Sample records for directing individual light

  1. Influence of light and plant size on the reproduction and growth of small palm tree species: Comparing two methods for measuring canopy openness.

    PubMed

    Amadeu, Luã S N; Sampaio, Mauricio B; Dos Santos, Flavio A M

    2016-09-01

    The reproduction and growth of large palms are influenced by many factors, including light and plant size, but few studies have examined smaller species (up to 2 m tall). We examined the effect of incident light and individual size on growth rates, the probability of reproduction, and the number of inflorescences of three small palm species and compared two methods for estimating canopy openness. We measured canopy openness above the crowns of 132 adult plants and in the centers of 72 subplots (10 × 10 m) where individuals were sampled. We also recorded individual size and the number of leaves and inflorescences produced in two years. Reproductive individuals of Butia paraguayensis tend to occur in illuminated microhabitats. Reproduction of Acrocomia emensis was correlated with stem diameter, but not with light. Reproduction was inversely related to individual size and light in Syagrus petraea, probably because this clonal palm invests heavily in sexual reproduction during its younger stages and clonal activity in older stages and may be adapted to the low-light conditions of the woodland understory. Growth was not predicted by light or individual size. Stronger correlations were found when incident light was measured directly above the crown, as opposed to the subplot center. The influences of light on reproduction are dependent on plant life histories, even among related and sympatric species. Light measurements directly above individual crowns provide better understanding of the reproductive effort rather than in subplot center. © 2016 Botanical Society of America.

  2. Directional imaging of the retinal cone mosaic

    NASA Astrophysics Data System (ADS)

    Vohnsen, Brian; Iglesias, Ignacio; Artal, Pablo

    2004-05-01

    We describe a near-IR scanning laser ophthalmoscope that allows the retinal cone mosaic to be imaged in the human eye in vivo without the use of wave-front correction techniques. The method takes advantage of the highly directional quality of cone photoreceptors that permits efficient coupling of light to individual cones and subsequent detection of most directional components of the backscattered light produced by the light-guiding effect of the cones. We discuss details of the system and describe cone-mosaic images obtained under different conditions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argall, Brenna; Cheleshkin, Eugene; Greenberg, J.M.

    Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled. Individual car responses to green, yellow, and red lights are postulated and these result in rules governing the acceleration and deceleration of individual cars. The essence of the model is that only specific cars are directly affected by the lights. The other cars behave according to simple follow-the-leader rules which limit their speed by the spacing between it and the car directly ahead. The model has a number of desirable properties; namely cars do not run red lights, cars do not smash into one another, andmore » cars exhibit no velocity reversals. In a situation with multiple lights operating in-phase we get, after an initial startup period, a constant number of cars through each light during any green-yellow period. Moreover, this flux is less by one or two cars per period than the flux obtained in discretized versions of the idealized Lighthill, Whitham, Richards model which allows for infinite accelerations.« less

  4. Light-induced reversible expansion of individual gold nanoplates

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Hong, Yu; Li, Qiang; Xu, Yingxin; Fang, Wei; Qiu, Min

    2017-10-01

    Light-induced mechanical response of materials has been extensively investigated and widely utilized to convert light energy into mechanical energy directly. The metallic nanomaterials have excellent photothermal properties and show enormous potential in micromechanical actuators, etc. However, the photo-thermo-mechanical properties of individual metallic nanostructures have yet to be well investigated. Here, we experimentally demonstrate a way to realize light-induced reversible expansion of individual gold nanoplates on optical microfibers. The light-induced thermal expansion coefficient is obtained as 21.4 ± 4.6 ˜ 31.5 ± 4.2 μ.K-1 when the light-induced heating temperature of the gold nanoplates is 240 ˜ 490 °C. The photo-thermo-mechanical response time of the gold nanoplates is about 0.3 ± 0.1 s. This insight into the photo-thermo-mechanical properties of the gold nanoplates could deepen the understanding of the light-induced reversible expansion behavior in nanoscale and pave the way for applications based on this piezoelectric-like response, such as light-driven metallic micromotors.

  5. Enriching lighting design.

    PubMed

    Brawley, Elizabeth C

    2009-01-01

    Good lighting is perhaps the most important and least understood element in designing healthcare environments. Both physically and mentally challenged individuals become more vulnerable and dependent on their environment to compensate for sensory impairments, including dimming eyesight, which interferes to some degree with daily activities as well as social and leisure activities - the things that provide emotional and social well-being. Too few building designs today result in lighting that meets the needs of these individuals, regardless of age. Typical lighting in most care environments is inadequate to meet lighting needs affecting both vision and the photobiological (non-visual) needs of synchronization of circadian rhythm, which impacts sleep and depression. Well-designed lighting is one of the most important design elements that will support an individual's ability to perform normal daily activities and decrease the level of disability associated with these impairments. Daylight contains the spectrum to which the circadian clock is most sensitive and provides higher light levels during the day. Easily accessible outdoor gardens encourage individuals outside, providing the necessary regular exposure to direct bright light that sunlight provides. The combination good interior lighting and regular daylight exposure contributes to regaining and maintaining an active and fulfilling lifestyle - greatly improving quality of life.

  6. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    PubMed

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  7. Workplace lighting for improving alertness and mood in daytime workers.

    PubMed

    Pachito, Daniela V; Eckeli, Alan L; Desouky, Ahmed S; Corbett, Mark A; Partonen, Timo; Rajaratnam, Shantha Mw; Riera, Rachel

    2018-03-02

    Exposure to light plays a crucial role in biological processes, influencing mood and alertness. Daytime workers may be exposed to insufficient or inappropriate light during daytime, leading to mood disturbances and decreases in levels of alertness. To assess the effectiveness and safety of lighting interventions to improve alertness and mood in daytime workers. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, seven other databases; ClinicalTrials.gov and the World Health Organization trials portal up to January 2018. We included randomised controlled trials (RCTs), and non-randomised controlled before-after trials (CBAs) that employed a cross-over or parallel-group design, focusing on any type of lighting interventions applied for daytime workers. Two review authors independently screened references in two stages, extracted outcome data and assessed risk of bias. We used standardised mean differences (SMDs) and 95% confidence intervals (CI) to pool data from different questionnaires and scales assessing the same outcome across different studies. We combined clinically homogeneous studies in a meta-analysis. We used the GRADE system to rate quality of evidence. The search yielded 2844 references. After screening titles and abstracts, we considered 34 full text articles for inclusion. We scrutinised reports against the eligibility criteria, resulting in the inclusion of five studies (three RCTs and two CBAs) with 282 participants altogether. These studies evaluated four types of comparisons: cool-white light, technically known as high correlated colour temperature (CCT) light versus standard illumination; different proportions of indirect and direct light; individually applied blue-enriched light versus no treatment; and individually applied morning bright light versus afternoon bright light for subsyndromal seasonal affective disorder.We found no studies comparing one level of illuminance versus another.We found two CBA studies (163 participants) comparing high CCT light with standard illumination. By pooling their results via meta-analysis we found that high CCT light may improve alertness (SMD -0.69, 95% CI -1.28 to -0.10; Columbia Jet Lag Scale and the Karolinska Sleepiness Scale) when compared to standard illumination. In one of the two CBA studies with 94 participants there was no difference in positive mood (mean difference (MD) 2.08, 95% CI -0.1 to 4.26) or negative mood (MD -0.45, 95% CI -1.84 to 0.94) assessed using the Positive and Negative Affect Schedule (PANAS) scale. High CCT light may have fewer adverse events than standard lighting (one CBA; 94 participants). Both studies were sponsored by the industry. We graded the quality of evidence as very low.We found no studies comparing light of a particular illuminance and light spectrum or CCT versus another combination of illuminance and light spectrum or CCT.We found no studies comparing daylight versus artificial light.We found one RCT (64 participants) comparing the effects of different proportions of direct and indirect light: 100% direct lighting, 70% direct lighting plus 30% indirect lighting, 30% direct lighting plus 70% indirect lighting and 100% indirect lighting. There was no substantial difference in mood, as assessed by the Beck Depression Inventory, or in adverse events, such as ocular, reading or concentration problems, in the short or medium term. We graded the quality of evidence as low.We found two RCTs comparing individually administered light versus no treatment. According to one RCT with 25 participants, blue-enriched light individually applied for 30 minutes a day may enhance alertness (MD -3.30, 95% CI -6.28 to -0.32; Epworth Sleepiness Scale) and may improve mood (MD -4.8, 95% CI -9.46 to -0.14; Beck Depression Inventory). We graded the quality of evidence as very low. One RCT with 30 participants compared individually applied morning bright light versus afternoon bright light for subsyndromal seasonal affective disorder. There was no substantial difference in alertness levels (MD 7.00, 95% CI -10.18 to 24.18), seasonal affective disorder symptoms (RR 1.60, 95% CI 0.81, 3.20; number of participants presenting with a decrease of at least 50% in SIGH-SAD scores) or frequency of adverse events (RR 0.53, 95% CI 0.26 to 1.07). Among all participants, 57% had a reduction of at least 50% in their SIGH-SAD score. We graded the quality of evidence as low.Publication bias could not be assessed for any of these comparisons. There is very low-quality evidence based on two CBA studies that high CCT light may improve alertness, but not mood, in daytime workers. There is very low-quality evidence based on one CBA study that high CCT light may also cause less irritability, eye discomfort and headache than standard illumination. There is low-quality evidence based on one RCT that different proportions of direct and indirect light in the workplace do not affect alertness or mood. There is very low-quality evidence based on one RCT that individually applied blue-enriched light improves both alertness and mood. There is low-quality evidence based on one RCT that individually administered bright light during the afternoon is as effective as morning exposure for improving alertness and mood in subsyndromal seasonal affective disorder.

  8. Remote multi-position information gathering system and method

    DOEpatents

    Hirschfeld, Tomas B.

    1986-01-01

    A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.

  9. Remote multi-position information gathering system and method

    DOEpatents

    Hirschfeld, Tomas B.

    1986-01-01

    A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing ongoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.

  10. Remote multi-position information gathering system and method

    DOEpatents

    Hirschfeld, T.B.

    1989-01-24

    A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby. 9 figs.

  11. Remote multi-position information gathering system and method

    DOEpatents

    Hirschfeld, T.B.

    1986-12-02

    A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby. 9 figs.

  12. Remote multi-position information gathering system and method

    DOEpatents

    Hirschfeld, Tomas B.

    1989-01-01

    A technique for gathering specific information from various remote locations, especially fluorimetric information characteristic of particular materials at the various locations is disclosed herein. This technique uses a single source of light disposed at still a different, central location and an overall optical network including an arrangement of optical fibers cooperating with the light source for directing individual light beams into the different information bearing locations. The incoming light beams result in corresponding displays of light, e.g., fluorescent light, containing the information to be obtained. The optical network cooperates with these light displays at the various locations for directing outgoing light beams containing the same information as their cooperating displays from these locations to the central location. Each of these outgoing beams is applied to a detection arrangement, e.g., a fluorescence spectroscope, for retrieving the information contained thereby.

  13. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-04-14

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work.

  14. Do Wild Great Tits Avoid Exposure to Light at Night?

    PubMed Central

    de Jong, Maaike; Ouyang, Jenny Q.; van Grunsven, Roy H. A.; Visser, Marcel E.; Spoelstra, Kamiel

    2016-01-01

    Studies of wild populations have provided important insights into the effects of artificial light at night on organisms, populations and ecosystems. However, in most studies the exact amount of light at night individuals are exposed to remains unknown. Individuals can potentially control their nighttime light exposure by seeking dark spots within illuminated areas. This uncertainty makes it difficult to attribute effects to a direct effect of light at night, or to indirect effects, e.g., via an effect of light at night on food availability. In this study, we aim to quantify the nocturnal light exposure of wild birds in a previously dark forest-edge habitat, experimentally illuminated with three different colors of street lighting, in comparison to a dark control. During two consecutive breeding seasons, we deployed male great tits (Parus major) with a light logger measuring light intensity every five minutes over a 24h period. We found that three males from pairs breeding in brightly illuminated nest boxes close to green and red lamp posts, were not exposed to more artificial light at night than males from pairs breeding further away. This suggests, based on our limited sample size, that these males could have been avoiding light at night by choosing a roosting place with a reduced light intensity. Therefore, effects of light at night previously reported for this species in our experimental set-up might be indirect. In contrast to urban areas where light is omnipresent, bird species in non-urban areas may evade exposure to nocturnal artificial light, thereby avoiding direct consequences of light at night. PMID:27355354

  15. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis1[OPEN

    PubMed Central

    Gilbert, Matthew E.; McElrone, Andrew J.

    2017-01-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. PMID:28432257

  16. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    PubMed

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  18. Light pollution disrupts sleep in free-living animals.

    PubMed

    Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2015-09-04

    Artificial lighting can alter individual behaviour, with often drastic and potentially negative effects on biological rhythms, daily activity and reproduction. Whether this is caused by a disruption of sleep, an important widespread behaviour enabling animals to recover from daily stress, is unclear. We tested the hypothesis that light pollution disrupts sleep by recording individual sleep behaviour of great tits, Parus major, that were roosting in dark nest-boxes and were exposed to light-emitting diode light the following night. Their behaviour was compared to that of control birds sleeping in dark nest-boxes on both nights. Artificial lighting caused experimental birds to wake up earlier, sleep less (-5%) and spent less time in the nest-box as they left their nest-box earlier in the morning. Experimental birds did not enter the nest-box or fall asleep later than controls. Although individuals in lit nest-boxes did not wake up more often nor decreased the length of their sleep bouts, females spent a greater proportion of the night awake. Our study provides the first direct proof that light pollution has a significant impact on sleep in free-living animals, in particular in the morning, and highlights a mechanism for potential effects of light pollution on fitness.

  19. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  20. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.

    PubMed

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  1. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    NASA Astrophysics Data System (ADS)

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  2. Light pollution disrupts sleep in free-living animals

    PubMed Central

    Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2015-01-01

    Artificial lighting can alter individual behaviour, with often drastic and potentially negative effects on biological rhythms, daily activity and reproduction. Whether this is caused by a disruption of sleep, an important widespread behaviour enabling animals to recover from daily stress, is unclear. We tested the hypothesis that light pollution disrupts sleep by recording individual sleep behaviour of great tits, Parus major, that were roosting in dark nest-boxes and were exposed to light-emitting diode light the following night. Their behaviour was compared to that of control birds sleeping in dark nest-boxes on both nights. Artificial lighting caused experimental birds to wake up earlier, sleep less (–5%) and spent less time in the nest-box as they left their nest-box earlier in the morning. Experimental birds did not enter the nest-box or fall asleep later than controls. Although individuals in lit nest-boxes did not wake up more often nor decreased the length of their sleep bouts, females spent a greater proportion of the night awake. Our study provides the first direct proof that light pollution has a significant impact on sleep in free-living animals, in particular in the morning, and highlights a mechanism for potential effects of light pollution on fitness. PMID:26337732

  3. Study of Laser Reflectivity on Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oidor-Garcia, J. J. J.; Trevino-Palacios, C. G.

    2008-08-11

    The response to the light on the skin can be manifested as temperature increase or creation of biochemical byproducts, in which further studies are required to asset the light effect. This response changes the average response over time and can produce discrepancies between similar studies. In this work we present a Low Level Laser Therapy (LLLT) study with feedback. We study the time response reflectivity of a 980 nm laser diode of 25 mW modulated at frequencies close to 40 kHz and detect the reflected light on a silicon photodiode, finding no direct correlation between different test points or individuals,more » while finding reproducible responses within the same individual and test point.« less

  4. The thinker: opposing directionality of lighting bias within sculptural artwork

    PubMed Central

    Sedgewick, Jennifer R.; Weiers, Bradley; Stewart, Aaron; Elias, Lorin J.

    2015-01-01

    Individuals tend to perceive the direction of light to come from above and slightly from the left; it has been speculated that this phenomenon is also producing similar lighting preferences within 2-dimensional artworks (e.g., paintings, advertisements). The purpose of the present study was to address if lighting bias was present in the 3-dimensional medium of sculpture by implementing a virtual art gallery lighting paradigm. Thirty-nine participants completed a computer task that consisted of 48 galleries each containing one sculpture (24 original sculptures, 24 mirror-reversed) which was surrounded by eight lights (above/below, left/right, front/back). Participants would select one light source to illuminate the sculpture in a manner they perceived to be the most aesthetically pleasing. The results indicated a significant preference for lights positioned from above and from the right, a finding that is contradictory to previous lighting bias research examining artworks. An interpretation for the rightward bias applies the perceptual concept of subjective lighting equality. Objects illuminated from the left typically appear brighter in comparison to right-side lighting; in sculpture, however, increased luminosity can reduce the sculptural detail, and may have been compensated via right-side lighting choices within the lighting task. PMID:25999840

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or othermore » photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.« less

  6. Perspectives of 30 English Patients on Call Light Technology, Eloquence Revisited.

    PubMed

    Montie, Mary; Shuman, Clayton; Galinato, Jose; Patak, Lance; Titler, Marita

    2018-01-01

    Call light technology is important because it serves as a direct link for patients to get their healthcare needs fulfilled by their healthcare providers. As primary users of call light technology, patient perspectives are important and warranted. Despite this fact, there is a lack of published literature regarding patient perspectives and call light technology. The present study examined a technologically advanced call light system (Eloquence) by incorporating 30 patient participants' perspectives regarding its usefulness, effectiveness, and appropriateness gathered from individual interviews. Using qualitative descriptive research methods, five major themes and multiple minor themes emerged from the data.

  7. Apparatus for synthesis of a solar spectrum

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    A xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable can be selectively adjusted to limit the amount of light entering each leg, thereby providing a means of "fine tuning" or precisely adjusting the spectral content of the output beam. Finally, an adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.

  8. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilmsmore » producing as much as 12 μW/m{sup 2}.« less

  9. Preferential use of lambda light chains is associated with defective mouse antibody responses to the capsular polysaccharide of Neisseria meningitidis group B.

    PubMed

    Colino, Jesus; Outschoorn, Ingrid

    2004-01-01

    The capsular polysaccharide of Neisseria meningitidis group B (CpsB) is a very poor immunogen in mammals; this has been considered to be due to the induction of tolerance to cross-reactive host glycoconjugates. It has hampered the development of an effective vaccine against this meningococcal group for many years. Syngeneic populations have a similar tolerogenic background. Thus, we used the variability in ability to mount CpsB-specific immunoglobulin (Ig) responses of individuals from these populations to reveal underlying mechanisms to tolerance contributing to the poor immunogenicity of CpsB. Here we analyze by ELISA, the individual CpsB-specific Ig response of BALB/c and other syngeneic mice to immunization with intact bacteria, using the distribution of light chains as a direct indicator of the repertoire dynamics of the response. Although approximately 96% of anti-CpsB Ig bear kappa-light chains, BALB/c mouse populations were heterogeneous in the light chain composition of their individual anti-CpsB Ig responses. The proportion of kappa and lambda-light chains used for anti-CpsB Ig was a private characteristic that remained relatively constant, for each individual, through repetitive immunizations regardless of the bacterial stimuli size. Despite the prevalence of individual use of kappa-light chains, 5% of BALB/c mice showed restricted usage of lambda-light chains in their CpsB-specific Ig responses, and an additional 11% use them significantly. The preferential use of lambda-light chains in these mice was strongly associated with defective IgM, and absent or barely detectable IgG anti-CpsB responses even after repetitive bacterial immunization. We conclude that differences in the private repertoire of specific Ig also contribute to mouse unresponsiveness to CpsB.

  10. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  11. Absolute Configuration from Different Multifragmentation Pathways in Light-Induced Coulomb Explosion Imaging.

    PubMed

    Pitzer, Martin; Kastirke, Gregor; Kunitski, Maksim; Jahnke, Till; Bauer, Tobias; Goihl, Christoph; Trinter, Florian; Schober, Carl; Henrichs, Kevin; Becht, Jasper; Zeller, Stefan; Gassert, Helena; Waitz, Markus; Kuhlins, Andreas; Sann, Hendrik; Sturm, Felix; Wiegandt, Florian; Wallauer, Robert; Schmidt, Lothar Ph H; Johnson, Allan S; Mazenauer, Manuel; Spenger, Benjamin; Marquardt, Sabrina; Marquardt, Sebastian; Schmidt-Böcking, Horst; Stohner, Jürgen; Dörner, Reinhard; Schöffler, Markus; Berger, Robert

    2016-08-18

    The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  13. Characteristics of the Light Reception Systems Concerning a Kenaf Individual Model

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    It is thought that plants have evolved to modulate the amount of light received by the leaves in order to raise the photosynthetic rate. By investigating a plant condensing system, it is small and a directive low condensing system may be able to develop. A compact condensing system with low directivity may be able to be developed by investigating the condensing method by a plant. This paper presents the results of an investigation into light reception characteristics using the numerical-analysis program (LAPS), with emphasis on a kenaf plant (Hibiscus cannabinus) with division leaf of diversity. From this analysis, the relationship between the range of movement for the light source (sun) and the shoot configuration of a kenaf plant were clarified. There is a suitable shoot configuration, and the shoot configuration has a strong influence over the efficiency of light reception. The summer season is characterized by wide oscillations of the light source, and it is therefore necessary for the kenaf plant to adjust its shoot configuration in order to improve light reception.

  14. Variation in crown light utilization characteristics among tropical canopy trees.

    PubMed

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  15. Photomixing of chlamydomonas rheinhardtii suspensions

    NASA Astrophysics Data System (ADS)

    Dervaux, Julien; Capellazzi Resta, Marina; Abou, Bérengère; Brunet, Philippe

    2014-11-01

    Chlamydomonas rheinhardtii is a fast swimming unicellular alga able to bias its swimming direction in gradients of light intensity, an ability know as phototaxis. We have investigated experimentally both the swimming behavior of individual cells and the macroscopic response of shallow suspensions of these micro-organisms in response to a localized light source. At low light intensity, algae exhibit positive phototaxis and accumulate beneath the excitation light. In weakly concentrated thin layers, the balance between phototaxis and cell motility results in steady symmetrical patterns compatible with a purely diffusive model using effective diffusion coefficients extracted from the analysis of individual cell trajectories. However, at higher cell density and layer depth, collective effects induce convective flows around the light source. These flows disturb the cell concentration patterns which spread and may then becomes unstable. Using large passive tracer particles, we have characterized the velocity fields associated with this forced bioconvection and their dependence on the cell density and layer depth. By tuning the light distribution, this mechanism of photo-bioconvection allows a fine control over the local fluid flows, and thus the mixing efficiency, in algal suspensions.

  16. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure.

    PubMed

    Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W

    2018-06-01

    Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals. © 2018 Monash University. The Journal of Physiology © 2018 The Physiological Society.

  17. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons

    PubMed Central

    2017-01-01

    The precise morphology of nanoscale gaps between noble-metal nanostructures controls their resonant wavelengths. Here we show photocatalytic plasmon-induced polymerization can locally enlarge the gap size and tune the plasmon resonances. We demonstrate light-directed programmable tuning of plasmons can be self-limiting. Selective control of polymer growth around individual plasmonic nanoparticles is achieved, with simultaneous real-time monitoring of the polymerization process in situ using dark-field spectroscopy. Even without initiators present, we show light-triggered chain growth of various monomers, implying plasmon initiation of free radicals via hot-electron transfer to monomers at the Au surface. This concept not only provides a programmable way to fine-tune plasmons for many applications but also provides a window on polymer chemistry at the sub-nanoscale. PMID:28670601

  18. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  19. Incomplete Detection of Nonclassical Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  20. A portable inspection system to estimate direct glare of various LED modules

    NASA Astrophysics Data System (ADS)

    Chen, Po-Li; Liao, Chun-Hsiang; Li, Hung-Chung; Jou, Shyh-Jye; Chen, Han-Ting; Lin, Yu-Hsin; Tang, Yu-Hsiang; Peng, Wei-Jei; Kuo, Hui-Jean; Sun, Pei-Li; Lee, Tsung-Xian

    2015-07-01

    Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.

  1. Artificial light on water attracts turtle hatchlings during their near shore transit

    PubMed Central

    Thums, Michele; Whiting, Scott D.; Reisser, Julia; Pendoley, Kellie L.; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G.

    2016-01-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  2. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

  3. MODIFICATION OF SEA ANEMONE BEHAVIOR BY SYMBIOTIC ZOOXANTHELLAE: EXPANSION AND CONTRACTION.

    PubMed

    Pearse, Vicki Buchsbaum

    1974-12-01

    The pattern of expansion and contraction by the sea anemone Anthopleura elegantissima differs in individuals with or without endosymbiotic zooxanthellae. Anemones without zooxanthellae, found in dark habitats, do not regularly expand or contract under changes in light. Anemones with zooxanthellae expand in moderate light and contract in intense light or in darkness, with striking uniformity. However, this behavior does not always depend directly on the presence of zooxanthellae. Anemones that have previously had endosymbiotic zooxanthellae subsequently expand and contract with changes in light in the absence of these algae. Thus, conditioned responses may be involved. It is suggested that expansion and contraction of the anemones may play an important role in favorably regulating the amount of light to which their zooxanthellae are exposed.

  4. Polarization-controlled directional scattering for nanoscopic position sensing

    PubMed Central

    Neugebauer, Martin; Woźniak, Paweł; Bag, Ankan; Leuchs, Gerd; Banzer, Peter

    2016-01-01

    Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved. PMID:27095171

  5. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.

  6. Magnetic field induced mixing of light hole excitonic states in (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T.; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr

    2018-05-01

    A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

  7. Magnetic field induced mixing of light hole excitonic states in (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires.

    PubMed

    Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr

    2018-05-18

    A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

  8. Buder revisited: cell and organ polarity during phototropism.

    PubMed

    Nick, P; Furuya, M

    1996-10-01

    The induction of a radial polarity by environmental stimuli was studied at the cellular and organ levels, with phototropism chosen as a model. The light gradient acting on the whole coleoptile was opposed to the light direction acting upon individual cells in the classical Buder experiment, irradiating from the inside out. Alternatively, the stimulus was administered to the coleoptile tip with a microbeam-irradiation device. Tropistic curvature was assayed as a marker for the response of the whole organ, whereas cell elongation and the orientation of cortical microtubules were taken as markers for the responses of individual cells. Upon tip irradiation, signals much faster than basipetal auxin transport migrate towards the base. The data are discussed in terms of an organ polarity that is the primary result of the asymmetric light signal and affects, in a second step, an endogenous radial polarity of epidermal cells.

  9. Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park.

    PubMed

    Ramsing, N B; Ferris, M J; Ward, D M

    1997-06-01

    This study demonstrates light-induced motility of two thermophilic Synechococcus isolates that are morphologically similar but that belong to different cyanobacterial lineages. Both isolates migrated away from densely inoculated streaks to form fingerlike projections extending toward or away from the light source, depending on the light intensity. However, the two isolates seemed to prefer widely different light conditions. The behavior of each isolate was controlled by several factors, including temperature, preacclimation of inocula, acclimation during the experiment, and strain-specific genetic preferences for different light conditions (adaptation). Time-lapse microscopy confirmed that these projections were formed by actively gliding cells and were not simply the outcome of directional cell division. The observed motility rates of individual cells of 0.1 to 0.3 micrometers s-1 agreed well with the distance traversed by the projections, 0.3 to 0.5 mm h-1, suggesting that most cells in each projection are travelling in the same direction. The finding of motility among two phylogenetically unaffiliated unicellular cyanobacteria suggests that this trait may be widespread among this group. If so, this would have important implications for experiments on colonization, succession, diel positioning, and photosynthetic activity in hot spring mats dominated by Synechococcus-like cyanobacteria.

  10. The impact of listening with directional microphone technology on self-perceived localization disabilities and handicaps.

    PubMed

    Ruscetta, Melissa N; Palmer, Catherine V; Durrant, John D; Grayhack, Judith; Ryan, Carey

    2007-10-01

    The chief complaint of individuals with hearing impairment is difficulty hearing in noise, with directional microphones emerging as the most capable remediation. Our purpose was to determine the impact of directional microphones on localization disability and concurrent handicap. Fifty-seven individuals participated unaided and then in groups of 19, using omni-directional microphones, directional-microphones, or toggle-switch equipped amplification. The outcome measure was a localization disabilities and handicaps questionnaire. Comparisons between the unaided group versus the aided groups, and the directional-microphone groups versus the other two aided groups revealed no significant differences. None of the microphone schemes either increased or decreased self-perceived localization disability or handicap. Objective measures of localization ability are warranted and if significance is noted, clinicians should caution patients when moving in their environment. If no significant objective differences exist, in light of the subjective findings in this investigation concern over decreases in quality of life and safety with directional microphones need not be considered.

  11. First Limit on the Direct Detection of Lightly Ionizing Particles for Electric Charge as Low as e / 1000 with the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.

    The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidatemore » events have been found in 285 days of data taking. As a result, new direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.« less

  12. First Limit on the Direct Detection of Lightly Ionizing Particles for Electric Charge as Low as e /1000 with the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Ruof, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Varner, R. L.; Vasilyev, S.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; Majorana Collaboration

    2018-05-01

    The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e /1000 .

  13. First Limit on the Direct Detection of Lightly Ionizing Particles for Electric Charge as Low as e / 1000 with the Majorana Demonstrator

    DOE PAGES

    Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; ...

