Sample records for directional secular variation

  1. Importance of selecting archaeomagnetic data for geomagnetic modelling: example of the new Western Europe directional and intensity secular variation curves from 1500 BC to 200 AD

    NASA Astrophysics Data System (ADS)

    Herve, Gwenael; Chauvin, Annick; Lanos, Philippe

    2014-05-01

    At the regional scale, the dispersion between archaeomagnetic data and especially archaeointensities suggests that some of them may be biased. As a consequence, it appears necessary to perform a selection of available data before to compute mean regional secular variation curves or geomagnetic models. However the definition of suitable selection criteria is not obvious and we need to know how to manage "old" data acquired during the 60-70s. The Western Europe directional and intensity data set from 1500 BC to 200 AD allows to discuss these issues. It has recently been enhanced by 39 new archaeodirections and 23 new archaeointensities (Hervé et al., 2013a and 2013b data sets and 5 unpublished data). First, the whole Western Europe data set was selected but the strong dispersion restricted the accuracy and the reliability of the new Western Europe secular variation curves at Paris. The causes of the dispersion appear different between archaeodirections and archaeointensities. In the directional data set, the main problem comes from some age errors in the oldest published data. Since their publication their archaeological dating may have changed of 50 years or more. For intensity data that were acquired much more recently, the dispersion mainly results from the use of unreliable archaeointensity protocols. We propose a weighting approach based on the number of specimens and the use of pTRM-checks, anisotropy and cooling rate corrections. Only 63% of available archaeodirections and 32% of archaeointensities were used to build the new Western Europe secular variation curves from 1500 BC to 200 AD. These curves reveal that selecting the reference data avoids wrong estimations of the shape of the secular variation curves, the secular variation rate, the dating of archaeomagnetic jerks... Finally, it is worth pointing out that current geomagnetic global models take into account almost all the data that we decided to reject. It could partly explain why their predictions at Paris do not fit our local secular variation curves. Hervé, G., Chauvin, A. & Lanos, P., 2013a. Geomagnetic field variations in Western Europe from 1500BC to 200AD. Part I : Directional secular variation curve, Phys. Earth Planet. Inter., 218, 1-13. Hervé, G., Chauvin, A. & Lanos, P., 2013b. Geomagnetic field variations in Western Europe from 1500BC to 200AD. Part II : New intensity secular variation curve, Phys. Earth Planet. Inter., 218, 51-65.

  2. A Statistical Model of the Fluctuations in the Geomagnetic Field from Paleosecular Variation to Reversal

    PubMed

    Camps; Prevot

    1996-08-09

    The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.

  3. Relative secular variations of the geomagnetic field along the Zgorzelec-Wiżajny profile, Poland

    NASA Astrophysics Data System (ADS)

    Wojas, Anna; Grabowska, Teresa; Mikołajczak, Mateusz

    2018-03-01

    The paper presents results of the study on relative secular variations of total magnetic intensity (TMI) of the geomagnetic field along the 700 km long profile crossing the area of Poland. Surveys were carried out at annual intervals between 1966 and 2016 (50 measurement series), in 31 survey sites (secular points) separated by about 22 km. The studied profile of the SW-NE direction, called Zgorzelec-Wiżajny (Z-W), crosses large parts of the main tectonic units of Europe, namely the Palaeozoic Platform of Central and Western Europe (PLZ) and the East European Craton (EEC), connected by the Teisseyre-Tornquist Zone (TTZ). Using the original methodology of analysis of measured data, reduced to the values of geomagnetic field recorded at the Central Geophysical Observatory in Belsk, the relative secular variations of TMI with the magnetic anomalies (ΔT) and the terrestrial heat flow density (Q) were graphically presented.

