-designed three-stranded coiled coil. We find that the maximal rate, substrate access, and metal-binding affinity are dependent on the selected position, while catalytic efficiency for p-nitrophenyl acetate hydrolysis can be retained regardless of the location of the active site. This achievement demonstrates how efficient, tailor-made enzymes which control rate, pKa, substrate and solvent access (and selectivity), and metal-binding affinity may be realized. These findings may be applied to the more advanced de novo design of constructs containing secondary interactions, such as hydrogen-bonding channels. We are now confident that changes to location for accommodating such channels can be achieved without location-dependent loss of catalytic efficiency. These findings bring us closer to our ultimate goal of incorporating the secondary interactions we believe will be necessary in order to improve both active site properties and the catalytic efficiency to be competitive with the native enzyme, carbonic anhydrase.

  7. VLED for Si wafer-level packaging

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Fu; Chen, Chiming; Yen, Jui-Kang; Chen, Yung-Wei; Tsou, Chingfu; Chang, Chunming; Doan, Trung; Tran, Chuong Anh

    2012-03-01

    In this paper, we introduced the advantages of Vertical Light emitting diode (VLED) on copper alloy with Si-wafer level packaging technologies. The silicon-based packaging substrate starts with a <100> dou-ble-side polished p-type silicon wafer, then anisotropic wet etching technology is done to construct the re-flector depression and micro through-holes on the silicon substrate. The operating voltage, at a typical cur-rent of 350 milli-ampere (mA), is 3.2V. The operation voltage is less than 3.7V under higher current driving conditions of 1A. The VLED chip on Si package has excellent heat dissipation and can be operated at high currents up to 1A without efficiency degradation. The typical spatial radiation pattern emits a uniform light lambertian distribution from -65° to 65° which can be easily fit for secondary optics. The correlated color temperature (CCT) has only 5% variation for daylight and less than 2% variation for warm white, when the junction temperature is increased from 25°C to 110°C, suggesting a stable CCT during operation for general lighting application. Coupled with aspheric lens and micro lens array in a wafer level process, it has almost the same light distribution intensity for special secondary optics lighting applications. In addition, the ul-tra-violet (UV) VLED, featuring a silicon substrate and hard glass cover, manufactured by wafer level pack-aging emits high power UV wavelengths appropriate for curing, currency, document verification, tanning, medical, and sterilization applications.

  8. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site.

    PubMed

    Pang, Yu; Lan, Wanjun; Huang, Xuelei; Zuo, Guanke; Liu, Hui; Zhang, Jingyan

    2015-10-01

    Oxalate oxidase (OxOx), a well known enzyme catalyzes the cleavage of oxalate to carbon dioxide with reduction of dioxygen to hydrogen peroxide, however its catalytic process is not well understood. To define the substrate binding site, interaction of Fe(3+) ions with OxOx was systemically investigated using biochemical method, circular dichrosim spectroscopy, microscale thermophoresis, and computer modeling. We demonstrated that Fe(3+) is a non-competitive inhibitor with a milder binding affinity to OxOx, and the secondary structure of the OxOx was slightly altered upon its binding. On the basis of the structural properties of the OxOx and its interaction with Fe(3+) ions, two residue clusters of OxOx were assigned as potential Fe(3+) binding sites, the mechanism of the inhibition of Fe(3+) was delineated. Importantly, the residues that interact with Fe(3+) ions are involved in the substrate orienting based on computer docking. Consequently, the interaction of OxOx with Fe(3+) highlights insight into substrate binding site in OxOx.

  10. Applications of the Non-Conventional Yeast Yarrowia lipolytica

    NASA Astrophysics Data System (ADS)

    Thevenieau, France; Nicaud, Jean-Marc; Gaillardin, Claude

    The yeast Yarrowia lipolytica is often found associated to proteinaceous or hydrophobic substrates such as alkanes or lipids. To assimilate these hydropho-bic substrates, Y. lipolytica has developed an adaptative strategy resulting in elaborated morphological and physiological changes leading to terminal and β-oxidation of substrates as well as to lipid storage. The completion of the Y. lipolytica genome greatly improved our understanding of these mechanisms. Three main applications of this metabolism will be discussed. The first class corresponds to bioconver-sion processes for the production of secondary metabolites (citric acid), of aroma ( γ - lactone, green note, epoxy geraniol) and of chemicals (dicarboxylic acids). The second class leads to fine chemical production by enantio separation of pharmaceutical compounds using Y. lipolytica enzymes such as epoxyde hydrolase or lipase. The third one refers to production of Single Cell Oils (SCO) from agriculture feedstock. In addition to its ability to handle hydrophobic substrates, Y. lipolytica has also been recognised as a strong secretor of various proteins such as proteases, lipases, RNases and others. A comprehensive review of recent developments of the Y. lipolytica expression/secretion system will finally be presented.