    2018-05-25

    The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidatemore » events have been found in 285 days of data taking. As a result, new direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.« less

  14. Three-Dimensional Orientation of Anisotropic Plasmonic Aggregates at Intracellular Nuclear Indentation Sites by Integrated Light Sheet Super-Resolution Microscopy.

    PubMed

    Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho

    2018-05-22

    Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.

  15. Biomechanical factors contributing to self-organization in seagrass landscapes

    USGS Publications Warehouse

    Fonseca, M.S.; Koehl, M.A.R.; Kopp, B.S.

    2007-01-01

    Field observations have revealed that when water flow is consistently from one direction, seagrass shoots align in rows perpendicular to the primary axis of flow direction. In this study, live Zostera marina shoots were arranged either randomly or in rows perpendicular to the flow direction and tested in a seawater flume under unidirectional flow and waves to determine if shoot arrangement: a) influenced flow-induced force on individual shoots, b) differentially altered water flow through the canopy, and c) influenced light interception by the canopy. In addition, blade breaking strength was compared with flow-induced force to determine if changes in shoot arrangement might reduce the potential for damage to shoots. Under unidirectional flow, both current velocity in the canopy and force on shoots were significantly decreased when shoots were arranged in rows as compared to randomly. However, force on shoots was nearly constant with downstream distance, arising from the trade-off of shoot bending and in-canopy flow reduction. The coefficient of drag was higher for randomly-arranged shoots at low velocities (< 30 cm s- 1) but converged rapidly among the two shoot arrangements at higher velocities. Shoots arranged in rows tended to intercept slightly more light than those arranged randomly. Effects of shoot arrangement under waves were less clear, potentially because we did not achieve the proper plant size?row spacing ratio. At this point, we may only suggest that water motion, as opposed to light capture, is the dominant physical mechanism responsible for these shoot arrangements. Following a computation of the Environmental Stress Factor, we concluded that even photosynthetically active blades may be damaged or broken under frequently encountered storm conditions, irrespective of shoot arrangement. We hypothesize that when flow is generally from one direction, seagrass bed patterns over multiple scales of consideration may arise as a cumulative effect of individual shoot self-organization driven by reduced force and drag on the shoots and somewhat improved light capture.

  16. Effects of directional migration on prisoner's dilemma game in a square domain

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Li, Haihong; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong

    2013-04-01

    We introduce a new migration rule, the directional migration, into evolutionary prisoner's dilemma games defined in a square domain with periodic boundary conditions. We find that cooperation can be enhanced to a much higher level than the case in the absence of migration. Additionally, the presence of the directional migration has profound impact on the population structure: the directional migration drives individuals to form a number of dense clusters which resembles social cohesion. The evolutionary game theory incorporating the directional migration can reproduce some real characteristics of populations in human society and may shed light on the problem of social cohesion.

  17. Comparison of Single-Event Transients Induced in an Operational Amplifier (LM124) by Pulsed Laser Light and a Broad Beam of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd

    2003-01-01

    A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.

  18. MODIFICATION OF SEA ANEMONE BEHAVIOR BY SYMBIOTIC ZOOXANTHELLAE: PHOTOTAXIS.

    PubMed

    Pearse, Vicki Buchsbaum

    1974-12-01

    The sea anemone Anthopleura elegantissima, with and without endosymbiotic zooxanthellae, was tested for evidence of phototactic behavior. Anemones with zooxanthellae always displayed phototaxis, either positive or negative depending on the experimental light intensity and the light intensity of the habitat from which the animals were taken. Anemones without zooxanthellae-even those that had previously harbored zooxanthellae and that were genetically identical clone-mates of phototactic individuals-never displayed phototaxis, appearing completely indifferent to light and shade. The results indicate that phototaxis in this sea anemone depends directly on the presence of its symbiotic algae. It is suggested that the flexible phototactic behavior of the anemone may play an important role in favorably regulating the amount of light to which the zooxanthellae are exposed.

  19. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.

  20. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated. PMID:24465943

  1. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  2. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  3. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.

    PubMed

    Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P

    2005-09-01

    Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.

  4. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed Central

    Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard

    2015-01-01

    Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109

  5. Engineering Aid 3 & 2, Vol. 2. Rate Training Manual.

    ERIC Educational Resources Information Center

    Bernal, Benito C., Jr.

    Designed for individual study and not formal classroom instruction, this rate training manual provides subject matter that relates directly to the occupational qualifications of the Engineering Aid (EA) rating. This volume contains 10 chapters which deal with: (1) wood and light frame structures (examining the uses, kinds, sizes, and grades of…

  6. Error Budgeting and Tolerancing of Starshades for Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart B.; Noecker, M. Charley; Glassman, Tiffany; Lo, Amy S.; Dumont, Philip J.; Kasdin, N. Jeremy; Cady, Eric J.; Vanderbei, Robert; Lawson, Peter R.

    2010-01-01

    A flower-like starshade positioned between a star and a space telescope is an attractive option for blocking the starlight to reveal the faint reflected light of an orbiting Earth-like planet. Planet light passes around the petals and directly enters the telescope where it is seen along with a background of scattered light due to starshade imperfections. We list the major perturbations that are expected to impact the performance of a starshade system and show that independent models at NGAS and JPL yield nearly identical optical sensitivities. We give the major sensitivities in the image plane for a design consisting of a 34-m diameter starshade, and a 2-m diameter telescope separated by 39,000 km, operating between 0.25 and 0.55 um. These sensitivities include individual petal and global shape terms evaluated at the inner working angle. Following a discussion of the combination of individual perturbation terms, we then present an error budget that is consistent with detection of an Earth-like planet 26 magnitudes fainter than its host star.

  7. Directionality of Individual Cone Photoreceptors in the Parafoveal Region

    PubMed Central

    Morris, Hugh J.; Blanco, Leonardo; Codona, Johanan L.; Li, Simone; Choi, Stacey S.; Doble, Nathan

    2015-01-01

    The pointing direction of cone photoreceptors can be inferred from the Stiles-Crawford Effect of the First Kind (SCE-I) measurement. Healthy retinas have tightly packed cones with a SCE-I function peak either centered in the pupil or with a slight nasal bias. Various retinal pathologies can change the profile of the SCE-I function implying that the arrangement or the light capturing properties of the cone photoreceptors are affected. Measuring the SCE-I may reveal early signs of photoreceptor change before actual cell apoptosis occurs. In vivo retinal imaging with adaptive optics (AO) was used to measure the pointing direction of individual cones at eight retinal locations in four control human subjects. Retinal images were acquired by translating an aperture in the light delivery arm through 19 different locations across a subject’s entrance pupil. Angular tuning properties of individual cones were calculated by fitting a Gaussian to the reflected intensity profile of each cone projected onto the pupil. Results were compared to those from an accepted psychophysical SCE-I measurement technique. The maximal difference in cone directionality of an ensemble of cones, ρ̄, between the major and minor axes of the Gaussian fit was 0.05 versus 0.29 mm−2 in one subject. All four subjects were found to have a mean nasal bias of 0.81 mm with a standard deviation of ±0.30 mm in the peak position at all retinal locations with mean ρ̄ value decreasing by 23% with increasing retinal eccentricity. Results show that cones in the parafoveal region converge towards the center of the pupillary aperture, confirming the anterior pointing alignment hypothesis. PMID:26494187

  8. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    NASA Astrophysics Data System (ADS)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  9. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    PubMed Central

    Yu, Ping; Repp, Jascha; Huber, Rupert

    2017-01-01

    Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788

  10. Optical switches for remote and noninvasive control of cell signaling.

    PubMed

    Gorostiza, Pau; Isacoff, Ehud Y

    2008-10-17

    Although the identity and interactions of signaling proteins have been studied in great detail, the complexity of signaling networks cannot be fully understood without elucidating the timing and location of activity of individual proteins. To do this, one needs a means for detecting and controlling specific signaling events. An attractive approach is to use light, both to report on and control signaling proteins in cells, because light can probe cells in real time with minimal damage. Although optical detection of signaling events has been successful for some time, the development of the means for optical control has accelerated only recently. Of particular interest is the development of chemically engineered proteins that are directly sensitive to light.

  11. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum.

    PubMed

    Drury, Douglas W; Whitesell, Matthew E; Wade, Michael J

    2016-03-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution.

  12. A sensor-less LED dimming system based on daylight harvesting with BIPV systems.

    PubMed

    Yoo, Seunghwan; Kim, Jonghun; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-01-13

    Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

  13. Optogenetic control of contractile function in skeletal muscle

    PubMed Central

    Bruegmann, Tobias; van Bremen, Tobias; Vogt, Christoph C.; Send, Thorsten; Fleischmann, Bernd K.; Sasse, Philipp

    2015-01-01

    Optogenetic stimulation allows activation of cells with high spatial and temporal precision. Here we show direct optogenetic stimulation of skeletal muscle from transgenic mice expressing the light-sensitive channel Channelrhodopsin-2 (ChR2). Largest tetanic contractions are observed with 5-ms light pulses at 30 Hz, resulting in 84% of the maximal force induced by electrical stimulation. We demonstrate the utility of this approach by selectively stimulating with a light guide individual intralaryngeal muscles in explanted larynges from ChR2-transgenic mice, which enables selective opening and closing of the vocal cords. Furthermore, systemic injection of adeno-associated virus into wild-type mice provides sufficient ChR2 expression for optogenetic opening of the vocal cords. Thus, direct optogenetic stimulation of skeletal muscle generates large force and provides the distinct advantage of localized and cell-type-specific activation. This technology could be useful for therapeutic purposes, such as restoring the mobility of the vocal cords in patients suffering from laryngeal paralysis. PMID:26035411

  14. Social Phenotypes of Autism Spectrum Disorders and Williams Syndrome: Similarities and Differences

    PubMed Central

    Asada, Kosuke; Itakura, Shoji

    2012-01-01

    Autism spectrum disorders (ASD) and Williams syndrome (WS) both are neurodevelopmental disorders, each with a unique social phenotypic pattern. This review article aims to define the similarities and differences between the social phenotypes of ASD and WS. We review studies that have examined individuals with WS using diagnostic assessments such as the Autism Diagnostic Observation Schedule (ADOS), cross-syndrome direct comparison studies, and studies that have individually examined either disorder. We conclude that (1) individuals with these disorders show quite contrasting phenotypes for face processing (i.e., preference to faces and eyes) and sociability (i.e., interest in and motivation to interact with others), and (2) although the ADOS and a direct comparison study on pragmatic language ability suggest more deficits in ASD, individuals with WS are similarly impaired on social cognition and communicative skills. In light of these results, we discuss how cross-syndrome comparisons between ASD and WS can contribute to developmental theory, cognitive neuroscience, and the development and choice of clinical treatments. PMID:22866045

  15. Light on Body Image Treatment: Acceptance Through Mindfulness

    ERIC Educational Resources Information Center

    Stewart, Tiffany M.

    2004-01-01

    The treatment of body image has to be multifaceted and should be directed toward the treatment of the whole individual - body, mind, and spirit - with an ultimate culmination of acceptance and compassion for the self. This article presents information on a mindful approach to the treatment of body image as it pertains to concerns with body size…

  16. Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    PubMed Central

    2011-01-01

    Background The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae) to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates. Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides). Methods/results Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites × 4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed. Conclusions Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately Culicoides biting rate. PMID:21707980

  17. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  18. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    NASA Astrophysics Data System (ADS)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2013-10-01

    Plants emit significant amounts of monoterpenes into the Earth's atmosphere where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror images forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR. The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  19. Single n-GaN microwire/p-Silicon thin film heterojunction light-emitting diode.

    PubMed

    Ahn, Jaehui; Mastro, Michael A; Klein, Paul B; Hite, Jennifer K; Feigelson, Boris; Eddy, Charles R; Kim, Jihyun

    2011-10-24

    The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire/p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction. © 2011 Optical Society of America

  20. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Whitesell, Matthew E.; Wade, Michael J.

    2016-01-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution. PMID:27087697

  1. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  2. Behavioural responses of krill and cod to artificial light in laboratory experiments

    PubMed Central

    Løkkeborg, S.; Humborstad, O-B.

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231

  3. Behavioural responses of krill and cod to artificial light in laboratory experiments.

    PubMed

    Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B

    2018-01-01

    Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.

  4. The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model.

    PubMed

    Yang, Xiaoping; Su, Lih-Jen; La Rosa, Francisco G; Smith, Elizabeth Erin; Schlaepfer, Isabel R; Cho, Suehyun K; Kavanagh, Brian; Park, Wounjhang; Flaig, Thomas W

    2017-07-27

    Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. The optimal approach for an individual treatment was 2.1 W/cm 2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity ( n  = 16) compared to mice treated with laser alone ( n  = 14) at the end of the study ( p  = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels ( p  = 0.045). Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.

  5. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  6. Interaction with gravitropism, reversibility and lateral movements of phototropically stimulated potato shoots.

    PubMed

    Vinterhalter, D; Savić, J; Stanišić, M; Jovanović, Ž; Vinterhalter, B

    2016-07-01

    Phototropic (PT) and gravitropic (GT) bending are the two major tropic movements that determine the spatial position of potato shoots. We studied PT bending of potato plantlets grown under long-day photoperiods in several prearranged position setups providing different interactions with the GT response. Starting with the standard PT stimulation setup composed of unilateral irradiation of vertically positioned shoots, experiments were also done in antagonistic and synergistic setups and in treatments with horizontal displacement of the light source. In the standard setup, PT bending suppressed the GT bending, which could occur only if the PT stimulation was cancelled. The antagonistic position, with phototropism and gravitropism attempting to bend shoots in opposite directions, showed phototropism and gravitropism as independent bending events with the outcome varying throughout the day reflecting diurnal changes in the competence of individual tropic components. Whilst gravitropism was constant, phototropism had a marked daily fluctuation of its magnitude with a prominent morning maximum starting an hour after the dawn in the growth room and lasting for the next 6 h. When phototropism and gravitropism were aligned in a synergistic position, stimulating shoot bending in the same direction, there was little quantitative addition of their individual effects. The long period of morning PT bending maximum enabled multiple PT bending events to be conducted in succession, each one preceded by a separate lag phase. Studies of secondary PT events showed that potato plantlets can follow and adjust their shoot position in response to both vertical and horizontal movements of a light source. PT bending was reversible, since the 180° horizontal change of a blue light (BL) source position resulted in reversal of bending direction after a 20-min-long lag phase.

  7. Individual Differences in the Post-Illumination Pupil Response to Blue Light: Assessment without Mydriatics

    PubMed Central

    Bruijel, Jessica; van der Meijden, Wisse P.; Bijlenga, Denise; Dorani, Farangis; Coppens, Joris E.; te Lindert, Bart H. W.; Kooij, J. J. Sandra; Van Someren, Eus J. W.

    2016-01-01

    Melanopsin-containing retinal ganglion cells play an important role in the non-image forming effects of light, through their direct projections on brain circuits involved in circadian rhythms, mood and alertness. Individual differences in the functionality of the melanopsin-signaling circuitry can be reliably quantified using the maximum post-illumination pupil response (PIPR) after blue light. Previous protocols for acquiring PIPR relied on the use of mydriatics to dilate the light-exposed eye. However, pharmacological pupil dilation is uncomfortable for the participants and requires ophthalmological expertise. Hence, we here investigated whether an individual’s maximum PIPR can be validly obtained in a protocol that does not use mydriatics but rather increases the intensity of the light stimulus. In 18 participants (5 males, mean age ± SD: 34.6 ± 13.6 years) we evaluated the PIPR after exposure to intensified blue light (550 µW/cm2) provided to an undilated dynamic pupil. The test-retest reliability of the primary PIPR outcome parameter was very high, both between day-to-day assessments (Intraclass Correlation Coefficient (ICC) = 0.85), as well as between winter and summer assessments (ICC = 0.83). Compared to the PIPR obtained with the use of mydriatics and 160 µW/cm2 blue light exposure, the method with intensified light without mydriatics showed almost zero bias according to Bland-Altman plots and had moderate to strong reliability (ICC = 0.67). In conclusion, for PIPR assessments, increasing the light intensity is a feasible and reliable alternative to pupil dilation to relieve the participant’s burden and to allow for performance outside the ophthalmological clinic. PMID:27618116

  8. The signal transducing photoreceptors of plants.

    PubMed

    Franklin, Keara A; Larner, Victoria S; Whitelam, Garry C

    2005-01-01

    Light signals are amongst the most important environmental cues regulating plant development. In addition to light quantity, plants measure the quality, direction and periodicity of incident light and use the information to optimise growth and development to the prevailing environmental conditions. Red and far-red wavelengths are perceived by the photoreversible phytochrome family of photoreceptors, whilst the detection of blue and ultraviolet (UV)-A wavelengths is conferred by the cryptochromes and phototropins. Higher plants contain multiple discrete phytochromes, the apoproteins of which are encoded by a small divergent gene family. In Arabidopsis, two cryptochrome and two phototropin family members have been identified and characterized. Photoreceptor action regulates development throughout the lifecycle of plants, from seed germination through to architecture of the mature plant and the onset of reproduction. The roles of individual photoreceptors in mediating plant development have, however, often been confounded by redundant, synergistic and in some cases mutually antagonistic mechanisms of action. The isolation of mutants null for individual photoreceptors and the construction of mutants null for multiple photoreceptors have therefore been paramount in elucidating photoreceptor functions. Photoreceptor action does not, however, operate in isolation from other signalling systems. The integration of light signals with other environmental cues enables plants to adapt their physiology to changing seasonal environments. This paper summarises current understanding of photoreceptor families and their functions throughout the lifecycle of plants. The integration of light signals with other environmental stimuli is also discussed.

  9. Optical spectroscopy and photo modification of individual single-photon emitters in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos

    Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.

  10. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    PubMed

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  11. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution

    PubMed Central

    Ebert, Dieter

    2016-01-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407

  12. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.

    PubMed

    Altermatt, Florian; Ebert, Dieter

    2016-04-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).

  13. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  14. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    NASA Astrophysics Data System (ADS)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  15. "Peaks, Slumps, and Bumps": Individual Differences in the Development of Creativity in Children and Adolescents.

    PubMed

    Barbot, Baptiste; Lubart, Todd I; Besançon, Maud

    2016-01-01

    This article reviews developmental studies of creativity in children and adolescents with a focus on "peaks" and "slumps" that have often been described in the literature. The irregularity of the development of creativity is interpreted in light of conceptual and measurement issues and with regard to the interaction between individual-level resources, task-specific demands, and environmental influences, resulting in apparent individual differences in the development of creativity. The need for longitudinal designs, multidimensional and multi-domain assessment of creative potential limiting the contribution of task-specific factors is outlined and discussed as an important direction for developmental research on creativity. © 2016 Wiley Periodicals, Inc.

  16. C-13 dynamics in benthic algae: Effects of light, phosphorus, and biomass development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2008-07-01

    We performed three experiments in indoor streams and one experiment in a natural stream to investigate the effects of growth factors on {delta}{sup 13}C levels in benthic microalgae. In the indoor streams, algae grown under conditions of high light and high phosphorus had {delta}{sup 13}C values that were 16% higher than those in algae grown under conditions of low light and low phosphorus. Light effects were much stronger than phosphorus effects. The effects of both factors increased in strength as algal biomass accrued, and by the end of the experiments, algal {delta}{sup 13}C and biomass were highly correlated. In themore » natural stream, algae exposed to direct sunlight were enriched 15% over shaded algae, corroborating the strong effect of light in the indoor streams. Growth factors such as light and nutrients probably reduce discrimination against {delta}{sup 13}C (raising {delta}{sup 13}C values) in benthic microalgae by causing CO{sub 2} depletion both within individual cells and within the assemblage matrix. However, because the most marked fractionation occurred in older and thicker assemblages, CO{sub 2} depletion within the assemblage matrix appeared to be more important than depletion within individual cells. In the absence of carbon-concentrating mechanisms, elevated {delta}{sup 13}C suggests that inorganic carbon may limit the growth of benthic algae. The extensive range of d13C values (-14{per_thousand} to -36{per_thousand}) created by light and nutrient manipulations in this study easily encompassed the mean {delta}{sup 13}C values of both C{sub 3} and C{sub 4} terrestrial plants, indicating the challenge aquatic ecologists face in identifying carbon sources for higher trophic levels when light and nutrient conditions vary.« less

  17. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  19. RR Lyrae stars and the horizontal branch of NGC 5904 (M5)

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Luna, A.; Bramich, D. M.; Giridhar, Sunetra; Ahumada, J. A.; Muneer, S.

    2016-05-01

    We report the distance and [Fe/H] value for the globular cluster NGC 5904 (M5) derived from the Fourier decomposition of the light curves of selected RRab and RRc stars. The aim in doing this was to bring these parameters into the homogeneous scales established by our previous work on numerous other globular clusters, allowing a direct comparison of the horizontal branch luminosity in clusters with a wide range of metallicities. Our CCD photometry of the large variable star population of this cluster is used to discuss light curve peculiarities, like Blazhko modulations, on an individual basis. New Blazhko variables are reported.

  20. Brain 'talks over' boring quotes: top-down activation of voice-selective areas while listening to monotonous direct speech quotations.

    PubMed

    Yao, Bo; Belin, Pascal; Scheepers, Christoph

    2012-04-15

    In human communication, direct speech (e.g., Mary said, "I'm hungry") is perceived as more vivid than indirect speech (e.g., Mary said that she was hungry). This vividness distinction has previously been found to underlie silent reading of quotations: Using functional magnetic resonance imaging (fMRI), we found that direct speech elicited higher brain activity in the temporal voice areas (TVA) of the auditory cortex than indirect speech, consistent with an "inner voice" experience in reading direct speech. Here we show that listening to monotonously spoken direct versus indirect speech quotations also engenders differential TVA activity. This suggests that individuals engage in top-down simulations or imagery of enriched supra-segmental acoustic representations while listening to monotonous direct speech. The findings shed new light on the acoustic nature of the "inner voice" in understanding direct speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes

    PubMed Central

    Lau, Jason C. S.; Rodgers, Christopher T.; Hore, P. J.

    2012-01-01

    According to the radical pair model, the magnetic compass sense of migratory birds relies on photochemical transformations in the eye to detect the direction of the geomagnetic field. Magnetically sensitive radical pairs are thought to be generated in cryptochrome proteins contained in magnetoreceptor cells in the retina. A prerequisite of the current model is for some degree of rotational ordering of both the cryptochromes within the cells and of the cells within the retina so that the directional responses of individual molecules do not average to zero. Here, it is argued that anisotropic distributions of radical pairs can be generated by the photoselection effects that arise from the directionality of the light entering the eye. Light-induced rotational order among the transient radical pairs rather than intrinsic ordering of their molecular precursors is seen as the fundamental condition for a magnetoreceptor cell to exhibit an anisotropic response. A theoretical analysis shows that a viable compass magnetoreceptor could result from randomly oriented cryptochromes contained in randomly oriented cells distributed around the retina. PMID:22977104

  2. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  3. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M., E-mail: nsanders@cfa.harvard.edu

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. Wemore » present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.« less

  4. Resonance Coupling in Plasmonic Nanomatryoshka Homo- and Heterodimers

    DTIC Science & Technology

    2016-08-16

    accepted that individual silver nanoparticles show larger scattering spectra for an interacted light in comparison with the gold nanoparticles in the... silver nanoparticles is in the direction of shorter wavelengths (blue-shift), however, this condition must be suppressed by coupling of the interband...heterogenous dimers of gold and silver nanoparticles ,” Phys. Rev. Lett. 101, 197401 (2008). Reuse of AIP Publishing content is subject to the terms at: https

  5. Advance directives outside the USA: are they the best solution everywhere?

    PubMed

    Sanchez-Gonzalez, M A

    1997-09-01

    This article evaluates the potential role of advance directives outside of their original North American context. In order to do this, the article first analyses the historical process which has promoted advance directives in recent years. Next, it brings to light certain presuppositions which have given them force: atomistic individualism, contractualism, consumerism and entrepreneurialism, pluralism, proceduralism, and "American moralism." The article next studies certain European cultural peculiarities which could affect advance directives: the importance of virtue versus rights, stoicism versus consumerist utilitarianism, rationalism verus empiricism, statism versus citizens' initiative, and justice versus autonomy. The article concludes by recognising that autonomy has a transcultural value, although it must be balanced with other principles. Advance Directives can have a function in certain cases. But it does not seem adequate to delegate to advance directives more and more medical decisions, and to make them more binding everyday. It is indispensable to develop other decision-making criteria.

  6. What determines direction of asymmetry: genes, environment or chance?

    PubMed Central

    2016-01-01

    Conspicuous asymmetries seen in many animals and plants offer diverse opportunities to test how the development of a similar morphological feature has evolved in wildly different types of organisms. One key question is: do common rules govern how direction of asymmetry is determined (symmetry is broken) during ontogeny to yield an asymmetrical individual? Examples from numerous organisms illustrate how diverse this process is. These examples also provide some surprising answers to related questions. Is direction of asymmetry in an individual determined by genes, environment or chance? Is direction of asymmetry determined locally (structure by structure) or globally (at the level of the whole body)? Does direction of asymmetry persist when an asymmetrical structure regenerates following autotomy? The answers vary greatly for asymmetries as diverse as gastropod coiling direction, flatfish eye side, crossbill finch bill crossing, asymmetrical claws in shrimp, lobsters and crabs, katydid sound-producing structures, earwig penises and various plant asymmetries. Several examples also reveal how stochastic asymmetry in mollusc and crustacean early cleavage, in Drosophila oogenesis, and in Caenorhabditis elegans epidermal blast cell movement, is a normal component of deterministic development. Collectively, these examples shed light on the role of genes as leaders or followers in evolution. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821528

  7. Apparatus for Direct Optical Fiber Through-Lens Illumination of Microscopy or Observational Objects

    NASA Technical Reports Server (NTRS)

    Kadogawa, Hiroshi (Inventor)

    2001-01-01

    In one embodiment of the invention, a microscope or other observational apparatus, comprises a hollow tube, a lens mounted to the tube, a light source and at least one flexible optical fiber having an input end and an output end. The input end is positioned to receive light from the light source, and the output end is positioned within the tube so as to directly project light along a straight path to the lens to illuminate an object to be viewed. The path of projected light is uninterrupted and free of light deflecting elements. By passing the light through the lens, the light can be diffused or otherwise defocused to provide more uniform illumination across the surface of the object, increasing the quality of the image of the object seen by the viewer. The direct undeflected and uninterrupted projection of light, without change of direction, eliminates the need for light-deflecting elements, such as beam-splitters, mirrors, prisms, or the like, to direct the projected light towards the object.

  8. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  9. Apparatus and method for a light direction sensor

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2011-01-01

    The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.

  10. Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet.

    PubMed

    Saghafi, Saiedeh; Haghi-Danaloo, Nikoo; Becker, Klaus; Sabdyusheva, Inna; Foroughipour, Massih; Hahn, Christian; Pende, Marko; Wanis, Martina; Bergmann, Michael; Stift, Judith; Hegedus, Balazs; Dome, Balazs; Dodt, Hans-Ulrich

    2018-06-01

    Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. © 2018 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  12. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  13. Enhancing visible light photocatalytic activity of direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin

    Highlights: • Novel direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts are synthesized. • SnS{sub 2}/Ag{sub 3}PO{sub 4} exhibits much higher photocatalytic activity than pure SnS{sub 2} and Ag{sub 3}PO{sub 4}. • A possible photocatalytic mechanism was discussed in detail. - Abstract: Novel direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts were successfully fabricated with SnS{sub 2} nanoplates hybridized by Ag{sub 3}PO{sub 4} nanoparticals via a facile hydrothermal and precipitation method and applied for the photocatalytic degradation of methyl orange in aqueous solution under visible light irradiation (λ > 420 nm). It was found that the photocatalytic performance of themore » SnS{sub 2} (2.0 wt%)/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with 2.0 wt% SnS{sub 2} content was much higher than that of individual SnS{sub 2} and Ag{sub 3}PO{sub 4}. The enhanced photocatalytic activity could be ascribed to the efficient separation of photogenerated electrons and holes through the formation of direct Z-scheme system composed of SnS{sub 2} and Ag{sub 3}PO{sub 4}. Furthermore, the recycling experiments revealed that the photocorrosion behavior of Ag{sub 3}PO{sub 4} was strongly inhibited by SnS{sub 2}, it may be due to the photogenerated electrons of Ag{sub 3}PO{sub 4} would be quickly combined with the photogenerated holes of SnS{sub 2}. This work will be useful for the design of other direct Z-scheme visible-light-driven photocatalytic systems for application in energy conversion and environmental remediation.« less

  14. Long-term fiscal implications of subsidizing in-vitro fertilization in Sweden: a lifetime tax perspective.

    PubMed

    Svensson, Anders; Connolly, Mark; Gallo, Federico; Hägglund, Leif

    2008-11-01

    In Sweden approximately 3% of annual births are conceived using assisted reproductive technologies (ART). In light of increasing use of ART in Sweden we estimate the lifetime future tax revenues of a child conceived by in-vitro fertilization (IVF) to establish whether public subsidy of IVF represents sound fiscal policy. A modified generational accounting model was developed to calculate the net present value (NPV) of average investment costs required to achieve an IVF-conceived child. The model simulates direct lifetime financial interactions between the child and the Swedish government. Within the model we assume average direct financial transfers are made to the individual (eg, child allowance, education, health care, pension, etc). In return, the individual transfers resources to the government through taxation based on anticipated average earnings. The difference between direct transfers and gross taxes paid equals the net-tax contribution. Individual tax contributions were held constant in the model. Based on average life-expectancy an individual born in 2005 will pay an undiscounted 32.5 million SEK in taxes to the Swedish government and receive 20.9 million SEK in direct financial transfers over their lifetime. When these figures are discounted and IVF costs are included in the analysis we obtain a lifetime NPV of 254,000 SEK with a break-even point at age 41 (the age of achieving a positive NPV) for an individual conceived through IVF. Based on results presented here we conclude that State-funded IVF in Sweden does not negatively impact the long run fiscal budget. Conversely, over an average lifetime an IVF offspring returns a positive net value to the State.