  4. Paleomagnetic directions and thermoluminescence dating from a bread oven-floor sequence in Lübeck (Germany): A record of 450 years of geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Schnepp, Elisabeth; Pucher, Rudolf; Goedicke, Christian; Manzano, Ana; Müller, Uwe; Lanos, Philippe

    2003-02-01

    A record of about 450 years of geomagnetic secular variation is presented from a single archaeological site in Lübeck (Germany) where a sequence of 25 bread oven floors has been preserved in a bakery from medieval times until today. The age dating of the oven-floor sequence is based on historical documents, 14C-dating and thermoluminescence dating. It confines the time interval from about 1300 to 1800 A.D. Paleomagnetic directions have been determined from each oven floor by means of 198 oriented hand samples. After alternating field as well as thermal demagnetization experiments, the characteristic remanent magnetization direction was obtained using principal component analysis. The mean directions of 24 oven floors are characterized by high Fisherian precision parameters (>146) and small α95 confidence limits (1.2°-4.6°). For obtaining a smooth curve of geomagnetic secular variation for Lübeck, a spherical spline function was fitted to the data using a Bayesian approach, which considers not only the obtained ages, but also stratigraphic order. Correlation with historical magnetic records suggests that the age estimation for the upper 10 layers was too young and must date from the end of the sixteenth to the mid of the eighteenth century. For the lowermost 14 layers, dating is reliable and provides a secular variation curve for Germany. The inclination shows a minimum in the fourteenth century and then increases by more than 10°. Declination shows a local minimum around 1400 A.D. followed by a maximum in the seventeenth century. This is followed by the movement of declination about 30° to western directions.

  5. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    NASA Astrophysics Data System (ADS)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  6. New evidence of a fast secular variation of the geomagnetic field 1000 BCE: archaeomagnetic study of Bavarian potteries

    NASA Astrophysics Data System (ADS)

    Hervé, G.; Gilder, S.; Fassbinder, J.; Metzler-Nebelsick, C.; Schnepp, E.; Geisweid, L.; Putz, A.; Reuss, S.; Riedel, G.; Westhausen, I.; Wittenborn, F.

    2016-12-01

    This study presents new archaeointensity results obtained on 350 pottery sherds from 45 graves and pits from 12 sites around Munich (Germany). The features are dated between 1400 and 400 BCE by ceramic and metallic artifacts, radiocarbon and dendrochronology. We collected only red- or partly red-colored sherds in order to minimize mineralogical alteration during laboratory experiments. Rock magnetism analyses show that the remanent magnetization is mainly carried by titanomagnetite. Archaeointensities were determined using the Thellier-Thellier protocol with corrections of TRM anisotropy and cooling rate on one to three specimens per sherd. The experiments were completed using Triaxe and multispecimen (MSP-DSC) methods. Around 60 per cent of the sherds provide reliable results, allowing the computation of 35 mean archaeointensity values. This quadruples the number of previously published data in Western Europe. The secular variation of the geomagnetic field strength is low from 1400 to 1200 BCE with intensities close to 50 µT then the intensity increased to 70 µT around 1000-900 BCE. After a minimum 50 µT near 750 BCE, the intensity increased again to 90 µT at 650 BCE. This high secular variation rate (0.4 µT/year) is especially apparent in the sherds from a fountain dated between 750 and 650 BCE. Next, the intensity remained high until 400 BCE before rapidly decreasing to 200 BCE. As the sharp change in geomagnetic direction around 800 BCE is not contemporaneous with an intensity high, this period is probably not characterized by an archaeomagnetic jerk. The trend of secular variation with two intensity maxima is similar to the one observed in the Near East. The Virtual Axial Dipole Moments of the two regions are approximately the same after 700 BCE, but before they are systematically 1-2 × 1022 Am2 higher in the Near East. This difference may be a further proof of a geomagnetic field anomaly in this area 1000 BCE, yet there is no evidence for a geomagnetic spike in Western Europe. Finally, the fast rate of secular variation will provide an improved dating tool for archaeologists together with the available directional secular variation curves.

  7. Archaeomagnetic secular variation in the UK during the past 4000 years and its application to archaeomagnetic dating

    NASA Astrophysics Data System (ADS)

    Zananiri, I.; Batt, C. M.; Lanos, Ph.; Tarling, D. H.; Linford, P.

