[Promising technologies of packed red blood cells production and storage].
Maksimov, A G; Golota, A S; Krassiĭ, A B
2013-10-01
The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambria, Erik; Chattopadhyay, Anupam; Linn, Eike
Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. Here, we chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering outmore » noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.« less
Cambria, Erik; Chattopadhyay, Anupam; Linn, Eike; ...
2017-05-27
Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. Here, we chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering outmore » noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.« less
Energy storage deployment and innovation for the clean energy transition
NASA Astrophysics Data System (ADS)
Kittner, Noah; Lill, Felix; Kammen, Daniel M.
2017-09-01
The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.
Distributed energy storage systems on the basis of electric-vehicle fleets
NASA Astrophysics Data System (ADS)
Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.
2015-01-01
Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).
3D direct writing fabrication of electrodes for electrochemical storage devices
NASA Astrophysics Data System (ADS)
Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang
2017-06-01
Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Tähtinen, Matti
2016-05-01
Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.
Research progress about chemical energy storage of solar energy
NASA Astrophysics Data System (ADS)
Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun
2018-01-01
In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.
Artificial cognitive memory—changing from density driven to functionality driven
NASA Astrophysics Data System (ADS)
Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.
2011-03-01
Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.
New design for CSP plant with direct-steam solar receiver and molten-salt storage
NASA Astrophysics Data System (ADS)
Ganany, Alon; Hadad, Itay
2016-05-01
This paper presents the evolution of BrightSource's Concentrated Solar Power (CSP) technology - from a solar steam generator (SRSG) with no Thermal Energy Storage (TES) to SRSG with TES to Extended-cycle TES. The paper discusses SRSG with TES technology, and the capabilities of this solution are compared with those of an MSR plant.
Hydrogen Storage Technologies for Future Energy Systems.
Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter
2017-06-07
Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo
2018-01-10
The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.
Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space
NASA Astrophysics Data System (ADS)
Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.
2014-11-01
NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.
Applications of ultrafast laser direct writing: from polarization control to data storage
NASA Astrophysics Data System (ADS)
Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.
2018-02-01
Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.
A methodology to assess the economic impact of power storage technologies.
El-Ghandour, Laila; Johnson, Timothy C
2017-08-13
We present a methodology for assessing the economic impact of power storage technologies. The methodology is founded on classical approaches to the optimal stopping of stochastic processes but involves an innovation that circumvents the need to, ex ante , identify the form of a driving process and works directly on observed data, avoiding model risks. Power storage is regarded as a complement to the intermittent output of renewable energy generators and is therefore important in contributing to the reduction of carbon-intensive power generation. Our aim is to present a methodology suitable for use by policy makers that is simple to maintain, adaptable to different technologies and easy to interpret. The methodology has benefits over current techniques and is able to value, by identifying a viable optimal operational strategy, a conceived storage facility based on compressed air technology operating in the UK.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Streibel, Martin
2015-04-01
In 2012 the German Parliament passed the transposition of the EC Directive 2009/31/EC the "Carbon Dioxide Storage Law" (KSpG). The law focuses on the demonstration of the CO2 storage technology and mainly regulates the storage part of the Carbon Capture and Storage (CCS) chain. As the law has a conceptual character, appendix 1 provides a description of criteria for the characterisation and assessment of a potential CO2 storage site starting with field data ending with requirements for dynamic modelling of the storage complex. Appendix 2 describes the expected monitoring system during all relevant phases of a life cycle of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects on one hand that the CO2 storage technology is still being developed and on the other hand that site specific aspects needs to be considered. In 2004 the Federal Ministry of Education and Research of Germany launched the programme GEOTECHNOLOGIEN with one key aspect being the development of technologies for a sustainable storage of carbon dioxide in geological formations. Within this research field more than 30 projects in three phases have been funded until the end of 2014. In order to benefit from the gathered knowledge and use the experiences for the policy/law making process the umbrella project AUGE has been launched in October 2012 with a life time of three years. The aim of the project is to review and compile all results of projects funded during the three phases to underpin the appendices of the KSpG. In the first part of the paper the most important findings of the project with regard to the overall risk of a geological CO2 storage and the procedure of compiling the guidance document will be discussed. Milestones of this project were • the compilation of the results of national, European and international projects; • interviews with stakeholders; • a workshops to define state of the art for certain involved technologies and existing gaps; • a workshop to understand the limitations of existing simulation tools for large scale CO2 storage. In a second part of the paper it is discussed what kind of guidance documents are actually still required for regulation of large scale CO2 storage sites.
A view from the AIAA: Introduction of new energy storage technology into orbital programs
NASA Technical Reports Server (NTRS)
Badcock, Charles
1987-01-01
The development of new energy storage technology must be heavily weighted toward the application. The requirements for transitioning low risk technology into operational space vehicles must remain the central theme even at the preliminary development stages by the development of efforts to define operational issues and verify the reliability of the system. Failure to follow a complete plan that results in a flight qualified unit may lead to an orphan technology. Development efforts must be directed toward a stable development where changes in design are evolutionary and end items are equivalent to flight units so that life and qualification testing can be used as a vehicle to demonstrate the acceptability of the technology.
Computer memory: the LLL experience. [Octopus computer network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.
1976-02-01
Those aspects of Octopus computer network design are reviewed that relate to memory and storage. Emphasis is placed on the difficulties and problems that arise because of the limitations of present storage devices, and indications are made of the directions in which technological advance could be of most value. (auth)
Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems
2007-11-16
high thermal conductivity materials for heat transfer enhancement. In addition, the PCMs ’ low heat storage density requires excessively large system...capacity as compared to the PCMs . For example, Ca0.2M0.8Ni5, a commercial hydride, has a heat storage density of 853.3MJ/m³ in raw material condition...Huston and Sandrock, 1980], while paraffin (Calwax 130), a common organic PCM has a heat storage capacity of 177.5MJ/m³ [Al-Hallaj and Selman, 2000]. The
Applicability of Thermal Storage Systems to Air Force Facilities
1990-09-01
Analisis of Region 6 Upper Limit Retrofit Scenario 30% Reduction .... ............. 4.52 4.58 Economic Analysis of Region 7 Upper Limit Retrofit Scenario...or a dynamic-direct contact type. They usually include all the controls, chilling and storage equipment in one self-contained, skid mounted, factory ...SCS technology. One promising trend in reducing system construction costs is the factory -packaged thermal storage cooling unit. As of February 1989
Memory engram storage and retrieval.
Tonegawa, Susumu; Pignatelli, Michele; Roy, Dheeraj S; Ryan, Tomás J
2015-12-01
A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hydrogen storage and fuel cells
NASA Astrophysics Data System (ADS)
Liu, Di-Jia
2018-01-01
Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.
Thermal Storage Applications Workshop. Volume 2: Contributed Papers
NASA Technical Reports Server (NTRS)
1979-01-01
The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.
Multidimensional materials and device architectures for future hybrid energy storage
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
2016-09-07
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Multidimensional materials and device architectures for future hybrid energy storage
NASA Astrophysics Data System (ADS)
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
2016-09-01
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Multidimensional materials and device architectures for future hybrid energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Solar Thermoelectricity via Advanced Latent Heat Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less
Solar thermoelectricity via advanced latent heat storage
NASA Astrophysics Data System (ADS)
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
Material design and engineering of next-generation flow-battery technologies
NASA Astrophysics Data System (ADS)
Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil
2017-01-01
Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.
Integrated, Automated Distributed Generation Technologies Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin
2014-09-01
The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kWmore » new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.« less
Loglines. September-October 2013
2013-10-01
comes to new technologies that can improve product performance for our customers and reduce costs, storage and transportation requirements and...in. DLA Strategic Materials is partnering with academic institutions such as Penn State, Yale and MIT to research storage and transportation of...direct delivery contracting office, inventory and requirements division, and the transportation /tankers group, Domen said. Internal support is also
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
Recycling of waste lead storage battery by vacuum methods.
Lin, Deqiang; Qiu, Keqiang
2011-07-01
Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
OAST space power technology program
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.
Thermal energy storage for solar power generation - State of the art
NASA Astrophysics Data System (ADS)
Shukla, K. N.
1981-12-01
High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.
The NASA Space Power Technology Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Hudson, W. R.; Randolph, L. P.
1979-01-01
This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine
The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention onmore » elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to help with this issue, which are a particular instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like virtio. A collection of bridging technologies have been identified in Chapter 4, which can be helpful to overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage architecture that is proposed in Chapter 5, which leverages isolation mechanisms from different layers to facilitate secure storage for an enclave. Recommendations: The following highlights recommendations from the investigations done thus far. - The Lustre filesystem offers excellent performance but does not support some security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount importance, then GPFS may be a more suitable choice. - There are several possible Lustre related enhancements that may provide functionality of use for secure-enclaves. However, since these features are not currently integrated, the use of Lustre as a secure storage system may require more direct involvement (support). (*The network that connects the storage subsystem and users, e.g., Lustre s LNET.) - The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are available drivers for GPFS. - The Manilla project offers Filesystem as a Service for OpenStack and is worth further investigation. Manilla has some support for GPFS. - The proposed Lustre enhancement of Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network which could be used to isolate hosts and their tenants. - The Linux namespaces offer a good solution for creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough round of storage/filesystem benchmarks. - Vendor products should be more closely reviewed, possibly to include evaluation of performance/protection of select products. (Note, we are investigation the option of evaluating equipment from Seagate/Xyratex.) Outline: The remainder of this report is structured as follows: - Section 1: Describes the growing importance of secure storage architectures and highlights some challenges for HPC. - Section 2: Provides background information on HPC storage architectures, relevant supporting technologies for secure storage and details on OpenStack components related to storage. Note, that background material on HPC storage architectures in this chapter can be skipped if the reader is already familiar with Lustre and GPFS. - Section 3: A review of protection mechanisms in two HPC filesystems; details about available isolation, authentication/authorization and performance capabilities are discussed. - Section 4: Describe technologies that can be used to bridge gaps in HPC storage and filesystems to facilitate...« less
The U. S. DOE Carbon Storage Program: Status and Future Directions
NASA Astrophysics Data System (ADS)
Damiani, D.
2016-12-01
The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations capable of storing from 50 to 100 million metric tons of CO2 in a saline formation. These projects will lay the foundation for fully integrated carbon capture and storage demonstrations of future first of a kind (FOAK) coal power projects. Future research will also bring added focus on offshore CCS.
Flexible energy-storage devices: design consideration and recent progress.
Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen
2014-07-23
Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GAS STORAGE TECHNOLOGY CONSORTIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert W. Watson
2004-04-17
Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feetmore » (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).« less
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Assessment of Energy Storage Technologies for Army Facilities.
1986-05-01
units, and the other on tandem units with separate multistage pump and Pelton impulse turbine . The third scheme was a double-drop type based on the...used to drive the turbine /generator. Exhaust gas from the low-pressure turbine may be used to preheat inlet air to the high-pressure turbine . Storage...for firing CAES plant turbines . A Battelle publication summarizes reservoir stability criteria and research directed toward minimizing or eliminating
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
The JPL Direct Methanol Liquid-feed PEM Fuel Cell
NASA Technical Reports Server (NTRS)
Halpert, G.; Surampudi, S.
1994-01-01
Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...
Flexible phosphor sensors: a digital supplement or option to rigid sensors.
Glazer, Howard S
2014-01-01
An increasing number of dental practices are upgrading from film radiography to digital radiography, for reasons that include faster image processing, easier image access, better patient education, enhanced data storage, and improved office productivity. Most practices that have converted to digital technology use rigid, or direct, sensors. Another digital option is flexible phosphor sensors, also called indirect sensors or phosphor storage plates (PSPs). Flexible phosphor sensors can be advantageous for use with certain patients who may be averse to direct sensors, and they can deliver a larger image area. Additionally, sensor cost for replacement PSPs is considerably lower than for hard sensors. As such, flexible phosphor sensors appear to be a viable supplement or option to direct sensors.
Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne
2015-03-31
This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).
Code of Federal Regulations, 2011 CFR
2011-01-01
... PROGRAM § 370.102 Definitions. In this part: Agency means an Executive agency as defined in 5 U.S.C. 105... planning, organizing, staffing, directing, integrating, or controlling of information technology as defined... acquisition, storage, manipulation, management, movement, control, display, switching, interchange...
Code of Federal Regulations, 2012 CFR
2012-01-01
... PROGRAM § 370.102 Definitions. In this part: Agency means an Executive agency as defined in 5 U.S.C. 105... planning, organizing, staffing, directing, integrating, or controlling of information technology as defined... acquisition, storage, manipulation, management, movement, control, display, switching, interchange...
Code of Federal Regulations, 2013 CFR
2013-01-01
... PROGRAM § 370.102 Definitions. In this part: Agency means an Executive agency as defined in 5 U.S.C. 105... planning, organizing, staffing, directing, integrating, or controlling of information technology as defined... acquisition, storage, manipulation, management, movement, control, display, switching, interchange...
Smart storage technologies applied to fresh foods: A review.
Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu
2017-06-30
Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.
NASA Astrophysics Data System (ADS)
Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.
The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
Joining the petabyte club with direct attached storage
NASA Astrophysics Data System (ADS)
Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan
2011-12-01
Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and - due to the possibility to make use of the latest technology early - density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.
NASA Technical Reports Server (NTRS)
1984-01-01
Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.
Direct conversion of infrared radiant energy for space power applications
NASA Technical Reports Server (NTRS)
Finke, R. C.
1982-01-01
A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.
2014-09-01
generation, exotic storage technologies, smart power grid management, and better power sources for directed-energy weapons (DEW). Accessible partner nation...near term will help to mitigate risks and improve outcomes. 2 Forecasting typically extrapolates predictions based...eventually, diminished national power . Within this context, this paper examines policy, legal, ethical, and strategy implications for DoD from the impact
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
NAFFS: network attached flash file system for cloud storage on portable consumer electronics
NASA Astrophysics Data System (ADS)
Han, Lin; Huang, Hao; Xie, Changsheng
Cloud storage technology has become a research hotspot in recent years, while the existing cloud storage services are mainly designed for data storage needs with stable high speed Internet connection. Mobile Internet connections are often unstable and the speed is relatively low. These native features of mobile Internet limit the use of cloud storage in portable consumer electronics. The Network Attached Flash File System (NAFFS) presented the idea of taking the portable device built-in NAND flash memory as the front-end cache of virtualized cloud storage device. Modern portable devices with Internet connection have built-in more than 1GB NAND Flash, which is quite enough for daily data storage. The data transfer rate of NAND flash device is much higher than mobile Internet connections[1], and its non-volatile feature makes it very suitable as the cache device of Internet cloud storage on portable device, which often have unstable power supply and intermittent Internet connection. In the present work, NAFFS is evaluated with several benchmarks, and its performance is compared with traditional network attached file systems, such as NFS. Our evaluation results indicate that the NAFFS achieves an average accessing speed of 3.38MB/s, which is about 3 times faster than directly accessing cloud storage by mobile Internet connection, and offers a more stable interface than that of directly using cloud storage API. Unstable Internet connection and sudden power off condition are tolerable, and no data in cache will be lost in such situation.
Research and implementation on improving I/O performance of streaming media storage system
NASA Astrophysics Data System (ADS)
Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song
2008-12-01
In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.
PACS storage technology update: holographic storage.
Colang, John E; Johnston, James N
2006-01-01
This paper focuses on the emerging technology of holographic storage and its effect on picture archiving and communication systems (PACS). A review of the emerging technology is presented, which includes a high level description of holographic drives and the associated substrate media, the laser and optical technology, and the spatial light modulator. The potential advantages and disadvantages of holographic drive and storage technology are evaluated. PACS administrators face myriad complex and expensive storage solutions and selecting an appropriate system is time-consuming and costly. Storage technology may become obsolete quickly because of the exponential nature of the advances in digital storage media. Holographic storage may turn out to be a low cost, high speed, high volume storage solution of the future; however, data is inconclusive at this early stage of the technology lifecycle. Despite the current lack of quantitative data to support the hypothesis that holographic technology will have a significant effect on PACS and standards of practice, it seems likely from the current information that holographic technology will generate significant efficiencies. This paper assumes the reader has a fundamental understanding of PACS technology.
Potential Follow on Experiments for the Zero Boil Off Tank Experiment
NASA Technical Reports Server (NTRS)
Chato, David; Kassemi, Mohammad
2014-01-01
Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions; It is identified by NASA as an area with greatest potential for cost saving; This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks; We propose to use the ISS lab to generate & collect archival scientific data:, raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM), develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs
Solar energy for electricity and fuels.
Inganäs, Olle; Sundström, Villy
2016-01-01
Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.
USDA-ARS?s Scientific Manuscript database
Motivations for the development and use of hydrothermal carbonization (or wet pyrolysis) have been primarily directed towards the sustainable creation of carbon nanomaterials/nanostructures for use in applications ranging from hydrogen storage to chemical adsorption. The utility of this process, how...
The Impact Of Optical Storage Technology On Image Processing Systems
NASA Astrophysics Data System (ADS)
Garges, Daniel T.; Durbin, Gerald T.
1984-09-01
The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.
Enabling Earth Science: The Facilities and People of the NCCS
NASA Technical Reports Server (NTRS)
2002-01-01
The NCCS's mass data storage system allows scientists to store and manage the vast amounts of data generated by these computations, and its high-speed network connections allow the data to be accessed quickly from the NCCS archives. Some NCCS users perform studies that are directly related to their ability to run computationally expensive and data-intensive simulations. Because the number and type of questions scientists research often are limited by computing power, the NCCS continually pursues the latest technologies in computing, mass storage, and networking technologies. Just as important as the processors, tapes, and routers of the NCCS are the personnel who administer this hardware, create and manage accounts, maintain security, and assist the scientists, often working one on one with them.
GAS STORAGE TECHNOLGOY CONSORTIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert W. Watson
2004-04-23
Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feetmore » (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the first 3-months of the project and encompasses the period September 30, 2003, through December 31, 2003. During this 3-month period, the first meeting of individuals representing the storage industry, universities and the Department of energy was held. The purpose of this meeting was to initiate the dialogue necessary to for the creation and adoption of a constitution that would be used to govern the activities of the consortium.« less
Orilall, M Christopher; Wiesner, Ulrich
2011-02-01
The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.
Ding, Yu; Yu, Guihua
2016-04-04
Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Langley Research Center's distributed mass storage system
NASA Technical Reports Server (NTRS)
Pao, Juliet Z.; Humes, D. Creig
1993-01-01
There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.