  15. An Annotated Bibliography Of U.S. Army Natick Anthropology (1947-1991).

    DTIC Science & Technology

    1991-08-01

    designers of lasts and shoes for the Army. In order to provide greater detail and also more directly applicable information, ari intensive analysis of the...individual simultaneous computations. These five measuremrnts are: length of cranium 4 cm above Na-S, sinus breadth, total facial height, bigonial and...implications of using the Army’s personal equipment are examined in light of the present and projected demographic ccupsition of the Army active duty

  16. A photon-driven micromotor can direct nerve fibre growth

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Nieminen, Timo A.; Mohanty, Samarendra; Miotke, Jill; Meyer, Ronald L.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2012-01-01

    Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.

  17. Separate and Simultaneous Adjustment of Light Qualities in a Real Scene

    PubMed Central

    Pont, Sylvia C.; Heynderick, Ingrid

    2017-01-01

    Humans are able to estimate light field properties in a scene in that they have expectations of the objects’ appearance inside it. Previously, we probed such expectations in a real scene by asking whether a “probe object” fitted a real scene with regard to its lighting. But how well are observers able to interactively adjust the light properties on a “probe object” to its surrounding real scene? Image ambiguities can result in perceptual interactions between light properties. Such interactions formed a major problem for the “readability” of the illumination direction and diffuseness on a matte smooth spherical probe. We found that light direction and diffuseness judgments using a rough sphere as probe were slightly more accurate than when using a smooth sphere, due to the three-dimensional (3D) texture. We here extended the previous work by testing independent and simultaneous (i.e., the light field properties separated one by one or blended together) adjustments of light intensity, direction, and diffuseness using a rough probe. Independently inferred light intensities were close to the veridical values, and the simultaneously inferred light intensity interacted somewhat with the light direction and diffuseness. The independently inferred light directions showed no statistical difference with the simultaneously inferred directions. The light diffuseness inferences correlated with but contracted around medium veridical values. In summary, observers were able to adjust the basic light properties through both independent and simultaneous adjustments. The light intensity, direction, and diffuseness are well “readable” from our rough probe. Our method allows “tuning the light” (adjustment of its spatial distribution) in interfaces for lighting design or perception research. PMID:28203350

  18. On the nature of directed behavior to drug-associated light cues in rhesus monkeys (Macaca mulatta).

    PubMed

    Reilly, Mark P; Berndt, Sonja I; Woods, James H

    2016-11-01

    The present study investigated the role of drug-paired stimuli in controlling the behavior of rhesus monkeys. Systematic observations were made with nine monkeys who had a history of drug self-administration; they had been lever pressing to produce intravenous infusions of various drugs. These observations revealed that the stimulus light co-occurring with drug infusion produced robust and cue-directed behavior such as orienting, touching and biting. Experiment 1 showed that this light-directed behavior would occur in naïve monkeys exposed to a Pavlovian pairing procedure. Four monkeys were given response-independent injections of cocaine. In two monkeys, a red light preceded cocaine injections by 5 s, and a green light co-occurred with the 5-s cocaine injections. In the other two monkeys, the light presentations and cocaine injections occurred independently. Light-directed behavior occurred in all four monkeys within the first couple of trials and at high levels but decreased across sessions. The cocaine-paired stimulus maintained behavior longer and at higher levels than the uncorrelated stimuli. Furthermore, light-directed behavior was not maintained when cocaine was replaced with saline. Light-directed behavior did not occur in the absence of the lights. When these monkeys were subsequently trained to lever press for cocaine, light-directed behavior increased to levels higher than previously observed. Behavior directed towards drug-paired stimuli is robust, reliable and multiply determined; the mechanisms underlying this activity likely include Pavlovian conditioning, stimulus novelty, habituation and operant conditioning.

  19. Artificial light at night alters behavior in laboratory and wild animals.

    PubMed

    Russart, Kathryn L G; Nelson, Randy J

    2018-05-28

    Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems. © 2018 Wiley Periodicals, Inc.

  20. Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)

    NASA Technical Reports Server (NTRS)

    Bradford, Charles Matt

    2004-01-01

    The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.

  1. Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors.

    PubMed

    Lichstein, Jeremy W; Dushoff, Jonathan; Ogle, Kiona; Chen, Anping; Purves, Drew W; Caspersen, John P; Pacala, Stephen W

    2010-04-01

    Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other environmental factors are typically absent. Thus, inventory data alone cannot be used to parameterize mechanistic models of forest dynamics in which individual performance depends on light, water, nutrients, etc. To overcome this limitation, we developed methods to estimate species-specific parameters (thetaG) relating sapling growth (G) to L using data sets in which G, but not L, is observed for each sapling. Our approach involves: (1) using calibration data that we collected in both eastern and western North America to quantify the probability that saplings receive different amounts of light, conditional on covariates x that can be obtained from inventory data (e.g., sapling crown class and neighborhood crowding); and (2) combining these probability distributions with observed G and x to estimate thetaG using Bayesian computational methods. Here, we present a test case using a data set in which G, L, and x were observed for saplings of nine species. This test data set allowed us to compare estimates of thetaG obtained from the standard approach (where G and L are observed for each sapling) to our method (where G and x, but not L, are observed). For all species, estimates of thetaG obtained from analyses with and without observed L were similar. This suggests that our approach should be useful for estimating light-dependent growth functions from inventory data that lack direct measurements of L. Our approach could be extended to estimate parameters relating sapling mortality to L from inventory data, as well as to deal with uncertainty in other resources (e.g., water or nutrients) or environmental factors (e.g., temperature).

  2. Photothermal method for in situ microanalysis of the chemical composition of coal samples

    DOEpatents

    Amer, Nabil M.

    1986-01-01

    Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.

  3. Photothermal method for in situ microanalysis of the chemical composition of coal samples

    DOEpatents

    Amer, N.M.

    1983-10-25

    Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.

  4. Far field emission profile of pure wurtzite InP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less

  5. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  6. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams.

    PubMed

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-12

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  7. Magneto-optical properties of biogenic photonic crystals in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaka, M., E-mail: iwasaka-m@umin.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012 Saitama; Mizukawa, Y.

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering frommore » a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.« less

  8. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching

    PubMed Central

    Wilk, Laura; Grunwald, Matthias; Liao, Pen-Nan; Walla, Peter Jomo; Kühlbrandt, Werner

    2013-01-01

    The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, , that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers. PMID:23509270

  9. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  10. Phytochrome from Green Plants: Properties and biological Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosicmore » biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and vegetative (cellulose-accumulating) tissue, toward enhanced bioenergy yield.« less

  11. Practical Strategies for Promoting Full Inclusion of Individuals with Disabilities in Community-Based Participatory Intervention Research

    PubMed Central

    Hassouneh, Dena; Alcala-Moss, Amana; McNeff, E.

    2011-01-01

    Community-based participatory research (CBPR) with disability communities is directed toward facilitating full inclusion of individuals with disabilities and disability community organizations in all aspects of the research process. Within the CBPR framework, academic-disability community partners may value and wish to use experimental designs to test interventions. Being aware of and proactively addressing barriers and challenges to inclusion in the areas of human resources, training, productivity, accommodation, and inadequate funding for disability community organizations are critical for success. Some of the strategies discussed in this paper for addressing these challenges include creating redundant systems, providing benefits counseling and individualized payment options for employment, designing trainings to be disability friendly, and carefully considering selection of partners in light of available community resources. PMID:21472736

  12. Light in flight photography and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Faccio, Daniele

    2017-02-01

    The first successful attempts (Abramson) at capturing light in flight relied on the holographic interference between the ``object'' beam scattered from a screen and a short reference pulse propagating at an angle, acting as an ultrafast shutter cite{egg}. This interference pattern was recorded on a photographic plate or film and allowed the visualisation of light as it propagated through complex environments with unprecedented temporal and spatial resolution. More recently, advances in ultrafast camera technology and in particular the use of picosecond resolution streak cameras allowed the direct digital recording of a light pulse propagating through a plastic bottle (Rasker at el.). This represented a remarkable step forward as it provided the first ever video recording (in the traditional sense with which one intends a video, i.e. something that can be played back directly on a screen and saved in digital format) of a pulse of light in flight. We will discuss a different technology that is based on an imaging camera with a pixel array in which each individual pixel is a single photon avalanche diode (SPAD). SPADs offer both sensitivity to single photons and picosecond temporal resolution of the photon arrival time (with respect to a trigger event). When adding imaging capability, SPAD arrays can deliver videos of light pulse propagating in free space, without the need for a scattering medium or diffuser as in all previous work (Gariepy et al). This capability can then be harnessed for a variety of applications. We will discuss the details of SPAD camera detection of moving objects (e.g. human beings) that are hidden from view and then conclude with a discussion of future perspectives in the field of bio-imaging.

  13. Classification of collective behavior: a comparison of tracking and machine learning methods to study the effect of ambient light on fish shoaling.

    PubMed

    Butail, Sachit; Salerno, Philip; Bollt, Erik M; Porfiri, Maurizio

    2015-12-01

    Traditional approaches for the analysis of collective behavior entail digitizing the position of each individual, followed by evaluation of pertinent group observables, such as cohesion and polarization. Machine learning may enable considerable advancements in this area by affording the classification of these observables directly from images. While such methods have been successfully implemented in the classification of individual behavior, their potential in the study collective behavior is largely untested. In this paper, we compare three methods for the analysis of collective behavior: simple tracking (ST) without resolving occlusions, machine learning with real data (MLR), and machine learning with synthetic data (MLS). These methods are evaluated on videos recorded from an experiment studying the effect of ambient light on the shoaling tendency of Giant danios. In particular, we compute average nearest-neighbor distance (ANND) and polarization using the three methods and compare the values with manually-verified ground-truth data. To further assess possible dependence on sampling rate for computing ANND, the comparison is also performed at a low frame rate. Results show that while ST is the most accurate at higher frame rate for both ANND and polarization, at low frame rate for ANND there is no significant difference in accuracy between the three methods. In terms of computational speed, MLR and MLS take significantly less time to process an image, with MLS better addressing constraints related to generation of training data. Finally, all methods are able to successfully detect a significant difference in ANND as the ambient light intensity is varied irrespective of the direction of intensity change.

  14. An integrated platform for assessing biologics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-04-01

    Protein therapeutics are a rapidly growing portion of the pharmaceuticals market and have many significant advantages over traditional small molecule drugs. As this market expands, however, critical regulatory and quality control issues remain, most notably the problem of protein aggregation. Individual target proteins often aggregate into larger masses which trigger an immune response in the body, which can reduce the efficacy of the drug for its intended purpose, or cause serious anaphylactic side-effects. Although detecting and minimizing aggregate formation is critical to ensure an effective product, aggregation dynamics are often highly complicated and there is little hope of reliable prediction and prevention from first principles. This problem is compounded for aggregates in the subvisible range of 100 nm to 10 micrometers where traditional techniques for detecting aggregates have significant limitations. Here, we present an integrated optofluidic platform for detecting nanoscale protein aggregates and characterizing interactions between these aggregates and a reference surface. By delivering light to a solution of proteins with an optical waveguide, scattered light from individual protein aggregates can be detected and analyzed to determine the force profile between each particle and the waveguide surface. Unlike existing methods which only determine size or charge, our label-free screening technique can directly measure the surface interaction forces between single aggregates and the glass substrate. This direct measurement capability may allow for better empirical predictions of the stability of protein aggregates during drug manufacturing and storage.

  15. Burning intensity and low light availability reduce resprouting ability and vigor of Buxus sempervirens L. after clearing.

    PubMed

    Casals, P; Rios, A I

    2018-06-15

    Thinning and prescribed burning are two common operations for reducing fuel accumulation and decreasing the intensity and severity of wildfires. However, the resprouting response of understory species may reduce the effectiveness of fuel load treatments and thus negatively affect the cost-benefit ratio of these treatments. This study focuses on Buxus sempervirens, a slow-growing, multi-stemmed tree species, frequently dominant in the understory of temperate European forests, which resprouts strongly after clearing or burning. The aim was to assess how light availability and burning influence resprouting ability (resprouting or not) and vigor (i.e. the growth of resprouts) after clearing B. sempervirens in thinned stands without slash removal (unburned) or with burning of slash residues (burned), two years after the treatments. All individuals studied resprouted shortly after clearing in unburned stands, whereas almost ca. 40% never resprouted in the burned stands. Fire intensity, measured at the base of 49 individuals, contributed to explaining the likelihood of mortality. The number of resprouts was directly influenced by the pre-treatment size of individuals, but this relationship was lower in burned stands. Fire intensity, recorded in 29 resprouted individuals, also influenced the number of resprouts. Post-treatment light availability, in addition to pre-treatment size, contributed to explaining the volume of the ten largest resprouts and the length of the largest resprout. No tradeoffs between the resprout number and the volume of the ten largest resprouts or the maximum resprout length were found. Our study suggests that burning after clearing reduces the resprouting ability of B. sempervirens. Moreover, avoiding affecting the canopy cover reduces its resprouting vigor and, consequently, increases the effectiveness of understory fuel load treatments. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  17. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  18. InGaN directional coupler made with a one-step etching technique

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Zhang, Shuai; Shi, Zheng; Li, Xin; Wang, Yongjin

    2017-06-01

    We propose, fabricate and characterize an on-chip integration of light source, InGaN waveguide, directional coupler and photodiode, in which AlGaN layers are used as top and bottom optical claddings to form an InGaN waveguide for guiding the in-plane emitted light from the InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED). The difference in etch rate caused by different exposure windows leads to an etching depth discrepancy using the one-step etching technique, which forms the InGaN directional coupler with the overlapped underlying slab. Light propagation results directly confirm effective light coupling in the InGaN directional coupler, which is achieved through high-order guided modes. The InGaN waveguide couples the modulated light from the InGaN/GaN MQW-LED and transfers part of light to the coupled waveguide via the InGaN directional coupler. The in-plane InGaN/GaN MQW-photodiode absorbs the guided light by the coupled InGaN waveguide and induces the photocurrent. The on-chip InGaN photonic integration experimentally demonstrates an in-plane light communication with a data transmission of 50 Mbps.

  19. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp,; Michael, P [Danville, CA

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  20. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  1. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  2. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    PubMed

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  3. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition.

    PubMed

    Brotosudarmo, Tatas H P; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T; Moulisová, Vladimíra; Cogdell, Richard J; Köhler, Jürgen

    2009-09-02

    Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous alphabeta-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the "tightly coupled ring" can be modeled by nine alphabeta-Bchls dimers, such that the Bchls bound to six alphabeta-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six alphabeta-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C(3). It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder.

  4. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    DOEpatents

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  5. Light Limitation within Southern New Zealand Kelp Forest Communities

    PubMed Central

    Desmond, Matthew J.; Pritchard, Daniel W.; Hepburn, Christopher D.

    2015-01-01

    Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2–5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Long-term light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m−2 at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities. PMID:25902185

  6. Particle measurement systems and methods

    DOEpatents

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  7. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance

    PubMed Central

    Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task—SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants’ behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance. PMID:27820822

  8. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance.

    PubMed

    Correa, Ángel; Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task-SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants' behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance.

  9. Eternal triangle: the interaction of light source, electrical control gear, and optics

    NASA Astrophysics Data System (ADS)

    S'heeren, Griet

    1998-04-01

    In this particular 'affair' the participants are less than human but have individual personalities they bring to their relationship with each other. High pressure metal halide lamps such as BriteArc lamps have the highest luminance and radiance of all continuously operating practical light source. Since these lamps have short arcs and are available in power ratings from about 30W to 30kW they have found applications with various optical systems. Besides the lamps, such systems include an electrical control device and an optical system. To fulfil the user's requirements for a specific application, it is not only important to choose the right lamp, but crucial to achieve a harmonious marriage between the light source, electrical control device and the optics. To run a high pressure discharge lamp an ignitor/ballast system is essential This stabilizes the lamp parameters. The chemical components inside the lamp determine the lamp voltage and the gear determines, via the current, the lamp power. These are directly related in the luminance and color temperature of the emitted light. Therefore lamp performance and effective life are dependent on the ignitor, control gear and lamp combination. Since the lamp emits radiation in all directions, collection of the light from a lamp can be improved by using reflectors to deliver the light into a lens system. Since lamps with short arc gaps approach a point source they appear ideal for optical system applications. The shape of the reflector and the focusing of the lamp determine which part of the light is collected out of the light-arc. In the case of an LCD projector, the final light output also depends on the transmission characteristics of the LCD panels. Their nonlinearity causes the color of the emitted light to be different from the lamp color. All these parameters have to be optimized to obtain the highest performance. This leads to the conclusion that a carefully matched combination of lamp, ignitor/ballast and optics should guarantee the best system performance. This paper sets out to provide some guidelines on attempting to achieve a harmonious relationship between the three partners in this particular eternal triangle.

  10. Recording of individual identification information on dental prostheses using fluorescent material and ultraviolet light.

    PubMed

    Naito, Yoshihito; Meinar, Ashrin N; Iwawaki, Yuki; Kashiwabara, Toshiya; Goto, Takaharu; Ito, Teruaki; Sakuma, Tetsuro; Ichikawa, Tetsuo

    2013-01-01

    The placement of individual identification on a prosthesis is very important for forensic dentistry and traceability. This article describes the unique naming/labeling of dentures with information for individual identification using a method in which information is invisible under natural light but visible under ultraviolet light-emitting diode/black light exposure. The use of laser beam machining with this method will enable the recording of a large amount of information.

  11. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    PubMed

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  12. Height is more important than light in determining leaf morphology in a tropical forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  13. Dimensional metrology of smooth micro structures utilizing the spatial modulation of white-light interference fringes

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin

    2017-08-01

    Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.

  14. Anisotropic light scattering of individual sickle red blood cells.

    PubMed

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  15. Development Directions for Various Types of the Light Wood-Framed Structures

    NASA Astrophysics Data System (ADS)

    Malesza, J.; Baszeń, M.; Miedziałowski, Cz

    2017-11-01

    The paper presents current trends in the development of the wood-framed structures. Authors describe the evolution of the technology of implementation, the production process of precast elements of buildings as well as selected realization on the site of these kinds of structures. The attention has been paid to the effect of implementation phases on construction and erecting technology of the wood-framed structures. The paper draws attention to the importance and enhancement of structural analysis of structures in individual phases of building realization.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios-Torres, Jackeline; Malikopoulos, Andreas A.

    Connected and automated vehicles (CAVs) have the potential to improve safety by reducing and mitigating traffic accidents. They can also provide opportunities to reduce transportation energy consumption and emissions by improving traffic flow. Vehicle communication with traffic structures and traffic lights can allow individual vehicles to optimize their operation and account for unpredictable changes. This paper summarizes the developments and the research trends in coordination with the CAVs that have been reported in the literature to date. In conclusion, remaining challenges and potential future research directions are also discussed.

  17. SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes[W][OA

    PubMed Central

    Dyachok, Julia; Zhu, Ling; Liao, Fuqi; He, Ji; Huq, Enamul; Blancaflor, Elison B.

    2011-01-01

    The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex. PMID:21972261

  18. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  19. Effect of raceme-localized supplemental light on soybean reproductive abscission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, R.L.; Brun, W.A.; Brenner, M.L.

    The percentage of soybean (Glycine max (L.) Merr.) reproductive structures that abscise is a potentially important yield factor. To better understand the involvement of light in the abscission of reproductive structures, a series of in vitro raceme-culture and growth-chamber experiments were conducted. In the in vitro raceme-culture experiments, racemes with four to six flowers at or past anthesis were excised from the soybean plant (genotype IX93-100), embedded in a complete nutrient, solid agar medium, and subjected to various light treatments. A series of three experiments indicated that the racemes contain a photoreceptor, possibly phytochrome, capable of regulating sucrose accumulation. Inmore » each of the growth chamber studies, supplemental light was supplied directly to individual soybean flowers via fiber optic light guides. The light source increased the photon flux to the flowers by 10-fold. The first growth chamber experiment showed that flowers receiving supplemental light were more intense sinks for /sup 14/C-sucrose than were controls (intensity value of 1.0 vs 0.4 x 10/sup -7/, intensity = (dps of flower/dps of raceme)/(kg dry wt of flower)). In a second study, 42% of flowers treated with supplemental light set pods, while only 26% of control flowers set pods. A third experiment showed that red supplemental light produced 55% fruit set, compared to 41% set for far-red light, and 35% for controls. These experiments indicate that both photoassimilate accumulation and abscission in young soybean reproductive structures may be regulated by light quality.« less

  20. Rapid assessment of lamp spectrum to quantify ecological effects of light at night.

    PubMed

    Longcore, Travis; Rodríguez, Airam; Witherington, Blair; Penniman, Jay F; Herf, Lorna; Herf, Michael

    2018-06-12

    For many decades, the spectral composition of lighting was determined by the type of lamp, which also influenced potential effects of outdoor lights on species and ecosystems. Light-emitting diode (LED) lamps have dramatically increased the range of spectral profiles of light that is economically viable for outdoor lighting. Because of the array of choices, it is necessary to develop methods to predict the effects of different spectral profiles without conducting field studies, especially because older lighting systems are being replaced rapidly. We describe an approach to predict responses of exemplar organisms and groups to lamps of different spectral output by calculating an index based on action spectra from behavioral or visual characteristics of organisms and lamp spectral irradiance. We calculate relative response indices for a range of lamp types and light sources and develop an index that identifies lamps that minimize predicted effects as measured by ecological, physiological, and astronomical indices. Using these assessment metrics, filtered yellow-green and amber LEDs are predicted to have lower effects on wildlife than high pressure sodium lamps, while blue-rich lighting (e.g., K ≥ 2200) would have greater effects. The approach can be updated with new information about behavioral or visual responses of organisms and used to test new lighting products based on spectrum. Together with control of intensity, direction, and duration, the approach can be used to predict and then minimize the adverse effects of lighting and can be tailored to individual species or taxonomic groups. © 2018 Wiley Periodicals, Inc.

  1. Pupillary response to direct and consensual chromatic light stimuli.

    PubMed

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit; Lund-Andersen, Henrik

    2016-02-01

    To assess whether the direct and consensual postillumination (ipRGC-driven) pupil light responses to chromatic light stimuli are equal in healthy subjects. Pupil responses in healthy volunteers were recorded using a prototype binocular chromatic pupillometer (IdeaMedical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). No difference was found in the pupil response to blue light. With red light, the pupil response during illumination was slightly larger during consensual illumination compared to direct illumination (0.54 and 0.52, respectively, p = 0.027, paired Wilcoxon's test, n = 12), while no differences were found for CAmax or the PIPR. No difference was found between direct and consensual pupil response to either red or blue light in the postillumination period. Direct and consensual responses can readily be compared when examining the postillumination pupil response to blue light as estimation of photosensitive retinal ganglion cell activation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. HOW LOW CAN YOU GO? THE PHOTOECCENTRIC EFFECT FOR PLANETS OF VARIOUS SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Ellen M.; Rogers, Leslie A.; Johnson, John Asher

    2015-01-20

    It is well-known that the light curve of a transiting planet contains information about the planet's orbital period and size relative to the host star. More recently, it has been demonstrated that a tight constraint on an individual planet's eccentricity can sometimes be derived from the light curve via the ''photoeccentric effect'', the effect of a planet's eccentricity on the shape and duration of its light curve. This has only been studied for large planets and high signal-to-noise scenarios, raising the question of how well it can be measured for smaller planets or low signal-to-noise cases. We explore the limitsmore » of the photoeccentric effect over a wide range of planet parameters. The method hinges upon measuring g directly from the light curve, where g is the ratio of the planet's speed (projected on the plane of the sky) during transit to the speed expected for a circular orbit. We find that when the signal-to-noise in the measurement of g is <10, the ability to measure eccentricity with the photoeccentric effect decreases. We develop a ''rule of thumb'' that for per-point relative photometric uncertainties σ = (10{sup –3}, 10{sup –4}, 10{sup –5}), the critical values of the planet-star radius ratio are R{sub p} /R {sub *} ≈ (0.1, 0.05, 0.03) for Kepler-like 30 minute integration times. We demonstrate how to predict the best-case uncertainty in eccentricity that can be found with the photoeccentric effect for any light curve. This clears the path to study eccentricities of individual planets of various sizes in the Kepler sample and future transit surveys.« less

  3. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  4. Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries.

    PubMed

    Chen, Chunlin; Li, Hongping; Seki, Takehito; Yin, Deqiang; Sanchez-Santolino, Gabriel; Inoue, Kazutoshi; Shibata, Naoya; Ikuhara, Yuichi

    2018-03-27

    Clarifying how the atomic structure of interfaces/boundaries in materials affects the magnetic coupling nature across them is of significant academic value and will facilitate the development of state-of-the-art magnetic devices. Here, by combining atomic-resolution transmission electron microscopy, atomistic spin-polarized first-principles calculations, and differential phase contrast imaging, we conduct a systematic investigation of the atomic and electronic structures of individual Fe 3 O 4 twin boundaries (TBs) and determine their concomitant magnetic couplings. We demonstrate that the magnetic coupling across the Fe 3 O 4 TBs can be either antiferromagnetic or ferromagnetic, which directly depends on the TB atomic core structures and resultant electronic structures within a few atomic layers. Revealing the one-to-one correspondence between local atomic structures and magnetic properties of individual grain boundaries will shed light on in-depth understanding of many interesting magnetic behaviors of widely used polycrystalline magnetic materials, which will surely promote the development of advanced magnetic materials and devices.

  5. Visualization of DNA molecules in time during electrophoresis

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1991-01-01

    For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.

  6. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  7. Aging reduces the stimulating effect of blue light on cognitive brain functions.

    PubMed

    Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles

    2014-01-01

    Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.

  8. Direct detection of a single photon by humans

    PubMed Central

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  9. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics.

    PubMed

    Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R

    2013-12-01

    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.

  10. Dynamics of an SAITS alcoholism model on unweighted and weighted networks

    NASA Astrophysics Data System (ADS)

    Huo, Hai-Feng; Cui, Fang-Fang; Xiang, Hong

    2018-04-01

    A novel SAITS alcoholism model on networks is introduced, in which alcoholics are divided into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contacting with light problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who receive treatment can relapse into the compartment of heavy problem alcoholics are also considered. First, the dynamics of our model on unweighted networks, including the basic reproduction number, existence and stability of equilibria are studied. Second, the models with fixed weighted and adaptive weighted networks are introduced and investigated. At last, some simulations are presented to illustrate and extend our results. Our results show that it is very important to treat alcoholics to quit the drinking.

  11. Light Up Their Lives: A Review of Research on the Effects of Lighting on Children's Achievement and Behavior.

    ERIC Educational Resources Information Center

    Dunn, Rita; And Others

    1985-01-01

    Cites research showing individual reactions to bright and dim light in the classroom. Shows individual susceptibility to extreme negativism in inappropriate lighting conditions and suggests that students' predispositions for illumination be identified. Notes that restless, fidgety youngsters should be placed into softly lit sections, with the…

  12. DARK-FIELD ILLUMINATION SYSTEM

    DOEpatents

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  13. Minimizing the Delay at Traffic Lights

    ERIC Educational Resources Information Center

    Van Hecke, Tanja

    2009-01-01

    Vehicles holding at traffic lights is a typical queuing problem. At crossings the vehicles experience delay in both directions. Longer periods with green lights in one direction are disadvantageous for the vehicles coming from the other direction. The total delay for getting through the traffic point is what counts. This article presents an…

  14. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  15. Perspectives of Nurses and Patients on Call Light Technology.

    PubMed

    Galinato, Jose; Montie, Mary; Patak, Lance; Titler, Marita

    2015-08-01

    Call lights are prevalent in inpatient healthcare facilities across the nation. While call light use directly influences the delivery of nursing care, there remain significant gaps both in research and technology that can affect the quality of care and patient satisfaction. This study examines nurse and patient perceptions of the use of a new call communication solution, Eloquence, in the acute care inpatient setting. Eighteen patients were recruited for the study and participated in individual semistructured interviews during their hospital stay. Eighteen nurses were recruited and participated in focus groups for this study. Qualitative descriptive methods were used to analyze the data. Results revealed themes of usability, improved communication, and suggestions for improvement to the alpha prototype design. After a demonstration of the use and capability of Eloquence, nurse and patient participants found Eloquence as a welcomed advancement in nurse call technology that has the potential to improve workflow and patient outcomes. In addition, the participants also proposed ideas on how to further develop the technology to improve its use.