    2007-02-01

    This paper examines the limitations and deficiencies of the current British archaeomagnetic calibration curve and applies several mathematical approaches in an attempt to produce an improved secular variation curve for the UK for use in archaeomagnetic dating. The dataset compiled is the most complete available in the UK, incorporating published results, PhD theses and unpublished laboratory reports. It comprises 620 archaeomagnetic (directional) data and 238 direct observations of the geomagnetic field, and includes all relevant information available about the site, the archaeomagnetic direction and the archaeological age. A thorough examination of the data was performed to assess their quality and reliability. Various techniques were employed in order to use the data to construct a secular variation (SV) record: moving window with averaging and median, as well as Bayesian statistical modelling. The SV reference curve obtained for the past 4000 years is very similar to that from France, most differences occurring during the early medieval period (or Dark Ages). Two examples of dating of archaeological structures, medieval and pre-Roman, are presented based on the new SV curve for the UK and the implications for archaeomagnetic dating are discussed.

  8. Updating the French archeomagnetic directional database for the past two millennia

    NASA Astrophysics Data System (ADS)

    Le Goff, M.; Warmé, N.; Gallet, Y.; Genevey, A.

    2009-04-01

    Research in archeomagnetism began in France during the 1930's with the pioneering work of Emile Thellier. Combining instrumental and methodological developments, together with the patient establishment of a collaboration with archeologists, Thellier's activity led to the construction of the first directional secular variation curve in France spanning the past two millennia. After Thellier's retirement, Ileana Bucur continued this work, enriching the French archeomagnetic database up to more than 200 directional data, among which 120 dated results were used to construct in 1994 a revised version of the French directional secular variation curve, which is still considered as a reference today. Since 1994, the acquisition of archeomagnetic directional data has been continuously pursued at IPGP and the present study aims to update the French archeomagnetic dataset for the past two millennia. We have sampled about 400 burned structures from more than sixty different archeological sites mostly located near Paris, in the Ile-de-France region. Domestic kilns here represent approximately 2/3 of those structures, which were found in ancient agricultural settlements generally dated to the High Middle Ages. More than one hundred structures were dated using archeological constraints, such as the typo-morphology of ceramics, coins or archives, with enough precision and accuracy to be considered for improving the French reference directional secular variation curve over the past two millennia. We will discuss the present status of the French archeomagnetic directional database, which thus contains more than 600 data, 90% of which are defined with an a95 of less than 2°. We will also illustrate its increasingly potential as a dating tool for archeological purposes.

  9. High-resolution chronology of sediment below CCD based on Holocene paleomagnetic secular variations in the Tohoku-oki earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Kanamatsu, Toshiya; Usami, Kazuko; McHugh, Cecilia M. G.; Ikehara, Ken