2013-02-01
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
Coherent optical memory with high storage efficiency and large fractional delay.
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A
2013-02-22
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Das, Trishna
Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less
The Varied Impacts of Energy Storage and Photovoltaics on Fossil Fuel Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studarus, Karen E.; Thayer, Brandon L.; Barrett, Emily L.
The emissions consequences of smart grid technologies can be significant but are not always intuitive. This is particularly true in the implementation of energy storage (ES) to enable the installation of solar photovoltaic (PV) systems. Using the web calculator at https://eqt.pnnl.gov and prototypical distribution feeders, this paper explores the COmore » $${_2}$$, SO$${_2}$$ and NO$${_x}$$ impacts of ES deployed with solar PV, where the energy storage system is operated to minimize load variation. Five regions of the country were explored using 15 prototypical distribution feeders and 2015 historical data. Impacts vary in direction, magnitude, and trend, and require a context-dependent screening method for faithful representation.« less
NASA Astrophysics Data System (ADS)
Gerber, S.; Holsman, J. P.
1981-02-01
A proposed design analysis is presented of a passive solar energy efficient system for a typical three level, three bedroom, two story, garage under townhouse. The design incorporates the best, most performance proven and cost effective products, materials, processes, technologies, and subsystems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration systems, the plenum supply system, the thermal storage party fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described.
Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.
ERIC Educational Resources Information Center
Longe, Karen M.; McClelland, Michael J.
Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…
Health effects of coal technologies: research needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Richard
Project financing is emerging as the linchpin for the future health, direction, and momentum of the energy storage industry. Market leaders have so far relied on selffunding or captive lending arrangements to fund projects. New lenders are proceeding hesitantly as they lack a full understanding of the technology, business, and credit risks involved in this rapidly changing market. The U.S. Department of Energy is poised to play a critical role in expanding access to capital by reducing the barriers to entry for new lenders, and providing trusted analytical benchmarks to better judge and price the risk in systematic ways.
Using dCache in Archiving Systems oriented to Earth Observation
NASA Astrophysics Data System (ADS)
Garcia Gil, I.; Perez Moreno, R.; Perez Navarro, O.; Platania, V.; Ozerov, D.; Leone, R.
2012-04-01
The object of LAST activity (Long term data Archive Study on new Technologies) is to perform an independent study on best practices and assessment of different archiving technologies mature for operation in the short and mid-term time frame, or available in the long-term with emphasis on technologies better suited to satisfy the requirements of ESA, LTDP and other European and Canadian EO partners in terms of digital information preservation and data accessibility and exploitation. During the last phase of the project, a testing of several archiving solutions has been performed in order to evaluate their suitability. In particular, dCache, aimed to provide a file system tree view of the data repository exchanging this data with backend (tertiary) Storage Systems as well as space management, pool attraction, dataset replication, hot spot determination and recovery from disk or node failures. Connected to a tertiary storage system, dCache simulates unlimited direct access storage space. Data exchanges to and from the underlying HSM are performed automatically and invisibly to the user Dcache was created to solve the requirements of big computer centers and universities with big amounts of data, putting their efforts together and founding EMI (European Middleware Initiative). At the moment being, Dcache is mature enough to be implemented, being used by several research centers of relevance (e.g. LHC storing up to 50TB/day). This solution has been not used so far in Earth Observation and the results of the study are summarized in this article, focusing on the capacities over a simulated environment to get in line with the ESA requirements for a geographically distributed storage. The challenge of a geographically distributed storage system can be summarized as the way to provide a maximum quality for storage and dissemination services with the minimum cost.
Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang
2017-05-01
Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less
Data storage technology comparisons
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1990-01-01
The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.
Death, Taxes and Advance Directives
D’Amore, J.D.; Jones, S.L.; Sittig, D.F.; Ness, R.B.
2014-01-01
Summary Suboptimal care at the end-of-life can be due to lack of access or knowledge of patient wishes. Ambiguity is often the result of non-standardized formats. Borrowing digital technology from other industries and using existing health information infrastructure can greatly improve the completion, storage, and distribution of advance directives. We believe several simple, low-cost adaptations to regional and federal programs can raise the standard of end-of-life care. PMID:25024771
The development of enabling technologies for producing active interrogation beams.
Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A
2010-10-01
A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.
Solar applications analysis for energy storage
NASA Technical Reports Server (NTRS)
Blanchard, T.
1980-01-01
The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.
On-site low level radwaste storage facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauss, C.H.; Gardner, D.A.
1993-12-31
This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less
Biogas generation from in-storage psychrophilic anaerobic digestion.
Giard, David; Choiniere, Denis; Cordeau, Sébastien; Barrington, Suzelle
2013-01-01
In-storage psychrophilic anaerobic digestion (ISPAD) is a technology allowing livestock producers to operate an anaerobic digester with minimum technological know-how and for the cost of a conventional storage cover. Nevertheless, the system is exposed to ambient temperatures and biogas production is expected to vary with climatic conditions. The objective of the project was therefore to measure ISPAD biogas production during the winter and fall seasons for a region east of Montreal, Canada. A calibrated biogas monitoring system was used to monitor biogas methane and carbon dioxide concentrations inside a two-year-old field installation with a 1000 m3 storage capacity. Despite a leaking pumping hatch, winter 2010 (January to March) methane concentrations varied directly with solar radiation and maximum exterior temperature, rather than with manure temperature at 2.4 and 1.2 m depths which remained relatively constant between 1 and 5 degrees C. During a six-month-period from November 2009 to April 2010, inclusively, the field ISPAD degraded 34% of the manure volatile solids corresponding to an average methane production of 40 m3/d. The ISPAD biogas production could be further increased by improving its air tightness and intrusion and by regularly pumping out the biogas.
General consumer communication tools for improved image management and communication in medicine
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Rosset, Antoine; McCoy, J. Michael
2005-04-01
We elected to explore emerging consumer technologies that can be adopted to improve and facilitate image and data communication in medical and clinical environment. The wide adoption of new communication paradigm such as instant messaging, chatting and direct emailing can be integrated in specific applications. The increasing capacity of portable and hand held devices such as iPod music players offer an attractive alternative for data storage that exceeds the capabilities of traditional offline storage media such as CD or even DVD. We adapted medical image display and manipulation software called OSIRIX to integrate different innovative technologies facilitating the communication and data transfer between remote users. We integrated email and instant messaging features to the program allowing users to instantaneously email an image or a set of images that are displayed on the screen. Using iChat instant messaging application from Apple a user can share the content of his screen with a remote correspondent and communicate in real time using voice and video. To provide convenient mechanism for exchange of large data sets the program can store the data in DICOM format on CD or DVD, but was also extended to use the large storage capacity of iPod hard disks as well as Apple"s online storage service "dot Mac" that users can subscribe to benefit from scalable secure storage that accessible from anywhere on the internet. The adoption of these innovative technologies is likely to change the architecture of traditional picture archiving and communication systems and provide more flexible and efficient means of communication.
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.
Preuster, Patrick; Papp, Christian; Wasserscheid, Peter
2017-01-17
The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios
NASA Astrophysics Data System (ADS)
Vaughan, Naomi E.; Gough, Clair; Mander, Sarah; Littleton, Emma W.; Welfle, Andrew; Gernaat, David E. H. J.; van Vuuren, Detlef P.
2018-04-01
Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity.
How a future energy world could look?
NASA Astrophysics Data System (ADS)
Ewert, M.
2012-10-01
The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.
Data Acquisition and Mass Storage
NASA Astrophysics Data System (ADS)
Vande Vyvre, P.
2004-08-01
The experiments performed at supercolliders will constitute a new challenge in several disciplines of High Energy Physics and Information Technology. This will definitely be the case for data acquisition and mass storage. The microelectronics, communication, and computing industries are maintaining an exponential increase of the performance of their products. The market of commodity products remains the largest and the most competitive market of technology products. This constitutes a strong incentive to use these commodity products extensively as components to build the data acquisition and computing infrastructures of the future generation of experiments. The present generation of experiments in Europe and in the US already constitutes an important step in this direction. The experience acquired in the design and the construction of the present experiments has to be complemented by a large R&D effort executed with good awareness of industry developments. The future experiments will also be expected to follow major trends of our present world: deliver physics results faster and become more and more visible and accessible. The present evolution of the technologies and the burgeoning of GRID projects indicate that these trends will be made possible. This paper includes a brief overview of the technologies currently used for the different tasks of the experimental data chain: data acquisition, selection, storage, processing, and analysis. The major trends of the computing and networking technologies are then indicated with particular attention paid to their influence on the future experiments. Finally, the vision of future data acquisition and processing systems and their promise for future supercolliders is presented.
NASA Astrophysics Data System (ADS)
Pint, Cary L.; Westover, Andrew S.; Cohn, Adam P.; Erwin, William R.; Share, Keith; Metke, Thomas; Bardhan, Rizia
2015-10-01
This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.
Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin
2014-06-01
The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space Electrochemical Research and Technology (SERT)
NASA Technical Reports Server (NTRS)
1987-01-01
The conference provided a forum to assess critical needs and technologies for the NASA electrochemical energy conversion and storage program. It was aimed at providing guidance to NASA on the appropriate direction and emphasis of that program. A series of related overviews were presented in the areas of NASA advanced mission models (space stations, low and geosynchronous Earth orbit missions, planetary missions, and space transportation). Papers were presented and workshops conducted in a variety of technical areas, including advanced rechargeables, advanced concepts, critical physical electrochemical issues, and modeling.
Skjånes, Kari; Lindblad, Peter; Muller, Jiri
2007-10-01
Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.
Renewable Energy Development in Hermosa Beach, California
NASA Astrophysics Data System (ADS)
Morris, K.
2016-12-01
The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e.g., charges from Edison and energy storage); (iii) costs that may be avoided due to promotion of renewable energy; and (iv) comparisons of projected annual nominal costs (in $/MWh and net present values).
Corrosion probe. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less
Information management systems for pharmacogenomics.
Thallinger, Gerhard G; Trajanoski, Slave; Stocker, Gernot; Trajanoski, Zlatko
2002-09-01
The value of high-throughput genomic research is dramatically enhanced by association with key patient data. These data are generally available but of disparate quality and not typically directly associated. A system that could bring these disparate data sources into a common resource connected with functional genomic data would be tremendously advantageous. However, the integration of clinical and accurate interpretation of the generated functional genomic data requires the development of information management systems capable of effectively capturing the data as well as tools to make that data accessible to the laboratory scientist or to the clinician. In this review these challenges and current information technology solutions associated with the management, storage and analysis of high-throughput data are highlighted. It is suggested that the development of a pharmacogenomic data management system which integrates public and proprietary databases, clinical datasets, and data mining tools embedded in a high-performance computing environment should include the following components: parallel processing systems, storage technologies, network technologies, databases and database management systems (DBMS), and application services.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Integrated Vertical Bloch Line (VBL) memory
NASA Technical Reports Server (NTRS)
Katti, R. R.; Wu, J. C.; Stadler, H. L.
1991-01-01
Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.
The rise of organic electrode materials for energy storage.
Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S
2016-11-07
Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.
Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.
Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song
2016-10-10
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zeyliger, Anatoly; Ermolaeva, Olga
2014-05-01
Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected with formation of water flow and water storage. The major changes are formed as a result of imposing of the intensity fields on a soil surface and its field capillary infiltration rate. Excess of the first intensity over the second in each point of soil surface leads to formation of a layer of intensity of water not infiltrated in soil. Thus generate the new field of vectors of intensity which can consist of vertically directed vector of speed of evaporation, a quasi horizontal vector of intensity of a surface water flow and quasi vertical vector of intensity of a preferential flow directed downwards. Principal cause of excess of irrigation water application intensity over capillary infiltration rate can be on the one hand spatial non-uniformity of irrigation water application, and with other spatial variability of capillary infiltration rate, connected with spatial variability of water storage in the top layers of soil. As a result the spatial redistribution of irrigation water over irrigated filed forms distortions of ideal model of irrigation water storage in root zone of soil profile. The major differences consist in increasing of water storage in the depressions of a relief of an irrigated field and accordingly in their reduction on elevated zones of a relief, as well as losses of irrigation water outside of boundaries of a root zone of an irrigated field, in vertical, and horizontal directions. One of key parameters characterizing interaction between irrigation technology and soil state an irrigated field are intensity of water application, intensity and volume of a capillary infiltration, the water storage in root zone at the moment of infiltration starting and a topography of an irrigated field. Fnalyzing of spatial links between these characteristics a special research had been carried out on irrigated by sprinkler machine called Fregate at alfalfa field during the summer of 2012. This research carried out at experimental farm of the research institute VolgNIIGiM situated at a left bank of Volga River of Saratov Region of Russia (N51.384650°, E46.055890°). The digital elevation model of soil surface has been created, as well as monitoring of spatial water storage with EM 38 device and of a biomass were carried out. Layers of corresponding spatial data have been created and analyzed. The carried out analysis of spatial regresses has shown presence of links between productivity of a biomass of a alfalfa, water storage and topography. The obtained results shows the significance to include spatial characteristics of the topography and water storage to the irrigation models, as well as adaptation of sprinkler technology to allow differentiate the volume and rate of the applied water within the field. Special attention should be done to quantify relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity.
Integration and Control of a Battery Balancing System
2013-12-01
2. Energy storage comparisons. From [2]. • Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni...Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni-Cd Other Advanced Batteries Lead-Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karl; Vossos, Vagelis; Kloss, Margarita
2016-09-01
Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for anmore » ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.« less
Review of ultra-high density optical storage technologies for big data center
NASA Astrophysics Data System (ADS)
Hao, Ruan; Liu, Jie
2016-10-01
In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.
Yu, Hong-Li; Zhang, Qian; Jin, Yang-Ping; Wang, Kui-Long; Lu, Tu-Lin; Li, Lin
2016-07-01
In order to compare the effect of sulfur fumigation processing and direct hot air heating technology on puerarin contents and efficacy of Puerariae Thomsonii Radix, the fresh roots of Pueraria thomsonii were cut into small pieces and prepared into direct sunshine drying samples, direct hot air drying samples, and sulfur fumigation-hot air drying samples. Moisture contents of the samples were then determined. The puerarin contents of different samples were compared by HPLC method. Moreover, the models of drunkenness mice were established, and then with superoxide dismutase (SOD) content as the index, aqueous decoction extracts of Puerariae Thomsonii Radix samples with sulfur fumigation processing and non-sulfur fumigation processing methods were administrated by ig; the effects of sulfur fumigation on contents of SOD in mice liver and serum were determined, and the sulfur fumigation samples and non-sulfur fumigation samples were investigated for moth and mildew under different packaging and storage conditions. Results showed that the sulfur fumigation samples significantly changed the puerarin content from Puerariae Thomsonii Radix. The content of puerarin was decreased gradually when increasing the times of sulfur fumigation and amount of sulfur. SOD content in drunken mice liver and serum was significantly decreased when increasing the times of sulfur fumigation, showing significant difference with both direct sunshine drying group and direct hot air drying group. Moth and mildew were not found in the sulfur fumigation samples and direct hot air drying samples whose moisture contents were lower than the limit in Pharmacopoeia. Research showed that sulfur fumigation can significantly reduce the content of main active ingredients and reduce the efficacy of Puerariae Thomsonii Radix, indicating that the quality of Puerariae Thomsonii Radix was significantly decreased after sulfur fumigation. However, the contents of the main active ingredients, efficacy and storage results of the direct hot air drying samples were similar to those in direct sunshine drying samples, so the hot air drying process was a nice drying technology which could be promoted for use. Copyright© by the Chinese Pharmaceutical Association.
Design of a high temperature subsurface thermal energy storage system
NASA Astrophysics Data System (ADS)
Zheng, Qi
Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.
Modern banking, collection, compatibility testing and storage of blood and blood components.
Green, L; Allard, S; Cardigan, R
2015-01-01
The clinical practice of blood transfusion has changed considerably over the last few decades. The potential risk of transfusion transmissible diseases has directed efforts towards the production of safe and high quality blood. All transfusion services now operate in an environment of ever-increasing regulatory controls encompassing all aspects of blood collection, processing and storage. Stringent donor selection, identification of pathogens that can be transmitted through blood, and development of technologies that can enhance the quality of blood, have all led to a substantial reduction in potential risks and complications associated with blood transfusion. In this article, we will discuss the current standards required for the manufacture of blood, starting from blood collection, through processing and on to storage. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.
Liu, Wei; Song, Min-Sang; Kong, Biao; Cui, Yi
2017-01-01
Energy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large-scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Membrane-lined foundations for liquid thermal storage
NASA Astrophysics Data System (ADS)
Bourne, R. C.
1981-06-01
The membrane lined storage (MLS) container which is a spinoff of vinyl-lined swimming pool and waterbed technologies was developed. The state of development of MLS was evaluated and concepts for MLS structural and heat transfer systems were improved. Preferred structural supports were identified and designed for 1500 gal MLS containers for basement, crawl space, and slab-on-grade foundation types. Techniques are developed to provide space heating via forced air through a finned storage jacket for the two preferred structural enclosure designs. Cost effectiveness of the direct air heating technique is evaluated. Alternate free convection domestic water preheaters and a preferred heat exchanger material is selected. Collector and space heat inlet/outlet designs, design concepts for auxiliary heat input to MLS from resistance electric, combustion, and heat pump sources are developed.
McCammon, Richard B.; Ramani, Raja V.; Mozumdar, Bijoy K.; Samaddar, Arun B.
1994-01-01
Overcoming future difficulties in searching for ore deposits deeper in the earth's crust will require closer attention to the collection and analysis of more diverse types of data and to more efficient use of current computer technologies. Computer technologies of greatest interest include methods of storage and retrieval of resource information, methods for integrating geologic, geochemical, and geophysical data, and the introduction of advanced computer technologies such as expert systems, multivariate techniques, and neural networks. Much experience has been gained in the past few years in applying these technologies. More experience is needed if they are to be implemented for everyday use in future assessments and exploration.
Electron trapping data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.
High temperature superconducting magnetic energy storage for future NASA missions
NASA Technical Reports Server (NTRS)
Faymon, Karl A.; Rudnick, Stanley J.
1988-01-01
Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.
Planning for optical disk technology with digital cartography.
Light, D.L.