  16. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    PubMed Central

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. PMID:28401942

  17. Testing Limits on Matte Surface Color Perception in Three-Dimensional Scenes with Complex Light Fields

    PubMed Central

    Doerschner, K.; Boyaci, H.; Maloney, L. T.

    2007-01-01

    We investigated limits on the human visual system’s ability to discount directional variation in complex lights field when estimating Lambertian surface color. Directional variation in the light field was represented in the frequency domain using spherical harmonics. The bidirectional reflectance distribution function of a Lambertian surface acts as a low-pass filter on directional variation in the light field. Consequently, the visual system needs to discount only the low-pass component of the incident light corresponding to the first nine terms of a spherical harmonics expansion (Basri & Jacobs, 2001; Ramamoorthi & Hanrahan, 2001) to accurately estimate surface color. We test experimentally whether the visual system discounts directional variation in the light field up to this physical limit. Our results are consistent with the claim that the visual system can compensate for all of the complexity in the light field that affects the appearance of Lambertian surfaces. PMID:18053846

  18. Freeform array projection

    NASA Astrophysics Data System (ADS)

    Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.

    2015-09-01

    The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.

  19. The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies.

    PubMed

    Kirwan, John D; Bok, Michael J; Smolka, Jochen; Foster, James J; Hernández, José Carlos; Nilsson, Dan-Eric

    2018-05-08

    Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum , using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at pseudorandom directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range 29°-69°. This corresponds to a theoretical acceptance angle of 38°-89°, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13°-25° angular width, corresponding to an acceptance angle of 60°-116°, assuming the same contrast threshold as above. © 2018. Published by The Company of Biologists Ltd.

  20. Body Dissatisfaction in Individuals with Obesity Compared to Normal-Weight Individuals: A Systematic Review and Meta-Analysis

    PubMed Central

    Weinberger, Natascha-Alexandra; Kersting, Anette; Riedel-Heller, Steffi G.; Luck-Sikorski, Claudia

    2017-01-01

    Background Body dissatisfaction has been identified as a psychological correlate of obesity that is related to disordered eating, poor self-esteem, and depression. However, not all individuals with obesity are equally vulnerable to these correlates, and ‘normative discontent’ is present in individuals with normal weight, too. In this light, the complex relationship of body image and individual weight status seems like a worthwhile direction of research inquiry. As such, this review aims to systematically explore the degree of body dissatisfaction in individuals with obesity compared to normal-weight individuals. Methods A systematic literature search was conducted. All quantitative studies of adult samples reporting results regarding differences in body dissatisfaction between individuals with normal weight and obesity were included. Results 17 articles were found. Across studies, individuals with obesity reported higher body dissatisfaction than normal-weight individuals (questionnaires: d = 0.89, 95% CI = 0.63-1.16, p ℋ 0.001; silhouette scales: d = 1.41, 95% CI = 0.57-2.25, p ℋ 0.001). Meta-regression revealed a significant association of female gender and higher body dissatisfaction (b = 0.60, p = 0.007). Conclusion The findings underline the severity of body dissatisfaction among individuals with obesity and especially among women. Future research recommendations are discussed. PMID:28013298

  1. Polarization selecting optical element using a porro prism incorporating a thin film polarizer in a single element

    DOEpatents

    Hendrix, James Lee

    2001-05-08

    A Porro prism and a light polarizer are combined in a single optical element termed a Hendrix Prism. The design provides retro-reflection of incoming light of a predetermined polarization in a direction anti-parallel to the direction of light incidence, while reflecting undesired light, i.e., that having a polarization orthogonal to the predetermined polarization, from the surface of the light polarizer. The undesired light is reflected in a direction that does not interfere with the intended operation of the device in which the Hendrix Prism is installed yet provides feedback to the system in which it is used.

  2. Phototropism: at the crossroads of light-signaling pathways.

    PubMed

    Goyal, Anupama; Szarzynska, Bogna; Fankhauser, Christian

    2013-07-01

    Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  4. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOEpatents

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  5. Use of diffusive optical fibers for plant lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya etmore » al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.« less

  6. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs

    PubMed Central

    Louarn, Gaëtan; Lecoeur, Jérémie; Lebon, Eric

    2008-01-01

    Background and Aims In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. Model This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs. Key Results and Conclusions The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception. PMID:18202006

  7. Cavities shield birds from effects of artificial light at night on sleep.

    PubMed

    Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2018-05-20

    Light pollution is an ever increasing worldwide problem disrupting animal behavior. Artificial light at night (ALAN) has been shown to affect sleep in wild birds. Even cavity-nesting bird species may be affected when sleeping inside their cavity. Correlational studies suggest that light from outside the cavity/nest box, for example from street lights, may affect sleep. We used an experimental design to study to what extent nest boxes shield animals from effects of ALAN on sleep. We recorded individual sleep behavior of free-living great tits (Parus major) that were roosting in dark nest boxes and exposed their nest box entrance to ALAN the following night (1.6 lux white LED light; a similar light intensity as was found at nest boxes near street lights). Their behavior was compared to that of control birds sleeping in dark nest boxes on both nights. Our experimental treatment did not affect sleep behavior. Sleep behavior of birds in the control group did not differ from that of individuals in the light treated group. Our results suggest that during winter cavities shield birds from some effects of ALAN. Furthermore, given that effects of ALAN and exposure to artificial light are species-, sex-, and season-dependent, it is important that studies using wild animals quantify individual exposure to light pollution, and be cautious in the interpretation and generalization of the effects, or lack thereof, from light pollution. Rigorous studies are necessary to examine individual light exposure and its consequences in cavity- and open-nesting birds. © 2018 Wiley Periodicals, Inc.

  8. Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters.

    PubMed

    Zhang, Min; Groothoff, Nathaniel; Krüger, Asger Christian; Shi, Peixing; Kristensen, Martin

    2011-04-11

    Based on a series of 1x2 beam splitters, novel direct excitation of slow-light from input- to output-region in photonic crystal waveguides is investigated theoretically and experimentally. The study shows that the slow-light excitation provides over 50 nm bandwidth for TE-polarized light splitting between two output ports, and co-exists together with self-imaging leading to ~20 nm extra bandwidth. The intensity of the direct excitation is qualitatively explained by the overlap integral of the magnetic fields between the ground input- and excited output-modes. The direct excitation of slow light is practically lossless compared with transmission in a W1 photonic crystal waveguides, which broadens the application-field for slow-light and further minimizes the size of a 1x2 splitter. © 2011 Optical Society of America

  9. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  10. What would Edison do with solid state lighting?

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  11. Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock.

    PubMed

    Woelders, Tom; Beersma, Domien G M; Gordijn, Marijke C M; Hut, Roelof A; Wams, Emma J

    2017-06-01

    Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual's daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer's limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions.

  12. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula).

    PubMed

    Dominoni, Davide M; Partecke, Jesko

    2015-05-05

    Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula)

    PubMed Central

    Dominoni, Davide M.; Partecke, Jesko

    2015-01-01

    Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod. PMID:25780232

  14. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOEpatents

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  15. Direction-division multiplexed holographic free-electron-driven light sources

    NASA Astrophysics Data System (ADS)

    Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2018-01-01

    We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.

  16. Image analysis applied to luminescence microscopy

    NASA Astrophysics Data System (ADS)

    Maire, Eric; Lelievre-Berna, Eddy; Fafeur, Veronique; Vandenbunder, Bernard

    1998-04-01

    We have developed a novel approach to study luminescent light emission during migration of living cells by low-light imaging techniques. The equipment consists in an anti-vibration table with a hole for a direct output under the frame of an inverted microscope. The image is directly captured by an ultra low- light level photon-counting camera equipped with an image intensifier coupled by an optical fiber to a CCD sensor. This installation is dedicated to measure in a dynamic manner the effect of SF/HGF (Scatter Factor/Hepatocyte Growth Factor) both on activation of gene promoter elements and on cell motility. Epithelial cells were stably transfected with promoter elements containing Ets transcription factor-binding sites driving a luciferase reporter gene. Luminescent light emitted by individual cells was measured by image analysis. Images of luminescent spots were acquired with a high aperture objective and time exposure of 10 - 30 min in photon-counting mode. The sensitivity of the camera was adjusted to a high value which required the use of a segmentation algorithm dedicated to eliminate the background noise. Hence, image segmentation and treatments by mathematical morphology were particularly indicated in these experimental conditions. In order to estimate the orientation of cells during their migration, we used a dedicated skeleton algorithm applied to the oblong spots of variable intensities emitted by the cells. Kinetic changes of luminescent sources, distance and speed of migration were recorded and then correlated with cellular morphological changes for each spot. Our results highlight the usefulness of the mathematical morphology to quantify kinetic changes in luminescence microscopy.

  17. Infrared radiation increases skin damage induced by other wavelengths in solar urticaria.

    PubMed

    de Gálvez, María Victoria; Aguilera, José; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2016-09-01

    Photodermatoses are typically investigated by analyzing the individual or combined effects of ultraviolet A (UVA), ultraviolet B (UVB), and visible light using light sources that simulate portions of the solar spectrum. Infrared radiation (IRR), however, accounts for 53% of incident solar radiation, but its effects are not taken into account in standard phototest protocols. The aim was to analyze the effects of IRR, alone and combined with UVA and visible light on solar urticaria lesions, with a distinction between infrared A (IRA) and infrared B (IRB). We performed standard phototests with UVA and visible light in four patients with solar urticaria and also tested the effects after blocking IRB with a water filter. To analyze the direct effect of IRR, we performed phototests with IRA and IRB. Initial standard phototests that were all positive found the induction of erythema and whealing, while when IRR was blocked from the UVA and visible light sources, three of the patients developed no lesions, while the fourth developed a very small wheal. These results suggest that IRR has the potential to produce and exacerbate lesions caused by other types of radiation. Consideration of these effects during phototesting could help prevent diagnostic errors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A 1024-channel 6 mW/mm2 optical stimulator for in-vitro neuroscience experiments.

    PubMed

    Cai, Lei; Wang, Baitong; Huang, Xiuxiang; Yang, Zhi

    2014-01-01

    Recent optical stimulation technologies allow improved selectivity and have been widely used in neuroscience research. This paper presents an optical stimulator based on high power LEDs. It has 1024 channels and can produce flexible stimulation patterns in each frame, refreshed at above 20 Hz. To increase the light intensity, each LED has an optical package that directs the light into a small angle. To ensure the light of each LED can reach the lens, the LEDs have been specially placed and oriented to the lens. With these efforts, the achieved power efficiency (defined as the mount of LED light power passing through the lens divided by the LED total power consumption) is 5 × 10(-5). In our current prototype, an individual LED unit can source 60 mW electrical power, where the induced irradiance on neural tissues is 6 mW/mm(2) integrating from 460 nm to 480 nm. The light spot is tunable in size from 18 μm to 40 μm with an extra 5-10 μm separation for isolating two adjacent spots. Through both bench-top measurement and finite element simulation, we found the cross channel interference is below 10%. A customized software interface has been developed to control and program the stimulator operation.

  19. Optimized achromatic phase-matching system and method

    DOEpatents

    Trebino, R.; DeLong, K.; Hayden, C.

    1997-07-15

    An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle {theta}{sub in} which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion. 15 figs.

  20. Optimized achromatic phase-matching system and method

    DOEpatents

    Trebino, Rick; DeLong, Ken; Hayden, Carl

    1997-01-01

    An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle .theta..sub.in which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion.

  1. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species' population dynamics?

    PubMed

    Goyal, Neha; Shah, Kanhaiya; Sharma, Gyan Prakash

    2018-06-19

    Ricinus communis L. colonizes heterogeneous urban landscapes as monospecific thickets. The ecological understanding on colonization success of R. communis population due to variable light availability is lacking. Therefore, to understand the effect of intrinsic light heterogeneity on species' population dynamics, R. communis populations exposed to variable light availability (low, intermediate, and high) were examined for performance strategies through estimation of key vegetative, eco-physiological, biochemical, and reproductive traits. Considerable variability existed in studied plant traits in response to available light. Individuals inhabiting high-light conditions exhibited high eco-physiological efficiency and reproductive performance that potentially confers population boom. Individuals exposed to low light showed poor performance in terms of eco-physiology and reproduction, which attribute to bust. However, individuals in intermediate light were observed to be indeterminate to light availability, potentially undergoing trait modulations with uncertainty of available light. Heterogeneous light availability potentially drives the boom and bust cycles in R. communis monospecific thickets. Such boom and bust cycles subsequently affect species' dominance, persistence, collapse, and/or resurgence as an aggressive colonizer in contrasting urban environments. The study fosters extensive monitoring of R. communis thickets to probe underlying mechanism(s) affecting expansions and/or collapses of colonizing populations.

  3. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  4. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  5. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.

    PubMed

    Luo, Laiping; Zhai, Qiuping; Su, Yanjun; Ma, Qin; Kelly, Maggi; Guo, Qinghua

    2018-05-14

    Crown base height (CBH) is an essential tree biophysical parameter for many applications in forest management, forest fuel treatment, wildfire modeling, ecosystem modeling and global climate change studies. Accurate and automatic estimation of CBH for individual trees is still a challenging task. Airborne light detection and ranging (LiDAR) provides reliable and promising data for estimating CBH. Various methods have been developed to calculate CBH indirectly using regression-based means from airborne LiDAR data and field measurements. However, little attention has been paid to directly calculate CBH at the individual tree scale in mixed-species forests without field measurements. In this study, we propose a new method for directly estimating individual-tree CBH from airborne LiDAR data. Our method involves two main strategies: 1) removing noise and understory vegetation for each tree; and 2) estimating CBH by generating percentile ranking profile for each tree and using a spline curve to identify its inflection points. These two strategies lend our method the advantages of no requirement of field measurements and being efficient and effective in mixed-species forests. The proposed method was applied to a mixed conifer forest in the Sierra Nevada, California and was validated by field measurements. The results showed that our method can directly estimate CBH at individual tree level with a root-mean-squared error of 1.62 m, a coefficient of determination of 0.88 and a relative bias of 3.36%. Furthermore, we systematically analyzed the accuracies among different height groups and tree species by comparing with field measurements. Our results implied that taller trees had relatively higher uncertainties than shorter trees. Our findings also show that the accuracy for CBH estimation was the highest for black oak trees, with an RMSE of 0.52 m. The conifer species results were also good with uniformly high R 2 ranging from 0.82 to 0.93. In general, our method has demonstrated high accuracy for individual tree CBH estimation and strong potential for applications in mixed species over large areas.

  6. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  7. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  8. Nanotemplate-Enabled Arrays of Highly Heterogeneous Nanostructures for Infrared Detection and Power Generation

    DTIC Science & Technology

    2015-06-01

    organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21- PT -2. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the...patterned region are created with their four edges along the [100] direction to enable symmetric adatom migration from the four side walls to the mesa...excitation light down to 2 μm diameter to study the optical response of individual mesas in samples mounted in a LHe cooled cryostat. A Ti:S laser in

  9. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    PubMed

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Eye safety related to near infrared radiation exposure to biometric devices.

    PubMed

    Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2011-03-01

    Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.

  11. 3D Radiative Transfer Code for Polarized Scattered Light with Aligned Grains

    NASA Astrophysics Data System (ADS)

    Pelkonen, V. M.; Penttilä, A.; Juvela, M.; Muinonen, K.

    2017-12-01

    Polarized scattered light has been observed in cometary comae and in circumstellar disks. It carries information about the grains from which the light scattered. However, modelling polarized scattered light is a complicated problem. We are working on a 3D Monte Carlo radiative transfer code which incorporates hierarchical grid structure (octree) and the full Stokes vector for both the incoming radiation and the radiation scattered by dust grains. In octree grid format an upper level cell can be divided into 8 subcells by halving the cell in each of the three axis. Levels of further refinement of the grid may be added, until the desired resolution is reached. The radiation field is calculated with Monte Carlo methods. The path of the model ray is traced in the cloud: absorbed intensity is counted in each cell, and from time to time, the model ray is scattered towards a new direction as determined by the dust model. Due to the non-spherical grains and the polarization, the scattering problem will be the main issue for the code and most time consuming. The scattering parameters will be taken from the models for individual grains. We can introduce populations of different grain shapes into the dust model, and randomly select, based on their amounts, from which shape the model ray scatters. Similarly, we can include aligned and non-aligned subpopulations of these grains, based on the grain alignment calculations, to see which grains should be oriented with the magnetic field, or, in the absence of a magnetic field close to the comet nucleus, with another axis of alignment (e.g., the radiation direction). The 3D nature of the grid allows us to assign these values, as well as density, for each computational cell, to model phenomena like e.g., cometary jets. The code will record polarized scattered light towards one or more observer directions within a single simulation run. These results can then be compared with the observations of comets at different phase angles, or, in the case of other star systems, of circumstellar disks, to help us study these objects. We will present tests of the code in development with simple models.

  12. Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination

    PubMed Central

    Ouyang, Jenny Q.; de Jong, Maaike; Hau, Michaela; Visser, Marcel E.; van Grunsven, Roy H. A.; Spoelstra, Kamiel

    2015-01-01

    Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra. PMID:26311159

  13. Plasticity varies with boldness in a weakly-electric fish.

    PubMed

    Kareklas, Kyriacos; Arnott, Gareth; Elwood, Robert W; Holland, Richard A

    2016-01-01

    The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.

  14. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.

    PubMed

    Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H

    2014-07-21

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.

  15. Multispectral imaging probe

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  16. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  17. Monitoring and Detecting the Cigarette Beetle (Coleoptera: Anobiidae) Using Ultraviolet (LED) Direct and Reflected Lights and/or Pheromone Traps in a Laboratory and a Storehouse.

    PubMed

    Miyatake, Takahisa; Yokoi, Tomoyuki; Fuchikawa, Taro; Korehisa, Nobuyoshi; Kamura, Toru; Nanba, Kana; Ryouji, Shinsuke; Kamioka, Nagisa; Hironaka, Mantaro; Osada, Midori; Hariyama, Takahiko; Sasaki, Rikiya; Shinoda, Kazutaka

    2016-12-01

    The cigarette beetle, Lasioderma serricorne (F.), is an important stored-product pest worldwide because it damages dry foods. Detection and removal of the female L. serricorne will help to facilitate the control of the insect by removal of the egg-laying populations. In this manuscript, we examined the responses by L. serricorne to direct and reflected light in transparent cube (50 m3) set in a chamber (200 m3) and a stored facility with both direct and reflected UV-LED lights. The study also examined the responses by the beetles to light in the presence or absence of pheromone in traps that are placed at different heights. Reflected light attracted more beetles than the direct light in the experimental chamber, but the direct light traps attracted more beetles than the reflected light traps in the storehouse. Pheromone traps attracted only males; UV-LED traps attracted both sexes. The UV-LED traps with a pheromone, i.e., combined trap, attracted more males than UV-LED light traps without a pheromone, whereas the attraction of UV-LED traps with and without the pheromone was similar in females. The results suggest that UV-LED light trap combined with a sex pheromone is the best solution for monitoring and controlling L. serricorne. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Quality and noise measurements in mobile phone video capture

    NASA Astrophysics Data System (ADS)

    Petrescu, Doina; Pincenti, John

    2011-02-01

    The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.

  19. Phototropic growth in a reef flat acroporid branching coral species.

    PubMed

    Kaniewska, Paulina; Campbell, Paul R; Fine, Maoz; Hoegh-Guldberg, Ove

    2009-03-01

    Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development--the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 micromol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.

  20. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset

    PubMed Central

    2012-01-01

    Background A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band “green” light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects’ closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Findings Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. Conclusions These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders. PMID:22564396

  1. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2012-05-07

    A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band "green" light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects' closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders.

  2. Method and apparatus for reading lased bar codes on shiny-finished fuel rod cladding tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldenfield, M.P.; Lambert, D.V.

    1990-10-02

    This patent describes, in a nuclear fuel rod identification system, a method of reading a bar code etched directly on a surface of a nuclear fuel rod. It comprises: defining a pair of light diffuser surfaces adjacent one another but in oppositely inclined relation to a beam of light emitted from a light reader; positioning a fuel rod, having a cylindrical surface portion with a bar code etched directly thereon, relative to the light diffuser surfaces such that the surfaces are disposed adjacent to and in oppositely inclined relation along opposite sides of the fuel rod surface portion and themore » fuel rod surface portion is aligned with the beam of light emitted from the light reader; directing the beam of light on the bar code on fuel rod cylindrical surface portion such that the light is reflected therefrom onto one of the light diffuser surfaces; and receiving and reading the reflected light from the bar code via the one of the light diffuser surfaces to the light reader.« less

  3. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  4. Light field rendering with omni-directional camera

    NASA Astrophysics Data System (ADS)

    Todoroki, Hiroshi; Saito, Hideo

    2003-06-01

    This paper presents an approach to capture visual appearance of a real environment such as an interior of a room. We propose the method for generating arbitrary viewpoint images by building light field with the omni-directional camera, which can capture the wide circumferences. Omni-directional camera used in this technique is a special camera with the hyperbolic mirror in the upper part of a camera, so that we can capture luminosity in the environment in the range of 360 degree of circumferences in one image. We apply the light field method, which is one technique of Image-Based-Rendering(IBR), for generating the arbitrary viewpoint images. The light field is a kind of the database that records the luminosity information in the object space. We employ the omni-directional camera for constructing the light field, so that we can collect many view direction images in the light field. Thus our method allows the user to explore the wide scene, that can acheive realistic representation of virtual enviroment. For demonstating the proposed method, we capture image sequence in our lab's interior environment with an omni-directional camera, and succesfully generate arbitray viewpoint images for virual tour of the environment.

  5. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird.

    PubMed

    Ouyang, Jenny Q; de Jong, Maaike; van Grunsven, Roy H A; Matson, Kevin D; Haussmann, Mark F; Meerlo, Peter; Visser, Marcel E; Spoelstra, Kamiel

    2017-11-01

    The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals. © 2017 John Wiley & Sons Ltd.

  6. Phototactic orientation mechanism in the ciliate Fabrea salina, as inferred from numerical simulations.

    PubMed

    Marangoni, R; Preosti, G; Colombetti, G

    2000-02-01

    The marine ciliate Fabrea salina shows a clear positive phototaxis, but the mechanism by which a single cell is able to detect the direction of light and orient its swimming accordingly is still unknown. A simple model of phototaxis is that of a biased random walk, where the bias due to light can affect one or more of the parameters that characterize a random walk, i.e., the mean speed, the frequency distribution of the angles of directional changes and the frequency of directional changes. Since experimental evidence has shown no effect of light on the mean speed of Fabrea salina, we have excluded models depending on this parameter. We have, therefore, investigated the phototactic orientation of Fabrea salina by computer simulation of two simple models, the first where light affects the frequency distribution of the angles of directional changes (model M1) and the second where the light bias modifies the frequency of directional changes (model M2). Simulated M1 cells directly orient their swimming towards the direction of light, regardless of their current swimming orientation; simulated M2 cells, on the contrary, are unable to actively orient their motion, but remain locked along the light direction once they find it by chance. The simulations show that these two orientation models lead to different macroscopic behaviours of the simulated cell populations. By comparing the results of the simulations with the experimental ones, we have found that the phototactic behaviour of real cells is more similar to that of the M2 model.

  7. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  8. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  9. Phototropism: translating light into directional growth.

    PubMed

    Hohm, Tim; Preuten, Tobias; Fankhauser, Christian

    2013-01-01

    Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.

  10. Direct and indirect effects of light pollution on the performance of an herbivorous insect.

    PubMed

    Grenis, Kylee; Murphy, Shannon M

    2018-02-09

    Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  11. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  12. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  13. Light collection optics for measuring flux and spectrum from light-emitting devices

    DOEpatents

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  14. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  15. Reasoning and dyslexia: a spatial strategy may impede reasoning with visually rich information.

    PubMed

    Bacon, Alison M; Handley, Simon J; McDonald, Emma L

    2007-02-01

    Bacon, Handley, and Newstead (2003, 2004), have presented evidence for individual differences in reasoning strategies, with most people seeming to represent and manipulate problem information using either a verbal or a spatial strategy. There is also evidence that individuals with dyslexia are inclined to conceptualise information in a visuo-spatial, rather than a verbal, way (e.g. von Károlyi et al., 2003). If so, we might expect a higher proportion of individuals with dyslexia to be spatial reasoners, compared with individuals who do not have dyslexia. The study reported here directly compared strategies reported by these two groups of participants on a syllogistic reasoning task. Moreover, problem content was manipulated so that reasoning across concrete and abstract materials could be compared. The findings suggest that whilst most individuals without dyslexia use a verbal strategy, reasoners with dyslexia do tend to adopt a spatial approach, though their performance is impaired with visually concrete materials. However, when reasoning with more abstract content, they perform comparably with non-dyslexic controls. The paper discusses these results in the light of recent research which has suggested that visual images may impede reasoning, and considers how individuals with dyslexia may differ from other reasoners.

  16. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less

  17. Multi-band Emission Light Curves of Jupiter: Insights on Brown Dwarfs and Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ge, Huazhi; Orton, Glenn S.; Fletcher, Leigh N.; Sinclair, James; Fernandes, Joshua; Momary, Thomas W.; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2016-10-01

    Many brown dwarfs exhibit significant infrared flux variability (e.g., Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750, 105), ranging from several to twenty percent of the brightness. Current hypotheses include temperature variations, cloud holes and patchiness, and cloud height and thickness variations (e.g., Apai et al. 2013, ApJ, 768, 121; Robinson and Marley 2014, ApJ, 785, 158; Zhang and Showman 2014, ApJ, 788, L6). Some brown dwarfs show phase shifts in the light curves among different wavelengths (e.g., Buenzli et al. 2012, ApJ, 760, L31; Yang et al. 2016, arXiv:1605.02708), indicating vertical variations of the cloud distribution. The current observational technique can barely detect the brightness changes on the surfaces of nearby brown dwarfs (Crossfield et al. 2014, Nature, 505, 654) let alone resolve detailed weather patterns that cause the flux variability. The infrared emission maps of Jupiter might shed light on this problem. Using COMICS at Subaru Telescope, VISIR at Very Large Telescope (VLT) and NASA's Infrared Telescope Facility (IRTF), we obtained infrared images of Jupiter over several nights at multiple wavelengths that are sensitive to several pressure levels from the stratosphere to the deep troposphere below the ammonia clouds. The rotational maps and emission light curves are constructed. The individual pixel brightness varies up to a hundred percent level and the variation of the full-disk brightness is around several percent. Both the shape and amplitude of the light curves are significantly distinct at different wavelengths. Variation of light curves at different epochs and phase shift among different wavelengths are observed. We will present principle component analysis to identify dominant emission features such as stable vortices, cloud holes and eddies in the belts and zones and strong emissions in the aurora region. A radiative transfer model is used to simulate those features to get a more quantitative understanding. This work provides rich insights on the relationship between observed light curves and weather on brown dwarfs and perhaps on directly imaged exoplanets in the future.

  18. In situ realization of asymmetric ratchet structures within microchannels by directionally guided light transmission and their directional flow behavior.

    PubMed

    Bae, Won-Gyu; Kim, Sang Moon; Choi, Se-Jin; Oh, Sang Geun; Yoon, Hyunsik; Char, Kookheon; Suh, Kahp Y

    2014-05-01

    An asymmetric ratchet structure within microchannels is demonstrated by directionally guided light transmission for controlled liquid flow. A direct and facile method is presented to realize programmed asymmetric structures, which control the fluid direction and speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interactions between the visual and the magnetoreception system: different effects of bichromatic light regimes on the directional behavior of migratory birds.

    PubMed

    Wiltschko, Roswitha; Dehe, Lars; Gehring, Dennis; Thalau, Peter; Wiltschko, Wolfgang

    2013-01-01

    When magnetic compass orientation of migratory robins was tested, the birds proved well oriented under low intensity monochromatic light of shorter wavelengths up to 565 nm green; from 583 nm yellow onward, they were disoriented. In the present study, we tested robins under bichromatic lights composed (1) of 424 nm blue and 565 nm green and (2) of 565 nm green and 583 nm yellow at two intensities. Under dim blue-green light with a total quantal flux of ca. 8 × 10(15)quanta/sm(2), the birds were well oriented in their migratory direction by their inclination compass; under blue-green light of twice this intensity, their orientation became axial. In both cases, the magnetic directional information was mediated by the radical pair processes in the eye. When green and yellow light were combined, however, the nature of the behavior changed. Under green-yellow light of the higher intensity, the birds showed a 'fixed direction' response that was polar, no longer controlled by the normal inclination compass; under dim green-yellow light, the response became axial. Under these two light conditions, the respective directional information was mediated by the magnetite-based receptors in the skin of the upper beak. Apparently, yellow light leads to a change from one magnetoreception system to the other. How this change is effected is still unknown; it appears to reflect complex interactions between the visual and the two magnetoreception systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of Cementation Technique of Individually Formed Fiber-Reinforced Composite Post on Bond Strength and Microleakage

    PubMed Central

    Makarewicz, Dominika; Le Bell-Rönnlöf, Anna-Maria B; Lassila, Lippo V.J.; Vallittu, Pekka K.