    2017-08-01

    Using high-resolution paleomagnetic data, we examined the potential for obtaining precise ages from sediment core samples recovered from deep-sea basins close to rupture zones of the 2011 and earlier earthquakes off Tohoku, Japan. Obtaining detailed stratigraphic ages from deep-sea sediments below the calcium compensation depth (CCD) is difficult, but we found that the samples contain excellent paleomagnetic secular variation records to constrain age models. Variations in paleomagnetic directions obtained from the sediments reveal systematic changes in the cores. A stacked paleomagnetic profile closely matches the Lake Biwa data sets in southwest Japan for the past 7000 years, one can establish age models based on secular variations of the geomagnetic field on sediments recovered uniquely below the CCD. Comparison of paleomagnetic directions near a tephra and a paleomagnetic direction of contemporaneous pyroclastic flow deposits acquired by different magnetization processes shows precise depositional ages reflecting the magnetization delay of the marine sediment record.Plain Language SummaryGenerally obtaining detailed ages from deep-sea sediments is difficult, because available dating method is very limited. We found that the deep-see sediment off North Japan recorded past sequential geomagnetic directions. If those records correlate well with the reference record in past 7000 years, then we could estimate age of sediment by pattern matching. Additionally a volcanic ash emitted in 915 A.D., which was intercalated in our samples, indicates a time lag in our age model. This observation makes our age model more precise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019514','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019514"><span>The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.</p> <p>1997-01-01</p> <p>We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010426','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010426"><span>A study of alternative schemes for extrapolation of secular variation at observatories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alldredge, L.R.</p> <p>1976-01-01</p> <p>The geomagnetic secular variation is not well known. This limits the useful life of geomagnetic models. The secular variation is usually assumed to be linear with time. It is found that attenative schemes that employ quasiperiodic variations from internal and external sources can improve the extrapolation of secular variation at high-quality observatories. Although the schemes discussed are not yet fully applicable in worldwide model making, they do suggest some basic ideas that may be developed into useful tools in future model work. ?? 1976.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMDI23B2091K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMDI23B2091K"><span>Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuang, W.; Tangborn, A.; Jiang, W.</p> <p>2011-12-01</p> <p>It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.478...58T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.478...58T"><span>Geomagnetic field secular variation in Pacific Ocean: A Bayesian reference curve based on Holocene Hawaiian lava flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tema, E.; Herrero-Bervera, E.; Lanos, Ph.</p> <p>2017-11-01</p> <p>Hawaii is an ideal place for reconstructing the past variations of the Earth's magnetic field in the Pacific Ocean thanks to the almost continuous volcanic activity during the last 10 000 yrs. We present here an updated compilation of palaeomagnetic data from historic and radiocarbon dated Hawaiian lava flows available for the last ten millennia. A total of 278 directional and 66 intensity reference data have been used for the calculation of the first full geomagnetic field reference secular variation (SV) curves for central Pacific covering the last ten millennia. The obtained SV curves are calculated following recent advances on curve building based on the Bayesian statistics and are well constrained for the last five millennia while for older periods their error envelopes are wide due to the scarce number of reference data. The new Bayesian SV curves show three clear intensity maxima during the last 3000 yrs that are accompanied by sharp directional changes. Such short-term variations of the geomagnetic field could be interpreted as archaeomagnetic jerks and could be an interesting feature of the geomagnetic field variation in the Pacific Ocean that should be further explored by new data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/of/2017/1037/ofr20171037.