1986-01-01
A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author
Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology
NASA Astrophysics Data System (ADS)
Hay, Ryan
With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.
Symmetric Electrodes for Electrochemical Energy-Storage Devices.
Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo
2016-12-01
Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.
PIMS: Memristor-Based Processing-in-Memory-and-Storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeanine
Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less
General consumer communication tools for improved image management and communication in medicine.
Rosset, Chantal; Rosset, Antoine; Ratib, Osman
2005-12-01
We elected to explore new technologies emerging on the general consumer market that can improve and facilitate image and data communication in medical and clinical environment. These new technologies developed for communication and storage of data can improve the user convenience and facilitate the communication and transport of images and related data beyond the usual limits and restrictions of a traditional picture archiving and communication systems (PACS) network. We specifically tested and implemented three new technologies provided on Apple computer platforms. (1) We adopted the iPod, a MP3 portable player with a hard disk storage, to easily and quickly move large number of DICOM images. (2) We adopted iChat, a videoconference and instant-messaging software, to transmit DICOM images in real time to a distant computer for conferencing teleradiology. (3) Finally, we developed a direct secure interface to use the iDisk service, a file-sharing service based on the WebDAV technology, to send and share DICOM files between distant computers. These three technologies were integrated in a new open-source image navigation and display software called OsiriX allowing for manipulation and communication of multimodality and multidimensional DICOM image data sets. This software is freely available as an open-source project at http://homepage.mac.com/rossetantoine/OsiriX. Our experience showed that the implementation of these technologies allowed us to significantly enhance the existing PACS with valuable new features without any additional investment or the need for complex extensions of our infrastructure. The added features such as teleradiology, secure and convenient image and data communication, and the use of external data storage services open the gate to a much broader extension of our imaging infrastructure to the outside world.
Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin
2016-08-24
Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.
Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Schmitz, Paul C.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
Emerging Computer Media: On Image Interaction
NASA Astrophysics Data System (ADS)
Lippman, Andrew B.
1982-01-01
Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
Formal, Florian Le; Bourée, Wiktor S; Prévot, Mathieu S; Sivula, Kevin
2015-01-01
Utilizing renewable sources of energy is very attractive to provide the growing population on earth in the future but demands the development of efficient storage to mitigate their intermittent nature. Chemical storage, with energy stored in the bonds of chemical compounds such as hydrogen or carbon-containing molecules, is promising as these energy vectors can be reserved and transported easily. In this review, we aim to present the advantages and drawbacks of the main water electrolysis technologies available today: alkaline and PEM electrolysis. The choice of electrode materials for utilization in very basic and very acid conditions is discussed, with specific focus on anodes for the oxygen evolution reaction, considered as the most demanding and energy consuming reaction in an electrolyzer. State-of-the-art performance of materials academically developed for two alternative technologies: electrolysis in neutral or seawater, and the direct electrochemical conversion from solar to hydrogen are also introduced.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held June 27-July 1, 1994 in Orlando, Florida. These documents encompass research, technology, applications, funding, political, and social aspects of superconductivity. The areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges; and power and energy applications.
Low-cost information distribution - New directions for technology developments
NASA Technical Reports Server (NTRS)
Catoe, C. E.
1978-01-01
The use of space satellites for data storage and retrieval is discussed with respect to short-term (1978-1985) and long-term (1985-2000) developments. The present structure, where access to satellite-transmitted data is controlled largely by the Federal Government for its own use, will be gradually replaced by a continually expanding user-community with a broadening scope of needs. Technological improvements in satellite-communication and data-processing will drive down the cost of both transmitting and receiving hardware, making such hardware available to more and more people. By the closing years of the century, personal, direct satellite communication should be available to every American household, providing video, printed, and archivable data over a wide range of subjects, from bank statements to medical records.
Regulatory Policy and Markets for Energy Storage in North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW
2014-05-14
The last 5 years have been one of the most exciting times for the energy storage industry. We have seen significant advancements in the regulatory process to make accommodations for valuing and monetizing energy storage for what it provides to the grid. The most impactful regulatory decision for the energy storage industry has come from California, where the California Public Utilities Commission issued a decision that mandates procurement requirements of 1.325 GW for energy storage to 3 investor-own utilities in 4 stages: in 2014, 2016, 2018, and 2020. Furthermore, at the Federal level, FERC’s Order 755, requires the transmission operatorsmore » to develop pay for performance tariffs for ancillary services. This has had direct impact on the market design of US competitive wholesale markets and the monetization of fast responding grid assets. While this order is technology neutral, it clearly plays into the fast-responding capability of energy storage technologies. Today PJM, CAISO, MISO, NYISO, and NE-ISO have implemented Order 755 and offer new tariff for regulation services based on pay-for-performance principles. Furthermore, FERC Order 784, issued in July 2013 requires transmission providers to consider speed and accuracy in determining the requirements for ancillary services. In November 2013, FERC issued Order 972, which revises the small generator interconnection agreement which declares energy storage as a power source. This order puts energy storage on par with existing generators. This paper will discuss the implementation of FERC’s Pay for Performance Regulation order at all ISOs in the U.S. under FERC regulatory authority (this excludes ERCOT). Also discussed will be the market impacts and overall impacts on the NERC regulation performance indexes. The paper will end with a discussion on the California and Ontario, Canada procurement mandates and the opportunity that it may present to the energy storage industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa; Stetson, Ned
he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies’ technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals,more » etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa
The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problemmore » is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.« less
Goddard Conference on Mass Storage Systems and Technologies, volume 2
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
1993-01-01
Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.
Thermal Energy Storage: Fourth Annual Review Meeting
NASA Technical Reports Server (NTRS)
1980-01-01
The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.
Applications and challenges for thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Tomlinson, J. T.
1991-04-01
New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.
Opportunities for electricity storage in deregulating markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, F.; Jenkin, T.; Murphy, D.
1999-10-01
This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-termmore » differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available.« less
New developments in optical phase-change memory
NASA Astrophysics Data System (ADS)
Ovshinsky, Stanford R.; Czubatyj, Wolodymyr
2001-02-01
Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.
Fourth NASA Goddard Conference on Mass Storage Systems and Technologies
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1994-01-01
This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.
Goddard Conference on Mass Storage Systems and Technologies, Volume 1
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
1993-01-01
Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.
3D printing technologies for electrochemical energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.
Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from macro to nano for EES applications.« less
3D printing technologies for electrochemical energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.
We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from nano to macro for EES applications.« less
3D printing technologies for electrochemical energy storage
Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; ...
2017-08-24
We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from nano to macro for EES applications.« less
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
High to ultra-high power electrical energy storage.
Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok
2011-12-14
High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.
2017-01-01
Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183
DNA hydrogel-based supercapacitors operating in physiological fluids
Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam
2013-01-01
DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos
2016-10-12
In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.
LVFS: A Big Data File Storage Bridge for the HPC Community
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Mauoka, E.; Fonseca, L. F.
2015-12-01
Merging Big Data capabilities into High Performance Computing architecture starts at the file storage level. Heterogeneous storage systems are emerging which offer enhanced features for dealing with Big Data such as the IBM GPFS storage system's integration into Hadoop Map-Reduce. Taking advantage of these capabilities requires file storage systems to be adaptive and accommodate these new storage technologies. We present the extension of the Lightweight Virtual File System (LVFS) currently running as the production system for the MODIS Level 1 and Atmosphere Archive and Distribution System (LAADS) to incorporate a flexible plugin architecture which allows easy integration of new HPC hardware and/or software storage technologies without disrupting workflows, system architectures and only minimal impact on existing tools. We consider two essential aspects provided by the LVFS plugin architecture needed for the future HPC community. First, it allows for the seamless integration of new and emerging hardware technologies which are significantly different than existing technologies such as Segate's Kinetic disks and Intel's 3DXPoint non-volatile storage. Second is the transparent and instantaneous conversion between new software technologies and various file formats. With most current storage system a switch in file format would require costly reprocessing and nearly doubling of storage requirements. We will install LVFS on UMBC's IBM iDataPlex cluster with a heterogeneous storage architecture utilizing local, remote, and Seagate Kinetic storage as a case study. LVFS merges different kinds of storage architectures to show users a uniform layout and, therefore, prevent any disruption in workflows, architecture design, or tool usage. We will show how LVFS will convert HDF data produced by applying machine learning algorithms to Xco2 Level 2 data from the OCO-2 satellite to produce CO2 surface fluxes into GeoTIFF for visualization.
NASA Astrophysics Data System (ADS)
Fontana, Robert E.; Decad, Gary M.
2018-05-01
This paper describes trends in the storage technologies associated with Linear Tape Open (LTO) Tape cartridges, hard disk drives (HDD), and NAND Flash based storage devices including solid-state drives (SSD). This technology discussion centers on the relationship between cost/bit and bit density and, specifically on how the Moore's Law perception that areal density doubling and cost/bit halving every two years is no longer being achieved for storage based components. This observation and a Moore's Law Discussion are demonstrated with data from 9-year storage technology trends, assembled from publically available industry reporting sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa
PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less
Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; ...
2016-04-21
Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less
Taipower`s radioactive waste management program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.C.C.
1996-09-01
Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words,more » by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.« less
NASA Technical Reports Server (NTRS)
Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert
1987-01-01
Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2002-01-01
This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.
Low Mass Printable Devices for Energy Capture, Storage, and Use
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.
2010-01-01
The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function appropriately in such environments consistent with NASA s exploration missions. Advanced technologies such as this show promise for both space flight and terrestrial applications.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Electron trapping optical data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.
2016-01-01
NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.
Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.
Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish
2017-07-05
The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2000-01-01
This document contains copies of those technical papers received in time for publication prior to the Eighth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center March 27-30, 2000. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, new technology with a special emphasis on holographic storage, performance, standards, site reports, vendor solutions. Tutorials will be available on stability of optical media, disk subsystem performance evaluation, I/O and storage tuning, functionality and performance evaluation of file systems for storage area networks.
NASA Technical Reports Server (NTRS)
1976-01-01
Six energy storage technologies (inertial, superconducting magnetic, electrochemical, chemical, compressed air, and thermal) were assessed and evaluated for specific applicability to the IUS. To provide a perspective for the individual storage technologies, a brief outline of the general nature of energy storage and its significance to the user is presented.
Energy Storage (II): Developing Advanced Technologies
ERIC Educational Resources Information Center
Robinson, Arthur L
1974-01-01
Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Momber, Ilan; Megel, Olivier
2010-08-25
Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heatmore » and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.« less
Perspectives on energy storage wheels for space station application
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1984-01-01
Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.
PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.
Light, Donald L.
1984-01-01
Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.
The Third NASA Goddard Conference on Mass Storage Systems and Technologies
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1993-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.
Seasonal thermal energy storage
NASA Astrophysics Data System (ADS)
Minor, J. E.
1980-03-01
The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.
Improvements in multimedia data buffering using master/slave architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, S.; Ganesan, R.
1996-12-31
Advances in the networking technology and multimedia technology has necessitated a need for multimedia servers to be robust and reliable. Existing solutions have direct limitations such as I/O bottleneck and reliability of data retrieval. The system can store the stream of incoming data if enough buffer space is available or the mass storage is clearing the buffer data faster than queue input. A single buffer queue is not sufficient to handle the large frames. Queue sizes are normally several megabytes in length and thus in turn will introduce a state of overflow. The system should also keep track of themore » rewind, fast forwarding, and pause requests, otherwise queue management will become intricate. In this paper, we present a master/slave (server that is designated to monitor the workflow of the complete system. This server holds every other information of slaves by maintaining a dynamic table. It also controls the workload on each of the systems by redistributing request to others or handles the request by itself) approach which will overcome the limitations of today`s storage and also satisfy tomorrow`s storage needs. This approach will maintain the system reliability and yield faster response by using more storage units in parallel. A network of master/slave can handle many requests and synchronize them at all times. Using dedicated CPU and a common pool of queues we explain how queues can be controlled and buffer overflow can be avoided. We propose a layered approach to the buffering problem and provide a read-ahead solution to ensure continuous storage and retrieval of multimedia data.« less
PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters
Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...
2015-08-25
As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less
Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David
1995-01-01
The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
ERIC Educational Resources Information Center
Eaton, William W.
Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…
Conception and construction of an LPG tank using a composite membrane technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuvel, P.; Claude, J.
TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.
NASA Astrophysics Data System (ADS)
1994-03-01
This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.
Microgrid Selection and Operation for Commercial Buildings in California and New York States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Environmental Energy Technologies Division; Lacommare, Kristina S H; Marnay, Chris
The addition of storage technologies such as lead-acid batteries, flow batteries, or heat storage can potentially improve the economic and environmental attractiveness of on-site generation such as PV, fuel cells, reciprocating engines or microturbines (with or without CHP), and can contribute to enhanced demand response. Preliminary analyses for a Californian nursing home indicate that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. While economic results do not make a compelling case for storage, they indicate that storage technologies significantly alter the residual load profile,more » which may lower carbon emissions as well as energy costs depending on the test site, its load profile, and DER technology adoption.« less
Low Mass Printable Devices for Energy Capture, Storage, and Use for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Singer, Christopher E.; Ray, William J.; Fuller, Kirk A.
2010-01-01
The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between -Technologies Worldwide, Inc., and the National Aeronautics and Space Administration s (NASA s) Marshall Space Flight Center (MSFC). This work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications, and is an example of industry and government cooperation that leads to novel inventions. Device development involves three energy generation and consumption projects: 1) a low mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; 2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and 3) a new approach to building supercapacitors. These three technologies - energy capture, storage, and usage (e.g., lighting) - represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies will be useful for lightweight power generation that enables inner planetary missions using smaller launch vehicles and facilitates surface operations. The PV device model is a two-sphere, light-trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. All three components may be printed in line by printing sequential layers on a standard screen or flexographic direct impact press using the threedimensional printing technique (3DFM) patented by NthDegree. MSFC is testing the robustness of prototype devices in the harsh space and lunar surface environments, and available results will be reported. Unlike many traditional light sources, this device does not contain toxic compounds, and the LED component has passed stringent off-gassing tests required for potential manifesting on spacecraft such as the International Space Station. Future exploration missions will benefit from "green" technology lighting devices such as this, which show great promise for both terrestrial use and space missions.
The Design of Data Disaster Recovery of National Fundamental Geographic Information System
NASA Astrophysics Data System (ADS)
Zhai, Y.; Chen, J.; Liu, L.; Liu, J.
2014-04-01
With the development of information technology, data security of information system is facing more and more challenges. The geographic information of surveying and mapping is fundamental and strategic resource, which is applied in all areas of national economic, defence and social development. It is especially vital to national and social interests when such classified geographic information is directly concerning Chinese sovereignty. Several urgent problems that needs to be resolved for surveying and mapping are how to do well in mass data storage and backup, establishing and improving the disaster backup system especially after sudden natural calamity accident, and ensuring all sectors rapidly restored on information system will operate correctly. For overcoming various disaster risks, protect the security of data and reduce the impact of the disaster, it's no doubt the effective way is to analysis and research on the features of storage and management and security requirements, as well as to ensure that the design of data disaster recovery system suitable for the surveying and mapping. This article analyses the features of fundamental geographic information data and the requirements of storage management, three site disaster recovery system of DBMS plan based on the popular network, storage and backup, data replication and remote switch of application technologies. In LAN that synchronous replication between database management servers and the local storage of backup management systems, simultaneously, remote asynchronous data replication between local storage backup management systems and remote database management servers. The core of the system is resolving local disaster in the remote site, ensuring data security and business continuity of local site. This article focuses on the following points: background, the necessity of disaster recovery system, the analysis of the data achievements and data disaster recovery plan. Features of this program is to use a hardware-based data hot backup, and remote online disaster recovery support for Oracle database system. The achievement of this paper is in summarizing and analysing the common characteristics of disaster of surveying and mapping business system requirements, while based on the actual situation of the industry, designed the basic GIS disaster recovery solutions, and we also give the conclusions about key technologies of RTO and RPO.
NASA Technical Reports Server (NTRS)
Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)
1991-01-01
The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan
An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less
Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.
Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-10-02
Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.
Is Carbon Capture and Storage Really Needed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, Costas; Williams, Kent Alan; Aaron, D
2010-01-01
Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') Inmore » this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.« less
Basics of Videodisc and Optical Disk Technology.
ERIC Educational Resources Information Center
Paris, Judith
1983-01-01
Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…
Optical memory system technology. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Zollars, G. F.
1980-01-01
Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
Optimizing Storage and Renewable Energy Systems with REopt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgqvist, Emma M.; Anderson, Katherine H.; Cutler, Dylan S.
Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.
Battery energy storage market feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, S.; Akhil, A.
1997-07-01
Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less
Flywheel energy storage system focus of display
replacement for batteries For more information contact: e:mail: Public Affairs Golden, Colo., March 20, 1997 environmentally-friendly, advanced electricity storage technology that can replace lead acid batteries. A flywheel technologies for replacing conventional lead acid batteries as energy storage systems for a variety of
Secure method for biometric-based recognition with integrated cryptographic functions.
Chiou, Shin-Yan
2013-01-01
Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied.
Space Electrochemical Research and Technology (SERT), 1989
NASA Technical Reports Server (NTRS)
Baldwin, Richard S. (Editor)
1989-01-01
The proceedings of NASA's second Space Electrochemical Research and Technology Conference are presented. The objectives of the conference were to examine current technologies, research efforts, and advanced ideas, and to identify technical barriers which affect the advancement of electrochemical energy storage systems for space applications. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, with the intention of coalescing views and findings into conclusions on progress in the field, prospects for future advances, areas overlooked, and the directions of future efforts. Related overviews were presented in the areas of NASA advanced mission models. Papers were presented and workshops conducted in four technical areas: advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, the nickel electrode, and advanced rechargable batteries.
Energy Storage Systems Are Coming: Are You Ready
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, David R.
2015-12-05
Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.
CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection
NASA Astrophysics Data System (ADS)
Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio
2016-08-01
In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.
Embedded optical interconnect technology in data storage systems
NASA Astrophysics Data System (ADS)
Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm
2010-05-01
As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.