    2013-01-01

    Objectives: The aim of this study was to evaluate the effect of two different cementation techniques of individually formed E-glass fiber-reinforced composite (FRC) post on bond strength and microleakage. Methods: The crowns of extracted third molars were removed and post preparation was carried out with parapost drills (diameter 1.5 mm). After application of bonding agents individually formed FRC posts (everStick POST, diameter 1.5 mm) were cemented into the post spaces with either ParaCem®Universal or self-adhesive RelyX™Unicem, using two different cementation techniques: 1) an “indirect (traditional) technique” where the post was prepolymerized prior application of luting cement and insertion into the post space or 2) a “direct technique” where the uncured post was inserted to the post space with luting cement and light-polymerized in situ at the same time. After water storage of 48 hours, the roots (n = 10/group) were cut into discs of thickness of 2 mm. A push-out force was applied until specimen fracture or loosening of the post. A microleakage test was carried out on roots which were not subjected to the loading test (n= 32) to evaluate the sealing capacity of the post-canal interface. The microleakage was measured using dye penetration depth under a stereomicroscope. Results: Higher bond strength values (p<0.05) and less microleakage (p<0.05) were obtained with the “direct technique” compared to the “indirect technique”. None of the FRC posts revealed any dye penetration between the post and the cement. Conclusions: The “direct technique” seems to be beneficial when cementing individually formed FRC posts. PMID:23986792

  1. Effects of Light Regimes on the Biomass and Morphological Characteristics of 2-Year-Old Cherrybark Oak Seedlings

    Treesearch

    Yanfei Guo; Michael G. Shelton

    2004-01-01

    We used modified shadehouses to simulate the complex light conditions within forest openings and tested the effects of time of direct light exposure, the ratio of direct light to day length, and daily photosynthetically active radiation on aboveground biomass and morphological characteristics of 2-year-old cherrybark oak (Quercus pagoda Raf.)...

  2. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  3. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  4. Emerging Directions in Emotional Episodic Memory.

    PubMed

    Dolcos, Florin; Katsumi, Yuta; Weymar, Mathias; Moore, Matthew; Tsukiura, Takashi; Dolcos, Sanda

    2017-01-01

    Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory , (2) The Role of Emotion Regulation in the Impact of Emotion on Memory , (3) The Impact of Emotion on Associative or Relational Memory , and (4) The Role of Individual Differences in Emotional Memory . Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories.

  5. Industries in space to benefit mankind: A view over the next 30 years

    NASA Technical Reports Server (NTRS)

    1977-01-01

    New products, services, and energy sources are available to man through the exploitation of the useful attributes of space and space shuttle operations. Benefits include: (1) industrial fuel conservation through the use of electronic teleconferencing, high temperature turbines, and the space processing of materials; (2) improved health care through the use of biotelemetry, teleoperators, and weightless hospitals; (3) more efficient communication systems such as portable telephones, individual warning devices, and direct satellite broadcasting for educational purposes; (4) more abundant crop growth and controlled climate modification by the use of space-based reflectors to direct the light of the sun and moon to specific areas on earth; (5) solar energy utilization; and (6) reduction in radiation hazards through the use of space-based nuclear fusion reactors.

  6. Emerging Directions in Emotional Episodic Memory

    PubMed Central

    Dolcos, Florin; Katsumi, Yuta; Weymar, Mathias; Moore, Matthew; Tsukiura, Takashi; Dolcos, Sanda

    2017-01-01

    Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory, (2) The Role of Emotion Regulation in the Impact of Emotion on Memory, (3) The Impact of Emotion on Associative or Relational Memory, and (4) The Role of Individual Differences in Emotional Memory. Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories. PMID:29255432

  7. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  8. Distance and direction, but not light cues, support response reversal learning.

    PubMed

    Wright, S L; Martin, G M; Thorpe, C M; Haley, K; Skinner, D M

    2018-03-05

    Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.

  9. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    PubMed Central

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  10. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    PubMed

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  11. Fabrication of novel bundled fiber and performance assessment for clinical applications.

    PubMed

    Kim, Changhwan; Jeon, Myung Jin; Jung, Jin Hyang; Yang, Jung Dug; Park, Hoyong; Kang, Hyun Wook; Lee, Ho

    2014-11-01

    During laser vaporization of benign prostate hyperplasia (BPH), high precision of optical fiber handling is pivotal to minimize any post-operative complications. The aim of the study was to evaluate the feasible applications of a bundled fiber to treat BPH by directionally and selectively manipulating laser light onto the targeted tissue. A bundled optical fiber, consisting of four side-firing fibers, was fabricated to selectively emit laser beams in from one to four directions. Both transmission efficiency and light distribution were qualitatively and quantitatively characterized on the bundled fiber. In terms of interstitial application of the proposed fiber with 1064 nm on porcine liver tissue, the extent of thermal denaturation was estimated and compared at various laser parameterizations and for different directions of light. From the laser source to the fiber tip, the fabricated fiber device demonstrated a total light transmission of 52%. Due to internal light reflection, a secondary beam was emitted backward from the fiber tip and was responsible for 25% of the transmission loss. According to tissue testing, the extent of tissue denaturation generally increased with laser power, irradiation time, and number of light directions. The geometrical shape of thermal coagulation correlated well with the direction of light emission. Thermal damage to the glass tube occurred during excessive heat accumulation generated by continuous irradiation. The proposed fiber can be beneficial for laser vaporization of BPH by providing a selective light direction irradiation along with minimal thermal damage. Further studies will extend the applicability of the bundled fiber to treat tubular tissue structure. © 2014 Wiley Periodicals, Inc.

  12. Light-controlled motility in prokaryotes and the problem of directional light perception

    PubMed Central

    Wilde, Annegret

    2017-01-01

    Abstract The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. PMID:29077840

  13. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  14. Light-controlled motility in prokaryotes and the problem of directional light perception.

    PubMed

    Wilde, Annegret; Mullineaux, Conrad W

    2017-11-01

    The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. © FEMS 2017.

  15. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  16. Direct measurement of light waves.

    PubMed

    Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2004-08-27

    The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

  17. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, D.; et al.

    We present accretion disk size measurements for 15 luminous quasars atmore » $$0.7 \\leq z \\leq 1.9$$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.« less

  18. Perspectives of Nurses and Patients on Call Light Technology

    PubMed Central

    Galinato, Jose; Montie, Mary; Patak, Lance; Titler, Marita

    2015-01-01

    Call lights are prevalent in inpatient healthcare facilities across the nation. While call light use directly influences the delivery of nursing care, there remain significant gaps both in research and technology that can impact the quality of care and patient satisfaction. This study examines the perception of nurses and patients on the use of a new call communication solution, Eloquence™, in the acute care inpatient setting. Eighteen patients were recruited for the study and participated in individual semi-structured interviews during their hospital stay. Eighteen nurses were recruited and participated in focus groups for this study. Qualitative descriptive methods were used to analyze the data. Results revealed themes of usability, improved communication, and suggestions for improvement to the alpha prototype design. After a demonstration of the use and capability of Eloquence™, nurse and patient participants found Eloquence™ as a welcomed advancement in nurse call technology that has the potential to improve workflow and patient outcomes. In addition, the participants also proposed ideas on how to further develop the technology to improve its use. PMID:26176639

  19. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  20. Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock

    PubMed Central

    Woelders, Tom; Beersma, Domien G. M.; Gordijn, Marijke C. M.; Hut, Roelof A.; Wams, Emma J.

    2017-01-01

    Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual’s daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer’s limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions. PMID:28452285

  1. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit

    PubMed Central

    Singh, Bal Ram

    2004-01-01

    Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography (HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours of water immersion, respectively. Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze the anthocyanin biosynthesis are regulated differently by environments. PMID:15577187

  2. Perspectives: Nanofibers and nanowires for disordered photonics

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Persano, Luana; Camposeo, Andrea

    2017-03-01

    As building blocks of microscopically non-homogeneous materials, semiconductor nanowires and polymer nanofibers are emerging component materials for disordered photonics, with unique properties of light emission and scattering. Effects found in assemblies of nanowires and nanofibers include broadband reflection, significant localization of light, strong and collective multiple scattering, enhanced absorption of incident photons, synergistic effects with plasmonic particles, and random lasing. We highlight recent related discoveries, with a focus on material aspects. The control of spatial correlations in complex assemblies during deposition, the coupling of modes with efficient transmission channels provided by nanofiber waveguides, and the embedment of random architectures into individually coded nanowires will allow the potential of these photonic materials to be fully exploited, unconventional physics to be highlighted, and next-generation optical devices to be achieved. The prospects opened by this technology include enhanced random lasing and mode-locking, multi-directionally guided coupling to sensors and receivers, and low-cost encrypting miniatures for encoders and labels.

  3. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination

    NASA Astrophysics Data System (ADS)

    Choi, Seon Bin; Song, Man Suk; Kim, Yong

    2018-04-01

    The growth of CdTe nanowires, catalyzed by Sn, was achieved on fluorine-doped tin oxide glass by physical vapor transport. CdTe nanowires grew along the 〈0001〉 direction, with a very rare and phase-pure wurtzite structure, at 290 °C. CdTe nanowires grew under Te-limited conditions by forming SnTe nanostructures in the catalysts and the wurtzite structure was energetically favored. By polarization-dependent and power-dependent micro-photoluminescence measurements of individual nanowires, heavy and light hole-related transitions could be differentiated, and the fundamental bandgap of wurtzite CdTe at room temperature was determined to be 1.562 eV, which was 52 meV higher than that of zinc-blende CdTe. From the analysis of doublet photoluminescence spectra, the valence band splitting energy between heavy hole and light hole bands was estimated to be 43 meV.

  4. Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.

    PubMed

    Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-13

    Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.

  5. LED-based UV source for monitoring spectroradiometer properties

    NASA Astrophysics Data System (ADS)

    Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian

    2018-06-01

    A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400 nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.

  6. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    PubMed Central

    Benz, Alexander; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron M.; Klang, Pavel; Detz, Hermann; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2011-01-01

    The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU. PMID:22163939

  7. High-efficiency directional backlight design for an automotive display.

    PubMed

    Chen, Bo-Tsuen; Pan, Jui-Wen

    2018-06-01

    We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.

  8. Holographic Optics for Missile Guidance Systems.

    DTIC Science & Technology

    1978-12-20

    according to SnelPs Law when the ray encounters a change in index of refraction (i.e., a change in the speed of light ). Conventional lenses and prisms are...AA ’ to change the magnification of the system , or individual light sources may be used to address each lens group . Each lens group consists of four...individual lens elements. Element I collimates the light from a source H, 17—mm away . Element II uses the collimated light beam , 8 —. now propagat

  9. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  10. Smart Optical Material Characterization System and Method

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.

  11. Use of diffusive optical fibers for plant lighting

    NASA Technical Reports Server (NTRS)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.; Kino, S.; Kinowaki, M.

    1994-01-01

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in a reduced space with the sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and the advantages and disadvantages are discussed.

  12. Use of diffusive optical fibers for plant lighting

    NASA Astrophysics Data System (ADS)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.; Kino, S.; Kinowaki, M.

    1994-03-01

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in a reduced space with the sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and the advantages and disadvantages are discussed.

  13. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition

    PubMed Central

    Spoelstra, Kamiel; van Grunsven, Roy H. A.; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E.; Slaterus, Roy; Berendse, Frank; Visser, Marcel E.; Veenendaal, Elmar

    2015-01-01

    Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. PMID:25780241

  14. Experimental illumination of natural habitat--an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition.

    PubMed

    Spoelstra, Kamiel; van Grunsven, Roy H A; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E; Slaterus, Roy; Berendse, Frank; Visser, Marcel E; Veenendaal, Elmar

    2015-05-05

    Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level-thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Direct Bandgap Group IV Materials

    DTIC Science & Technology

    2016-01-21

    devices. In this project, we have accomplished (a) direct bandgap group IV materials of GeSn, (b) GeSn-based planar light - emitting diode operated at near...devices of planar light emitting diode , detector and laser ” 6/12/2015 PI and Co-PI information: - Name of Principal Investigators: Prof. H. H. Cheng...IV materials of GeSn, (b) GeSn-based planar light - emitting diode operated at near infrared with direct emission, and (c) the first planar

  16. LIGHT: A Novel Immunotherapy for Primary and Metastatic Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    and TRAMP-C2 LIGHT expressing cells to examine the frequency of Tregs subsequent to LIGHT interaction . These results reflect on the ability of LIGHT...cells. These data suggest that LIGHT interaction directly affects the induction of Tregs from a naïve CD4+ T cell population but also that this is not... interaction directly affects the induction of Tregs from a naïve CD4+ T cell population.  mPSCA TriVax induces infiltration of NK and MDSCs, whereas

  17. Navigational strategies underlying phototaxis in larval zebrafish.

    PubMed

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.

  18. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users.

    PubMed

    Childs, Emma; de Wit, Harriet

    2006-05-01

    Caffeine produces mild psychostimulant effects that are thought to underlie its widespread use. However, the direct effects of caffeine are difficult to evaluate in regular users of caffeine because of tolerance and withdrawal. Indeed, some researchers hypothesize that the psychostimulant effects of caffeine are due largely to the reversal of withdrawal and question whether there are direct effects of caffeine consumption upon mood, alertness, or mental performance in nondependent individuals. This study investigated the physiological, subjective, and behavioral effects of 0, 50, 150, and 450 mg caffeine in 102 light, nondependent caffeine users. Using a within-subjects design, subjects participated in four experimental sessions, in which they received each of the four drug conditions in random order under double blind conditions. Participants completed subjective effects questionnaires and vital signs were measured before and at repeated time points after drug administration. Forty minutes after the capsules were ingested, subjects completed behavioral tasks that included tests of sustained attention, short-term memory, psychomotor performance, and behavioral inhibition. Caffeine significantly increased blood pressure, and produced feelings of arousal, positive mood, and high. Caffeine increased the number of hits and decreased reaction times in a vigilance task, but impaired performance on a memory task. We confirm that acute doses of caffeine, at levels typically found in a cup of coffee, produce stimulant-like subjective effects and enhance performance in light, nondependent caffeine users. These findings support the idea that the drug has psychoactive effects even in the absence of withdrawal.

  19. Individual consistency in exploratory behaviour and mating tactics in male guppies

    NASA Astrophysics Data System (ADS)

    Kelley, Jennifer L.; Phillips, Samuel C.; Evans, Jonathan P.

    2013-10-01

    While behavioural plasticity is considered an adaptation to fluctuating social and environmental conditions, many animals also display a high level of individual consistency in their behaviour over time or across contexts (generally termed ‘personality’). However, studies of animal personalities that include sexual behaviour, or functionally distinct but correlated traits, are relatively scarce. In this study, we tested for individual behavioural consistency in courtship and exploratory behaviour in male guppies ( Poecilia reticulata) in two light environments (high vs. low light intensity). Based on previous work on guppies, we predicted that males would modify their behaviour from sneak mating tactics to courtship displays under low light conditions, but also that the rank orders of courtship effort would remain unchanged (i.e. highly sexually active individuals would display relatively high levels of courtship under both light regimes). We also tested for correlations between courtship and exploratory behaviour, predicting that males that had high display rates would also be more likely to approach a novel object. Although males showed significant consistency in their exploratory and mating behaviour over time (1 week), we found no evidence that these traits constituted a behavioural syndrome. Furthermore, in contrast to previous work, we found no overall effect of the light environment on any of the behaviours measured, although males responded to the treatment on an individual-level basis, as reflected by a significant individual-by-environment interaction. The future challenge is to investigate how individual consistency across different environmental contexts relates to male reproductive success.

  20. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31440a

  1. Earth observation taken by the Expedition 30 crewmember

    NASA Image and Video Library

    2012-02-22

    ISS030-E-099324 (22 Feb. 2012) --- City lights of Dubai, United Arab Emirates are featured in this image photographed by an Expedition 30 crew member on the International Space Station. The City of Dubai?the largest metropolitan area within the emirate of Dubai?is a favorite subject of astronaut photography largely due to the unique island developments situated directly offshore in the Persian Gulf. These artificial archipelagos have been built such that their full design is only visible from the vantage point of an airplane ? or an orbiting spacecraft such as the International Space Station. The city presents an eye-catching appearance at night that vividly displays the urban development pattern. In this detailed nighttime image?taken with a long focal length lens and digital camera optimized for fast response and high light sensitivity?several interesting patterns can be observed. The highways and major streets are sharply defined by yellow-orange lighting, while the commercial and residential areas are resolved into a speckle pattern of individual white, blue, and yellow-orange lights. Several large and brilliantly lit areas are large hotel and mall complexes, including the Burj Khalifa Tower; at 828 meters (2,717 feet) height it is the world?s tallest building. The brilliant lighting of the city contrasts sharply with both the dark Persian Gulf to the northwest, and largely undeveloped and unlit areas to the southeast. Likewise, the clusters of lighting in the Palm Jumeira complex at bottom right correspond to the relatively small part of the archipelago that has been developed. Isolated areas of blurred city lights are due to patchy clouds.

  2. Light directs zebrafish period2 expression via conserved D and E boxes.

    PubMed

    Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S

    2009-10-01

    For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.

  3. Migratory bird hunter opinions regarding potential management strategies for controlling light goose populations

    USGS Publications Warehouse

    Dinges, Andrew J.; Webb, Elisabeth B.; Vrtiska, Mark P.; Nilon, Charles H.; Wilhelm Stanis, Sonja A.

    2014-01-01

    We expanded the Nebraska Light Goose Conservation Order (LGCO) harvest survey (NE, USA) in spring 2012 to assess migratory bird hunter opinions regarding future management strategies for controlling light goose populations. Although hunters strongly agreed that population control of light geese was an important wildlife management issue, they were generally unsupportive of wildlife officials using forms of direct control methods to control light goose populations. Respondents who indicated participation in the 2012 LGCO were also less supportive of any form of direct control compared with migratory bird hunters who did not participate in the LGCO. When presented with alternative methods by wildlife officials for future light goose population control, respondents were most supportive of wildlife agencies selectively shooting light geese on migration and wintering areas and least supportive of wildlife officials using bait with approved chemicals to euthanize light geese. A clear understanding of public perception of various potential direct-control options will likely assist wildlife biologists in making informed decisions on how to proceed with population control of light geese.

  4. Interaction of magnetite-based receptors in the beak with the visual system underlying 'fixed direction' responses in birds

    PubMed Central

    2010-01-01

    Background European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system. PMID:20707905

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Keyu; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  6. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps

    DOE PAGES

    Rios-Torres, Jackeline; Malikopoulos, Andreas A.

    2016-09-07

    Connected and automated vehicles (CAVs) have the potential to improve safety by reducing and mitigating traffic accidents. They can also provide opportunities to reduce transportation energy consumption and emissions by improving traffic flow. Vehicle communication with traffic structures and traffic lights can allow individual vehicles to optimize their operation and account for unpredictable changes. This paper summarizes the developments and the research trends in coordination with the CAVs that have been reported in the literature to date. In conclusion, remaining challenges and potential future research directions are also discussed.

  7. Strategies for managing impressions of racial identity in the workplace.

    PubMed

    Roberts, Laura Morgan; Cha, Sandra E; Kim, Sung Soo

    2014-10-01

    This article deepens understanding of the workplace experiences of racial minorities by investigating racial identity-based impression management (RIM) by Asian American journalists. Racial centrality, directly or indirectly, predicted the use of 4 RIM strategies (avoidance, enhancement, affiliation, and racial humor). Professional centrality also predicted strategy use, which was related to life satisfaction and perceived career success. By shedding light on proactive strategies that individuals use to influence colleagues' impressions of their racial identity, we contribute to research on diversity in organizations, impression management, and racial identity. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  8. Toward Enhancing OpenMP's Work-Sharing Directives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B M; Huang, L; Jin, H

    2006-05-17

    OpenMP provides a portable programming interface for shared memory parallel computers (SMPs). Although this interface has proven successful for small SMPs, it requires greater flexibility in light of the steadily growing size of individual SMPs and the recent advent of multithreaded chips. In this paper, we describe two application development experiences that exposed these expressivity problems in the current OpenMP specification. We then propose mechanisms to overcome these limitations, including thread subteams and thread topologies. Thus, we identify language features that improve OpenMP application performance on emerging and large-scale platforms while preserving ease of programming.

  9. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    DOE PAGES

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; ...

    2016-02-15

    We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. Furthermore, the ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

  10. Advantages of diffuse light for horticultural production and perspectives for further research

    PubMed Central

    Li, Tao; Yang, Qichang

    2015-01-01

    Plants use diffuse light more efficiently than direct light, which is well established due to diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf shows a non-linear response to the light flux density. Diffuse light also results in a more even horizontal and temporal light distribution in the canopy, which plays substantial role for crop photosynthesis enhancement as well as production improvement. Here we show some of the recent findings about the effect of diffuse light on light distribution over the canopy and its direct and indirect effects on crop photosynthesis and plant growth, and suggest some perspectives for further research which could strengthen the scientific understanding of diffuse light modulate plant processes and its application in horticultural production. PMID:26388890

  11. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  12. Circadian disruption and remedial interventions: effects and interventions for jet lag for athletic peak performance.

    PubMed

    Forbes-Robertson, Sarah; Dudley, Edward; Vadgama, Pankaj; Cook, Christian; Drawer, Scott; Kilduff, Liam

    2012-03-01

    Jet lag has potentially serious deleterious effects on performance in athletes following transmeridian travel, where time zones are crossed eastwards or westwards; as such, travel causes specific effects related to desynchronization of the athlete's internal body clock or circadian clock. Athletes are particularly sensitive to the effects of jet lag, as many intrinsic aspects of sporting performance show a circadian rhythm, and optimum competitive results require all aspects of the athlete's mind and body to be working in tandem at their peak efficiency. International competition often requires transmeridian travel, and competition timings cannot be adjusted to suit individual athletes. It is therefore in the interest of the individual athlete and team to understand the effects of jet lag and the potential adaptation strategies that can be adopted. In this review, we describe the underlying genetic and physiological mechanisms controlling the circadian clock and its inherent ability to adapt to external conditions on a daily basis. We then examine the fundamentals of the various adaptation stimuli, such as light, chronobiotics (e.g. melatonin), exercise, and diet and meal timing, with particular emphasis on their suitability as strategies for competing athletes on the international circuit. These stimuli can be artificially manipulated to produce phase shifts in the circadian rhythm to promote adaptation in the optimum direction, but care must be taken to apply them at the correct time and dose, as the effects produced on the circadian rhythm follow a phase-response curve, with pronounced shifts in direction at different times. Light is the strongest realigning stimulus and careful timing of light exposure and avoidance can promote adjustment. Chronobiotics such as melatonin can also be used to realign the circadian clock but, as well as timing and dosage issues, there are also concerns as to its legal status in different countries and with the World Anti-Doping Agency. Experimental data concerning the effects of food intake and exercise timing on jet lag is limited to date in humans, and more research is required before firm guidelines can be stated. All these stimuli can also be used in pre-flight adaptation strategies to promote adjustment in the required direction, and implementation of these is described. In addition, the effects of individual variability at the behavioural and genetic levels are also discussed, along with the current limitations in assessment of these factors, and we then put forward three case studies, as examples of practical applications of these strategies, focusing on adaptations to travel involving competition in the Rugby Sevens World Cup and the 2016 Summer Olympics in Rio de Janeiro, Brazil. Finally, we provide a list of practice points for optimal adaptation of athletes to jet lag.

  13. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  14. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil

    Treesearch

    Dan Binkley; Jose Luiz Stape; William L. Bauerle; Michael G. Ryan

    2010-01-01

    The growth of wood in trees and forests depends on the acquisition of resources (light, water, and nutrients), the efficiency of using resources for photosynthesis, and subsequent partitioning to woody tissues. Patterns of efficiency over time for individual trees, or between trees at one time, result from changes in rates photosynthesis and shifts in...

  15. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    PubMed

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  16. Direct view zoom scope with single focal plane and adaptable reticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Brett

    A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less

  17. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    NASA Astrophysics Data System (ADS)

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-03-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

  18. The influence of political ideology and trust on willingness to vaccinate.

    PubMed

    Baumgaertner, Bert; Carlisle, Juliet E; Justwan, Florian

    2018-01-01

    In light of the increasing refusal of some parents to vaccinate children, public health strategies have focused on increasing knowledge and awareness based on a "knowledge-deficit" approach. However, decisions about vaccination are based on more than mere knowledge of risks, costs, and benefits. Individual decision making about vaccinating involves many other factors including those related to emotion, culture, religion, and socio-political context. In this paper, we use a nationally representative internet survey in the U.S. to investigate socio-political characteristics to assess attitudes about vaccination. In particular, we consider how political ideology and trust affect opinions about vaccinations for flu, pertussis, and measles. Our findings demonstrate that ideology has a direct effect on vaccine attitudes. In particular, conservative respondents are less likely to express pro-vaccination beliefs than other individuals. Furthermore, ideology also has an indirect effect on immunization propensity. The ideology variable predicts an indicator capturing trust in government medical experts, which in turn helps to explain individual-level variation with regards to attitudes about vaccine choice.

  19. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    PubMed Central

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-01-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles. PMID:24358054

  20. Finding meaning in loss: the mediating role of social support between personality and two construals of meaning.

    PubMed

    Boyraz, Güler; Horne, Sharon G; Sayger, Thomas V

    2012-07-01

    Dimensions of personality may shape an individual's response to loss both directly and indirectly through its effects on other variables such as an individual's ability to seek social support. The mediating effect of social support on the relationship between personality (i.e., extraversion and neuroticism) and 2 construals of meaning (i.e., sense-making and benefit-finding) among 325 bereaved individuals was explored using path analysis. Supporting our hypotheses, social support mediated the relationship between personality and construals of meaning. Neuroticism was negatively and indirectly associated with both sense-making and benefit-finding through social support. Extraversion had a significant positive relationship to social support, which, in turn, mediated the impact of extraversion on both sense-making and benefit finding. The model explained 35% of the variance in social support, 19% of the variance in sense-making, and 25% of the variance in benefit-finding. Implications are discussed in light of existing theories of bereavement and loss.

  1. Influence of the chopped frequency of light on optical transport characteristics of human skin including at acupuncture points

    NASA Astrophysics Data System (ADS)

    Yang, Hong-qin; Xie, Shu-sen; Liu, Song-hao; Li, Hui; Wang, Yu-hua; Guo, Zhou-yi

    2007-11-01

    An experimental protocol was established for noninvasively measuring the optical transport characteristics of skin tissue along human meridian direction over body surface including at acupuncture points. The diffuse remittance for 658 nm light radiation along the pericardium meridian and non-meridian directions were measured respectively. The influence of the chopped frequency of light on the detected light signal was investigated. It is shown that the optical transport characteristics of skin tissue accords with the Beer's exponential attenuation law along the meridian including at acupuncture points and non-median directions. However there is an obvious difference between the propagations along the meridian direction and non-meridian direction (P<0.05). Furthermore, the chopped frequency can affect the detected signal. The diffuse remittance signal decreased with the chopped frequency's increase and it was different between the meridian and non-meridian directions. These findings are important and meaningful for interpreting the human meridian phenomena by biomedical optics.

  2. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  3. Artificial light at night affects sleep behaviour differently in two closely related songbird species.

    PubMed

    Sun, Jiachen; Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2017-12-01

    Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark. In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  5. Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.

    PubMed

    Levy-Sakin, Michal; Ebenstein, Yuval

    2013-08-01

    Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material. Optical mapping of DNA grants access to genetic and epigenetic information on individual DNA molecules up to ∼1 Mbp in length. Fluorescent labeling of specific sequence motifs, epigenetic marks and other genomic information on individual DNA molecules generates a high content optical barcode along the DNA. By stretching the DNA to a linear configuration this barcode may be directly visualized by fluorescence microscopy. We discuss the advances of these methods in light of recent developments in nano-fabrication and super-resolution optical imaging (nanoscopy) and review the latest achievements of optical mapping in the context of genomic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  7. Honeybee navigation: critically examining the role of the polarization compass

    PubMed Central

    Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the ‘waggle dance’. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  8. Honeybee navigation: critically examining the role of the polarization compass.

    PubMed

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it.

  9. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ

    PubMed Central

    Sun, Yan; LaSota, Elijah D.; Cecere, Andrew G.; LaPenna, Kyle B.; Larios-Valencia, Jessie; Wollenberg, Michael S.

    2016-01-01

    ABSTRACT Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. IMPORTANCE The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri. Using fluorescent proteins to differentially label two distinct V. fischeri strains, we find that the strains are unable to coexist in the same niche within the host. Our results suggest that strain competition for distinct colonization sites dictates the strain diversity associated with the host. Our study provides a platform for studying how strain diversity develops within a host. PMID:27016564

  10. Two-state Markov-chain Poisson nature of individual cellphone call statistics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Zhou, Wei-Xing; Sornette, Didier

    2016-07-01

    Unfolding the burst patterns in human activities and social interactions is a very important issue especially for understanding the spreading of disease and information and the formation of groups and organizations. Here, we conduct an in-depth study of the temporal patterns of cellphone conversation activities of 73 339 anonymous cellphone users, whose inter-call durations are Weibull distributed. We find that the individual call events exhibit a pattern of bursts, that high activity periods are alternated with low activity periods. In both periods, the number of calls are exponentially distributed for individuals, but power-law distributed for the population. Together with the exponential distributions of inter-call durations within bursts and of the intervals between consecutive bursts, we demonstrate that the individual call activities are driven by two independent Poisson processes, which can be combined within a minimal model in terms of a two-state first-order Markov chain, giving significant fits for nearly half of the individuals. By measuring directly the distributions of call rates across the population, which exhibit power-law tails, we purport the existence of power-law distributions, via the ‘superposition of distributions’ mechanism. Our findings shed light on the origins of bursty patterns in other human activities.