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/of/2017/1037/ofr20171037.pdf"><span>Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rigler, E. Joshua</p> <p>2017-04-26</p> <p>A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IAUS..288..322J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IAUS..288..322J"><span>Secular variation and fluctuation of GPS Total Electron Content over Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Rui; Jin, Shuanggen</p> <p>2013-01-01</p> <p>The total electron content (TEC) is an important parameters in the Earth's ionosphere, related to various space weather and solar activities. However, understanding of the complex ionospheric environments is still a challenge due to the lack of direct observations, particularly in the polar areas, e.g., Antarctica. Now the Global Positioning System (GPS) can be used to retrieve total electron content (TEC) from dual-frequency observations. The continuous GPS observations in Antarctica provide a good opportunity to investigate ionospheric climatology. In this paper, the long-term variations and fluctuations of TEC over Antarctica are investigated from CODE global ionospheric maps (GIM) with a resolution of 2.5°×5° every two hours since 1998. The analysis shows significant seasonal and secular variations in the GPS TEC. Furthermore, the effects of TEC fluctuations are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016829','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016829"><span>Analysis of geomagnetic secular variation during 1980-1985 and 1985- 1990, and geomagnetic models proposed for the 1991 revision of the International Geomagnetic Reference Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peddie, N.W.</p> <p>1992-01-01</p> <p>The secular variation of the main geomagnetic field during the periods 1980-1985 and 1985-1990 was analyzed in terms of spherical harmonics up to the eighth degree and order. Data from worldwide magnetic observatories and the Navy's Project MAGNET aerial surveys were used. The resulting pair of secular-variation models was used to update the Definitive Geomagnetic Reference Field (DGRF) model for 1980, resulting in new mainfield models for 1985.0 and 1990.0. These, along with the secular-variation model for 1985-1990, were proposed for the 1991 revision of the International Geomagnetic Reference Field (IGRF). -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4392B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4392B"><span>Mechanism of secular increasing of mean gravity in Northern hemisphere and secular decreasing of mean gravity in Southern hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yu. V.; Ferrandiz, J. M.</p> <p>2009-04-01</p> <p>Mechanism. To present time the observant data in various geosciences more and more confidently testify for the benefit of existence of secular drift of the Earth core in the direction of North Pole. 1). So the superfluous mass of a displaced core relatively to elastic mantle, obviously, results in displacement of the centre of mass of the Earth with respect to basic system of coordinates on a surface of the Earth also in northern direction. Methods of a space geodesy let us confidently to determine drift of the centre of mass to the north with velocity about 0.5 - 1.0 cm/yr. The fundamental phenomenon of drift of the centre of mass and the core of the Earth has been predicted in 1995 (Barkin, 1995) at the analysis of secular change of the pear-shaped form of the Earth in present epoch (velocity of drift of the centre of mass of the Earth was appreciated in 1.8 +/-1.0 cm/yr in the direction of North Pole of the Earth). For an explanation of observably drift of the centre of mass at once the model of drift of the core was offered and the geodynamic model of forced relative displacements and wanderings of interacting shells of the Earth under action of a gravitational attraction of external celestial bodies (Barkin, 1996, 2002) has been developed. 2). The core makes slow secular drift and cyclic displacements. Predicted spectrum of oscillations of the centre of mass of the Earth and its core (Barkin, 2001) has received precise confirmation as a result of the Fourier analysis of temporal series for coordinates of a geocenter (Kaftan, Tatevian, 2003; Barkin, Vilke, 2004; Barkin, Lyubushin, Zotov, 2007). 3). The displaced core makes active all bouquet of natural processes in all shells of the Earth (including an atmosphere, ocean and internal shells), varying in the certain rhythms and styles the tension conditions of shells, their thermodynamic conditions etc. The core as though "conducts" by all planetary processes at once. From here take the origin such fundamental phenomena as cyclicity and synchronism of planetary natural processes, inversion of activity of natural processes in opposite hemispheres. Numerous confirmations give the extensive data of every possible geophysical observations. The phenomenon of synchronism in annual variations of activity of various natural processes is rather brightly expressed - their phases are precisely synchronized, and the periods of extreme activity (or passivity) fall to February - March or August - September. In daily variations of natural processes similar laws are observed. Here we speak about modern processes, but similar laws take place in various time scales, including geological. In the given report we shall concentrate on the analysis of possible secular variations of a gravity at displacement of an external core (of its centre of mass) relatively to the elastic mantle. The analysis has shown, that gravitational influence of displaced superfluous mass of the core are a major factor of secular variations of a gravity. However the displaced core causes directed redistribution