Capital cost expenditure of high temperature latent and sensible thermal energy storage systems
NASA Astrophysics Data System (ADS)
Jacob, Rhys; Saman, Wasim; Bruno, Frank
2017-06-01
In the following study cost estimates have been undertaken for an encapsulated phase change material (EPCM) packed bed, a packed bed thermocline and a traditional two-tank molten salt system. The effect of various heat transfer fluids (air and molten salt), system configuration (cascade vs one PCM, and direct vs indirect) and temperature difference (ΔT = 100-500 °C) on the cost estimate of the system was also investigated. Lastly, the storage system boundary was expanded to include heat exchangers, pumps and fans, and heat tracing so that a thorough cost comparison could be undertaken. The results presented in this paper provide a methodology to quickly compare various systems and configurations while providing design limits for the studied technologies.
Morphology engineering of high performance binary oxide electrodes.
Chen, Kunfeng; Sun, Congting; Xue, Dongfeng
2015-01-14
Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; ...
2017-03-13
There are many challenges to overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. We report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers, in order to begin addressing these challenges (and others). The tethered array of nanoparticles, MnO in this case, bound directly to amore » gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). Our strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.« less
A Survey of Videodisc Technology.
1985-12-01
store images and the microcomputer is used as an interactive and management tool , makes for a powerful teaching system. General Motors was the first...videodisc are used for archival storage of documents. * IBM uses videodisc in over 180 branch offices where they are used both as a presentation tool and to...provide reference material. IBM is also currently working on a videodisc project as a direct training tool for mainten- ance of their computers. A
Lou, Jerry J; Andrechak, Gary; Riben, Michael; Yong, William H
2011-01-01
Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the "islands of data" dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software "plug and play" interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software.
Lou, Jerry J.; Andrechak, Gary; Riben, Michael; Yong, William H.
2011-01-01
Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the “islands of data” dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software “plug and play” interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software. PMID:21886890
Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiebitz, Paul
2014-05-27
The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliablemore » power sources for microsystems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishen, K.; Burnham, C.
1994-12-31
The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.
Solar Stirling system development
NASA Technical Reports Server (NTRS)
Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.
1979-01-01
A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.
Battery energy storage market feasibility study -- Expanded report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, S.; Akhil, A.
1997-09-01
Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and asmore » a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less
Pilot Project for Spaceborne Massive Optical Storage Devices
NASA Technical Reports Server (NTRS)
Chen, Y. J.
1996-01-01
A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.
NASA Astrophysics Data System (ADS)
Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan
2016-05-01
Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.
Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.
ERIC Educational Resources Information Center
Gallenberger, John; Batterton, John
1989-01-01
Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…
Digital optical tape: Technology and standardization issues
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1996-01-01
During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.
Saying goodbye to optical storage technology.
McLendon, Kelly; Babbitt, Cliff
2002-08-01
The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.
Industrial storage applications overview
NASA Technical Reports Server (NTRS)
Duscha, R. A.
1980-01-01
The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
National Storage Laboratory: a collaborative research project
NASA Astrophysics Data System (ADS)
Coyne, Robert A.; Hulen, Harry; Watson, Richard W.
1993-01-01
The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.
Field applications of three alternate technologies for assessing the suitability of underground storage tanks for upgrading by the addition of cathodic protection were observed and documented. The technologies were applied to five existing underground storage tanks that were slat...
Comparison of Traditional and Innovative Techniques to Solve Technical Challenges
NASA Technical Reports Server (NTRS)
Perchonok, Michele
2011-01-01
This slide presentation reviews the use of traditional and innovative techniques to solve technical challenges in food storage technology. The planning for a mission to Mars is underway, and the food storage technology improvements requires that improvements be made. This new technology is required, because current food storage technology is inadequate,refrigerators or freezers are not available for food preservation, and that a shelf life of 5 years is expected. A 10 year effort to improve food packaging technology has not enhanced significantly food packaging capabilities. Two innovation techniques were attempted InnoCentive and Yet2.com and have provided good results, and are still under due diligence for solver verification.
Concentrating Solar Power Projects - Archimede | Concentrating Solar Power
as the heat-transfer fluid. A 2-tank direct system will provide 8 hours of thermal storage. Status % Thermal Storage Storage Type: 2-tank direct Storage Capacity: 8 hour(s) Thermal Storage Description: Total of 1,580 tons of molten salt. 60% sodium nitrate, 40% potassium nitrate. Capacity 100 MWh (thermal
Telemetry data storage systems technology for the Space Station Freedom era
NASA Technical Reports Server (NTRS)
Dalton, John T.
1989-01-01
This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.
Program definition and assessment overview. [for thermal energy storage project management
NASA Technical Reports Server (NTRS)
Gordon, L. H.
1980-01-01
The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-01-01
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-07-12
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.
86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...
86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Wicki, Samuel; Hansen, Erik G
2017-09-20
The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also derives important implications for energy scholars, flywheel practitioners, and policymakers.
Ex ante economic evaluation of technologies for managing postharvest physiological disorders
USDA-ARS?s Scientific Manuscript database
Recently there has been much progress in the development of technologies that use bio-markers to detect and manage post-harvest physiological disorders for apples in long-tern storage. Such technologies have the capacity to alleviate fruit loss by allowing storage operators to more effectively mark...
The direction of cloud computing for Malaysian education sector in 21st century
NASA Astrophysics Data System (ADS)
Jaafar, Jazurainifariza; Rahman, M. Nordin A.; Kadir, M. Fadzil A.; Shamsudin, Syadiah Nor; Saany, Syarilla Iryani A.
2017-08-01
In 21st century, technology has turned learning environment into a new way of education to make learning systems more effective and systematic. Nowadays, education institutions are faced many challenges to ensure the teaching and learning process is running smoothly and manageable. Some of challenges in the current education management are lack of integrated systems, high cost of maintenance, difficulty of configuration and deployment as well as complexity of storage provision. Digital learning is an instructional practice that use technology to make learning experience more effective, provides education process more systematic and attractive. Digital learning can be considered as one of the prominent application that implemented under cloud computing environment. Cloud computing is a type of network resources that provides on-demands services where the users can access applications inside it at any location and no time border. It also promises for minimizing the cost of maintenance and provides a flexible of data storage capacity. The aim of this article is to review the definition and types of cloud computing for improving digital learning management as required in the 21st century education. The analysis of digital learning context focused on primary school in Malaysia. Types of cloud applications and services in education sector are also discussed in the article. Finally, gap analysis and direction of cloud computing in education sector for facing the 21st century challenges are suggested.
NASA Technical Reports Server (NTRS)
Prescott, Glenn; Komar, George (Technical Monitor)
2001-01-01
Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.
Solid solutions of MnSb as recording media in optical memory applications
NASA Astrophysics Data System (ADS)
Bai, V. S.; Rama Rao, K. V. S.
1984-03-01
Possibilities regarding the use of larger packing densities and faster access times make it potentially feasible to employ optical technology for the development of computer data storage systems with a performance which is 2-4 orders of magnitude better than that of conventional systems. The information can be stored on thin magnetic films using the technique of laser Curie point writing and retrieved with the aid of magnetooptic readout. Thin films of MnBi have been studied extensively as a prospective storage medium. However, certain difficulties arise in connection with a phase transformation. For these reasons, the present investigation is concerned with the possibility of employing as storage medium MnSb, in which such a phase transformation is absent. In the case of MnSb, a change regarding the easy direction of magnetization would be required. Attention is given to several solid solutions of MnSb and the merits of these materials for optical memory applications.
Airborne Detection and Tracking of Geologic Leakage Sites
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor
2014-11-01
Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.
Optical Digital Disk Storage: An Application for News Libraries.
ERIC Educational Resources Information Center
Crowley, Mary Jo
1988-01-01
Describes the technology, equipment, and procedures necessary for converting a historical newspaper clipping collection to optical disk storage. Alternative storage systems--microforms, laser scanners, optical storage--are also retrieved, and the advantages and disadvantages of optical storage are considered. (MES)
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
The energetic implications of curtailing versus storing wind- and solar-generated electricity
NASA Astrophysics Data System (ADS)
Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.
2013-12-01
Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10,000--18,000 (2-20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will also further improve the energetic performance of batteries. While this paper focuses on only one benefit of energy storage, the value of not curtailing electricity generation during periods of excess production, similar analyses could be used to draw conclusions about other benefits as well.
NASA Astrophysics Data System (ADS)
Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.
2017-10-01
The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.
Toward one Giga frames per second--evolution of in situ storage image sensors.
Etoh, Takeharu G; Son, Dao V T; Yamada, Tetsuo; Charbon, Edoardo
2013-04-08
The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor structure with thick pnpn layers was developed, and named "Tetratified structure". By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The associated problems are discussed. A fine TSV process is the key technology to realize the structure.
He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.
He, Qing; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742
CO2CARE - Site Closure Assessment Research - Recent Results
NASA Astrophysics Data System (ADS)
Wipki, Mario; Liebscher, Axel; Kühn, Michael; Lüth, Stefan; Durucan, Sevket; Deflandre, Jean-Pierre; Wollenweber, Jens; Chadwick, Andy; Böhm, Gualtiero
2013-04-01
The EU project CO2CARE, which started in January 2011, supports the large scale demonstration of CCS technology by addressing requirements of operators and regulators face in terms of CO2 storage site abandonment. The CO2CARE consortium, consisting of 24 project partners from universities, research institutes, and the industry, investigate technologies and procedures for abandonment and post-closure safety, satisfying the regulatory requirements for the transfer of responsibility. Nine key injections sites in Europe, USA, Japan, and Australia, each with a specific (hydro) geological and environmental character, were selected for investigations. These sites can be divided into the CO2 storage types on-shore, off-shore, natural CO2 reservoir, depleted gas reservoirs, and saline aquifers. The project mainly focuses on three key areas: - well abandonment and long-term integrity; - reservoir management and prediction from closure to the long-term; - risk management methodologies for long-term safety. These key areas are in turn closely linked to the three high-level requirements of the EU Directive 2009/31/EC, Article 18 for CO2 storage which are: (i) absence of any detectable leakage, (ii) conformity of actual behaviour of the injected CO2 with the modeled behaviour, and (iii) the storage site is evolving towards a situation of long-term stability. The identification of criteria and the development of site abandonment procedures and technologies, which guarantee the fulfillment of the high-level requirements, are the major objectives in CO2CARE. These criteria have to be fulfilled prior to subsequent transfer of responsibility to the competent authorities, typically 20 or 30 years after site closure. Finally, the essential results of the different working groups in CO2CARE will feed into overall guidelines for regulatory compliance and "Best Practice" for site abandonment. Dissemination of the results will show policy makers and the general public how site abandonment procedures for CO2 storage sites can be undertaken sustainably, cost-effectively and with no adverse effect to the local population and the natural environment. After more than two-thirds of the project`s lifetime, an overview of the project`s goals and the most relevant research findings are presented.
A rechargeable hydrogen battery based on Ru catalysis.
Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp; Muller, Keven; Klemm, Elias; Thiel, Werner R; Plietker, Bernd
2014-07-01
Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru-catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru-catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure-free conditions (discharging process). Up to five charging-discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel-cell technology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technology for national asset storage systems
NASA Technical Reports Server (NTRS)
Coyne, Robert A.; Hulen, Harry; Watson, Richard
1993-01-01
An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1998-01-01
This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... of Viviti Technologies Ltd., formerly known as Hitachi Global Storage Technologies Ltd. (``HGST''), a... negotiate the purchase price of desktop HDDs at a global level. The desktop HDD market is highly... Digital'') proposed acquisition of Viviti Technologies Ltd., formerly known as Hitachi Global Storage...
Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A
2012-10-01
Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integrated Building Energy Systems Design Considering Storage Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Marnay, Chris; Siddiqui, Afzal
The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function.more » These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.« less
Capacity Expansion Modeling for Storage Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine; Stoll, Brady; Mai, Trieu
2017-04-03
The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.
Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen
2013-06-01
Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.
Secure Method for Biometric-Based Recognition with Integrated Cryptographic Functions
Chiou, Shin-Yan
2013-01-01
Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied. PMID:23762851
CSPonD demonstrative project: Start-up process of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.
2017-06-01
The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.
NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |
EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them
Grid-supported Medical Digital Library.
Kosiedowski, Michal; Mazurek, Cezary; Stroinski, Maciej; Weglarz, Jan
2007-01-01
Secure, flexible and efficient storing and accessing digital medical data is one of the key elements for delivering successful telemedical systems. To this end grid technologies designed and developed over the recent years and grid infrastructures deployed with their use seem to provide an excellent opportunity for the creation of a powerful environment capable of delivering tools and services for medical data storage, access and processing. In this paper we present the early results of our work towards establishing a Medical Digital Library supported by grid technologies and discuss future directions of its development. These works are part of the "Telemedycyna Wielkopolska" project aiming to develop a telemedical system for the support of the regional healthcare.
Three-dimensional integration of nanotechnologies for computing and data storage on a single chip
NASA Astrophysics Data System (ADS)
Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish
2017-07-01
The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.
Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli
2018-04-17
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
Towards greener and more sustainable batteries for electrical energy storage
NASA Astrophysics Data System (ADS)
Larcher, D.; Tarascon, J.-M.
2015-01-01
Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
Trade-off study of data storage technologies
NASA Technical Reports Server (NTRS)
Kadyszewski, R. V.
1977-01-01
The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
JANIS-2: An Improved Version of the NEA Java-based Nuclear Data Information System
NASA Astrophysics Data System (ADS)
Soppera, N.; Henriksson, H.; Nouri, A.; Nagel, P.; Dupont, E.
2005-05-01
JANIS (JAva-based Nuclear Information Software) is a display program designed to facilitate the visualisation and manipulation of nuclear data. Its objective is to allow the user of nuclear data to access numerical and graphical representations without prior knowledge of the storage format. It offers maximum flexibility for the comparison of different nuclear data sets. Features included in the latest release are described such as direct access to centralised databases through JAVA Servlet technology.
JANIS-2: An Improved Version of the NEA Java-based Nuclear Data Information System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soppera, N.; Henriksson, H.; Nagel, P.
2005-05-24
JANIS (JAva-based Nuclear Information Software) is a display program designed to facilitate the visualisation and manipulation of nuclear data. Its objective is to allow the user of nuclear data to access numerical and graphical representations without prior knowledge of the storage format. It offers maximum flexibility for the comparison of different nuclear data sets. Features included in the latest release are described such as direct access to centralised databases through JAVA Servlet technology.
1984-06-01
TechnologySchool of Electrical Engineering Atlanta, Georgia 30332 I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U.S. Army Research Office June 1984...Post Office Box 12211 I3. NUMBER OF PAGES Research Triangle Park, NC 27709 14. MONITORING AGENCY NAME G ADDRESS(if dilferent from Controlling Office...could be attached to it to produce a permanent record of images. A video control unit, designed and built in the Optics Lab, was employed to direct and
Color imaging technologies in the prepress industry
NASA Astrophysics Data System (ADS)
Silverman, Lee
1992-05-01
Over much of the last half century, electronic technologies have played an increasing role in the prepress production of film and plates prepared for printing presses. The last decade has seen an explosion of technologies capable of supplementing this production. The most outstanding technology infusing this growth has been the microcomputer, but other component technologies have also diversified the capacity for high-quality scanning of photographs. In addition, some fundamental software and affordable laser recorder technologies have provided new approaches to the merging of typographic and halftoned photographic data onto film. The next decade will evolve the methods and the technologies to achieve superior text and image communication on mass distribution media used in the printed page or instead of the printed page. This paper focuses on three domains of electronic prepress classified as the input, transformation, and output phases of the production process. The evolution of the component technologies in each of these three phases is described. The unique attributes in each are defined and then follows a discussion of the pertinent technologies which overlap all three domains. Unique to input is sensor technology and analogue to digital conversion. Unique to the transformation phase is the display on monitor for soft proofing and interactive processing. The display requires special technologies for digital frame storage and high-speed, gamma- compensated, digital to analogue conversion. Unique to output is the need for halftoning and binary recording device linearization or calibration. Specialized direct digital color technologies now allow color quality proofing without the need for writing intermediate separation films, but ultimately these technologies will be supplanted by direct printing technologies. First, dry film processing, then direct plate writing, and finally direct application of ink or toner onto paper at the 20 - 30 thousand impressions per hour now achieved by offset printing. In summary, a review of technological evolution guides industry methodologies that will define a transformation of workflow in graphic arts during the next decade. Prepress production will integrate component technologies with microcomputers in order to optimize the production cycle from graphic design to printed piece. These changes will drastically alter the business structures and tools used to put type and photographs on paper in the volumes expected from printing presses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2014-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of somemore » of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...
2014-12-31
The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less
Energy Storage Laboratory | Energy Systems Integration Facility | NREL
technologies. Key Infrastructure Energy storage system inverter, energy storage system simulators, research Plug-In Vehicles/Mobile Storage The plug-in vehicles/mobile storage hub includes connections for small integration. Key Infrastructure Ample house power, REDB access, charging stations, easy vehicle parking access
NASA Astrophysics Data System (ADS)
Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken
2018-04-01
A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.
NASA Astrophysics Data System (ADS)
Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael
2017-06-01
Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.
Bialecki, Brian; Park, James; Tilkin, Mike
2016-08-01
The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future.
Influence of technology on magnetic tape storage device characteristics
NASA Technical Reports Server (NTRS)
Gniewek, John J.; Vogel, Stephen M.
1994-01-01
There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.
2013-08-01
The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage systemmore » that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... Partners, Inc., Corporate Center Division, Group Technology Infrastructure Services, Infrastructure Service... Infrastructure Services, Distributed Systems and Storage Group, Chicago, Illinois. The workers provide... unit formerly known as Group Technology Infrastructure Services, Distributed Systems and Storage is...
Battery and Thermal Energy Storage | Energy Systems Integration Facility |
NREL Battery and Thermal Energy Storage Battery and Thermal Energy Storage Not long ago, the performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy . NREL is also creating better materials for batteries and thermal storage devices to improve their
The Analysis of RDF Semantic Data Storage Optimization in Large Data Era
NASA Astrophysics Data System (ADS)
He, Dandan; Wang, Lijuan; Wang, Can
2018-03-01
With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.
An Optimizing Compiler for Petascale I/O on Leadership Class Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok; Kandemir, Mahmut
In high-performance computing systems, parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizesmore » the major achievements of the project and also points out promising future directions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F. J.; Cooper, J. F.; Haley, D.