  11. How and why of orthodontic bond failures: An in vivo study

    PubMed Central

    Vijayakumar, R. K.; Jagadeep, Raju; Ahamed, Fayyaz; Kanna, Aprose; Suresh, K.

    2014-01-01

    Introduction: The bonding of orthodontic brackets and their failure rates by both direct and in-direct procedures are well-documented in orthodontic literature. Over the years different adhesive materials and various indirect bonding transfer procedures have been compared and evaluated for bond failure rates. The aim of our study is to highlight the use of a simple, inexpensive and ease of manipulation of a single thermo-plastic transfer tray and the use the of a single light cure adhesive to evaluate the bond failure rates in clinical situations. Materials and Methods: A total of 30 patients were randomly divided into two groups (Group A and Group B). A split-mouth study design was used, for, both the groups so that they were distributed equally with-out bias. After initial prophylaxis, both the procedures were done as per manufactures instructions. All patients were initially motivated and reviewed for bond failures rates for 6 months. Results: Bond failure rates were assessed for over-all direct and indirect procedures, anterior and posterior arches, and for individual tooth. Z-test was used for statistically analyzing, the normal distribution of the sample in a spilt mouth study. The results of the two groups were compared and P value was calculated using Z-proportion test to assess the significance of the bond failure. Conclusion: Over-all bond failure was more for direct bonding. Anterior bracket failure was more in-direct bonding than indirect procedure, which showed more posterior bracket failures. In individual tooth bond failure, mandibular incisor, and premolar brackets showed more failure, followed by maxillary premolars and canines. PMID:25210392

  12. Estimation of direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric fine and coarse particles

    NASA Astrophysics Data System (ADS)

    Tian, Y.-Z.; Wang, J.; Peng, X.; Shi, G.-L.; Feng, Y.-C.

    2014-05-01

    To quantify total, direct and indirect impacts of fireworks individually, size-resolved PM samples were collected before, during, and after a Chinese folk-custom festival (Chinese New Year) in a megacity in China. Through chemical analysis and morphology characterization, strong influence of fireworks on physicochemical characteristics of PM10 and PM2.5 was observed. Concentrations of many species exhibited an increasing trend during heavy-firework period, especially for K+, Mg2+ and Cr; and the results of non-sea-salt ions demonstrated anthropogenic influence on them. Then, source apportionment was conducted by receptor models and Peak Analysis. Total influence of fireworks was quantified by PMF, showing that fireworks contributed rather higher fractions (23.40% to PM10 and 29.66% to PM2.5) during heavy-firework period than those during light-firework period (4.28% to PM10 and 7.18% to PM2.5). Profiles of total fireworks obtained by two independent methods (PMF and Peak Analysis) were consistent, with higher abundances of K+, Al, Si, Ca and OC. Finally, individual contributions of direct and indirect impacts of fireworks were quantified by CMB. The percentage contributions of resuspended dust, biomass combustion and direct-fireworks were 36.82, 14.08 and 44.44% for PM10 and 34.89, 16.60 and 52.54% for PM2.5, in terms of the total fireworks. The quantification of total, direct and indirect impacts of fireworks to ambient PM gives an original contribution to understand the physicochemical characteristics and mechanisms of such high-intensity anthropogenic activities.

  13. [Influence of ambient light and adjacent tooth in anterior tooth color measurement].

    PubMed

    Wang, Si-qian; Sean, S Lee; Wu, Zhang; Li, Yiming; Ma, Jian-feng

    2007-10-01

    To investigate the influence of different intensity and directions of ambient light and adjacent tooth in anterior tooth color measurement by using colorimeter. Fiber lite MI-150 was used as ambient illuminant and it irradiated from three or twelve o'clock direction through 45 degrees angle above. The light magnitude 0, 50, 75, 100, 125, 150 W were applied in this experiment. The values of CIE L* a* b* were measured by Minolta Chroma meter CR-321 colorimeter on the center labial surface of ten extracted human maxillary central incisors with or without adjacent teeth, then those data were analyzed statistically by using SPSS 11.5. Neither different intensities nor different directions of ambient light could influence the results of color measurement by using Minolta Chroma meter CR-321 colorimeter, so did the adjacent teeth whether those were exist or not. There is no influence of ambient light and adjacent teeth in the color measurement of anterior teeth under this experiment condition, and Minolta Chroma meter CR-321 colorimeter can be used to measure the color directly aside the chair with light.

  14. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.

  15. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    PubMed

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  16. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  17. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  18. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    PubMed

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  19. Polarized Light Sensitivity and Orientation in Coral Reef Fish Post-Larvae

    PubMed Central

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B.

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity–the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun’s position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh’s test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae. PMID:24516662

  20. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  1. Thumb-actuated two-axis controller

    NASA Technical Reports Server (NTRS)

    Hollow, R. H. (Inventor)

    1986-01-01

    A two axis joystick controller is described. It produces at least one output signal in relation to pivotal displacement of a member with respect to an intersection of the two axes. The member is pivotally movable on a support with respect to the two axes. The support has a centrally disposed aperture. A light source is mounted on the pivotally movable member above the aperture to direct light through the aperture. A light sensor is mounted below the aperture in the support at the intersection of the two axes to receive the light from the light source directed through the aperture. The light sensor produces at least one output signal related to a location on the sensor at which the light from the light source strikes the sensor.

  2. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436

  3. Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles.

    PubMed

    Okada, Masaaki; Muranaka, Tomoaki; Ito, Shogo; Oyama, Tokitaka

    2017-03-22

    Individual cells in a plant can work independently as circadian clocks, and their properties are the basis of various circadian phenomena. The behaviour of individual cellular clocks in Lemna gibba was orderly under 24-h light/dark cycles despite their heterogeneous free-running periods (FRPs). Here, we reveal the entrainment habits of heterogeneous cellular clocks using non-24-h light/dark cycles (T-cycles). The cellular rhythms of AtCCA1::LUC under T = 16 h cycles showed heterogeneous entrainment that was associated with their heterogeneous FRPs. Under T = 12 h cycles, most cells showed rhythms having ~24-h periods. This suggested that the lower limit of entrainment to the light/dark cycles of heterogeneous cellular circadian clocks is set to a period longer than 12 h, which enables them to be synchronous under ~24-h daily cycles without being perturbed by short light/dark cycles. The entrainment habits of individual cellular clocks are likely to be the basis of the circadian behaviour of plant under the natural day-night cycle with noisy environmental fluctuations. We further suggest that modifications of EARLY FLOWERING3 (ELF3) in individual cells deviate the entrainability to shorter T-cycles possibly by altering both the FRPs and light responsiveness.

  4. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  5. USGS lidar science strategy—Mapping the technology to the science

    USGS Publications Warehouse

    Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.

    2016-01-11

    The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.

  6. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  7. Blue light dosage affects carotenoids and tocopherols in microgreens.

    PubMed

    Samuolienė, Giedrė; Viršilė, Akvilė; Brazaitytė, Aušra; Jankauskienė, Julė; Sakalauskienė, Sandra; Vaštakaitė, Viktorija; Novičkovas, Algirdas; Viškelienė, Alina; Sasnauskas, Audrius; Duchovskis, Pavelas

    2017-08-01

    Mustard, beet and parsley were grown to harvest time under selected LEDs: 638+660+731+0% 445nm; 638+660+731+8% 445nm; 638+660+731+16% 445nm; 638+660+731+25% 445nm; 638+660+731+33% 445nm. From 1.2 to 4.3 times higher concentrations of chlorophylls a and b, carotenoids, α- and β-carotenes, lutein, violaxanthin and zeaxanthin was found under blue 33% treatment in comparison to lower blue light dosages. Meanwhile, the accumulation of metabolites, which were not directly connected with light reactions, such as tocopherols, was more influenced by lower (16%) blue light dosage, increasing about 1.3 times. Thus, microgreen enrichment of carotenoid and xanthophyll pigments may be achieved using higher (16-33%) blue light intensities. Changes in metabolite quantities were not the result of changes of other carotenoid concentration, but were more influenced by light treatment and depended on the species. Significant quantitative changes in response to blue light percentage were obtained for both directly and not directly light-dependent metabolite groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Red Light Receptor Phytochrome B Directly Enhances Substrate-E3 Ligase Interactions to Attenuate Ethylene Responses.

    PubMed

    Shi, Hui; Shen, Xing; Liu, Renlu; Xue, Chang; Wei, Ning; Deng, Xing Wang; Zhong, Shangwei

    2016-12-05

    Plants germinating under subterranean darkness assume skotomorphogenesis, a developmental program strengthened by ethylene in response to mechanical pressure of soil. Upon reaching the surface, light triggers a dramatic developmental transition termed de-etiolation that requires immediate termination of ethylene responses. Here, we report that light activation of photoreceptor phyB results in rapid degradation of EIN3, the master transcription factor in the ethylene signaling pathway. As a result, light rapidly and efficiently represses ethylene actions. Specifically, phyB directly interacts with EIN3 in a light-dependent manner and also physically associates with F box protein EBFs. The light-activated association of phyB, EIN3, and EBF1/EBF2 proteins stimulates robust EIN3 degradation by SCF EBF1/EBF2 E3 ligases. We reveal that phyB manipulates substrate-E3 ligase interactions in a light-dependent manner, thus directly controlling the stability of EIN3. Our findings illustrate a mechanistic model of how plants transduce light information to immediately turn off ethylene signaling for de-etiolation initiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Experimental demonstration of a single-molecule electric motor.

    PubMed

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  10. Potential Direct Single-Star Mass Measurement

    NASA Astrophysics Data System (ADS)

    Ghosh, H.; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Salim, S.; Mu Fun Collaboration; Abe, F.; Bennett, D. P.; Bond, I. A.; Eguchi, S.; Furuta, Y.; Hearnshaw, J. B.; Kamiya, K.; Kilmartin, P. M.; Kurata, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Noda, S.; Okajima, K.; Rattenbury, N. J.; Sako, T.; Sekiguchi, T.; Sullivan, D. J.; Sumi, T.; Tristram, P. J.; Yanagisawa, T.; Yock, P. C. M.; MOA Collaboration; Udalski, A.; Soszyński, I.; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Szewczyk, O.; Żebruń, K.; OGLE Collaboration; Albrow, M. D.; Beaulieu, J.-P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Dominik, M.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Hill, K.; Horne, K.; Jørgensen, U. G.; Kane, S.; Kubas, D.; Martin, R.; Menzies, J.; Pollard, K. R.; Sahu, K. C.; Wambsganss, J.; Watson, R.; Williams, A.; PLANET Collaboration

    2004-11-01

    We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius rE. Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens-source relative proper motion μrel and so the mass M=(c2/4G)μreltErE, where tE is the measured Einstein timescale. While the light-curve-based measurement of rE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion μrel.

  11. Investigative Photography, 16-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of nine lessons dealing with investigative photography. Covered in the individual lessons are the following topics: light (light as the basis of photography, the behavior of light, the composition of white light, light transmission, reflection and absorption, illumination, and pinholes and light); camera…

  12. Red light-induced suppression of gravitropism in moss protonemata

    NASA Astrophysics Data System (ADS)

    Kern, V. D.; Sack, F. D.

    1999-01-01

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.

  13. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system.

  14. New Trends in Educational Lighting Systems.

    ERIC Educational Resources Information Center

    Murphy, Peter

    2001-01-01

    Explores technological trends for improving campus lighting, including the use of direct-indirect suspended fluorescent lighting, suspended linear lighting, high-efficiency optical systems, and occupancy and daylight sensors. (GR)

  15. Psychophysiological Effects of a Single, Short, and Moderately Bright Room Light Exposure on Mildly Depressed Geriatric Inpatients: A Pilot Study.

    PubMed

    Canazei, Markus; Pohl, Wilfried; Bauernhofer, Kathrin; Papousek, Ilona; Lackner, Helmut K; Bliem, Harald R; Marksteiner, Josef; Weiss, Elisabeth M

    2017-01-01

    Light interventions typically exert their mood-related effects during morning bright light exposures over several weeks. Evidence about immediate ambient room light effects on depressed individuals is still sparse. The present study aimed at examining the acute effects of a single moderately bright room light exposure on mood, and behavioural and cardiac stress reactions of mildly depressed geriatric inpatients during a short cognitive stimulation and while resting. Twenty-one inpatients were tested in a balanced cross-over design on 2 consecutive days under either conventional room light (standard light) or artificial sunlight conditions for 30 min. Room illumination was implemented with an artificial skylight, which perfectly imitated solar indoor illumination (e.g., cloudless sky and bright artificial sun). Light-induced changes of mood, heart rate, and heart rate variability were recorded while performing a perseveration test (acted as cognitive stimulation) twice. Additionally, light-related behaviour was observed during a resting period between the cognitive tests and various subjective ratings were obtained. Compared to standard light, exposure to artificial sunlight had a subjective calming effect over time (p = 0.029) as well as decreased heart rate and increased vagal tone (root mean squared of successive inter-beat intervals), both under cognitive workload and in resting conditions. Effect sizes of reported cardiac reactions were large. Cognitive variables were not influenced by light. Additionally, under the higher corneal illuminance of the artificial sunlight, patients perceived stronger glare (p = 0.030) and kept their eyes closed for longer times (p = 0.033) during the resting period. However, patients did not avoid bright light exposure while resting but voluntarily stayed within the area directly lit by the artificial sun nearly all the time (97%). To our knowledge, this study for the first time demonstrated immediate psychophysiological effects of a single, short room light exposure in mildly depressed geriatric inpatients during a short cognitive stimulation and while resting. The findings complement reported evidence on immediate alerting and mood-related effects of bright light exposures. © 2017 S. Karger AG, Basel.

  16. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    PubMed Central

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  17. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris

    2009-12-01

    Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.

  18. Association of eye color and sex with basketball free throws by elementary school children.

    PubMed

    Patee, T; Frewen, M; Beer, J

    1991-12-01

    Dark-eyed individuals perform reactive activities better while light-eyed individuals generally perform self-paced activities better. There were 68 (21 dark- and 47 light-eyed) elementary school children who shot 5 practice and then 15 free throws from the free-throw line in a high school gym. There were no differences in performance between light- and dark-eyed children, but boys scored more free throws than girls.

  19. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.

  20. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.

    2015-09-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.

  1. Aviation signal lighting : impacts of lighting characteristics on visibility.

    DOT National Transportation Integrated Search

    2011-01-01

    This paper summarizes research on visual responses to colored light signals in the aviation and : roadway environment and on government requirements for lighting along airfields. The objective : is to identify gaps in the knowledge about how individu...

  2. Perceived Gaze Direction Modulates Neural Processing of Prosocial Decision Making

    PubMed Central

    Sun, Delin; Shao, Robin; Wang, Zhaoxin; Lee, Tatia M. C.

    2018-01-01

    Gaze direction is a common social cue implying potential interpersonal interaction. However, little is known about the neural processing of social decision making influenced by perceived gaze direction. Here, we employed functional magnetic resonance imaging (fMRI) method to investigate 27 females when they were engaging in an economic exchange game task during which photos of direct or averted eye gaze were shown. We found that, when averted but not direct gaze was presented, prosocial vs. selfish choices were associated with stronger activations in the right superior temporal gyrus (STG) as well as larger functional couplings between right STG and the posterior cingulate cortex (PCC). Moreover, stronger activations in right STG was associated with quicker actions for making prosocial choice accompanied with averted gaze. The findings suggest that, when the cue implying social contact is absent, the processing of understanding others’ intention and the relationship between self and others is more involved for making prosocial than selfish decisions. These findings could advance our understanding of the roles of subtle cues in influencing prosocial decision making, as well as shedding lights on deficient social cue processing and functioning among individuals with autism spectrum disorder (ASD). PMID:29487516

  3. Sample holder with optical features

    DOEpatents

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2013-07-30

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  4. Transmission electron microscope sample holder with optical features

    DOEpatents

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  5. Honeybee navigation: following routes using polarized-light cues

    PubMed Central

    Kraft, P.; Evangelista, C.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2011-01-01

    While it is generally accepted that honeybees (Apis mellifera) are capable of using the pattern of polarized light in the sky to navigate to a food source, there is little or no direct behavioural evidence that they actually do so. We have examined whether bees can be trained to find their way through a maze composed of four interconnected tunnels, by using directional information provided by polarized light illumination from the ceilings of the tunnels. The results show that bees can learn this task, thus demonstrating directly, and for the first time, that bees are indeed capable of using the polarized-light information in the sky as a compass to steer their way to a food source. PMID:21282174

  6. Talking with Children about Light.

    ERIC Educational Resources Information Center

    Texas Child Care, 1996

    1996-01-01

    Suggests caregivers can help children learn about the concept of light using simple conversation and activities. Offers directions for activities in which children can consider the following questions about light: where does light come from?; can you see without light?; what blocks light?; how does light travel?; can you make a shadow?; and does…

  7. Regulation of melatonin secretion in the pineal organ of the domestic duck--an in vitro study.

    PubMed

    Prusik, M; Lewczuk, B; Ziółkowska, N; Przybylska-Gornowicz, B

    2015-01-01

    The aim of study was to determine the mechanisms regulating melatonin secretion in the pineal organs of 1-day-old and 9-month-old domestic ducks. The pineals were cultured in a superfusion system under different light conditions. Additionally, some explants were treated with norepinephrine. The pineal glands of 1-day-old ducks released melatonin in a well-entrained, regular rhythm during incubation under a 12 hrs light:12 hrs dark cycle and adjusted their secretory activity to a reversed 12 hrs dark:12 hrs light cycle within 2 days. In contrast, the diurnal changes in melatonin secretion from the pineals of 9-month-old ducks were largely irregular and the adaptation to a reversed cycle lasted 3 days. The pineal organs of nestling and adult ducks incubated in a continuous light or darkness secreted melatonin in a circadian rhythm. The treatment with norepinephrine during photophases of a light-dark cycle resulted in: 1) a precise adjustment of melatonin secretion rhythm to the presence of this catecholamine in the culture medium, 2) a very high amplitude of the rhythm, 3) a rapid adaptation of the pineal secretory activity to a reversed light-dark cycle. The effects of norepinephrine were similar in the pineal organs of nestlings and adults. In conclusion, melatonin secretion in the duck pineal organ is controlled by three main mechanisms: the direct photoreception, the endogenous generator and the noradrenergic transmission. The efficiency of intra-pineal, photosensitivity-based regulatory mechanism is markedly lower in adult than in nestling individuals.

  8. First direct evidence of long-distance seasonal movements and hibernation in a migratory bat

    USGS Publications Warehouse

    Weller, Theodore J.; Castle, Kevin T.; Liechti, Felix; Hein, Cris D.; Schirmacher, Michael R.; Cryan, Paul M.

    2016-01-01

    Understanding of migration in small bats has been constrained by limitations of techniques that were labor-intensive, provided coarse levels of resolution, or were limited to population-level inferences. Knowledge of movements and behaviors of individual bats have been unknowable because of limitations in size of tracking devices and methods to attach them for long periods. We used sutures to attach miniature global positioning system (GPS) tags and data loggers that recorded light levels, activity, and temperature to male hoary bats (Lasiurus cinereus). Results from recovered GPS tags illustrated profound differences among movement patterns by individuals, including one that completed a >1000 km round-trip journey during October 2014. Data loggers allowed us to record sub-hourly patterns of activity and torpor use, in one case over a period of 224 days that spanned an entire winter. In this latter bat, we documented 5 torpor bouts that lasted ≥16 days and a flightless period that lasted 40 nights. These first uses of miniature tags on small bats allowed us to discover that male hoary bats can make multi-directional movements during the migratory season and sometimes hibernate for an entire winter.

  9. Effects of light pollution on the emergent fauna of shallow marine ecosystems: Amphipods as a case study.

    PubMed

    Navarro-Barranco, Carlos; Hughes, Lauren Elizabeth

    2015-05-15

    Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, Martin S.

    1993-01-01

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  11. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  12. Inversion of gravitropism by symmetric blue light on the clinostat.

    PubMed

    Sailer, H; Nick, P; Schafer, E

    1990-02-01

    Gravitropic stimulation of maize (Zea mays L.) seedlings resulted in a continuous curvature of the coleoptiles in a direction opposing the vector of gravity when the seedlings were rotated on a horizontal clinostat. The orientation of this response, however, was reversed when the gravitropic stimulation was preceded by symmetric preirradiation with blue light (12.7 micromoles photons m-2). The fluence-response curve of this blue light exhibited a lower threshold at 0.5 micromole m-2, and could be separated into two parts: fluences exceeding 5 micromoles m-2 reversed the direction of the gravitropic response, whereas for a range between the threshold and 4 micromoles m-2 a split population was obtained. In all cases a very strong curvature resulted either in the direction of gravity or in the opposite orientation. A minor fraction of seedlings, however, curved towards the caryopsis. Furthermore, the capacity of blue light to reverse the direction of the gravitropic response disappeared with the duration of gravitropic stimulation and it depended on the delay time between both stimulations. This tonic blue-light influence appears to be transient, which is in contrast to the stability observed for tropistic blue-light effects.

  13. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and can be expanded to study other thermal issues in more sophisticated structures.

  14. Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster.

    PubMed

    McLay, L K; Green, M P; Jones, T M

    2017-07-01

    The presence of artificial light at night is expanding in geographical range and increasing in intensity to such an extent that species living in urban environments may never experience natural darkness. The negative ecological consequences of artificial night lighting have been identified in several key life history traits across multiple taxa (albeit with a strong vertebrate focus); comparable data for invertebrates is lacking. In this study, we explored the effect of chronic exposure to different night-time lighting intensities on growth, reproduction and survival in Drosophila melanogaster. We reared three generations of flies under identical daytime light conditions (2600lx) and one of four ecologically relevant ALAN treatments (0, 1, 10 or 100lx), then explored variation in oviposition, number of eggs produced, juvenile growth and survival and adult survival. We found that, in the presence of light at night (1, 10 and 100lx treatments), the probability of a female commencing oviposition and the number of eggs laid was significantly reduced. This did not translate into differences at the juvenile phase: juvenile development times and the probability of eclosing as an adult were comparable across all treatments. However, we demonstrate for the first time a direct link between chronic exposure to light at night (greater than 1lx) and adult survival. Our data highlight that ALAN has the capacity to cause dramatic shifts in multiple life history traits at both the individual and population level. Such shifts are likely to be species-specific, however a more in depth understanding of the broad-scale impact of ALAN and the relevant mechanisms driving biological change is urgently required as we move into an increasing brightly lit future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Suppression of Melatonin Secretion in Totally Visually Blind People by Ocular Exposure to White Light: Clinical Characteristics.

    PubMed

    Hull, Joseph T; Czeisler, Charles A; Lockley, Steven W

    2018-04-03

    Although most totally visually blind individuals exhibit nonentrained circadian rhythms due to an inability of light to entrain the circadian pacemaker, a small proportion retain photic circadian entrainment, melatonin suppression, and other nonimage-forming responses to light. It is thought that these responses to light persist because of the survival of melanospin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), which project primarily to the circadian pacemaker and are functionally distinct from the rod and cone photoreceptors that mediate vision. We aimed to assess the integrity of nonimage-forming photoreception in totally visually blind patients with a range of ocular disorders. Within-subject, dark-controlled design. A total of 18 totally visually blind individuals (7 females; mean age ± standard deviation = 49.8±11.0 years) with various causes of blindness, including 3 bilaterally enucleated controls. Melatonin concentrations were compared during exposure to a 6.5-hour bright white light (∼7000 lux) with melatonin concentrations measured 24 hours earlier at the corresponding clock times under dim-light (4 lux) conditions. Area under the curve (AUC) for melatonin concentration. Melatonin concentrations were significantly suppressed (defined as ≥33% suppression) during the bright-light condition compared with the dim-light condition in 5 of 15 participants with eyes (retinitis pigmentosa, n = 2; retinopathy of prematurity [ROP], n = 2; bilateral retinal detachments, n = 1). Melatonin concentrations remained unchanged in response to light in the remaining 10 participants with eyes (ROP, n = 3; optic neuritis/neuropathy, n = 2; retinopathy unknown, n = 2; congenital glaucoma, n = 1; congenital rubella syndrome, n = 1; measles retinopathy, n = 1) and in all 3 bilaterally enucleated participants. These data confirm that light-induced suppression of melatonin remains functionally intact in a minority of totally visually blind individuals with eyes. None of the bilaterally enucleated individuals or those with phthisis bulbi was responsive to light; of the remainder, half were responsive to light. Although inner retinal damage is associated with a high likelihood that nonimage-forming photoreception is absent, the impact of outer retinal damage is more ambiguous, and therefore the assessment of the presence, attenuation, or absence of nonimage-forming light responses in totally blind patients requires careful individual confirmation and cannot simply be assumed from the type of blindness. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Absence of an increase in the duration of the circadian melatonin secretory episode in totally blind human subjects

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Zeitzer, J. M.; Duffy, J. F.; Khalsa, S. B.; Czeisler, C. A.

    2001-01-01

    The daily rhythm of melatonin influences multiple physiological measures, including sleep tendency, circadian rhythms, and reproductive function in seasonally breeding mammals. The biological signal for photoperiodic changes in seasonally breeding mammals is a change in the duration of melatonin secretion, which in a natural environment reflects the different durations of daylight across the year, with longer nights leading to a longer duration of melatonin secretion. These seasonal changes in the duration of melatonin secretion do not simply reflect the known acute suppression of melatonin secretion by ocular light exposure, but also represent long-term changes in the endogenous nocturnal melatonin episode that persist in constant conditions. As the eyes of totally blind individuals do not transmit ocular light information, we hypothesized that the duration of the melatonin secretory episode in blind subjects would be longer than those in sighted individuals, who are exposed to light for all their waking hours in an urban environment. We assessed the melatonin secretory profile during constant posture, dim light conditions in 17 blind and 157 sighted adults, all of whom were healthy and using no prescription or nonprescription medications. The duration of melatonin secretion was not significantly different between blind and sighted individuals. Healthy blind individuals after years without ocular light exposure do not have a longer duration of melatonin secretion than healthy sighted individuals.

  17. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the Tricarboxylic Acid “Cycle” in Illuminated Leaves1[W

    PubMed Central

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA “cycle” does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  18. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    PubMed

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  19. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles.

    PubMed

    Biswas, Sushmita; Liu, Xiaoying; Jarrett, Jeremy W; Brown, Dean; Pustovit, Vitaliy; Urbas, Augustine; Knappenberger, Kenneth L; Nealey, Paul F; Vaia, Richard A

    2015-03-11

    Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

  20. When holography meets coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  1. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  2. Navigational strategies underlying phototaxis in larval zebrafish

    PubMed Central

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859

  3. Neonatal lines in the enamel of primary teeth--a morphological and scanning electron microscopic investigation.

    PubMed

    Sabel, Nina; Johansson, Carina; Kühnisch, Jan; Robertson, Agneta; Steiniger, Frank; Norén, Jörgen G; Klingberg, Gunilla; Nietzsche, Sandor

    2008-10-01

    The neonatal line (NNL) is in principle found in all primary teeth and the line represents the time of birth. Earlier findings of the appearance of the NNL in light microscope and in microradiographs have shown not only changes in the prism direction of the enamel, but that the NNL has a hypomineralized character. The neonatal line was analyzed in un-decalcified sections of primary lower and central incisors, collected from individuals of different ages utilizing polarized light microscopy, microradiography, scanning electron microscopy (SEM) and X-ray analysis (XRMA). In polarized light the NNL appeared to have a more porous structure than the enamel in general. The appearance of the NNL as a dark line in microradiographs is interpreted as the NNL being less mineralized than neighbouring enamel. Analysis with ImageJ visualized the reduction of the amount of grey value, indicating that the NNL is less mineralized. Analysis of the NNL in SEM showed a reduction of the diameter of enamel prisms, the more narrow diameters continued through the postnatal enamel. A change of the growth direction of the prisms was also observed at the NNL. In a three-dimensional image the NNL appeared as a grove, however, in non-etched enamel no grove was seen. The elemental analyses with XRMA showed no marked changes in the content of C, Ca, P, N, O or S in the area around the NNL. The NNL is an optical phenomenon due to alterations in height, and degree of mineralization of the enamel prisms.

  4. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  5. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  6. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  7. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less

  8. Creativity and Bipolar Disorder: Igniting a Dialogue.

    PubMed

    Johnson, Sheri L; Moezpoor, Michelle; Murray, Greg; Hole, Rachelle; Barnes, Steven J; Michalak, Erin E

    2016-01-01

    Bipolar disorder (BD) has been related to heightened creativity, yet core questions remain unaddressed about this association. We used qualitative methods to investigate how highly creative individuals with BD understand the role of symptoms and treatment in their creativity, and possible mechanisms underpinning this link. Twenty-two individuals self-identified as highly creative and living with BD took part in focus groups and completed quantitative measures of symptoms, quality of life (QoL), and creativity. Using thematic analysis, five themes emerged: the pros and cons of mania for creativity, benefits of altered thinking, the relationship between creativity and medication, creativity as central to one's identity, and creativity's importance in stigma reduction and treatment. Despite reliance on a small sample who self-identified as having BD, findings shed light on previously mixed results regarding the influence of mania and treatment and suggest new directions for the study of mechanisms driving the creative advantage in BD. © The Author(s) 2015.