of atmospheric masses from a southern hemisphere in northern, and also complex slow redistribution of oceanic masses. Increase of loading of atmospheric and oceanic masses on an elastic crust of northern hemisphere results in its slow lowering. Return processes should observed in a southern hemisphere. All listed factors, certainly, directly influence variations of a gravity. In a more comprehensive sense redistribution of all fluid masses, including climatic character also result in changes of a gravity. Hemispheres mean secular trends of gravity. For an estimation of a role of factors of redistribution of air and fluid masses in variations of a gravity the point model of redistribution of masses of the Earth (Barkin, 2001), obtained very effective applications at studying of fundamental problems of geodynamics, has been used. Let's emphasize, that the Earth is active dynamic object at which activity in the certain regions (for example, in subduction zones, a hilly terrain, a zone of volcanism etc.) at times is more brightly shown. Therefore the steadfast attention should be paid to local factors of changes of a gravity. In result the phenomenon of inversion changes of a gravity in northern and southern hemispheres has been predicted: mean value of a gravity in northern hemisphere accrues with velocity 1.36 micro gals in year (mGal), and in southern decreases with the same velocity. Secular variations of a gravity depend from latitude and on equator (within the framework of considered model) change a sign: dg=2.72tsinф micro gals in year (mGal), where ф is a latitude of a place of observations, t is the time in years (Barkin, 2005). The data of gravimetric measurements at the European stations: Metsahovi, Potsdam, Moha, Vienna, Wettzell, Strastburg, Medicina etc., in Asia and Australia: Eshashi, Canberra etc., in Northern and South America: Bolder (Colorado), Patagonia (Argentina) etc., and also in Antarctic Region (station Syowa), will well be coordinated to the theoretical values of secular variations of a gravity predicted earlier at the specified stations. Gravity trends are studied and evaluated after removal effects of tides, local pressure and polar motion. The secular gravity variation at Potsdam is evaluated in 2.1 mGal/yr. During 1976-1986 the similar tendency - gravity trend with velocity 2.6 mGal/yr (absolute measurements) here have been observed. The similar tendency has been determined on measurements on superconducting gravimeters during 1993-1997: 2.3-2.5 mGal/yr (Neumeyer and Dittfeled, 1997). For more extensive period of observation (Neumayer, 2002) the similar result for gravity trend has been obtained. Observable annual variations of a gravity are characterized by amplitude about 3 mGal (on our model it is 3.5 mGal). Observations at Syowa station have been confirmed the developed model. Here it was expected negative gravity trend - decreasing of gravity with velocity -2.54 mGal/yr, that have actually confirmed SG observations during 1995-1998: -2.4 mGal/yr (Sato et al., 2001). Amplitudes of an annual and semi-annual variations approximately make 4.8 mGal/yr and 0.8 mGal/yr (theoretical values: 4.2 mGal/yr and 0.95 mGal/yr). References Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian. Barkin Yu.V., Ferrandiz J.M. (2008) Phenomenon of secular increasing of mean gravity in Northern hemisphere and secular decreasing of gravity in Southern hemisphere; predictions and new confirmations. EGU General Assembly (Vienna, Austria, 13-18 April 2008). Geophysical Research Abstracts, EGU General Assembly 2008. Vol. 10, EGU2008-A-10506.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP41E..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP41E..02L"><span>A Comparison of Paleomagnetic Secular Variation during MIS 7-10 between the Bering Sea (IODP Ex. 323) and North Atlantic Ocean (ODP Leg 172): Implications for the space/time pattern of field and environmental variability (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lund, S.; Okada, M.; Acton, G.; Clement, B. M.; Stoner, J. S.; Platzman, E. S.</p> <p>2013-12-01</p> <p>Detailed records of Brunhes paleomagnetic secular variation (PSV) during Marine Isotope Stages (MIS) 7-10 have been recovered from four IODP Ex. 323 sites in the Bering Sea (U1339, U1343-U1345) and four ODP Leg 172 sites from the subtropical North Atlantic Ocean (1060-1063). Reproducible records of PSV (both directions and paleointensity) have been recovered from three or more holes at each site and correlated among the four independent sites in each region. These PSV records provide an unprecedented database for considering patterns of long-term secular variation and evidence for excursional field behavior on a larger than individual regional scale. We will present reproducible evidence for sustained long-term secular variation in each region and assess the extent to which they may be interrelated. We have identified the times of magnetic field excursions 7α, 7β, 8α, 9α, and 9β in the Atlantic records and correlated those times to the Bering Sea records. There are no true excursions in the Bering Sea at those times, but several of these intervals mark the most anomalous field behavior