Utility deregulation is occurring throughout the world. Energy storage, peak demand leveling and power quality are becoming increasingly important. New, innovative costeffective methods are critical to the financial success or failure of utility companies in the new free market environment. The implementation of energy storage gives a utility the ability to better utilize existing generating capacity. Energy is stored in the periods of low overall demand and then the stored energy is connected to the power grid during peak demand periods. Storing energy in this manner will lead to significant economic benefits to utilities as well as their customers. Furthermore,more » because the utility's system is operated more efficiently there is a direct reduction in atmospheric pollutants including greenhouse gases.« less
Overview of Probe-based Storage Technologies
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu
2016-07-01
The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.
Overview of Probe-based Storage Technologies.
Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu
2016-12-01
The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.
Storage media for computers in radiology.
Dandu, Ravi Varma
2008-11-01
The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.
2004-01-01
The long-term preservation of digital entities requires mechanisms to manage the authenticity of massive data collections that are written to archival storage systems. Preservation environments impose authenticity constraints and manage the evolution of the storage system technology by building infrastructure independent solutions. This seeming paradox, the need for large archives, while avoiding dependence upon vendor specific solutions, is resolved through use of data grid technology. Data grids provide the storage repository abstractions that make it possible to migrate collections between vendor specific products, while ensuring the authenticity of the archived data. Data grids provide the software infrastructure that interfaces vendor-specific storage archives to preservation environments.
Inertial energy storage for advanced space station applications
NASA Technical Reports Server (NTRS)
Van Tassel, K. E.; Simon, W. E.
1985-01-01
Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.
ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert Bock; Richard Rhudy; Howard Herzog
2003-02-01
This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.
Haszeldine, R Stuart; Flude, Stephanie; Johnson, Gareth; Scott, Vivian
2018-05-13
How will the global atmosphere and climate be protected? Achieving net-zero CO 2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO 2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO 2 yr -1 , not the minimum 6000 Mt CO 2 yr -1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO 2 storage. A second simple action is to assign a Certificate of CO 2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO 2 to be stored. No CCS means no 2°C.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Haszeldine, R. Stuart; Flude, Stephanie; Johnson, Gareth; Scott, Vivian
2018-05-01
How will the global atmosphere and climate be protected? Achieving net-zero CO2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO2 yr-1, not the minimum 6000 Mt CO2 yr-1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO2 storage. A second simple action is to assign a Certificate of CO2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO2 to be stored. No CCS means no 2°C. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Flywheels Upgraded for Systems Research
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.
2003-01-01
With the advent of high-strength composite materials and microelectronics, flywheels are becoming attractive as a means of storing electrical energy. In addition to the high energy density that flywheels provide, other advantages over conventional electrochemical batteries include long life, high reliability, high efficiency, greater operational flexibility, and higher depths of discharge. High pulse energy is another capability that flywheels can provide. These attributes are favorable for satellites as well as terrestrial energy storage applications. In addition to energy storage for satellites, the several flywheels operating concurrently can provide attitude control, thus combine two functions into one system. This translates into significant weight savings. The NASA Glenn Research Center is involved in the development of this technology for space and terrestrial applications. Glenn is well suited for this research because of its world-class expertise in power electronics design, rotor dynamics, composite material research, magnetic bearings, and motor design and control. Several Glenn organizations are working together on this program. The Structural Mechanics and Dynamics Branch is providing magnetic bearing, controls, and mechanical engineering skills. It is working with the Electrical Systems Development Branch, which has expertise in motors and generators, controls, and avionics systems. Facility support is being provided by the Space Electronic Test Engineering Branch, and the program is being managed by the Space Flight Project Branch. NASA is funding an Aerospace Flywheel Technology Development Program to design, fabricate, and test the Attitude Control/Energy Storage Experiment (ACESE). Two flywheels will be integrated onto a single power bus and run simultaneously to demonstrate a combined energy storage and 1-degree-of-freedom momentum control system. An algorithm that independently regulates direct-current bus voltage and net torque output will be experimentally demonstrated.
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.
Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.
2007-01-01
The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
2004-01-01
MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and Technologies has as its focus long-term stewardship of globally-distributed storage. The increasing prevalence of e-anything brought about by widespread use of applications based, among others, on the World Wide Web, has contributed to rapid growth of online data holdings. A study released by the School of Information Management and Systems at the University of California, Berkeley, estimates that over 5 exabytes of data was created in 2002. Almost 99 percent of this information originally appeared on magnetic media. The theme for MSST2004 is therefore both timely and appropriate. There have been many discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the permanent preservation of knowledge committed to digital storage. Tutorial sessions at MSST2004 detail some of these concerns, and steps being taken to alleviate them. Over 30 papers deal with topics as diverse as performance, file systems, and stewardship and preservation. A number of short papers, extemporaneous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Yang, X; Woerner, D R; Hasty, J D; McCullough, K R; Geornaras, I; Sofos, J N; Belk, K E
2016-11-01
The objective of this study was to identify the maximum time of refrigerated storage before aerobic psychrotrophic bacteria (APB) grew to a level indicative of spoilage (7 log cfu/g) or other indicators of spoilage were observed for whole muscle beef and ground beef packaged using FreshCase technology. Storage life for beef steaks stored in FreshCase packages at 4°C was 36 d, with ground beef stored in FreshCase packages at 4°C lasting 10 d. Additionally, greater ( < 0.05) a* (redness) values were detected in FreshCase packaged samples of both beef steaks and ground beef over storage time. At the point of spoilage, off-odors were detected at very low levels in all samples along with low thiobarbituric acid values (< 2 mg malonaldehyde/kg). Therefore, use of FreshCase technology in whole muscle beef and ground beef is a viable option to extend storage life.
Sumboja, Afriyanti; Liu, Jiawei; Zheng, Wesley Guangyuan; Zong, Yun; Zhang, Hua; Liu, Zhaolin
2018-06-27
Compatible energy storage devices that are able to withstand various mechanical deformations, while delivering their intended functions, are required in wearable technologies. This imposes constraints on the structural designs, materials selection, and miniaturization of the cells. To date, extensive efforts have been dedicated towards developing electrochemical energy storage devices for wearables, with a focus on incorporation of shape-conformable materials into mechanically robust designs that can be worn on the human body. In this review, we highlight the quantified performances of reported wearable electrochemical energy storage devices, as well as their micro-sized counterparts under specific mechanical deformations, which can be used as the benchmark for future studies in this field. A general introduction to the wearable technology, the development of the selection and synthesis of active materials, cell design approaches and device fabrications are discussed. It is followed by challenges and outlook toward the practical use of electrochemical energy storage devices for wearable applications.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
Regenerative fuel cell systems for space station
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Sheibley, D. W.
1985-01-01
Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.
Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1996-01-01
Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.
Data storage systems technology for the Space Station era
NASA Technical Reports Server (NTRS)
Dalton, John; Mccaleb, Fred; Sos, John; Chesney, James; Howell, David
1987-01-01
The paper presents the results of an internal NASA study to determine if economically feasible data storage solutions are likely to be available to support the ground data transport segment of the Space Station mission. An internal NASA effort to prototype a portion of the required ground data processing system is outlined. It is concluded that the requirements for all ground data storage functions can be met with commercial disk and tape drives assuming conservative technology improvements and that, to meet Space Station data rates with commercial technology, the data will have to be distributed over multiple devices operating in parallel and in a sustained maximum throughput mode.
Perspectives on micropole undulators in synchrotron radiation technology
NASA Astrophysics Data System (ADS)
Tatchyn, Roman; Csonka, Paul; Toor, Arthur
1989-07-01
Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.
The state of energy storage in electric utility systems and its effect on renewable energy resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, N S
1994-08-01
This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed themore » cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.« less
Battery technologies for large-scale stationary energy storage.
Soloveichik, Grigorii L
2011-01-01
In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.
Influence of methane in CO2 transport and storage for CCS technology.
Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada
2012-12-04
CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.
Newspapers and Electronic Databases: Present Technology.
ERIC Educational Resources Information Center
Newcombe, Barbara; Trivedi, Harish
1984-01-01
Discusses technology used to preserve, control, index, and retrieve information in newspapers, highlighting ways to record analyses of news stories, storage/indexing systems based on computers, information as salable commodity, preparation of news for electronic storage, answering in-house queries, questions of copyright and invasion of privacy,…
32 CFR 2400.27 - Storage of classification information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Storage of classification information. 2400.27 Section 2400.27 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.27 - Storage of classification information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Storage of classification information. 2400.27 Section 2400.27 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.27 - Storage of classification information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Storage of classification information. 2400.27 Section 2400.27 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.27 - Storage of classification information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Storage of classification information. 2400.27 Section 2400.27 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.27 - Storage of classification information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Storage of classification information. 2400.27 Section 2400.27 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.
Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.
Paudel, Deepak; Ahmed, Marie; Pradhan, Anjushree; Lal Dangol, Rajendra
2013-08-01
Computer-Assisted Personal Interviewing (CAPI), coupled with the use of mobile and wireless technology, is growing as a data collection methodology. Nepal, a geographically diverse and resource-scarce country, implemented the 2011 Nepal Demographic and Health Survey, a nationwide survey of major health indicators, using tablet personal computers (tablet PCs) and wireless technology for the first time in the country. This paper synthesizes responses on the benefits and challenges of using new technology in such a challenging environment from the 89 interviewers who administered the survey. Overall, feedback from the interviewers indicate that the use of tablet PCs and wireless technology to administer the survey demonstrated potential to improve data quality and reduce data collection time-benefits that outweigh manageable challenges, such as storage and transport of the tablet PCs during fieldwork, limited options for confidential interview space due to screen readability issues under direct sunlight, and inconsistent electricity supply at times. The introduction of this technology holds great promise for improving data availability and quality, even in a context with limited infrastructure and extremely difficult terrain.
Materials for suspension (semi-solid) electrodes for energy and water technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, Kelsey B.; Boota, Muhammad; Gogotsi, Yury
2015-01-01
Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. For the first time, this principle enables, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classicalmore » aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. Our review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. We include a discussion of the primary challenges and future research directions.« less
Jiang, Qiang; Chen, Bo; Zhang, Kewei; Yang, Ya
2017-12-20
Li-ion batteries are a green energy storage technology with advantages of high energy density, long lifetime, and sustainability, but they cannot generate electric energy by themselves. As a novel energy-harvesting technology, triboelectric nanogenerators (TENGs) are a promising power source for supplying electronic devices, however it is difficult to directly use their high output voltage and low output current. Here, we designed a Ag nanoparticle-based TENG for scavenging wind energy. After including a transformer and a power management circuit into the system, constant output voltages such as 3.6 V and a pulsed current of about 100 mA can be obtained, which can be used to directly light up a light-emitting diode. Furthermore, the produced electric energy can be effectively stored in a WO 3 /LiMn 2 O 4 electrode based Li-ion battery. Our present work provides a new approach to effectively scavenge wind energy and store the obtained electric energy, which is significant for exploring self-charging power units.
Concentrating Solar Power Projects - Crescent Dunes Solar Energy Project |
: None Thermal Storage Storage Type: 2-tank direct Storage Capacity: 10 hours Thermal Storage Description : Thermal energy storage achieved by raising salt temperature from 550 to 1050 F. Thermal storage efficiency
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong
2013-11-01
Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.« less
Research on application model of blockchain technology in distributed electricity market
NASA Astrophysics Data System (ADS)
Cheng, S.; Zeng, B.; Huang, Y. Z.
2017-11-01
In the context of current energy Internet, the emergence of a large number of energy productive consumers will create a new business model. In the decentralized electricity market, the cost of traditional centralized solution construction, management and maintenance is too high, and it is difficult to support the collection, transmission, reception, storage and analysis of massive data. To provide a solution to this phenomenon, we apply the blockchain technology to this distributed electricity market to achieve peer to peer transactions in the power systems. The blockchain technology which is very popular nowadays will be used in power system to establish a credible direct transaction between devices. At first, this article analyzes the future direction of the development of power systems, studies the characteristics of decentralized power systems and summarizes the main issues in the development process. Then, we analyze the basic characteristics of blockchain and put forward a new transaction framework in consideration of problems existing in current energy market. The transaction framework is based on the blockchain technology in the distributed electricity market and includes the pricing method, the power transaction system architecture, various modules of the trading system and the details of the whole transaction system runtime. This framework provides a viable solution for increasingly complex energy transactions.
Marine data security based on blockchain technology
NASA Astrophysics Data System (ADS)
Yang, Zhao; Xie, Weiwei; Huang, Lei; Wei, Zhiqiang
2018-03-01
With the development of marine observation technology and network technology, the volume of marine data growing rapidly. This brings new challenges for data storage and transmission. How to protect data security of marine big data has become an urgent problem. The traditional information security methods’ characteristic is centralization. These technologies cannot provide whole process protection, e.g., data storage, data management and application of data. The blockchain technology is a novel technology, which can keep the data security and reliability by using decentralized methodology. It has aroused wide interest in the financial field. In this paper, we describe the concept, characteristics and key technologies of blockchain technology and introduce it into the field of marine data security.
Energy Storage for Aerospace Applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.
2001-01-01
The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.
Preliminary Concept of Operations for the Spent Fuel Management System--WM2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L
The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less
Evolution of Archival Storage (from Tape to Memory)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2015-01-01
Over the last three decades, there has been a significant evolution in storage technologies supporting archival of remote sensing data. This section provides a brief survey of how these technologies have evolved. Three main technologies are considered - tape, hard disk and solid state disk. Their historical evolution is traced, summarizing how reductions in cost have helped being able to store larger volumes of data on faster media. The cost per GB of media is only one of the considerations in determining the best approach to archival storage. Active archives generally require faster response to user requests for data than permanent archives. The archive costs have to consider facilities and other capital costs, operations costs, software licenses, utilities costs, etc. For meeting requirements in any organization, typically a mix of technologies is needed.
An overview of integrated flywheel technology for aerospace application
NASA Technical Reports Server (NTRS)
Keckler, C. R.; Groom, N. J.
1985-01-01
Space missions ranging from small scientific satellites to large manned spacecraft have, for many years, utilized systems of spinning flywheels to maintain vehicle attitude. These systems have included momentum and reaction wheels as well as control moment gyros. Extension of that technology to satisfy the additional tasks associated with energy storage has also been pursued. The combining of control and energy storage features into one system has been examined by NASA for space applications and demonstrated in the laboratory. The impact of technology advances in such areas as composite material rotors, magnetic suspensions, motor/generators, and electronics have prompted a re-evaluation of the viability of the flywheel storage system concept for aerospace applications. This paper summarizes the results of this re-examination and identifies shortfalls in the various technology areas.
Energy: Systems for Control, Maintenance, and Storage. A Bibliography.
ERIC Educational Resources Information Center
Thomas, Gerald, Comp.; McKane, Irving, Comp.
This publication is a bibliography of available periodical literature on specific aspects of energy and today's technology. The Applied Science and Technology Indexes were searched for articles that related to these specific areas: (1) Energy control systems; (2) Maintenance of Energy Systems; and (3) Energy storage. The articles and papers…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Known as Brinson Partners, Inc., Corporate Center Division; Group Technology Infrastructure Services... Division, Group Technology Infrastructure Services, Distributed Systems and Storage Group, Chicago... Infrastructure Services, Distributed Systems and Storage Group have their wages reported under a separate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio
2013-07-31
The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.
U.S. Army Corrosion Office's storage and quality requirements for military MEMS program
NASA Astrophysics Data System (ADS)
Zunino, J. L., III; Skelton, D. R.
2007-04-01
As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.
USDA-ARS?s Scientific Manuscript database
Apple (Malus domestica Borkh.) fruit volatile production is regulated by a variety of factors including storage conditions. Although controlled atmosphere (CA) technology extends apple fruit storage life, improper storage conditions can adversely affect volatile production and increase the risk of ...
NASA Astrophysics Data System (ADS)
Peterson, Brian Andrew
Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.
Storage media for computers in radiology
Dandu, Ravi Varma
2008-01-01
The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182
Options for reducing carbon dioxide emissions
NASA Astrophysics Data System (ADS)
Rosenfeld, Arthur H.; Price, Lynn
1992-03-01
Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites.
Suzuki, Takeshi
2012-10-26
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites
Suzuki, Takeshi
2012-01-01
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies. PMID:26466730
Building heating and cooling applications thermal energy storage program overview
NASA Technical Reports Server (NTRS)
Eissenberg, D. M.
1980-01-01
Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.
A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies
NASA Technical Reports Server (NTRS)
Kobler, Ben; McCall, Fritz; Smorul, Mike
2006-01-01
The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
Solar applications of thermal energy storage. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.; Taylor, L.; DeVries, J.
A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)
Metal oxide gas sensors on the nanoscale
NASA Astrophysics Data System (ADS)
Plecenik, A.; Haidry, A. A.; Plecenik, T.; Durina, P.; Truchly, M.; Mosko, M.; Grancic, B.; Gregor, M.; Roch, T.; Satrapinskyy, L.; Moskova, A.; Mikula, M.; Kus, P.
2014-06-01
Low cost, low power and highly sensitive gas sensors operating at room temperature are very important devices for controlled hydrogen gas production and storage. One of the disadvantages of chemosensors is their high operating temperature (usually 200 - 400 °C), which excludes such type of sensors from usage in explosive environment. In this report, a new concept of gas chemosensors operating at room temperature based on TiO2 thin films is discussed. Integration of such sensor is fully compatible with sub-100 nm semiconductor technology and could be transferred directly from labor to commercial sphere.
Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems
NASA Astrophysics Data System (ADS)
Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.
Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.
Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems
NASA Technical Reports Server (NTRS)
Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.
1982-01-01
Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.
TABLET: The personal computer of the year 2000
NASA Technical Reports Server (NTRS)
Mel, Bartlett W.; Omohundro, Stephen M.; Robison, Arch D.; Skiena, Steven S.; Thearling, Kurt H.; Young, Luke T.; Wolfram, Stephen
1988-01-01
The University of Illinois design of the TABLET portable computer extends the freedom of pen and notepad with a machine that draws on the projected power of 21st century technology. Without assuming any new, major technological breakthroughs, it seeks to balance the promises of today's growing technologies with the changing role of computers in tomorrow's education, research, security, and commerce. It seeks to gather together in one basket the matured fruits of such buzzword technologies as LCD, GPS, CCD, WSI, and DSP. The design is simple, yet sleek. Roughly the size and weight of a notebook, the machine is a dark, featureless monolith with no moving parts. Through magneto-optics, a simple LaserCard provides exchangeable, mass data storage. Its I/O surface, in concert with built-in infrared and cellular transceivers, puts the user in touch with anyone and anything. The ensemble of these components, directed by software that can transform it into anything from a keyboard or notepad to an office or video studio, suggests an instrument of tremendous power and freedom.