  11. Microstructure evolution of Al-doped zinc oxide films prepared by in-line reactive mid-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, R. J.; Jiang, X.

    2006-07-01

    Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.

  12. Predicting landslide vegetation in patches on landscape gradients in Puerto Rico

    USGS Publications Warehouse

    Myster, R.W.; Thomlinson, J.R.; Larsen, M.C.

    1997-01-01

    We explored the predictive value of common landscape characteristics for landslide vegetative stages in the Luquillo Experimental Forest of Puerto Rico using four different analyses. Maximum likelihood logistic regression showed that aspect, age, and substrate type could be used to predict vegetative structural stage. In addition it showed that the structural complexity of the vegetation was greater in landslides (1) facing the southeast (away from the dominant wind direction of recent hurricanes), (2) that were older, and (3) that had volcaniclastic rather than dioritic substrate. Multiple regression indicated that both elevation and age could be used to predict the current vegetation, and that vegetation complexity was greater both at lower elevation and in older landslides. Pearson product-moment correlation coefficients showed that (1) the presence of volcaniclastic substrate in landslides was negatively correlated with aspect, age, and elevation, (2) that road association and age were positively correlated, and (3) that slope was negatively correlated with area. Finally, principal components analysis showed that landslides were differentiated on axes defined primarily by age, aspect class, and elevation in the positive direction, and by volcaniclastic substrate in the negative direction. Because several statistical techniques indicated that age, aspect, elevation, and substrate were important in determining vegetation complexity on landslides, we conclude that landslide succession is influenced by variation in these landscape traits. In particular, we would expect to find more successional development on landslides which are older, face away from hurricane winds, are at lower elevation, and are on volcaniclastic substrate. Finally, our results lead into a hierarchical conceptual model of succession on landscapes where the biota respond first to either gradients or disturbance depending on their relative severity, and then to more local biotic mechanisms such as dispersal, predation and competition.

  13. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2016-09-13

    Here we numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinalmore » to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. Lastly, we map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.« less

  14. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-09-01

    We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.

  15. Temporal Impact of Substrate Mechanics on Differentiation of Human Embryonic Stem Cells to Cardiomyocytes

    PubMed Central

    Hazeltine, Laurie B.; Badur, Mehmet G.; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P.

    2014-01-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac Troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. PMID:24200714

  16. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiuling; Huang, Wen

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extendingmore » in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.« less

  17. Electrical characterization of anodic alumina substrate with via-in-pad structure

    NASA Astrophysics Data System (ADS)

    Kim, Moonjung

    2013-10-01

    An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.

  18. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  19. A Microplate Format Assay for Real-Time Screening for New Aldolases that Accept Aryl-Substituted Acceptor Substrates.

    PubMed

    Ma, Huan; Enugala, Thilak Reddy; Widersten, Mikael

    2015-12-01

    Aldolases are potentially important biocatalysts for asymmetric synthesis of polyhydroxylated compounds. Fructose 6-phosphate aldolase (FSA) is of particular interest by virtue of its unusually relaxed dependency on phosphorylated substrates. FSA has been reported to be a promising catalyst of aldol addition involving aryl-substituted acceptors such as phenylacetaldehyde that can react with donor ketones such as hydroxyacetone. Improvement of the low intrinsic activity with bulky acceptor substrates of this type is of great interest but has been hampered by the lack of powerful screening protocols applicable in directed evolution strategies. Here we present a new screen allowing for direct spectrophotometric recording of retro-aldol cleavage. The assay utilizes an aldehyde reductase produced in vitro by directed evolution; it reduces the aldehyde product formed after cleavage of the aldol by FSA. The assay is suitable both for steady-state enzyme kinetics and for real-time activity screening in a 96-well format. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

Top