  9. Dynamic of Change in Pathological Personality Trait Dimensions: A Latent Change Analysis Among at-Risk Women

    PubMed Central

    Barbot, Baptiste; Hunter, Scott R.; Grigorenko, Elena L.; Luthar, Suniya S.

    2012-01-01

    This study explores longitudinally a four-factor structure of pathological personality trait dimensions (PPTDs) to examine both its structural stability and intra-individual changes among PPTDs over time. Personality Disorder (PD) scales of the Millon Clinical Multiaxial Inventory-III were administered to 361 low-income women with various psychiatric conditions (drug dependence, depression), who were followed in a two-wave study over 5-years. Cross-sectional and longitudinal factor analyses outlined a robust factorial structure of PPTDs, extrinsically invariant over time, representing Negative Emotionality, Introversion, Antagonism and Impulsivity. Despite moderate rank-order stability in the PPTDs, results also indicated substantial intra-individual variability in the degree and direction of change, consistent with trajectories of change in participants’ clinical diagnoses. Results are discussed in light of current debates on the structure and dynamic of pathological personality. PMID:23710108

  10. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    PubMed

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  11. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L. 1

    PubMed Central

    Woodrow, Lorna; Jiao, Jirong; Tsujita, M. James; Grodzinski, Bernard

    1989-01-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed 11C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis. Images Figure 1 PMID:16666773

  12. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L.

    PubMed

    Woodrow, L; Jiao, J; Tsujita, M J; Grodzinski, B

    1989-05-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed (11)C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis.

  13. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  14. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Shulin; Wang, Guo Ping, E-mail: gpwang@szu.edu.cn; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060

    In this paper, we present a kind of periodical ternary parity-time (PT) -symmetric multilayers to realize nearly 100% reflectance and transmittance simultaneously when light is incident from a certain direction. This extraordinary reflection and transmission is original from unidirectional Bragg reflection of PT-symmetric systems as the symmetry spontaneous breaking happens at PT thresholds. The extra energy involved in reflection and transmission lights is obtained from pumping light to the gain regions of the structure. Moreover, we find that our PT-symmetric structure shows direction dependent wavelength selectivity. When the illumination light is incident from two opposite directions into the multilayer structure,more » such extraordinary reflection and transmission appear at visible and near-infrared wavelengths, respectively. Such distinguishing properties may provide these structures with attractive applications as beam splitters, laser mirrors, narrow band filters, and multiband PT-symmetric optical devices.« less

  15. Chiral quantum optics.

    PubMed

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  16. 3D Monte Carlo model with direct photon flux recording for optimal optogenetic light delivery

    NASA Astrophysics Data System (ADS)

    Shin, Younghoon; Kim, Dongmok; Lee, Jihoon; Kwon, Hyuk-Sang

    2017-02-01

    Configuring the light power emitted from the optical fiber is an essential first step in planning in-vivo optogenetic experiments. However, diffusion theory, which was adopted for optogenetic research, precluded accurate estimates of light intensity in the semi-diffusive region where the primary locus of the stimulation is located. We present a 3D Monte Carlo model that provides an accurate and direct solution for light distribution in this region. Our method directly records the photon trajectory in the separate volumetric grid planes for the near-source recording efficiency gain, and it incorporates a 3D brain mesh to support both homogeneous and heterogeneous brain tissue. We investigated the light emitted from optical fibers in brain tissue in 3D, and we applied the results to design optimal light delivery parameters for precise optogenetic manipulation by considering the fiber output power, wavelength, fiber-to-target distance, and the area of neural tissue activation.

  17. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    PubMed

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  19. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less

  20. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix1

    PubMed Central

    Aphalo, Pedro J.; Sánchez, Rodolfo A.

    1986-01-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed. PMID:16664900

  1. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix.

    PubMed

    Aphalo, P J; Sánchez, R A

    1986-07-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed.

  2. System and Method for Scan Range Gating

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott (Inventor); Zuk, David M. (Inventor)

    2017-01-01

    A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.

  3. Mindfulness-based cognitive therapy for depression: trends and developments.

    PubMed

    MacKenzie, Meagan B; Kocovski, Nancy L

    2016-01-01

    Mindfulness-based cognitive therapy (MBCT) was developed as a psychological intervention for individuals at risk of depressive relapse. Possible mechanisms of change for this intervention are in line with its theoretical underpinnings, and include increases in mindfulness and/or decreases in negative repetitive thoughts. This review provides an overview of current trends in MBCT research, including efficacy and questions regarding the specific effects of MBCT in light of recent comparisons with structurally equivalent control conditions, mechanisms of change, and moderators of treatment outcome. In addition, future directions are discussed, such as challenges with training an adequate number of therapists and disseminating this therapy.

  4. Improved delivery of magnetic nanoparticles with chemotherapy cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Giustini, Andrew J.; Gottesman, Rachel E.; Hoopes, P. Jack

    2013-02-01

    Most nanoparticle-based cancer therapeutic strategies seek to develop an effective individual cancer cell or metastatic tumor treatment. Critical to the success of these therapies is to direct as much of the agent as possible to the targeted tissue while avoiding unacceptable normal tissue complications. In this light, three different cisplatinum/magnetic nanoparticle (mNP) administration regimens were investigated. The most important finding suggests that clinically relevant doses of cisplatinum result in a significant increase in the tumor uptake of systemically delivered mNP. This enhancement of mNP tumor uptake creates the potential for an even greater therapeutic ratio through the addition of mNP based, intracellular hyperthermia.

  5. Continuous variable quantum cryptography using coherent states.

    PubMed

    Grosshans, Frédéric; Grangier, Philippe

    2002-02-04

    We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

  6. The contribution of the diffuse light component to the topographic effect on remotely sensed data

    NASA Technical Reports Server (NTRS)

    Justice, C.; Holben, B.

    1980-01-01

    The topographic effect is measured by the difference between the global radiance from inclined surfaces as a function of their orientation relative to the sensor position and light source. The short wave radiant energy incident on a surface is composed of direct sunlight, scattered skylight, and light reflected from surrounding terrain. The latter two components are commonly known as the diffuse component. The contribution of the diffuse light component to the topographic effect was examined and the significance of this diffuse component with respect to two direct radiance models was assessed. Diffuse and global spectral radiances were measured for a series of slopes and aspects of a uniform and surface in the red and photographic infrared parts of the spectrum, using a nadir pointing two channel handheld radiometer. The diffuse light was found to produce a topographic effect which varied from the topographic effect for direct light. The topographic effect caused by diffuse light was found to increase slightly with solar elevation and wavelength for the channels examined. The correlations between data derived from two simple direct radiance simulation models and the field data were not significantly affected when the diffuse component was removed from the radiances. Radiances from a 60 percent reflective surface, assuming no atmospheric path radiance, the diffuse light topographic effect contributed a maximum range of 3 pixel values in simulated LANDSAT data from all aspects with slopes up to 30 degrees.

  7. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light

    PubMed Central

    Aβhoff, Sarah J.; Sukas, Sertan; Yamaguchi, Tadatsugu; Hommersom, Catharina A.; Le Gac, Séverine; Katsonis, Nathalie

    2015-01-01

    Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the “on” and “off” switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly. PMID:26400584

  8. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  9. Is the Bifactor Model a Better Model or Is It Just Better at Modeling Implausible Responses? Application of Iteratively Reweighted Least Squares to the Rosenberg Self-Esteem Scale.

    PubMed

    Reise, Steven P; Kim, Dale S; Mansolf, Maxwell; Widaman, Keith F

    2016-01-01

    Although the structure of the Rosenberg Self-Esteem Scale (RSES) has been exhaustively evaluated, questions regarding dimensionality and direction of wording effects continue to be debated. To shed new light on these issues, we ask (a) for what percentage of individuals is a unidimensional model adequate, (b) what additional percentage of individuals can be modeled with multidimensional specifications, and (c) what percentage of individuals respond so inconsistently that they cannot be well modeled? To estimate these percentages, we applied iteratively reweighted least squares (IRLS) to examine the structure of the RSES in a large, publicly available data set. A distance measure, d s , reflecting a distance between a response pattern and an estimated model, was used for case weighting. We found that a bifactor model provided the best overall model fit, with one general factor and two wording-related group factors. However, on the basis of d r  values, a distance measure based on individual residuals, we concluded that approximately 86% of cases were adequately modeled through a unidimensional structure, and only an additional 3% required a bifactor model. Roughly 11% of cases were judged as "unmodelable" due to their significant residuals in all models considered. Finally, analysis of d s revealed that some, but not all, of the superior fit of the bifactor model is owed to that model's ability to better accommodate implausible and possibly invalid response patterns, and not necessarily because it better accounts for the effects of direction of wording.

  10. Is the Bifactor Model a Better Model or is it Just Better at Modeling Implausible Responses? Application of Iteratively Reweighted Least Squares to the Rosenberg Self-Esteem Scale

    PubMed Central

    Reise, Steven P.; Kim, Dale S.; Mansolf, Maxwell; Widaman, Keith F.

    2017-01-01

    Although the structure of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) has been exhaustively evaluated, questions regarding dimensionality and direction of wording effects continue to be debated. To shed new light on these issues, we ask: (1) for what percentage of individuals is a unidimensional model adequate, (2) what additional percentage of individuals can be modeled with multidimensional specifications, and (3) what percentage of individuals respond so inconsistently that they cannot be well modeled? To estimate these percentages, we applied iteratively reweighted least squares (IRLS; Yuan & Bentler, 2000) to examine the structure of the RSES in a large, publicly available dataset. A distance measure, ds, reflecting a distance between a response pattern and an estimated model, was used for case weighting. We found that a bifactor model provided the best overall model fit, with one general factor and two wording-related group factors. But, based on dr values, a distance measure based on individual residuals, we concluded that approximately 86% of cases were adequately modeled through a unidimensional structure, and only an additional 3% required a bifactor model. Roughly 11% of cases were judged as “unmodelable” due to their significant residuals in all models considered. Finally, analysis of ds revealed that some, but not all, of the superior fit of the bifactor model is owed to that model’s ability to better accommodate implausible and possibly invalid response patterns, and not necessarily because it better accounts for the effects of direction of wording. PMID:27834509

  11. Homogeneous free-form directional backlight for 3D display

    NASA Astrophysics Data System (ADS)

    Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying

    2017-08-01

    Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.

  12. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    PubMed

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  13. Optical imaging using spatial grating effects in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in

    2015-06-24

    Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen.more » This behavior can be used as magneto controlled illumination of the object and image analysis.« less

  14. Time-domain Brillouin scattering assisted by diffraction gratings

    NASA Astrophysics Data System (ADS)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  15. The visual light field in real scenes

    PubMed Central

    Xia, Ling; Pont, Sylvia C.; Heynderickx, Ingrid

    2014-01-01

    Human observers' ability to infer the light field in empty space is known as the “visual light field.” While most relevant studies were performed using images on computer screens, we investigate the visual light field in a real scene by using a novel experimental setup. A “probe” and a scene were mixed optically using a semitransparent mirror. Twenty participants were asked to judge whether the probe fitted the scene with regard to the illumination intensity, direction, and diffuseness. Both smooth and rough probes were used to test whether observers use the additional cues for the illumination direction and diffuseness provided by the 3D texture over the rough probe. The results confirmed that observers are sensitive to the intensity, direction, and diffuseness of the illumination also in real scenes. For some lighting combinations on scene and probe, the awareness of a mismatch between the probe and scene was found to depend on which lighting condition was on the scene and which on the probe, which we called the “swap effect.” For these cases, the observers judged the fit to be better if the average luminance of the visible parts of the probe was closer to the average luminance of the visible parts of the scene objects. The use of a rough instead of smooth probe was found to significantly improve observers' abilities to detect mismatches in lighting diffuseness and directions. PMID:25926970

  16. Discussion on back-to-back two-stage centrifugal compressor compact design techniques

    NASA Astrophysics Data System (ADS)

    Huo, Lei; Liu, Huoxing

    2013-12-01

    Design a small flow back-to-back two-stage centrifugal compressor in the aviation turbocharger, the compressor is compact structure, small axial length, light weighted. Stationary parts have a great influence on their overall performance decline. Therefore, the stationary part of the back-to-back two-stage centrifugal compressor should pay full attention to the diffuser, bend, return vane and volute design. Volute also impact downstream return vane, making the flow in circumferential direction is not uniformed, and several blade angle of attack is drastically changed in downstream of the volute with the airflow can not be rotated to required angle. Loading of high-pressure rotor blades change due to non-uniformed of flow in circumferential direction, which makes individual blade load distribution changed, and affected blade passage load decreased to reduce the capability of work, the tip low speed range increases.

  17. Single-organelle tracking by two-photon conversion

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  18. Light-dependent reversion gravitropism of the moss Pohlia nutans

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O.

    Plants have evolved highly sensitive mechanisms adapting their growth to the environmental conditions. Light and gravity are critical importance factors, which exerts an essential and specific influence on the determination of the growth direction and regulation of the early stages of plants ontogeny, sometimes effects of these factors being independent. The negative gravitropic resp onse of moss protonemata causes their spatial orientation towards light, which in its turn is the source of photosynthetic efficiency and phototropism. The gravitropism system does not function independently of other sensory response systems in plants. The competence of protonemata to gravity might be altered and the gravitropic response be reversed from negative to positive by light. It has been shown that response of apical cells to light depend on wavelenght: red light (max = 660 nm) represses the gravitropism and blue ( = 450 nm) inverts the protonemal gravitropism. Light, has also been shown for seed plants to modulate gravitropism of roots and stems through the action of phy B in red/far-red reversible way and by phy A in a non-reversible, very - low-fluence response (Hangarter, 1997). In P. nutans blue light reversed the gravitropism protonemal filaments. The mean angle after 24 h blue irradiation was 83 0, like that of negative gravitropic protonemata in darkness. We compared the effect of blue light on gravitropism of chloronemal filaments of Funaria hygrometrica having very low sensitivity to gravity. After action of blue light, however, the positive gravitropism of F. hygrometrica chloronemata was fairly high - 370 . Among blue light spectrum the highest reversion effectiveness in P. nutans had the UV light ( = 350 nm) initiated bends in 90% of protonemata. If a far-red pulse (5 min per h) was added to the blue/UV the gravitropic growth of protonemata resembled that in the dark control. Phytochrome has maxima of absorption in blue and red spectrum region and in our experiments far-red pulse removed the action of the blue/UV light. This indicates to a participation of phytochrome in changing direction of gravitropism. Since red light inhibited the gravitropism it may be suggested that phytochrome is not directly responsible for positive direction of gravitropism. Probably phytochrome only modifies the activity of other receptors or signal systems participating in realization of the gravitropic reaction. Moveover, the competence of apical cells protonemata to grow in opposite directions might be genetically controlled via blue-light - dependent repressor proteins (Lamparter et al., 1998).

  19. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  20. Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina

    PubMed Central

    Agte, Silke; Junek, Stephan; Matthias, Sabrina; Ulbricht, Elke; Erdmann, Ines; Wurm, Antje; Schild, Detlev; Käs, Josef A.; Reichenbach, Andreas

    2011-01-01

    In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide. PMID:22261048

  1. Detection and Measurement of Micrometeoroids with LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Parvini, C.; Trigo-Rodriguez, J. M.

    2016-01-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 x 10(exp -8) N s.We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses greater than 10(exp -9) g during LPF's roughly six-month science operations phase in a 5 x 10(exp 5) km by 8 x 10(exp 5) km Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1.

  2. Laser velocimeter for near-surface measurements

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A. (Inventor)

    1992-01-01

    The present invention relates to a laser Doppler velocimeter for near-wall measurements which includes at least one beam-turning device. The beam-turning device receives laser light, reflects and redirects the light at various angles in order to obtain measurements for all three velocity components at grazing incident angles. The beam-turning device includes a mirror or prism at one end which reflects the received light in a particular direction. A collector lens receives the particle scattered light from which the relevant velocity components are determined. The beam-turning device can also be a miniature fiber optic head which outputs laser light and can be turned in any direction.

  3. Provide Natural Light | Efficient Windows Collaborative

    Science.gov Websites

    illumination when desired. Providing Balanced Lighting A balance of light is important both for visual comfort protected from excessive light levels. The balance of light in a space depends on the overall number and furnishings. An improved balance of light can be created by providing light from at least two directions, such

  4. Compass cues used by a nocturnal bull ant, Myrmecia midas.

    PubMed

    Freas, Cody A; Narendra, Ajay; Cheng, Ken

    2017-05-01

    Ants use both terrestrial landmarks and celestial cues to navigate to and from their nest location. These cues persist even as light levels drop during the twilight/night. Here, we determined the compass cues used by a nocturnal bull ant, Myrmecia midas , in which the majority of individuals begin foraging during the evening twilight period. Myrmecia midas foragers with vectors of ≤5   m when displaced to unfamiliar locations did not follow the home vector, but instead showed random heading directions. Foragers with larger home vectors (≥10   m) oriented towards the fictive nest, indicating a possible increase in cue strength with vector length. When the ants were displaced locally to create a conflict between the home direction indicated by the path integrator and terrestrial landmarks, foragers oriented using landmark information exclusively and ignored any accumulated home vector regardless of vector length. When the visual landmarks at the local displacement site were blocked, foragers were unable to orient to the nest direction and their heading directions were randomly distributed. Myrmecia midas ants typically nest at the base of the tree and some individuals forage on the same tree. Foragers collected on the nest tree during evening twilight were unable to orient towards the nest after small lateral displacements away from the nest. This suggests the possibility of high tree fidelity and an inability to extrapolate landmark compass cues from information collected on the tree and at the nest site to close displacement sites. © 2017. Published by The Company of Biologists Ltd.

  5. Paths and patterns: the biology and physics of swimming bacterial populations

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.

    1995-01-01

    The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.

  6. Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems

    NASA Astrophysics Data System (ADS)

    Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun

    2018-01-01

    In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.

  7. Direct measurement of photomechanical switching cross-sections of single-molecules on a surface

    NASA Astrophysics Data System (ADS)

    Cho, Jongweon; Comstock, Matthew J.; Levy, Niv; Berbil-Bautista, Luis; Lauterwasser, Frank; Frechet, Jean M. J.; Crommie, Michael F.

    2008-03-01

    The photomechanical switching of photoactive molecules in solution strongly depends on the wavelength of light. This dependence is crucial to reliably control the photomechanical state of target molecules. Recently, reversible photomechanical switching of individual azobenzene molecular derivatives on the Au(111) surface has been reported for one particular wavelength of UV illumination [1]. To further understand this process and its possible applications in future nanotechnologies, we have investigated photomechanical switching rates and saturation behavior for azobenzene molecular derivatives at a surface under optical stimulation at different wavelengths. Using single-molecule-resolved scanning tunneling microscopy, we have determined both the forward and reverse photomechanical molecular switching cross-sections at different wavelengths. In a dramatic departure from solution-based environments, visible light does not efficiently reverse the photoreaction. [1] Matthew J. Comstock, Niv Levy, Armen Kirakosian, Jongweon Cho, Frank Lauterwasser, Jessica H. Harvey, David A. Strubbe, Jean M. J. Fr'echet, Dirk Trauner, Steven G. Louie, and Michael F. Crommie, Phys. Rev. Lett. 99, 038301 (2007)

  8. Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant.

    PubMed

    Lash, Gendie E; Scaife, Paula J; Innes, Barbara A; Otun, Harry A; Robson, Steven C; Searle, Roger F; Bulmer, Judith N

    2006-02-20

    Multiplex cytokine analysis technologies have become readily available in the last five years. Two main formats exist: multiplex sandwich ELISA and bead based assays. While these have each been compared to individual ELISAs, there has been no direct comparison between the two formats. We report here the comparison of two multiplex sandwich ELISA procedures (FAST Quant and SearchLight) and a bead based assay (UpState Luminex). All three kits differed from each other for different analytes and there was no clear pattern of one system giving systematically different results than another for any analyte studied. We suggest that each system has merits and several factors including range of analytes available, prospect of development of new analytes, dynamic range of the assay, sensitivity of the assay, cost of equipment, cost of consumables, ease of use and ease of data analysis need to be considered when choosing a system for use. We also suggest that results obtained from different systems cannot be combined.

  9. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.

    PubMed

    Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel

    2017-09-13

    We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.

  10. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  11. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    Abstract The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  12. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  14. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic.

    PubMed

    Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  15. Fresnel cup reflector directs maximum energy from light source

    NASA Technical Reports Server (NTRS)

    Laue, E. G.; Youngberg, C. L.

    1964-01-01

    To minimize shielding and overheating, a composite Fresnel cup reflector design directs the maximum energy from a light source. It consists of a uniformly ellipsoidal end surface and an extension comprising a series of confocal ellipsoidal and concentric spherical surfaces.

  16. A Prospective, Randomized Crossover Study Comparing Direct Inspection by Light Microscopy versus Projected Images for Teaching of Hematopathology to Medical Students

    ERIC Educational Resources Information Center

    Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.

    2014-01-01

    Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…

  17. Comparison of two front-of-package nutrition labeling schemes, and their explanation, on consumers' perception of product healthfulness and food choice.

    PubMed

    Lundeberg, Pamela J; Graham, Dan J; Mohr, Gina S

    2018-06-01

    Front-of-package (FOP) nutrition labels are increasingly used to present nutritional information to consumers. A variety of FOP nutrition schemes exist for presenting condensed nutrition information. The present study directly compared two symbolic FOP labeling systems - traffic light and star-based schemes - with specific regard to healthfulness perception and purchase intention for a variety of products. Additionally, this study investigated which method of message framing (gain, loss, gain + loss) would best enable individuals to effectively utilize the FOP labels. College students (n = 306) viewed food packages featuring either star or traffic light FOP labels and rated the healthfulness of each product and their likelihood of purchasing the product. Within each label type, participants were presented with differently-framed instructions regarding how to use the labels. Participants who viewed the star labels rated products with the lowest healthfulness as significantly less healthful and rated products with the highest healthfulness as significantly more healthful compared to participants who viewed those same products with traffic light labels. Purchase intention did not differ by label type. Additionally, including any type of framing (gain, loss, or gain + loss) assisted consumers in differentiating between foods with mid-range vs. low nutritional value. Star-based labels led more healthful foods to be seen as even more healthful and less healthful foods to be seen as even less healthful compared to the same foods with traffic light labels. Additionally, results indicate a benefit of including framing information for FOP nutrition label instructions; however, no individual frame led to significantly different behavior compared to the other frames. While ratings of product healthfulness were influenced by the framing and the label type, purchase intention was not impacted by either of these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Setting Time of Polyether Impression Materials after Contact with Conventional and Experimental Gingival Margin Displacement Agents.

    PubMed

    Nowakowska, Danuta; Raszewski, Zbigniew; Ziętek, Marek; Saczko, Jolanta; Kulbacka, Julita; Więckiewicz, Włodzimierz

    2018-02-01

    The compatibility of chemical gingival margin displacement agents with polyether impression materials has not been determined. The aim of this study was to evaluate the setting time of polyether impression elastomers after contact with conventional and experimental gingival displacement agents. The study compared the setting time of two polyether impression materials: medium body (Impregum Penta Soft) and light body (Impregum Garant L DuoSoft) after contact with 10 gingival displacement agents, including 5 conventional astringents (10%, 20%, and 25% aluminum chloride, 25% aluminum sulfate, and 15.5% ferric sulfate) and 5 experimental adrenergics (0.1% and 0.01% HCl-epinephrine, 0.05% HCl-tetrahydrozoline, 0.05% HCl-oxymetazoline, and 10% HCl-phenylephrine). As many as 120 specimens (60 light body and 60 medium body) were mixed with 20 μl of each of 10 gingival displacement agents, and the time to achieve maximum viscosity was measured with a viscometer. The setting times of these specimens were compared with the control group of 12 specimens, which were polymerized without contact with the displacement agents. The experiments were performed in two environments: 23°C and 37°C (± 0.1°C). Individual and average polymerization time compatibility indices (PTCI) were calculated. Data were analyzed by 2-way ANOVA (α = 0.05). The evaluated chemical displacement agents from both groups changed the setting time of light- and medium-body PE. The negative individual PTCI values achieved astringent (20% aluminum chloride) with two PE in both temperature environments. The average PTCI values of the experimental displacement agents at laboratory and intraoral temperatures were significantly higher than the conventional agents. The present findings suggest that experimental retraction agents can be recommended clinically as gingival margin displacement agents with minimal effects on the setting time of medium- and light-body polyether impression materials; however, direct contact of chemical displacement agents and polyether impression materials can be avoided. © 2016 by the American College of Prosthodontists.

  19. GraPhoBox: Gravitropism and phototropism in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Buizer, K.

    2007-09-01

    The morphology of plants is directed by the directional growth of roots and shoots. Gravity and light direction are the two major environmental stimuli important for directional growth. The 'GraPhoBox' experiment, flown on the Dutch DELTA mission to the ISS in April 2004, tries to elucidate the different effects of gravitropism and phototropism on plants, and their combined effects on plant morphology. Wild-type Arabidopsis thaliana (L.), phototropic-deficient mutants phot1 and gravitropic-deficient mutant pgm1 seeds were germinated in microgravity and in Earth gravity, in low light conditions and darkness. The angle of directional growth of roots and shoots was then assessed. Light is -even in the absense of gravity- the most important environmental cue for directional growth of shoots, while for roots gravity is by far the most important cue, and light is only a very minor factor due to their poor phototropic capacity. Compared to roots, shoots are deviated more than roots in microgravity and therefore less gravity-dependent. All results together suggests that environmental cues are differently percepted by roots and shoots which also adapt differently. Furthermore, environmental cues are probably transferred little or not to the opposite side of the plant.

  20. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-02-22

    A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.

  1. 46 CFR 129.440 - Emergency lighting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...

  2. 46 CFR 129.440 - Emergency lighting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...

  3. 46 CFR 129.440 - Emergency lighting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...

  4. 46 CFR 129.440 - Emergency lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...

  5. White Light Heterodyne Interferometry SNR

    DTIC Science & Technology

    2015-04-09

    interferometers in the visible- and near-IR, where shot - noise -limited detectors are available. In the LWIR, the advantage of a direct detection...wavebands where shot - noise -limited detection is possible with direct detection systems, the relationship changes in the mid-wave infrared (MWIR) and...flux, without either having to split the light N – 1 ways or take the extra shot - noise penalty from Fizeau beam combining light from all apertures

  6. Photovoltaic device with increased light absorption and method for its manufacture

    DOEpatents

    Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  7. Light as a central modulator of circadian rhythms, sleep and affect.

    PubMed

    LeGates, Tara A; Fernandez, Diego C; Hattar, Samer

    2014-07-01

    Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.

  8. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  9. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOEpatents

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  10. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO 3

    DOE PAGES

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; ...

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO 3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO 3 is dominated by the spin-currentmore » polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO 3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  11. The influence of political ideology and trust on willingness to vaccinate

    PubMed Central

    Carlisle, Juliet E.; Justwan, Florian

    2018-01-01

    In light of the increasing refusal of some parents to vaccinate children, public health strategies have focused on increasing knowledge and awareness based on a “knowledge-deficit” approach. However, decisions about vaccination are based on more than mere knowledge of risks, costs, and benefits. Individual decision making about vaccinating involves many other factors including those related to emotion, culture, religion, and socio-political context. In this paper, we use a nationally representative internet survey in the U.S. to investigate socio-political characteristics to assess attitudes about vaccination. In particular, we consider how political ideology and trust affect opinions about vaccinations for flu, pertussis, and measles. Our findings demonstrate that ideology has a direct effect on vaccine attitudes. In particular, conservative respondents are less likely to express pro-vaccination beliefs than other individuals. Furthermore, ideology also has an indirect effect on immunization propensity. The ideology variable predicts an indicator capturing trust in government medical experts, which in turn helps to explain individual-level variation with regards to attitudes about vaccine choice. PMID:29370265

  12. 50 CFR 600.730 - Facilitation of enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmitted by flashing light directed at the vessel signaled. USCG units will normally use the flashing light... your vessel instantly.” (Period (.) means a short flash of light; dash (-) means a long flash of light... authorized officer using loudhailer, radiotelephone, flashing light signal, or other means constitutes prima...

  13. 50 CFR 600.730 - Facilitation of enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitted by flashing light directed at the vessel signaled. USCG units will normally use the flashing light... your vessel instantly.” (Period (.) means a short flash of light; dash (-) means a long flash of light... authorized officer using loudhailer, radiotelephone, flashing light signal, or other means constitutes prima...

  14. Fiber optic coupled multipass gas minicell, design assembly thereof

    DOEpatents

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  15. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  16. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  17. Methods and Devices for Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  18. Radiation sensitive area detection device and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  19. Optical readout of displacements of nanowires along two mutually perpendicular directions

    NASA Astrophysics Data System (ADS)

    Fu, Chenghua

    2017-05-01

    Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  20. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  1. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north-west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.

  2. A prospective analysis of the effect of neighbourhood and individual social capital on changes in self-rated health of people with chronic illness.