Mission and status of the US Department of Energy's battery energy storage program
NASA Astrophysics Data System (ADS)
Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.
1985-05-01
The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
Hybrid Storage Market Assessment: A JISEA White Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ericson, Sean J.; Rose, Eric; Jayaswal, Harshit
This white paper evaluates which markets are best suited for battery storage and storage hybrids and reviews regulations and incentives that support or impede the implementation of standalone storage and battery hybrids. The costs of battery storage technologies have dropped in recent years, resulting in a seven-fold increase in installed capacity over the last decade (1). These technologies offer an attractive rate of return in some locations; however, cost and regulatory barriers still limit the market for storage. Hybridizing a battery (combining the battery with a generator) can in some instances reduce total system costs and increase value compared tomore » separate installations. The fast ramping and dispatchability of a battery can complement the generator to provide services that neither battery nor generator could provide alone. Battery hybrids also benefit from some policy incentives and may be better able to meet market and regulatory requirements.« less
Scientific Data Storage for Cloud Computing
NASA Astrophysics Data System (ADS)
Readey, J.
2014-12-01
Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.
High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing
NASA Astrophysics Data System (ADS)
D'Errico, F.; Screnci, A.
One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.
High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing
NASA Astrophysics Data System (ADS)
D'Errico, F.; Screnci, A.
One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.
Concentrating Solar Power Projects - Likana Solar Energy Project |
three 130 megawatt (MW) solar thermal towers each with 13 hours of full load energy storage, delivering Thermal Storage Storage Type: 2-tank direct Storage Capacity: 13 hours Thermal Storage Description: Molten
Development of a Battery-Free Solar Refrigerator
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Bergeron, David J., III
2000-01-01
Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor was replaced with a Danfoss DC compressor slightly larger than the one used in the laboratory unit. The control system was integrated onto a single electronics card and packaged with its starting capacitors. The water for thermal storage was placed behind a liner that was made to fit inside the original factory liner. The original condenser was also augmented with additional surface area to improve performance. PV panels with a total rated power of 180 watts were used. The unit was tested with very successful results in an outside ambient environment, demonstrating its potential for widespread use in many off-grid applications for solar refrigeration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, David; Margolis, Robert; Denholm, Paul
Declining costs of both solar photovoltaics (PV) and battery storage have raised interest in the creation of “solar-plus-storage” systems to provide dispatchable energy and reliable capacity. There has been limited deployment of PV-plus-energy storage systems (PV+ESS), and the actual configuration and performance of these systems for dispatchable energy are in the early stages of being defined. In contrast, concentrating solar power with thermal energy storage (CSP+TES) has been deployed at scale with the proven capability of providing a dispatchable, reliable source of renewable generation. A key question moving forward is how to compare the relative costs and benefits of PV+ESSmore » and CSP+TES. While both technologies collect solar radiation and produce electricity, they do so through very different mechanisms, which creates challenges for direct comparison. Nonetheless, it is important to establish a framework for comparison and to identify cost and performance targets to aid meeting the nation’s goals for clean energy deployment. In this paper, we provide a preliminary assessment comparing the cost of energy from CSP+TES and PV+ESS that focuses on a single metric: levelized cost of energy (LCOE). We begin by defining the configuration of each system, which is particularly important for PV+ESS systems. We then examine a range of projected cost declines for PV, batteries, and CSP. Finally, we summarize the estimated LCOE over a range of configuration and cost estimates. We conclude by acknowledging that differences in these technologies present challenges for comparison using a single performance metric. We define systems with similar configurations in some respects. In reality, because of inherent differences in CSP+TES and PV+ESS systems, they will provide different grid services and different value. For example, depending on its configuration, a PV+ESS system may provide additional value over CSP+TES by providing more flexible operation, including certain ancillary services and the ability to store off-peak grid energy. Alternatively, direct thermal energy storage allows a greater capture of solar energy, reducing the potential for curtailments in very high solar scenarios. So while this analysis evaluates a key performance metric (cost per unit of generation) under a range of cost projections, additional analysis of the value per unit of generation will be needed to comprehensively assess the relative competitiveness of solar energy systems deployed with energy storage.« less
Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele
2012-12-01
In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.
NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
On sorption and swelling of CO 2 in clays
Busch, A.; Bertier, P.; Gensterblum, Y.; ...
2016-03-23
One well-studied technology is the geological storage of carbon dioxide (CO 2), and a number of demonstration projects around the world have proven its feasibility and challenges. Storage conformance and seal integrity are among the most important aspects, as they determine risk of leakage as well as limits for storage capacity and injectivity. By providing evidence for safe storage is critical for improving public acceptance. Most caprocks are composed of clays as dominant mineral type which can typically be illite, kaolinite, chlorite or smectite. A number of recent studies addressed the interaction between CO 2 and these different clays andmore » it was shown that clay minerals adsorb considerable quantities of CO 2. For smectite this uptake can lead to volumetric expansion followed by the generation of swelling pressures. On the one hand CO 2 adsorption traps CO 2, on the other hand swelling pressures can potentially change local stress regimes and in unfavourable situations shear-type failure is assumed to occur. Moreover, for storage in a reservoir having high clay contents the CO 2 uptake can add to storage capacity which is widely underestimated so far. Smectite-rich seals in direct contact with a dry CO 2 plume at the interface to the reservoir might dehydrate leading to dehydration cracks. Such dehydration cracks can provide pathways for CO 2 ingress and further accelerate dewatering and penetration of the seal by supercritical CO 2. At the same time, swelling may also lead to the closure of fractures or the reduction of fracture apertures, thereby improving seal integrity. Finally, the goal of this communication is to theoretically evaluate and discuss these scenarios in greater detail in terms of phenomenological mechanisms, but also in terms of potential risks or benefits for carbon storage.« less
System-level modeling for economic evaluation of geological CO2storage in gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan
2006-03-02
One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less
Limiting factors for carbon based chemical double layer capacitors
NASA Technical Reports Server (NTRS)
Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.
1993-01-01
The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-09
HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin themore » process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.« less
The application of Big Data in medicine: current implications and future directions.
Austin, Christopher; Kusumoto, Fred
2016-10-01
Since the mid 1980s, the world has experienced an unprecedented explosion in the capacity to produce, store, and communicate data, primarily in digital formats. Simultaneously, access to computing technologies in the form of the personal PC, smartphone, and other handheld devices has mirrored this growth. With these enhanced capabilities of data storage and rapid computation as well as real-time delivery of information via the internet, the average daily consumption of data by an individual has grown exponentially. Unbeknownst to many, Big Data has silently crept into our daily routines and, with continued development of cheap data storage and availability of smart devices both regionally and in developing countries, the influence of Big Data will continue to grow. This influence has also carried over to healthcare. This paper will provide an overview of Big Data, its benefits, potential pitfalls, and the projected impact on the future of medicine in general and cardiology in particular.
A kilobyte rewritable atomic memory
NASA Astrophysics Data System (ADS)
Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander
The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.
An Optimizing Compiler for Petascale I/O on Leadership-Class Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandemir, Mahmut Taylan; Choudary, Alok; Thakur, Rajeev
In high-performance computing (HPC), parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our DOE project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final reportmore » summarizes the major achievements of the project and also points out promising future directions Two new sections in this report compared to the previous report are IOGenie and SSD/NVM-specific optimizations.« less
Application of nonlinear ultrasonics to inspection of stainless steel for dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.
This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2017-08-01
The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.
Manufacture, distribution, and handling of nitrate salts for solar-thermal applications
NASA Astrophysics Data System (ADS)
Fiorucci, L. C.; Goldstein, S. L.
1982-11-01
The low cost and attractive physical properties of molten sodium/potassium nitrate salts were shown to be one of the most cost effective fluids for heat absorption and thermal energy storage in Solar Central Receiver (SCR) systems. Information related to the availability, transport, handling, and utilization of these salts for commercial size SCR applications is provided. The following items are reviewed: existing manufacturing processes for natural and synthetic nitrates; the upstream availability of raw materials; downstream existing and projected demand for these products in other sectors of the economy; and relevant handling and distribution technologies. Safety considerations and issues more directly related to the SCR facility, such as initial system charging, salt maintenance and regeneration, and disposal are also reviewed. Options for supply, surge storage, and initial charging are discussed for the 1 MWt to 300 MWe range of solar plant sizes.
Novel Nuclear Powered Photocatalytic Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
White,John R.; Kinsmen,Douglas; Regan,Thomas M.
2005-08-29
The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC)more » design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less
Sociopolitical drivers in the development of deliberate carbon storage
NASA Astrophysics Data System (ADS)
Stephens, Jennie C.
The idea of engineering the storage of carbon released from fossil fuel burning in reservoirs other than the atmosphere has developed in the past 20 years from an obscure idea to an increasingly recognized potential approach that could be an important contributor to stabilizing atmospheric carbon dioxide (CO2) concentrations. Despite the intense application of scientific and technological expertise to the development of options for deliberate carbon storage, nontechnical factors play an important role. This chapter identifies sociopolitical, nontechnical factors that have contributed to the development of ideas and technologies associated with deliberate carbon storage. Broadly, interest in deliberate storage has expanded in response to increasing societal attention to reducing CO2 emissions for climate change mitigation. Specific societal groups, or stakeholders, which have contributed to the recent focus on carbon storage include the fossil fuel industry that has been shifting to a strategy of confronting rather than denying the CO2-climate change connection, a scientific community motivated by an increased sense of urgency of the need to reduce atmospheric CO2 concentrations, the general public with little knowledge about or awareness of carbon storage, and environmental advocacy groups that have demonstrated some divergence in levels of support for deliberate carbon storage. Among the policy mechanisms that have provided incentives for deliberate carbon storage are national accounting of carbon sources and sinks and carbon taxes. Another driver with particular importance in the United States is the political preference of some politicians to support development of advanced technologies for climate change mitigation rather than supporting mandatory CO2 regulations.
Terrestrial Energy Storage SPS Systems
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1998-01-01
Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.
Flight Computer Design for the Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Speer, David; Jackson, George; Raphael, Dave; Day, John H. (Technical Monitor)
2001-01-01
As part of NASA's New Millennium Program, the Space Technology 5 mission will validate a variety of technologies for nano-satellite and constellation mission applications. Included are: a miniaturized and low power X-band transponder, a constellation communication and navigation transceiver, a cold gas micro-thruster, two different variable emittance (thermal) controllers, flex cables for solar array power collection, autonomous groundbased constellation management tools, and a new CMOS ultra low-power, radiation-tolerant, +0.5 volt logic technology. The ST-5 focus is on small and low-power. A single-processor, multi-function flight computer will implement direct digital and analog interfaces to all of the other spacecraft subsystems and components. There will not be a distributed data system that uses a standardized serial bus such as MIL-STD-1553 or MIL-STD-1773. The flight software running on the single processor will be responsible for all real-time processing associated with: guidance, navigation and control, command and data handling (C&DH) including uplink/downlink, power switching and battery charge management, science data analysis and storage, intra-constellation communications, and housekeeping data collection and logging. As a nanosatellite trail-blazer for future constellations of up to 100 separate space vehicles, ST-5 will demonstrate a compact (single board), low power (5.5 watts) solution to the data acquisition, control, communications, processing and storage requirements that have traditionally required an entire network of separate circuit boards and/or avionics boxes. In addition to the New Millennium technologies, other major spacecraft subsystems include the power system electronics, a lithium-ion battery, triple-junction solar cell arrays, a science-grade magnetometer, a miniature spinning sun sensor, and a propulsion system.
Life cycle assessment of biogas upgrading technologies.
Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia
2012-05-01
This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1980-01-01
The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy Storage, Inc., and Trinity3 Corporation; Order of... there is a lack of current and accurate information concerning the securities of Thermal Energy Storage...
ERIC Educational Resources Information Center
Forrest, Charles
1988-01-01
Reviews technological developments centered around microcomputers that have led to the design of integrated workstations. Topics discussed include methods of information storage, information retrieval, telecommunications networks, word processing, data management, graphics, interactive video, sound, interfaces, artificial intelligence, hypermedia,…
Reflections on CD-ROM: Bridging the Gap between Technology and Purpose.
ERIC Educational Resources Information Center
Saviers, Shannon Smith
1987-01-01
Provides a technological overview of CD-ROM (Compact Disc-Read Only Memory), an optically-based medium for data storage offering large storage capacity, computer-based delivery system, read-only medium, and economic mass production. CD-ROM database attributes appropriate for information delivery are also reviewed, including large database size,…
Embedded system of image storage based on fiber channel
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong
2008-03-01
In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.
NASA Technical Reports Server (NTRS)
Fehrmann, Elizabeth A.; Kenny, Barbara H.
2004-01-01
The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.
Aquifer thermal energy storage. International symposium: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less
The future cost of electrical energy storage based on experience rates
NASA Astrophysics Data System (ADS)
Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.
2017-08-01
Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.
NASA Astrophysics Data System (ADS)
Rahman, Md. Wasikur
2017-06-01
The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.
Candidate thermal energy storage technologies for solar industrial process heat applications
NASA Technical Reports Server (NTRS)
Furman, E. R.
1979-01-01
A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.
Portable and Error-Free DNA-Based Data Storage.
Yazdi, S M Hossein Tabatabaei; Gabrys, Ryan; Milenkovic, Olgica
2017-07-10
DNA-based data storage is an emerging nonvolatile memory technology of potentially unprecedented density, durability, and replication efficiency. The basic system implementation steps include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. Here we show for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. The novelty of our approach is to design an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. Our work represents the only known random access DNA-based data storage system that uses error-prone nanopore sequencers, while still producing error-free readouts with the highest reported information rate/density. As such, it represents a crucial step towards practical employment of DNA molecules as storage media.
Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, Charles E.
2014-10-01
The goals of this project are to demonstrate the feasibility of significant thermal storage for dish stirling systems to leverage their existing high performance to greater capacity; demonstrate key components of a latent storage and transport system enabling on-dish storage with low energy losses; and provide a technology path to a 25kW e system with 6 hours of storage.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Observations of stem water storage in trees of opposing hydraulic strategies
Matheny, Ashley M.; Bohrer, Gil; Garrity, Steven R.; ...
2015-09-29
Hydraulic capacitance and water storage form a critical buffer against cavitation and loss of conductivity within the xylem system. Withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. Storage quantities differ based on soil water availability, tree size, wood anatomy and density, drought tolerance, and hydraulic strategy (anisohydric or isohydric). However, the majority of studies focus on the measurement of storage in conifers or tropical tree species. We demonstrate a novel methodology using frequency domain reflectometry (FDR) to make continuous, direct measurements of wood water content in two hardwood species inmore » a forest in Michigan. We present results of a two month study comparing the water storage dynamics between a mature red oak and red maple, two species with differing wood densities, hydraulic architecture, and hydraulic strategy. We also include results pertaining to the use of different probe lengths to sample water content only within the active sapwood and over the entire conductive sapwood and the outer portion of heartwood in red oak. Both species studied exhibited diurnal cycles of storage that aligned well with the dynamics of sap flux. Red maple, a diffuse porous, relatively isohydric species showed a strong dependence on stored water during both wet and dry periods. Red oak, a ring porous relatively anisohydric species, was less reliant on storage, and did not demonstrate a dependence on soil water potential. Comparison between long and short FDR probes in the oak revealed that oaks may utilize water stored in the innermost layers of the xylem when soil moisture conditions are limiting. We found the FDR probes to be a reliable, functional means for continuous automated measurement of wood water content in hardwoods at a fast time scale. Application of FDR technology for the measurement of tree water storage will benefit forest ecologists as well as the modeling community as we improve our understanding and simulations of plant hydrodynamic processes on a large scale.« less
NASA Astrophysics Data System (ADS)
Marinero, Ernesto E.
2011-03-01
Magnetic storage technology aims to achieve recording densities > 10 12 bits / in 2 intheforeseeablefuture . Thedimensionsofthemagneticdomainsandsensorminimumfeaturesizesatthisdensitywillbe ~ 15 -- 25 nm. These nanoscale dimensions present major challenges for both the materials utilized for magnetic recording, and to the sensors employed to reliably detect the minute magnetic fluxes emanating from such nanoscale domains. These include fundamental physical limits of material properties on account of the reduced dimensionality, as well as nanofabrication challenges to attain the required nanometer feature sizes with the stringent dimensional tolerances required. Since its invention in 1954, the storage density in magnetic recording has incremented by 109 and the cost of storage, measured in MB, has undergone a price reduction of the same order. Impressive as these accomplishments are, is the fact that the fundamental engineering principles of the technology today are essentially the same as when it was invented. This is in spite of numerous efforts to replace it with new alternative technologies or by dire predictions by its own practitioners of its impending death based on perceived limitations. In this talk the state-of-the art and challenges facing the HDD industry in its efforts to continue incrementing the storage density will be discussed. I will illustrate how advances in materials engineering, new physical phenomena and breakthroughs in nanofabrication have facilitated such an impressive technology evolution. Moreover, the key ingredients for said innovations to be implemented as technology solutions will be discussed..
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
NASA Astrophysics Data System (ADS)
Rossi, Marco; Pierron, Fabrice; Forquin, Pascal
2014-02-01
Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.
NASA Astrophysics Data System (ADS)
Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.
2017-11-01
Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.
Energy Storage on the Grid and the Short-term Variability of Wind
NASA Astrophysics Data System (ADS)
Hittinger, Eric Stephen
Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and profitability of wind farms. We find that market scenarios using existing price signals to motivate wind to reduce variability allow wind generators to participate in variability reduction when the market conditions are favorable, and can reduce short-term (30-minute) fluctuations while having little effect on wind farm revenue.
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng
2015-10-28
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... regulations by revising the Holtec International HI-STORM 100 dry cask storage system listing within the... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in 10...
Lab-on-a-chip in vitro compartmentalization technologies for protein studies.