in the Bering Sea during MIS 7-10. In both regions, the PSV also serves as a high-resolution chronostratigraphic tool for regional correlation of environmental variability. Both regions show clear, reproducible evidence among the sites for synchronous millennial-scale environmental variability that has not been diagnosed previously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EP%26S...67...96S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EP%26S...67...96S"><span>Main field and secular variation candidate models for the 12th IGRF generation after 10 months of Swarm measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saturnino, Diana; Langlais, Benoit; Civet, François; Thébault, Erwan; Mandea, Mioara</p> <p>2015-06-01</p> <p>We describe the main field and secular variation candidate models for the 12th generation of the International Geomagnetic Reference Field model. These two models are derived from the same parent model, in which the main field is extrapolated to epoch 2015.0 using its associated secular variation. The parent model is exclusively based on measurements acquired by the European Space Agency Swarm mission between its launch on 11/22/2013 and 09/18/2014. It is computed up to spherical harmonic degree and order 25 for the main field, 13 for the secular variation, and 2 for the external field. A selection on local time rather than on true illumination of the spacecraft was chosen in order to keep more measurements. Data selection based on geomagnetic indices was used to minimize the external field contributions. Measurements were screened and outliers were carefully removed. The model uses magnetic field intensity measurements at all latitudes and magnetic field vector measurements equatorward of 50° absolute quasi-dipole magnetic latitude. A second model using only the vertical component of the measured magnetic field and the total intensity was computed. This companion model offers a slightly better fit to the measurements. These two models are compared and discussed.We discuss in particular the quality of the model which does not use the full vector measurements and underline that this approach may be used when only partial directional information is known. The candidate models and their associated companion models are retrospectively compared to the adopted IGRF which allows us to criticize our own choices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031753&hterms=earths+outer+core&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearths%2Bouter%2Bcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031753&hterms=earths+outer+core&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearths%2Bouter%2Bcore"><span>On the consequences of strong stable stratification at the top of earth's outer core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy</p> <p>1990-01-01</p> <p>The consequences of strong stable stratification at the top of the earth's fluid outer core are considered, concentrating on the generation of the geomagnetic secular variation. It is assumed that the core near the core-mantle boundary is both strongly stably stratified and free of Lorentz forces: it is found that this set of assumptions severely limits the class of possible motions, none of which is compatible with the geomagnetic secular variation. Relaxing either assumption is adequate: tangentially geostrophic flows are consistent with the secular variation if the assumption that the core is strongly stably stratified is relaxed (while retaining the assumption that Lorentz forces are negligible); purely toroidal flows may explain the secular variation if Lorentz forces are included.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7385B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7385B"><span>Explanation of observable secular variations of gravity and alternative methods of determination of drift of the center of mass of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be conditionally corresponded to the geocenter of the Earth approximately determined by position of stations of satellite observations, as the center of certain mantle systems of coordinates Oxyz. For an explanation of such significant drift of the center of mass of the Earth the mechanism of the unidirectional displacement of the core of the Earth (and its center of mass) relatively to a viscoelastic mantle [1, 2] has been offered. The next years attempts of determination of velocity of secular drift of the center of mass in the mantle reference frame by methods of a space geodesy on the basis of precision satellite observations were repeatedly undertaken. In our work [3] for determination of a trend of the center of mass the data of the International Service of Rotation of the Earth (IERS) for satellite observations of system DORIS have been used. For components of velocity of drift in geocentric Greenwich system of coordinates for period 1999-2007 estimations have been obtained: on coordinate x) -1.46 mm/yr, y) 0.79 mm/yr and z) 5.29 mm/yr (errors of the specified estimations make 5-10 %). The velocity of trend of the center of mass of the Earth and its direction are characterized by values: 5.54 mm/yr; latitude 72°6 N and a longitude 118°4 E. The direction of displacement of the center of mass will well be coordinated with a direction predicted earlier theoretically [2]: latitude 70° N and a longitude 104° E. We shall emphasize, that observable redistributions of superficial masses of the Earth explain only small part of observable displacement of the center of mass. It testifies in favour of a reality of secular relative displacement of the core and the mantle of the Earth. 