    PubMed

    Waverijn, Geeke; Wolfe, Mary K; Mohnen, Sigrid; Rijken, Mieke; Spreeuwenberg, Peter; Groenewegen, Peter

    2014-07-03

    Social capital in the living environment, both on the individual and neighbourhood level, is positively associated with people's self-rated health; however, prospective and longitudinal studies are rare, making causal conclusions difficult. To shed more light on the direction of the relationship between social capital and self-rated health, we investigated main and interaction effects of individual and neighbourhood social capital at baseline on changes in self-rated health of people with a somatic chronic disease. Individual social capital, self-rated health and other individual level variables were assessed among a nationwide sample of 1048 non-institutionalized people with a somatic chronic disease residing in 259 neighbourhoods in the Netherlands. The assessment of neighbourhood social capital was based on data from a nationwide survey among the general Dutch population. The association of social capital with changes in self-rated health was assessed by multilevel regression analysis. Both individual social capital and neighbourhood social capital at baseline were significantly associated with changes in self-rated health over the time period of 2005 to 2008 while controlling for several disease characteristics, other individual level and neighbourhood level characteristics. No significant interactions were found between social capital on the individual and on the neighbourhood level. Higher levels of individual and neighbourhood social capital independently and positively affect changes in self-rated health of people with chronic illness. Although most of the variation in health is explained at the individual level, one's social environment should be considered as a possible relevant influence on the health of the chronically ill.

  3. Shedding Some Light.

    ERIC Educational Resources Information Center

    Whitney, Tim

    1998-01-01

    Discusses the basics of designing natural and artificial light in an indoor athletic facility. Also examines individual lighting requirements of typical rooms such as weight and fitness rooms, aerobics and multipurpose rooms, gymnasiums, field houses, pools, and racquetball and squash courts. (GR)

  4. Individual Members of the Cab Gene Family Differ Widely in Fluence Response.

    PubMed Central

    White, M. J.; Kaufman, L. S.; Horwitz, B. A.; Briggs, W. R.; Thompson, W. F.

    1995-01-01

    Chlorophyll a/b-binding protein genes (Cab genes) can be extremely sensitive to light. Transcript accumulation following a red light pulse increases with fluence over 8 orders of magnitude (L.S. Kaufman, W.F. Thompson, W.R. Briggs [1984] Science 226: 1447-1449). We have constructed fluence-response curves for individual Cab genes. At least two Cab genes (Cab-8 and AB96) show a very low fluence response to a single red light pulse. In contrast, two other Cab genes (AB80 and AB66) fail to produce detectable transcript following a single pulse of either red or blue light but are expressed in continuous red light. Thus, very low fluence responses and high irradiance responses occur in the same gene family. PMID:12228352

  5. Morning bright light exposure has no influence on self-chosen exercise intensity and mood in overweight individuals - A randomized controlled trial.

    PubMed

    Knaier, Raphael; Klenk, Christopher; Königstein, Karsten; Hinrichs, Timo; Rossmeissl, Anja; Infanger, Denis; Cajochen, Christian; Schmidt-Trucksäss, Arno

    2018-04-01

    Overweight is a worldwide increasing public health issue. Physical exercise is a useful countermeasure. Overweight individuals choose rather low exercise intensities, but especially high exercise intensities lead to higher energy expenditure and show beneficial health effects compared to lower exercise intensities. However, especially in the morning higher exercise intensities are likely to be avoided due to higher subjective effort. Bright light exposure has shown to increase maximum performance. The aim of this study was to investigate if bright light exposure can also increase self-chosen exercise intensity. We hypothesized that morning bright light exposure increases self-chosen exercise intensity of subsequent exercise through increased mood and reduced sleepiness in overweight individuals. In this randomized controlled single-blind parallel group design, 26 overweight individuals (11 males, 15 females; age 25 ± 5.7 years; body mass index 28.9 ± 2.1 kg/m 2 ) underwent three measurement appointments. On the first appointment, subjects performed a cardiopulmonary exercise test to measure maximum oxygen uptake (VO2max). Two days later a 30-min exercise session with self-chosen exercise intensity was performed for familiarization. Then subjects were randomly allocated to bright light (~4400 lx) or a control light (~230 lx) condition. Three to seven days later, subjects were exposed to light for 30 min starting at 8:00 am, immediately followed by a 30-min exercise session with persisting light exposure. Multidimensional mood questionnaires were filled out before and after the light exposure and after the exercise session. The primary outcome was the mean power output during the exercise session and the secondary outcome the rating on the three domains (i.e. good-bad; awake-tired; calm-nervous) of the multidimensional mood questionnaire. Mean power output during the exercise session was 92 ± 19 W in bright light and 80 ± 37 W in control light, respectively. In the multivariate analysis adjusted for VO2max, the mean power output during the exercise session was 8.5 W higher (95% confidence interval -12.7, 29.7; p = 0.416) for participants in bright light compared to control light. There were no significant differences between the groups for any of the three domains of the questionnaire at any time point. This is in contrast to longer lasting intervention studies that show positive influences on mood and suggests that bright light therapy requires repetitive sessions to improve mood in overweight individuals. In conclusion bright light exposure does not acutely increase self-chosen exercise intensity or improve mood in a 30-min exercise session starting at 08:30. However, regarding the fact that overweight is a worldwide and rapidly increasing public health issue even small increases in exercise intensity may be relevant. The trend toward superiority of bright light over control light implicates that further studies may be conducted in a larger scale. VO2max: maximum oxygen uptake; 95% CI: 95% confidence interval; SD: standard deviation.

  6. Nastic response of maize (Zea mays L.) coleoptiles during clinostat rotation.

    PubMed

    Nick, P; Schafer, E

    1989-08-01

    Rotation of unstimulated maize (Zea mays L.) seedlings on a horizontal clinostat is accompanied by a strong bending response of the coleoptiles towards the caryopsis, yielding curvatures exceding 100 degrees. The corresponding azimuthal distribution shows two peaks, each of which is displayed by 30 degrees from the symmetry axis connecting the shortest coleoptile and caryopsis cross sections. It is argued that this spatial pattern is not the result of two independent bending preferences, but caused by a one-peaked distribution encountering an obstacle in its central part and thus being split into the two subpeaks. The existence of one preferential direction justifies considering this response to be a nastic movement. Its time course consists of an early negative phase (coleoptiles bend away from the caryopsis) followed 2 h later by a long-lasting positive bending towards the caryopsis. In light-interaction experiments, fluence-response curves for different angles between blue light and the direction of the nastic response were measured. These experiments indicate that blue light interacts with the nastic response at two levels: (i) phototonic inhibition, and (ii) addition of nastic and phototropic curvatures. It is concluded that phototropic and phototonic transduction bifurcate before the formation of phototropic transverse polarity. The additivity of nastic and phototropic responses was followed at the population level. At the level of the individual seedling, one observes, in the case of phototropic induction opposing nastic movement, three distinct responses: either strong phototropism, or nastic bending, or an "avoidance" response which involves strong curvature perpendicular to the stimulation plane. With time the nastic bending becomes increasingly stable against opposing phototropic stimulation. This can be seen from a growing proportion of seedlings exhibiting nastic bending when light is applied at variable intervals after the onset of clinostat rotation. At the transition from instability to stability, this type of experiment produces a high percentage of seedlings displaying the "avoidance" response. However, no cancelling resulting in zero curvature can be observed. It is concluded that the endogenous polarity underlying the nastic response is different in its very nature from the blue-light-elicited stable transverse polarity described earlier (Nick and Schafer 1988b).

  7. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  8. Interaction of gravi- and phototropic stimulation in the response of maize (Zea mays L.) coleoptiles.

    PubMed

    Nick, P; Schafer, E

    1988-02-01

    The influence of gravitropic stimulation upon blue-light-induced first positive phototropism for stimulations in the same (light source and center of gravity opposite to each other) and in opposing directions was investigated in maize coleoptiles by measuring fluence-response patterns. As a result of gravitropic counterstimulation, phototropic bending was transient with maximum curvature occurring 100 min after stimulation. On a horizontal clinostat, however, the seedlings curved for 20 h. Gravistimulation in the opposite direction acted additively upon blue-light curvature. Gravistimulation in the same direction as phototropic stimulation produced a complex behaviour deviating from simple additivity. This pattern can be explained by a gravitropically mediated sensitization of the phototropic reaction, an optimal dependence of differential growth on the sum of photo- and gravistimulation, and blue-light-induced inhibition of gravitropic curvature at high fluences. These findings indicate that several steps of photo- and gravitransduction are separate. Preirradiation with red light desensitized the system independently of applied gravity-treatment, indicating that the site of red-light interaction is common to both transduction chains.

  9. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon.

    PubMed

    Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W

    2008-11-15

    This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.

  10. Atypical Pupillary Light Reflex in Individuals with Autism

    DTIC Science & Technology

    2013-07-01

    N. Takahashi Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA S. E. Christ D. Q. Beversdorf...receiving clinical services at the University of Missouri Thompson Center for Autism and Neurodevelopmental Disorders, an interdisciplinary academic...10-1-0474 TITLE: Atypical Pupillary Light Reflex in Individuals With Autism PRINCIPAL INVESTIGATOR: Gang Yao, Ph.D

  11. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  12. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  13. Direct imaging of slow, stored and stationary EIT polaritons

    NASA Astrophysics Data System (ADS)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  14. Detection and Interpretation of Fluorescence Signals Generated by Excitable Cells and Tissues

    NASA Astrophysics Data System (ADS)

    Costantino, Anthony J.

    Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence . Monitoring electrical activity and Cai 2+ transients in biological tissues and individual cells increasingly utilizes optical sensors based on voltage-dependent and Cai 2+-dependent fluorescent dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other adverse effects limiting the utility of optical recordings. The most challenging are the recordings from individual cardiac myocytes and neurons. Here we demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent on application). We provide a detailed comparative analysis of the dynamic and noise characteristics of different transimpedance amplifier topologies as well as the example(s) of their practical implementation. Part 2: Light-Scattering Models for Interpretation of Fluorescence Data. Current interest in understanding light transport in cardiac tissue has been motivated in part by increased use of voltage-sensitive and Ca i2+-sensitive fluorescent probes to map electrical impulse propagation and Cai2+-transients in the heart. The fluorescent signals are recorded using such probes represent contributions from different layers of myocardial tissue and are greatly affected by light scattering. The interpretation of these signals thus requires deconvolution which would not be possible without detailed models of light transport in the respective tissue. Which involves the experimental measurements of the absorption, scattering, and anisotropy coefficients, mua, mu s, and g respectively. The aim of the second part of our thesis was to derive a new method for deriving these parameters from high spatial resolution measurements of forward-directed flux (FDF). To this end, we carried out high spatial resolution measurements of forward-directed flux (FDF) in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. We demonstrated that in the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable to the decay rate of ballistic photons. Using a Monte Carlo model we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. The advantages of the new method are its simplicity and low-cost.

  15. Research on non-direct reflection columnar microstructure

    NASA Astrophysics Data System (ADS)

    Wu, B. Q.; Wang, X. Z.; Dong, L. H.

    2015-10-01

    To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.

  16. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model.

    PubMed

    Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit

    2016-01-01

    Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.

  17. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires.

    PubMed

    Zhang, Xiao-Yang; Xue, Xiao-Mei; Zhou, Huan-Li; Zhao, Ning; Shan, Feng; Su, Dan; Liu, Yi-Ran; Zhang, Tong

    2018-06-21

    We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

  18. MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai

    2018-03-01

    Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].

  19. Numerical modeling and analytical evaluation of light absorption by gold nanostars

    NASA Astrophysics Data System (ADS)

    Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery

    2018-04-01

    In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.

  20. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  1. Effects of lighting illuminance levels on stair negotiation performance in individuals with visual impairment.

    PubMed

    Shaheen, Aliah F; Sourlas, Alexandros; Horton, Khim; McLean, Christopher; Ewins, David; Gould, David; Ghoussayni, Salim

    2018-04-01

    Stair-related falls of older people cause a substantial financial and social burden. Deterioration of the visual system amongst other factors put older people at a high risk of falling. Improved lighting is often recommended. The aim of this study was to investigate the effect of lighting illuminance on stair negotiation performance in older individuals with visual impairment. Eleven participants aged 60 or over with a vision of 6/18 or worse ascended and descended a staircase under: 50 lx, 100 lx, 200 lx, 300 lx and distributed 200 lx lighting. A motion capture system was used to measure movements of the lower limb. Clearance, clearance variability, temporal and spatial parameters and joint/segment kinematics were computed. There was no effect on clearance or clearance variability. Participants had lower speed, cadence, increased cycle time and stance time in the 50 lx compared to 300 lx and distributed 200 lx lighting in descent. The minimum hip angle in ascent was increased in the 200 lx lighting. Clearance was found to be moderately correlated with balance scores. Individuals with visual impairment adopt precautionary gait in dim lighting conditions. This does not always result in improvements in the parameters associated with risk of falling (e.g. clearance). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Influence of Life Events and Psychological Stress on Objectively Measured Physical Activity: A 12-Month Longitudinal Study.

    PubMed

    Paluch, Amanda E; Shook, Robin P; Hand, Gregory A; O'Connor, Daniel P; Wilcox, Sara; Drenowatz, Clemens; Baruth, Meghan; Burgess, Stephanie; Blair, Steven N

    2018-05-01

    This study examined how life event occurrences and stressfulness influence objectively measured light through vigorous physical activity (PA) among young adults. Every 3 months over a 12-month period, 404 healthy young adults completed questionnaires on the occurrence and stress of 16 life events and wore an accelerometer for 10 days. A modest positive relationship was seen between cumulative life event occurrences [between effect: β = 22.2 (9.7) min/d, P = .02] and cumulative stress [between effect: β = 7.6 (2.9) min/d, P = .01] with light through vigorous PA among men. When considering events individually, job change, starting a first job, beginning a mortgage, and changes in a relationship influenced men's PA. For women, mortgage, starting a first job, job change, and engagement had significant associations. Life event stressfulness influenced PA in women more than in men. For men, stress from changes in a relationship or job positively influenced PA. Stress of a mortgage, quitting a job, changing jobs or a first job influenced women's PA. Considering each life event individually was more informative than the summation of life events or summation of stress. Specific life events substantially altered PA, and this change varied by gender, direction of association, and PA intensity and duration.

  3. [Milk, Daily products and Bone health.Milk and Dairy Products and "Wasyoku" -"New wasyoku"-.

    PubMed

    Ishida, Hiromi

    "Wasyoku;the traditional diets of Japan" refers to foods generally consumed by Japanese people, which is in contrast with the Western diets introduced by Europeans and Americans. The basic Japanese dietary pattern consists of rice as a staple food combined with one soup and two side dishes in a meal, making it easier to achieve a balanced nutritional status. However, salt content tends to be high in "Wasyoku", which negatively affects the overall health of an individual. Recently, Japanese's salt intake has been slowly decreasing;however, a further reduction by approximately 2 g per day is required to prevent hypertension and cardiovascular diseases. To reduce salt intake, while keeping a balanced nutritional status and obtaining adequate amount of energy and nutrients, one should be used to consume a lightly flavored food. However, as Japanese individuals have been accustomed to a high salt diet, which is directly related to a person's good taste or satisfaction level, shifting to lightly flavored foods is extremely difficult. Therefore, one of the methods developed to reduce salt intake is a "New Wasyoku;milk-plus traditional diets of Japan," a recipe utilizing the "koku" or umami taste of milk. The "New Wasyoku" is characterized by adopting to a milk/dairy product-based recipe, which promotes the realization of natural, healthy diets, while maintaining the palatability and nutritional balance of diets.

  4. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system

    NASA Astrophysics Data System (ADS)

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-01-01

    Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.

  5. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    PubMed

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  6. Directional orientation of birds by the magnetic field under different light conditions

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-01-01

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263

  7. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera).

    PubMed

    Imafuku, Michio; Ogihara, Naomichi

    2016-12-01

    There have been only a few reports on the directional reflection of light by butterfly wings. Here, we systematically investigated this phenomenon in a lycaenid butterfly, Chrysozephyrus smaragdinus,in which males have bright green wings based on structural coloration. We used a device that measures intensities of light in hemispherical space by vertical shifting of a sensor and horizontal rotation of the stage carrying the wing, which is illuminated from the top, to determine the direction of light reflected by the fore- and hindwings. The orientation and curvature of wing scales were also examined microscopically. The forewing of this species reflected light shone from the top largely forward, whereas the hindwing reflected it slightly forward. This difference was attributed to the tilt angles of the wing scales. Light reflection by the forewing was relatively weak, and widely scattered, whereas that by the hindwing was rather concentrated, resulting in higher reflectance. This difference was attributed to difference in the curvature of the wing scales on the two wings.

  8. Phytochrome-Mediated Detection of Changes in Reflected Light

    PubMed Central

    Mancinelli, Alberto L.

    1991-01-01

    Measurements of phytochrome photoequilibria and photoconversion rates in vivo, in seedlings of Cucurbita pepo L. exposed to light in growth chambers, indicate that significant changes in the state of phytochrome can be brought about by changes in the quality and quantity of the light reflected from the walls of the growth chambers. The changes in reflected light, although large, were small in terms of the total radiation (direct light from the lamps plus wall-reflected light) to which the seedlings were exposed. The conditions used were approximate simulations of direct and reflected sunlight conditions in the natural environment. Keeping in mind the limitations imposed by the approximation of the simulations, the results from this study are consistent with the hypothesis that, in the natural environment, a plant might be capable of detecting the presence of nearby plants, before being shaded by them, through the phytochrome-mediated perception of changes in reflected light. PMID:16667942

  9. Line sensing device for ultrafast laser acoustic inspection using adaptive optics

    DOEpatents

    Hale, Thomas C.; Moore, David S.

    2003-11-04

    Apparatus and method for inspecting thin film specimens along a line. A laser emits pulses of light that are split into first, second, third and fourth portions. A delay is introduced into the first portion of pulses and the first portion of pulses is directed onto a thin film specimen along a line. The third portion of pulses is directed onto the thin film specimen along the line. A delay is introduced into the fourth portion of pulses and the delayed fourth portion of pulses are directed to a photorefractive crystal. Pulses of light reflected from the thin film specimen are directed to the photorefractive crystal. Light from the photorefractive crystal is collected and transmitted to a linear photodiode array allowing inspection of the thin film specimens along a line.

  10. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  11. A magnetic compass aids monarch butterfly migration

    PubMed Central

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099

  12. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less

  13. Development of optics with micro-LED arrays for improved opto-electronic neural stimulation

    NASA Astrophysics Data System (ADS)

    Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond

    2013-03-01

    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec­ tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).

  14. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  15. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  16. Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria

    PubMed Central

    Nishizaka, Takayuki

    2017-01-01

    The type IV pili (T4P) system is a supermolecular machine observed in prokaryotes. Cells repeat the cycle of T4P extension, surface attachment, and retraction to drive twitching motility. Although the properties of T4P as a motor have been scrutinized with biophysics techniques, the mechanism of regulation remains unclear. Here we provided the framework of the T4P dynamics at the single-cell level in Synechocystis sp. PCC6803, which can recognize light direction. We demonstrated that the dynamics was detected by fluorescent beads under an optical microscope and controlled by blue light that induces negative phototaxis; extension and retraction of T4P was activated at the forward side of lateral illumination to move away from the light source. Additionally, we directly visualized each pilus by fluorescent labeling, allowing us to quantify their asymmetric distribution. Finally, quantitative analyses of cell tracking indicated that T4P was generated uniformly within 0.2 min after blue-light exposure, and within the next 1 min the activation became asymmetric along the light axis to achieve directional cell motility; this process was mediated by the photo-sensing protein, PixD. This sequential process provides clues toward a general regulation mechanism of T4P system, which might be essentially common between archaella and other secretion apparatuses. PMID:28584115

  17. Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel

    DOEpatents

    Veligdan, James T.

    2005-07-26

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  18. Light redirective display panel and a method of making a light redirective display panel

    DOEpatents

    Veligdan, James T.

    2002-01-01

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  19. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits

    PubMed Central

    Yamawo, Akira; Hada, Yoshio

    2010-01-01

    Background and Aims Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions. Methods The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined. Key results Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability. Conclusions These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits. PMID:20472698

  20. Effects of diurnal, lighting, and angle-of-incidence variation on anterior segment optical coherence tomography (AS-OCT) angle metrics.

    PubMed

    Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas

    2017-03-23

    First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p < 0.05) compared to room lighting 'ON'. There does not appear to be significant diurnal variation in AS-OCT parameters in normal individuals, but lighting conditions need to be strictly controlled since variation in lighting led to significant variability in AS-OCT parameters. No changes in ACA parameters were noted by varying the angle-of-incidence, which gives confidence in being able to perform longitudinal studies in approximately the same area (plus/minus 5° of original scan location).

  1. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  2. Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael

    2017-02-01

    Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.

  3. Prion Diseases: Update on Mad Cow Disease, Variant Creutzfeldt-Jakob Disease, and the Transmissible Spongiform Encephalopathies.

    PubMed

    Janka, Jacqueline; Maldarelli, Frank

    2004-08-01

    Transmissible spongiform encephalopathies (TSEs) are a group of progressive, fatal neurodegenerative disorders that share a common spongiform histopathology. TSEs may be transmitted in a sporadic, familial, iatrogenic, or zoonotic fashion. The putative infectious agent of TSE, the prion, represents a novel paradigm of infectious disease with disease transmission in the absence of nucleic acid. Several small but spectacular epidemics of TSEs in man have prompted widespread public health and food safety concerns. Although TSEs affect a comparatively small number of individuals, prion research has revealed fascinating insights of direct relevance to common illnesses. This paper reviews recent advances that have shed new light on the nature of prions and TSEs.

  4. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  5. Bioprinting toward organ fabrication: challenges and future trends.

    PubMed

    Ozbolat, Ibrahim T; Yu, Yin

    2013-03-01

    Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.

  6. Raman microscopy of individual living human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  7. Challenges to oil spill assessment for seabirds in the deep ocean

    USGS Publications Warehouse

    Haney, J. Christopher; Jodice, Patrick G. R.; Montevecchi, William; Evers, David C.

    2017-01-01

    We synthesize impediments for evaluating effects to seabirds from open ocean hydrocarbon releases. Effects on seabirds from ship discharges, spills, and well blowouts often are poorly detected and monitored far from land. Regulatory regimes for ocean spills can result in monitoring efforts that are not entirely transparent. We illustrate how interdisciplinary technologies address deficits that hamper individual or population level assessments for seabirds, and we demonstrate where emerging technologies might be engaged to bridge gaps in oil spill monitoring. Although acute mortality from direct oil exposure poses the greatest risk to seabirds, other hazards from light-attraction, flaring, collisions, chronic pollution, and hydrocarbon inhalation around oil infrastructure also may induce bird mortality in the deep ocean.

  8. Strabismus Measurements

    MedlinePlus

    ... method is most accurate and feasible. What is light reflex testing? Light reflex testing (called Hirschberg testing) involves directing a patient to look at a point of light held about three feet from the patient’s face. ...

  9. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis

    PubMed Central

    Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil

    2015-01-01

    Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428

  10. Direct-to-consumer online genetic testing and the four principles: an analysis of the ethical issues.

    PubMed

    Wasson, Katherine; Cook, E David; Helzlsouer, Kathy

    2006-01-01

    The development of genetic tests marketed and sold direct-to-consumers (DTC) via the internet raises moral concerns and debate about their appropriateness and ethical and clinical significance. These tests are offered for a wide range of diseases and conditions, and the mutations have variable penetrance and associated risk. A number of these tests lack data on their accuracy and reliability, making interpretation of results difficult. DTC genetic testing is undertaken outside the context of the physician-patient relationship and may lack appropriate individual and family genetic counseling, leaving the consumer vulnerable to potential harms, such as misinterpretation of results, including false positive or false reassurance, with limited or no benefits. Beauchamp and Childress's four principles of biomedical ethics provide a framework for analyzing the ethical issues raised by DTC genetic testing. We argue that the potential harms outweigh the potential benefits of such tests, that respect for autonomy should be limited in light of potential harm from DTC testing, and that the availability of genetic testing over the internet may be considered unfair and unjust and affect resource allocation by placing an unfair burden on primary care physicians. In light of the moral issues posed by these tests, practical responses are suggested in the areas of consumer education, medical education, and interaction with commercial companies.

  11. Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering.

    PubMed

    Samadi, Akbar; Klingberg, Henrik; Jauffred, Liselotte; Kjær, Andreas; Bendix, Poul Martin; Oddershede, Lene B

    2018-05-17

    Absorption of near infrared (NIR) light by metallic nanoparticles can cause extreme heating and is of interest for instance in cancer treatment since NIR light has a relatively large penetration depth into biological tissue. Here, we quantify the extraordinary thermoplasmonic properties of platinum nanoparticles and demonstrate their efficiency in photothermal cancer therapy. Although platinum nanoparticles are extensively used for catalysis, they are much overlooked in a biological context. Via direct measurements based on a biological matrix we show that individual irradiated platinum nanoparticles with diameters of 50-70 nm can easily reach surface temperatures up to 900 K. In contrast to gold nanoshells, which are often used for photothermal purposes, we demonstrate that the platinum particles remain stable at these extreme temperatures. The experiments are paralleled by finite element modeling confirming the experimental results and establishing a theoretical understanding of the particles' thermoplasmonic properties. At extreme temperatures it is likely that a vapor layer will form around the plasmonic particle, and we show this scenario to be consistent with direct measurements and simulations. Viability studies demonstrate that platinum nanoparticles themselves are non-toxic at therapeutically relevant concentrations, however, upon laser irradiation we show that they efficiently kill human cancer cells. Therefore, platinum nanoparticles are highly promising candidates for thermoplasmonic applications in the life sciences, in nano-medicine, and for bio-medical engineering.

  12. Reproductive success in varying light environments: direct and indirect effects of light on plants and pollinators.

    PubMed

    Kilkenny, Francis F; Galloway, Laura F

    2008-03-01

    Plant populations often exist in spatially heterogeneous environments. Light level can directly affect plant reproductive success through resource availability or by altering pollinator behavior. It can also indirectly influence reproductive success by determining floral display size which may in turn influence pollinator attraction. We evaluated direct and indirect effects of light availability and measured phenotypic selection on phenological traits that may enhance pollen receipt in the insect-pollinated herb Campanulastrum americanum. In a natural population, plants in the sun had larger displays and received 7 times more visits than plants in the shade. Using experimental arrays to separate the direct effects of irradiance on insects from their response to display size, we found more visits to plants in the sun than in the shade, but no association between number of visits each flower received and display size. Plants in the sun were not pollen limited but pollen-augmented shade flowers produced 50% more seeds than open-pollinated flowers. Phenological traits, which may influence pollen receipt, were not under direct selection in the sun. However, earlier initiation and a longer duration of flowering were favored in the shade, which may enhance visitation in this pollen-limited habitat.

  13. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  14. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus.

    PubMed

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-09-06

    Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure.

  15. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus

    PubMed Central

    Harvey, Todd Alan; Bostwick, Kimberly S.; Marschner, Steve

    2013-01-01

    Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure. PMID:23825113

  16. What Astronomers and the AAS Need to be Doing to Curb Light Pollution

    NASA Astrophysics Data System (ADS)

    Green, D. W. E.

    2001-12-01

    Astronomers and especially the AAS are doing apalling little in the war on light pollution. This is quite surprising, considering that optical groundbased astronomy may become nearly extinct in the 21st century if we don't get more serious about the loss of our night skies to artificial lighting. Part of the blame must be placed on astronomers throughout the 20th century (particularly before 1980), as very few of them seem to have set an example by starting an early crusade against bad outdoor night lighting (save for a handful of important individuals near large U.S. observatories, and a few connected with smaller observatories); this apathy of earlier generations of astronomers fueled the current general apathy within the AAS and aided the opening of the floodgates in terms of the disastrous lighting situation now upon us in terms of drowning out the night sky. There are possible solutions, and they need to be discussed and acted upon quickly. For example, the AAS should require that all members include a useful amount (say, \\$30) in annual membership fees to be directly transmitted to the International Dark Sky Association, and the AAS should make constant visible strides to educate the public and government officials of the absolute need to reduce outdoor lighting levels and to fully shield all outdoor lighting. There are many other areas of research into outdoor lighting that the AAS should fund or officially/strongly support, so that the astronomical community can better be educated (and can better educate the public) on the evils of bad and thoughtless outdoor-lighting practices; such research includes developing a comprehensive database of national statistics on numbers and types of different outdoor lamps, as a function of time (thus, historical), and also a comprehensive database including all local, state, and federal lighting laws and ordinances together with legal court cases (and their outcomes) involving outdoor night lighting. And professional astronomers realistically have an obligation to their colleagues to discuss the problems of (and solutions to) light pollution at any and all talks concerning astronomy or astrophysics to the general public. All general astronomy textbooks and school/college courses should have considerable (not merely token) space and time devoted to the problem of bad outdoor-lighting practices.

  17. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  18. Advances in synthetic gauge fields for light through dynamic modulation

    NASA Astrophysics Data System (ADS)

    Hey, Daniel; Li, Enbang

    2018-04-01

    Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.

  19. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  20. Advances in synthetic gauge fields for light through dynamic modulation.

    PubMed

    Hey, Daniel; Li, Enbang

    2018-04-01

    Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.

Top