Zhu, Yonggang; Power, Barbara E
2008-01-01
In vitro compartmentalization (IVC) is a powerful tool for studying protein-protein reactions, due to its high capacity and the versatility of droplet technologies. IVC bridges the gap between chemistry and biology as it enables the incorporation of unnatural amino acids with modifications into biological systems, through protein transcription and translation reactions, in a cell-like microdrop environment. The quest for the ultimate chip for protein studies using IVC is the drive for the development of various microfluidic droplet technologies to enable these unusual biochemical reactions to occur. These techniques have been shown to generate precise microdrops with a controlled size. Various chemical and physical phenomena have been utilized for on-chip manipulation to allow the droplets to be generated, fused, and split. Coupled with detection techniques, droplets can be sorted and selected. These capabilities allow directed protein evolution to be carried out on a microchip. With further technological development of the detection module, factors such as addressable storage, transport and interfacing technologies, could be integrated and thus provide platforms for protein studies with high efficiency and accuracy that conventional laboratories cannot achieve.
Worldwide electricity used in data centers
NASA Astrophysics Data System (ADS)
Koomey, Jonathan G.
2008-07-01
The direct electricity used by data centers has become an important issue in recent years as demands for new Internet services (such as search, music downloads, video-on-demand, social networking, and telephony) have become more widespread. This study estimates historical electricity used by data centers worldwide and regionally on the basis of more detailed data than were available for previous assessments, including electricity used by servers, data center communications, and storage equipment. Aggregate electricity use for data centers doubled worldwide from 2000 to 2005. Three quarters of this growth was the result of growth in the number of the least expensive (volume) servers. Data center communications and storage equipment each contributed about 10% of the growth. Total electricity use grew at an average annual rate of 16.7% per year, with the Asia Pacific region (without Japan) being the only major world region with growth significantly exceeding that average. Direct electricity used by information technology equipment in data centers represented about 0.5% of total world electricity consumption in 2005. When electricity for cooling and power distribution is included, that figure is about 1%. Worldwide data center power demand in 2005 was equivalent (in capacity terms) to about seventeen 1000 MW power plants.
A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics
NASA Astrophysics Data System (ADS)
Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan
2016-09-01
At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.
NASA Astrophysics Data System (ADS)
Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim
2016-05-01
Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.
Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage
NASA Astrophysics Data System (ADS)
Nordin, N. D.; Rahman, H. A.
2017-11-01
This paper proposes a design steps in sizing of standalone photovoltaic system with hydrogen storage using intuitive method. The main advantage of this method is it uses a direct mathematical approach to find system’s size based on daily load consumption and average irradiation data. The keys of system design are to satisfy a pre-determined load requirement and maintain hydrogen storage’s state of charge during low solar irradiation period. To test the effectiveness of the proposed method, a case study is conducted using Kuala Lumpur’s generated meteorological data and rural area’s typical daily load profile of 2.215 kWh. In addition, an economic analysis is performed to appraise the proposed system feasibility. The finding shows that the levelized cost of energy for proposed system is RM 1.98 kWh. However, based on sizing results obtained using a published method with AGM battery as back-up supply, the system cost is lower and more economically viable. The feasibility of PV system with hydrogen storage can be improved if the efficiency of hydrogen storage technologies significantly increases in the future. Hence, a sensitivity analysis is performed to verify the effect of electrolyzer and fuel cell efficiencies towards levelized cost of energy. Efficiencies of electrolyzer and fuel cell available in current market are validated using laboratory’s experimental data. This finding is needed to envisage the applicability of photovoltaic system with hydrogen storage as a future power supply source in Malaysia.
Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue
Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.
2011-01-01
OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594
The NASA Redox Storage System Development project, 1980
NASA Technical Reports Server (NTRS)
1982-01-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
The NASA Redox Storage System Development project, 1980
NASA Astrophysics Data System (ADS)
1982-12-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
Novel Thermal Storage Technologies for Concentrating Solar Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Sudhakar; Oztekin, Alparslan; Chen, John
2013-06-20
The technologies that are to be developed in this work will enable storage of thermal energy in 100 MW e solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.
A media maniac's guide to removable mass storage media
NASA Technical Reports Server (NTRS)
Kempster, Linda S.
1996-01-01
This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced.
Carbon Capture and Storage, 2008
None
2017-12-09
The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.
Aquifer thermal energy (heat and chill) storage
NASA Astrophysics Data System (ADS)
Jenne, E. A.
1992-11-01
As part of the 1992 Intersociety Conversion Engineering Conference (IECEC), held in San Diego, California, 3 - 7 Aug. 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.
Wyoming Carbon Capture and Storage Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nealon, Teresa
This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii
Battery Test Manual For Electric Vehicles, Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2015-06-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of themore » procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs
NASA Astrophysics Data System (ADS)
Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart
2014-05-01
Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that faults play a major role when it comes to fluid migration from a reservoir. However, nearly 50% of the non-leaking studied reservoirs are also fault bound, demonstrating that faults are not always necessarily leakage pathways.
Improvements in magnetic bearing performance for flywheel energy storage
NASA Technical Reports Server (NTRS)
Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.
1988-01-01
The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.
NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL
Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology
ERIC Educational Resources Information Center
Lindblad, Carl
This handbook for Peace Corps agricultural programmers, trainers, and volunteers is designed to aid them in identifying storage problems and devising solutions to them. Part 1 covers grain storage project programming. Information provided for the volunteers involved in grain storage projects includes project goals and objectives as well as methods…
Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.
The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.
Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.
The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.
Implementation of a Campuswide Distributed Mass Storage Service: the Dream Versus Reality
NASA Technical Reports Server (NTRS)
Prahst, Stephen; Armstead, Betty Jo
1996-01-01
In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro- wide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup services for critical data dw resides on workstations and personal computers. Because of software availability and budgets, the total service was phased in over dm years. During the process of building the service from the commercial technologies available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occurred. We also enhanced some technologies to better meet the needs of users and system administrators. This report describes our team's journey from dream to reality, outlines some of the problem areas that still exist, and suggests some solutions.
High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel A. Mosher; Xia Tang; Ronald J. Brown
2007-07-27
This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
Advanced energy storage for space applications: A follow-up
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Surampudi, Subbarao
1994-01-01
Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.
2011-09-19
Integration – Non-Thermal Plasma JP8 reformer & SOFC system – Lithium-Iron Phosphate Battery Technology – Lithium Ion Battery & energy storage systems...regeneration and includes a lithium ion battery energy storage – Export power capabilities meeting mission requirements (5-50 kilowatt [kW]) – Air
NASA Redox system development project status
NASA Technical Reports Server (NTRS)
Nice, A. W.
1981-01-01
NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.
High-capacity high-speed recording
NASA Astrophysics Data System (ADS)
Jamberdino, A. A.
1981-06-01
Continuing advances in wideband communications and information handling are leading to extremely large volume digital data systems for which conventional data storage techniques are becoming inadequate. The paper presents an assessment of alternative recording technologies for the extremely wideband, high capacity storage and retrieval systems currently under development. Attention is given to longitudinal and rotary head high density magnetic recording, laser holography in human readable/machine readable devices and a wideband recorder, digital optical disks, and spot recording in microfiche formats. The electro-optical technologies considered are noted to be capable of providing data bandwidths up to 1000 megabits/sec and total data storage capacities in the 10 to the 11th to 10 to the 12th bit range, an order of magnitude improvement over conventional technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, J. C.
2011-09-01
It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from amore » small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali T-Raissi
The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammoniamore » and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.« less
Physical principles and current status of emerging non-volatile solid state memories
NASA Astrophysics Data System (ADS)
Wang, L.; Yang, C.-H.; Wen, J.
2015-07-01
Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.
Hybrid energy storage test procedures and high power battery project FY-1995 interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, G.L.
1995-12-01
Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation ofmore » such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.« less
Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella
2007-07-01
Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distributionmore » of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)« less
NASA Astrophysics Data System (ADS)
Gali, Raja L.; Roth, Christopher G.; Smith, Elizabeth; Dave, Jaydev K.
2018-03-01
In digital radiography, computed radiography (CR) technology is based on latent image capture by storage phosphors whereas direct radiography (DR) technology is based either on indirect conversion using a scintillator or direct conversion using a photoconductor. DR-based portable imaging systems may enhance workflow efficiency. The purpose of this work was to investigate changes in workflow efficiency at a tertiary healthcare center after transitioning from CR to DR technology for imaging with portable x-ray units. An IRB exemption was obtained. Data for all inpatient-radiographs acquired with portable x-ray units from July-2014 till June-2015 (period 1) with CR technology (AMX4 or AMX4+ portable unit from GE Healthcare, NX workstation from Agfa Healthcare for digitization), from July-2015 till June-2016 (period 2) with DR technology (Carestream DRX-Revolution x-ray units and DRX-1C image receptors) and from July-2016 till January-2017 (period 3; same DR technology) were extracted using Centricity RIS-IC (GE Healthcare). Duration between the imaging-examination scheduled time and completed time (timesch-com) was calculated and compared using non-parametric tests (between the three time periods with corrections for multiple comparisons; three time periods were used to identify if there were any other potential temporal trends not related to transitioning from CR to DR). IBM's SPSS package was used for statistical analysis. Overall data was obtained from 33131, 32194, and 18015 cases in periods 1, 2 and 3, respectively. Independent-Samples Kruskal-Wallis test revealed a statistically significant difference in timesch-com across the three time periods (χ2(2, n= 83,340) = 2053, p < 0.001). The timesch-com was highest for period 1 i.e., radiographs acquired with CR technology (median: 64 minutes) and it decreased significantly for radiographs acquired with DR technology in periods 2 (median: 49 minutes; p < 0.001) and 3 (median∶ 44 minutes; p < 0.001). Overall, adoption of DR technology resulted in a drop in timesch-com by 27% relative to the use of CR technology. Transitioning from CR to DR was associated with improved workflow efficiency for radiographic imaging with portable x-ray units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbus, David A; Jacobson, Mark D; Tan, Jin
As the deployment of wind and solar technologies increases at an unprecedented rate across the United States and in many world markets, the variability of power output from these technologies expands the need for increased power system flexibility. Energy storage can play an important role in the transition to a more flexible power system that can accommodate high penetrations of variable renewable technologies. This project focuses on how ternary pumped storage hydropower (T-PSH) coupled with dynamic transmission can help this transition by defining the system-wide benefits of deploying this technology in specific U.S. markets. T-PSH technology is the fastest respondingmore » pumped hydro technology equipment available today for grid services. T-PSH efficiencies are competitive with lithium-ion (Li-ion) batteries, and T-PSH can provide increased storage capacity with minimal degradation during a 50-year lifetime. This project evaluates T-PSH for grid services ranging from fast frequency response (FFR) for power system contingency events and enhanced power system stability to longer time periods for power system flexibility to accommodate ramping from wind and solar variability and energy arbitrage. In summary, this project: Compares power grid services and costs, including ancillary services and essential reliability services, for T-PSH and conventional pumped storage hydropower (PSH) - Evaluates the dynamic response of T-PSH and PSH technologies and their contribution to essential reliability services for grid stability by developing new power system model representations for T-PSH and performing simulations in the Western Interconnection - Evaluates production costs, operational impacts, and energy storage revenue streams for future power system scenarios with T-PSH focusing on time frames of 5 minutes and more - Assesses the electricity market-transforming capabilities of T-PSH technology coupled with transmission monitoring and dynamic control. This paper presents an overview of the methodology and initial, first-year preliminary findings of a 2-year in-depth study into how advanced PSH and dynamic transmission contribute to the transformation and modernization of the U.S. electric grid. This project is part of the HydroNEXT Initiative funded by the U.S. Department of Energy (DOE) that is focused on the development of innovative technologies to advance nonpowered dams and PSH. The project team consists of the National Renewable Energy Laboratory (project lead), Absaroka Energy, LLC (Montana-based PSH project developer), GE Renewable Energy (PSH pump/turbine equipment supplier), Grid Dynamics, and Auburn University (lead for NREL/Auburn dynamic modeling team).« less
The role of the underground for massive storage of energy: a preliminary glance of the French case
NASA Astrophysics Data System (ADS)
Audigane, Pascal; Gentier, Sylvie; Bader, Anne-Gaelle; Beccaletto, Laurent; Bellenfant, Gael
2014-05-01
The question of storing energy in France has become of primary importance since the launch of a road map from the government which places in pole position this topic among seven major milestones to be challenged in the context of the development of innovative technology in the country. The European objective to reach 20% of renewables in the energy market, from which a large part would come from wind and solar power generation, raises several issues regarding the capacity of the grid to manage the various intermittent energy sources in line with the variability of the public demand and offer. These uncertainties are highly influenced by unpredictable weather and economic fluctuations. To facilitate the large-scale integration of variable renewable electricity sources in grids, massive energy storage is needed. In that case, electric energy storage techniques involving the use of underground are often under consideration as they offer a large storage capacity volume with a adapted potential of confining and the space required for the implantation. Among the panel of massive storage technologies, one can find (i) the Underground Pumped Hydro-Storage (UPHS) which are an adaptation of classical Pumped Hydro Storage system often connected with dam constructions, (ii) the compressed air storage (CAES) and (iii) the hydrogen storage from conversion of electricity into H2 and O2 by electrolysis. UPHS concept is based on using the potential energy between two water reservoirs positioned at different heights. Favorable natural locations like mountainous areas or cliffs are spatially limited given the geography of the territory. This concept could be extended with the integration of one of these reservoirs in an underground cavities (specifically mined or reuse of preexisting mines) to increase opportunities on the national territory. Massive storage based on compression and relaxation of air (CAES) requires high volume and confining pressure around the storage that exists naturally in the underground and which increases with depth. However, the move to an interesting efficiency requires that the heat generated during compression can be stored and used during expansion. This storage can be also underground. H2 underground storage is part of the "Power to gas" concept which allows for converting electricity into a gas available for either electrical or gas grid. Each of these techniques requires the selection of appropriate geological formations which contains specific characteristics in agreement with several criteria under consideration when choosing electric energy storage methods for application (lifetime, life cycle, discharge rate, environmental impact, public acceptance …). We propose in this paper a preliminary review of the potential massive electric energy storage capacities in France of using specific geological formations (salt, basement) and the various physical phenomena linked to the couple geology/technology. Several approaches and methodologies developed formerly with other applications (geothermal, CO2 storage, heat storage …) will be used to investigate mechanical integrity and environmental impacts associated to these innovative technologies.
Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte Archives
NASA Technical Reports Server (NTRS)
Moore, Reagan; Marciano, Richard; Wan, Michael; Sherwin, Tom; Frost, Richard
1996-01-01
At the San Diego Supercomputer Center, a massive data analysis system (MDAS) is being developed to support data-intensive applications that manipulate terabyte sized data sets. The objective is to support scientific application access to data whether it is located at a Web site, stored as an object in a database, and/or storage in an archival storage system. We are developing a suite of demonstration programs which illustrate how Web, database (DBMS), and archival storage (mass storage) technologies can be integrated. An application presentation interface is being designed that integrates data access to all of these sources. We have developed a data movement interface between the Illustra object-relational database and the NSL UniTree archival storage system running in a production mode at the San Diego Supercomputer Center. With this interface, an Illustra client can transparently access data on UniTree under the control of the Illustr DBMS server. The current implementation is based on the creation of a new DBMS storage manager class, and a set of library functions that allow the manipulation and migration of data stored as Illustra 'large objects'. We have extended this interface to allow a Web client application to control data movement between its local disk, the Web server, the DBMS Illustra server, and the UniTree mass storage environment. This paper describes some of the current approaches successfully integrating these technologies. This framework is measured against a representative sample of environmental data extracted from the San Diego Ba Environmental Data Repository. Practical lessons are drawn and critical research areas are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.
The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.
Manned maneuvering unit technology survey
NASA Technical Reports Server (NTRS)
Cook, G. V. O. (Editor)
1975-01-01
The preliminary design of the manned maneuvering unit (MMU) for the shuttle is investigated, and the current state of the art in certain technology areas that may find application on the operational EVA shuttle MMU is examined. Three broad areas of technology, namely: (1) mechanical energy storage - i.e., the practicality of utilizing the energy storage capability of either a reaction wheel or a control moment gyro, (2) numerical and alphanumerical displays, and (3) recent electronics developments such as microprocessors and integrated injection logic, were covered.
Twelve Principles for Green Energy Storage in Grid Applications.
Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T
2016-01-19
The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.
STREET SURFACE STORAGE FOR CSO CONTROL
This paper presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage in two communities in Illinois and includes a description and evaluation of how this technology elimina...
Application of a reversible chemical reaction system to solar thermal power plants
NASA Technical Reports Server (NTRS)
Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.
1980-01-01
Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)
NASA Technical Reports Server (NTRS)
1980-01-01
The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.
NASA Astrophysics Data System (ADS)
Boyd, D. W.; Buckley, O. E.; Clark, C. E.
1982-12-01
This report describes an assessment of potential roles that EPRI might take to facilitate the commercial acceptance of compressed air energy storage (CAES) systems. The assessment is based on (1) detailed analyses of the market potential of utility storage technologies, (2) interviews with representatives of key participants in the CAES market, and (3) a decision analysis synthesizing much of the information about market and technology status. The results indicate a large potential market for CAES systems if the overall business environment for utilities improves. In addition, it appears that EPRI can have a valuable incremental impact in ensuring that utilities realize the potential of CAES by (1) continuing an aggressive information dissemination and technology transfer program, (2) working to ensure the success of the first United States CAES installation at Soyland Power Cooperative, (3) developing planning methods to allow utilities to evaluate CAES and other storage options more effectively and more realistically, and (4) supporting R and D to resolve residual uncertainties in first-generation CAES cost and performance characteristics.
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.
2017-07-01
Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
Future directions in electronic image handling.
Lemke, H U
1993-08-01
After a relatively slow start compared with the United States and Japan, several projects are now being established in Europe that are aimed at the development of prototype systems for medical image processing and management. Frequently, this includes aspects of multimedia communication, as well as legal, ethical, and economic issues. Consideration is also often given to systems security, reliability, and data protection. All these projects are based on the application of modern computer and communication technologies. The following interesting conclusions can be drawn from these preliminary activities: 1. PACS and IMAC systems should not be regarded as products or devices, but as a means to improve the infrastructure in a given medical care environment. Sometimes this activity is also referred to as knowledge business. Individual components of these systems, for example image acquisition devices, networks, storage facilities, and medical workstations, should be provided with standard interfaces allowing a modular build-up and an easy adaptation to the specific conditions of clinical departments. 2. Digital luminescence radiography will further establish itself as a method for image acquisition and increasingly will replace analog radiologic methods. Consequently, digital processing, archiving, and communication will be a necessity for optimal patient care. 3. New network technologies and magnetic-optical storage media offer the possibility of an improved cost-effectiveness for communication and storage. They should therefore be considered an important factor in future economic considerations regarding health care services. 4. The practice of modern medicine is based on team-work; good communication among the parties concerned is a critical factor.(ABSTRACT TRUNCATED AT 250 WORDS)
Sodium-ion batteries: present and future.
Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
2017-06-19
Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Thermal storage technologies for solar industrial process heat applications
NASA Technical Reports Server (NTRS)
Gordon, L. H.
1979-01-01
The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.
Prospects for hydrogen storage in graphene.
Tozzini, Valentina; Pellegrini, Vittorio
2013-01-07
Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.
FY2014 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at themore » following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.« less
NASA Astrophysics Data System (ADS)
Nakabayashi, Takashi
The Ford Motor Company proposed the principle of the sodium-sulfur battery based on a beta-alumina solid electrolyte in 1967. Accordingly, sodium-sulfur battery technology was initially developed primarily for electric vehicle applications. Later, the Tokyo Electric Power Company (TEPCO) selected the sodium-sulfur battery technology as the preferred system for a dispersed utility energy storage system to substitute for the pumped hydro energy storage system. NGK Insulators, Ltd. (NGK) and TEPCO have jointly carried out the development of the sodium-sulfur battery since 1984. In April 2002, TEPCO and NGK made the sodium-sulfur battery for use as an energy storage system commercially available.
ERDA's Chemical Energy Storage Program
NASA Technical Reports Server (NTRS)
Swisher, J. H.; Kelley, J. H.
1977-01-01
The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.
On-Farm Evaluation of Hermetic Technology Against Maize Storage Pests in Kenya.
Likhayo, Paddy; Bruce, Anani Y; Mutambuki, Kimondo; Tefera, Tadele; Mueke, Jones
2016-08-01
On-farm trial with a total of 32 farmers in eight villages of Naivasha and Nakuru areas of Kenya was conducted between December 2013 and September 2014 to evaluate hermetic grain storage technologies under farmers' management conditions. The storage technologies evaluated were metal silo and SuperGrain IV-R bag alongside the standard woven polypropylene bag with or without Actellic super dust. Moisture content, insect population, grain discoloration, and weight loss were analyzed 90, 180, and 270 d after storage. Grain moisture content remained stable over the storage period. Both metal silo and SuperGrain IV-R bag suppressed insect population, prevented grain loss and cross-infestation of insects from the surrounding environment. On the contrary, polypropylene bags allowed rapid build up of insect population and re-infestation from the surrounding environment. Grain weight losses were 1.5% in the metal silo and 1.8% in the SuperGrain IV-R bags compared to 32% in the polypropylene bags without Actellic Super dust, 270 d after storage. The present study, therefore, demonstrates that storing grains either in metal silo or SuperGrain IV-R bags would benefit farmers in reducing grain losses and improving quality. The study was of great interest to the farmers, grain storage scientists, and food security experts. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Cerva, John R.; And Others
1986-01-01
Eight papers cover: optical storage technology; cross-cultural videodisc design; optical disk technology use at the Library of Congress Research Service and National Library of Medicine; Internal Revenue Service image storage and retrieval system; solving business problems with CD-ROM; a laser disk operating system; and an optical disk for…
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
Redox storage systems for solar applications
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.; Thaller, L. H.
1980-01-01
The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.
Change and Our Future at UTS Library: It's Not Just about Technology
ERIC Educational Resources Information Center
Booth, Mal; Schofield, Sally; Tiffen, Belinda
2012-01-01
This paper describes our vision for the new UTS Library opening in 2016/17. Preparations are currently focussed on implementing enabling technologies which will move up to 80% of the print collection to an automated storage and retrieval system. This will allow the physical library to shift from a space dominated by book storage to a vibrant space…
NREL Energy Storage Projects. FY2014 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad; Ban, Chunmei; Burton, Evan
2015-03-01
The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Batterymore » Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.« less
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
Fast disk array for image storage
NASA Astrophysics Data System (ADS)
Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling
1997-01-01
A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.
Antenna data storage concept for phased array radio astronomical instruments
NASA Astrophysics Data System (ADS)
Gunst, André W.; Kruithof, Gert H.
2018-04-01
Low frequency Radio Astronomy instruments like LOFAR and SKA-LOW use arrays of dipole antennas for the collection of radio signals from the sky. Due to the large number of antennas involved, the total data rate produced by all the antennas is enormous. Storage of the antenna data is both economically and technologically infeasible using the current state of the art storage technology. Therefore, real-time processing of the antenna voltage data using beam forming and correlation is applied to achieve a data reduction throughout the signal chain. However, most science could equally well be performed using an archive of raw antenna voltage data coming straight from the A/D converters instead of capturing and processing the antenna data in real time over and over again. Trends on storage and computing technology make such an approach feasible on a time scale of approximately 10 years. The benefits of such a system approach are more science output and a higher flexibility with respect to the science operations. In this paper we present a radically new system concept for a radio telescope based on storage of raw antenna data. LOFAR is used as an example for such a future instrument.
A scalable and flexible hybrid energy storage system design and implementation
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Koh, Jason; Xie, Qing; Wang, Yanzhi; Chang, Naehyuck; Pedram, Massoud
2014-06-01
Energy storage systems (ESS) are becoming one of the most important components that noticeably change overall system performance in various applications, ranging from the power grid infrastructure to electric vehicles (EV) and portable electronics. However, a homogeneous ESS is subject to limited characteristics in terms of cost, efficiency, lifetime, etc., by the energy storage technology that comprises the ESS. On the other hand, hybrid ESS (HESS) are a viable solution for a practical ESS with currently available technologies as they have potential to overcome such limitations by exploiting only advantages of heterogeneous energy storage technologies while hiding their drawbacks. However, the HESS concept basically mandates sophisticated design and control to actually make the benefits happen. The HESS architecture should be able to provide controllability of many parts, which are often fixed in homogeneous ESS, and novel management policies should be able to utilize the control features. This paper introduces a complete design practice of a HESS prototype to demonstrate scalability, flexibility, and energy efficiency. It is composed of three heterogenous energy storage elements: lead-acid batteries, lithium-ion batteries, and supercapacitors. We demonstrate a novel system control methodology and enhanced energy efficiency through this design practice.
The value of electricity storage in energy-only electricity markets
NASA Astrophysics Data System (ADS)
McConnell, D.; Forcey, T.; Sandiford, M.
2015-12-01
Price volatility and the prospect of increasing renewable energy generation have raised interest in the potential opportunities for storage technologies in energy-only electricity markets. In this paper we explore the value of a price-taking storage device in such a market, the National Electricity Market (NEM) in Australia. Our analysis suggests that under optimal operation, there is little value in having more than six hours of storage in this market. However, the inability to perfectly forecast wholesale prices, particularly extreme price spikes, may warrant some additional storage. We found that storage devices effectively provide a similar service as peak generators (such as Open Cycle Gas Turbines) and are similarly dependent on and exposed to extreme price events, with revenue for a merchant generator highly skewed to a few days of the year. In contrast to previous studies, this results in the round trip efficiency of the storage being relatively insignificant. Financing using hedging strategies similar to a peak generator effectively reduces the variability of revenue and exposure of storage to extreme prices. Our case study demonstrates that storage may have a competitive advantage over other peaking generators on the NEM, due to its ability to earn revenue outside of extreme peak events. As a consequence the outlook for storage options on the NEM is dependent on volatility, in turn dependent on capacity requirements. Further to this, increased integration of renewable energy may both depend on storage and improve the outlook for storage in technologies in electricity markets.
RAID Disk Arrays for High Bandwidth Applications
NASA Technical Reports Server (NTRS)
Moren, Bill
1996-01-01
High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.
NASA Astrophysics Data System (ADS)
Zhang, Xinhua; Zhou, Zhongkang; Chen, Xiaochun; Song, Jishuang; Shi, Maolin
2017-05-01
system is proposed based on NaS battery and lithium ion battery, that the former is the main large scale energy storage technology world-widely used and developed and the latter is a flexible way to have both power and energy capacities. The hybrid energy storage system, which takes advantage of the two complementary technologies to provide large power and energy capacities, is chosen to do an evaluation of econom ical-environmental based on critical excess electricity production (CEEP), CO2 emission, annual total costs calculated on the specific given condition using Energy PLAN software. The result shows that hybrid storage system has strengths in environmental benefits and also can absorb more discarded wind power than single storage system and is a potential way to push forward the application of wind power and even other types of renewable energy resources.
Eternal 5D data storage by ultrafast laser writing in glass
NASA Astrophysics Data System (ADS)
Zhang, J.; ČerkauskaitÄ--, A.; Drevinskas, R.; Patel, A.; Beresna, M.; Kazansky, P. G.
2016-03-01
Securely storing large amounts of information over relatively short timescales of 100 years, comparable to the span of the human memory, is a challenging problem. Conventional optical data storage technology used in CDs and DVDs has reached capacities of hundreds of gigabits per square inch, but its lifetime is limited to a decade. DNA based data storage can hold hundreds of terabytes per gram, but the durability is limited. The major challenge is the lack of appropriate combination of storage technology and medium possessing the advantages of both high capacity and long lifetime. The recording and retrieval of the digital data with a nearly unlimited lifetime was implemented by femtosecond laser nanostructuring of fused quartz. The storage allows unprecedented properties including hundreds of terabytes per disc data capacity, thermal stability up to 1000 °C, and virtually unlimited lifetime at room temperature opening a new era of eternal data archiving.
Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg
2009-06-01
This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2more » storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.« less
Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion
2014-01-01
The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326
Gounga, M E; Xu, S-Y; Wang, Z; Yang, W G
2008-05-01
Harvested chestnut is characterized by a short shelf life, exposing many Chinese producers to a storage problem as product losses are very high. The objective of this study was to develop a suitable technology to extend the shelf life of harvested chestnut fruits for commercial use. The effect of whey protein isolate-pullulan (WPI-Pul) coating on fresh-roasted chestnuts (FRC) and roasted freeze-dried chestnut (RFDC) quality and shelf life was studied under 2 different storage temperature (4 and 20 degrees C) conditions. Coatings were formed directly onto the surface of the fruits by dipping them into a film solution. SEM micrographs showed homogeneous WPI-Pul to cover the whole surface of chestnut with good adherence and perfect integrity. Moisture loss or gain, fruit quality, and shelf life were evaluated by weight loss or gain, surface color development, and visible decay during the storage period of 15 to 120 d at 4 and 20 degrees C, respectively. WPI-Pul coating had a low, yet significant effect on reducing moisture loss and decay incidence of FRC, hence delaying changes in their external color. The results were satisfactory when the coating was done with freeze-drying at low temperature storage, thus improving the quality and increasing the shelf life. This provides an alternative strategy to minimize the significant losses in harvested chestnut.
NASA Astrophysics Data System (ADS)
Chadha, Tandeep S.
Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veenstra, Mike; Purewal, Justin; Xu, Chunchuan
Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less
Electrochemical Energy Storage and Power Sources for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2007-01-01
An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.
Efficient proof of ownership for cloud storage systems
NASA Astrophysics Data System (ADS)
Zhong, Weiwei; Liu, Zhusong
2017-08-01
Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment
NASA Technical Reports Server (NTRS)
Liggin, Karl; Clark, Porter
1999-01-01
The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.
Electrochemical Energy Storage for an Orbiting Space Station
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.
Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1984-01-01
Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean
2017-11-04
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.
Kanfoud, Jamil; Gan, Tat-Hean
2017-01-01
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058
Capabilities | Transportation Research | NREL
about: Energy storage Power electronics Climate control Medium- and Heavy-Duty Vehicle Technology viable in the marketplace. Learn more about: Power electronics Energy storage Transportation Data
Reduced Boil-Off System Sizing
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.
2015-01-01
NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.
Subcontracted activities related to TES for building heating and cooling
NASA Technical Reports Server (NTRS)
Martin, J.
1980-01-01
The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.
77 FR 24190 - East Cheyenne Gas Storage, LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... Gas Storage, LLC; Notice of Amendment Take notice that on April 6, 2012, East Cheyenne Gas Storage... certain changes to its certificated gas storage project, which relate primarily to the design and number... directed to William A. Lang, President, East Cheyenne Gas Storage, LLC, 10370 Richmond Avenue, Suite 510...
Solar thermal power storage applications lead laboratory overview
NASA Technical Reports Server (NTRS)
Radosevich, L. G.
1980-01-01
The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Code of Federal Regulations, 2012 CFR
2012-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2014 CFR
2014-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2011 CFR
2011-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2010 CFR
2010-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2013 CFR
2013-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Energy Storage for the Power Grid
Imhoff, Carl; Vaishnav, Dave; Wang, Wei
2018-05-30
The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.
Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...
Data systems and computer science space data systems: Onboard memory and storage
NASA Technical Reports Server (NTRS)
Shull, Tom
1991-01-01
The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.
The total number of confirmed releases from underground storage tanks is increasing rapidly. In addition, the treatment of contaminants in soil and groundwater at leaking underground storage tank (LUST) sites presents complex technical challenges. Most of the remedial technologie...
Ice Storage System for School Complex.
ERIC Educational Resources Information Center
Montgomery, Ross D.
1998-01-01
Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…
STREET STORAGE SYSTEM FOR CONTROL OF COMBINED SEWER SURCHARGE
This manual presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage, in 2 communities in IL and includes a description and evaluation of how this technology solved surchar...
Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.
ERIC Educational Resources Information Center
Urrows, Henry; Urrows, Elizabeth
1988-01-01
Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)
Batteries and Energy Storage | Argonne National Laboratory
-energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2013-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).
Optical Disk Technology and Information.
ERIC Educational Resources Information Center
Goldstein, Charles M.
1982-01-01
Provides basic information on videodisks and potential applications, including inexpensive online storage, random access graphics to complement online information systems, hybrid network architectures, office automation systems, and archival storage. (JN)
Review of past, present, and future of recording technology
NASA Astrophysics Data System (ADS)
Al-Jibouri, Abdul-Rahman
2003-03-01
The revolution of information storage and recording has been advanced significantly over the past two decades. Since the development of computers in early 1950s by IBM, the data (information) was stored on magnetic disc by inducing magnetic flux to define the pit direction. The first disc was developed by IBM with diameter of 25inch to store around 10 kByte. After four decades, the disc drive has become more advanced by reducing the drive size, increasing ariel density and cost reduction. The introduction of new computer operating systems and the Internet resulted in the need to develop high ariel density in the 1990s. Therefore, the disc drive manufacturers were pushed harder to develop new technologies at low cost to survive the competitive market. The disc drives, which are based on media (where the data/information is stored) and the head (which will write and read data/information). The head and disc are separated and with the current technology the spacing between the disc and head is about 40nm. A new technology based on magnetic recording was developed to serve the audio market. This technology is called magnetic type, it is similar to the disc drive, but the media is based on tape rather than rigid disc. Another difference being the head and media are in direct contact. Magnetic tape was developed for audio application and a few years later this technology was extended to allow and accept another technology, called video. This allows consumers to record and view movies in their home. The magnetic tape also used the computer industries for back up data. Magnetic tape is still used in computers and has advanced further over the past decade, companies like Quantum Corp has developed digital linear tape.
NASA Astrophysics Data System (ADS)
Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2017-06-01
We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and customer type, and specified additional features for STEALS that are needed to meet the needs of this growing power market.
Direct Data Distribution From Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.
1997-01-01
NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
A Comprehensive Comparison of Current Operating Reserve Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong
Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
Digital Linear Tape (DLT) technology and product family overview
NASA Technical Reports Server (NTRS)
Lignos, Demetrios
1994-01-01
The demand that began a couple of years ago for increased data storage capacity continues. Peripheral Strategies (a Santa Barbara, California, Storage Market Research Firm) projects the amount of data stored on the average enterprise network will grow by 50 percent to 100 percent per year. Furthermore, Peripheral Strategies says that a typical mid-range workstation system containing 30GB to 50GB of storage today will grow at the rate of 50 percent per year. Dan Friedlander, a Boulder, Colorado-based consultant specializing in PC-LAN backup, says, 'The average NetWare LAN is about 8GB, but there are many that have 30GB to 300GB.....' The substantial growth of storage requirements has created various tape technologies that seek to satisfy the needs of today's and, especially, the next generations's systems and applications. There are five leading tape technologies in the market today: QIC (Quarter Inch Cartridge), IBM 3480/90, 8mm, DAT (Digital Audio Tape) and DLT (Digital Linear Tape). Product performance specifications and user needs have combined to classify these technologies into low-end, mid-range, and high-end systems applications. Although the manufacturers may try to position their products differently, product specifications and market requirements have determined that QIC and DAT are primarily low-end systems products while 8mm and DLT are competing for mid-range systems applications and the high-end systems space, where IBM compatibility is not required. The 3480/90 products seem to be used primarily in the IBM market, for interchangeability purposes. There are advantages and disadvantages for each of the tape technologies in the market today. We believe that DLT technology offers a significant number of very important features and specifications that make it extremely attractive for most current as well as emerging new applications, such as Hierarchical Storage Management (HSM). This paper will demonstrate why we think that the DLT technology and family of DLT products will become the technology of choice for most new applications in the mid-range and high-end (non-IBM) markets.
Archer, Charles J.; Blocksome, Michael A.
2012-12-11
Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.
Selection of battery technology to support grid-integrated renewable electricity
NASA Astrophysics Data System (ADS)
Leadbetter, Jason; Swan, Lukas G.
2012-10-01
Operation of the electricity grid has traditionally been done using slow responding base and intermediate load generators with fast responding peak load generators to capture the chaotic behavior of end-use demands. Many modern electricity grids are implementing intermittent non-dispatchable renewable energy resources. As a result, the existing support services are becoming inadequate and technological innovation in grid support services are necessary. Support services fall into short (seconds to minutes), medium (minutes to hours), and long duration (several hours) categories. Energy storage offers a method of providing these services and can enable increased penetration rates of renewable energy generators. Many energy storage technologies exist. Of these, batteries span a significant range of required storage capacity and power output. By assessing the energy to power ratio of electricity grid services, suitable battery technologies were selected. These include lead-acid, lithium-ion, sodium-sulfur, and vanadium-redox. Findings show the variety of grid services require different battery technologies and batteries are capable of meeting the short, medium, and long duration categories. A brief review of each battery technology and its present state of development, commercial implementation, and research frontiers is presented to support these classifications.