2 Secular drift of the core to the North and variations of a gravity on the Earth surface. The displaced core of the Earth is characterized by the large superfluous mass approximately in 16.7 masses of the Moon. The superfluous mass is ditermined by contrast values of average densities of the core and the mantle and makes 19.32 % of mass of full the Earth. At displacement of the core relatively to the viscous-elastic mantle its superfluous mass causes observable drift of the center of mass, and also leads to changes of a gravity on the surface of the planet. Except for it the gravitational attraction of a displaced core causes deformations of all layers of the mantle, including a superficial layer. The deformed mantle produses some additional gravitational potential which gives the additional contribution to value of a gravity. Thus, noted factors lead to a secular variation of a gravity which is described by the simple formula [2]: dot g = 2gμmc-(1- h-2- 0.5k-2)ρdot-sin?, μmc = 0.1932m ⊙, g = 9.82022 m -s2 m ⊙ r⊙ (1) Here μmc = 0.1932m⊙ is a superflous mass of the Earth core in the masses of the Earth m⊙. g is an acceleration of free falling. k-2 and h-2 are Love numbers of the order (-2). ρdot is a velocity of the secular drift of the center of mass of the core relatively to the center of mass of the mantle. ?is an angle between dirtection to the pole P (in a direction to which the core of the Earth or its center of mass drifts), and direction to gravimetric station. For rough estimates of gravimetric effects as pole P the North Pole of the Earth has been accepted. Thus ? = ?-2 - φis a co-latitude. At more exact description of the core drift (or the center of mass drift) an angle? is determined by formula: cos? = cosφP cosφcos(λP - λ) + sinφP sinφ, where φP and λP is a latitude and longitude of pole P; φ and λ is a latitude and longitude of station. The Love numbers of the order (-2) in first have been evaluated in the paper [4] and have small values: k-2=-0.005004 and h-2=0.0062154. Approximately we can put ρdot m⊙ = μmcṙC, where ṙC is a velocity of the drift of the center of mass of the Earth. Then, neglecting small effects, for a variation of gravity (1) we obtain a following expression: ? r = 2ṙCg cos?-r⊙. Leaning on results of works [2], [3], we shall accept the following values of parameters of drift of the center of mass: ṙC=5.54 mm/yr, φP=70°0 N, λP=104°3 E. On the other hand a displacement of the center of mass of the Earth leads to effect of slow change of heights of gravimetric station: ḣ = -?dotC cos? = -5.54 × cos? mm/yr. Errors in determination of the specified characteristics in the given work we shall neglect. Besides the gravitational attraction of a displaced core leads also to effect of increase of horizontal component of gravitational force of an attraction of the Earth on its surface directed to the North along the corresponding meridian with pole P. For any point of a surface of the Earth this component of force is determined by the formula ?φ = ṙCg sin?-r⊙ and has positive values. And the maximal values ?φ are reached on equator, which plane is orthogonal to axes of drift of the core OP. Thus, final working formulas for studying of secular variations of components of force of a gravitational attraction of the Earth and for a variation of the heights caused by a drift of the center of mass of the Earth become: ?r = 1.74cos?-r⊙ ?Gal/yr, ?φ = 0.87sin?-r⊙ ?Gal/yr, ḣ = -5.54cos?-r⊙ mm/yr. Calculated values of mentioned gravimetric characteristics (2) for the wide list of gravimetry stations are resulted in work [5] and used in the given work. 3 Explanation of observable secular variations of a gravity and heights on gravimetric stations. We have been analysed observed variations of a gravity and heights available and accessible to us, namely their secular changes, for 8 known gravimetry stations. The periods of observations at mentioned stations make the order of 5-10 years, i.e. are not greater, but nevertheless the obtained results unequivocally testify in favour of that the basic contribution to secular variations of a gravity gives the drifting core of the Earth (by means of direct gravitational influence and due to a contribution to corresponding variations of heights). In the given work we did not consider other factors influencing on gravimetric measurements (superficial redistributions of fluid masses, variations of coefficients of the second and higher harmonics of a geopotential, etc.). As an example here we shall analyse secular variations of a gravity and heights at Ny-Alesund station (geographical coordinates: 78°93 N, 11°87 E, ? =23°16). Linear trends of a gravity and height observable at this station make -2.5±0.9 ?Gal/yr and + (6.9±0.9) mm/yr, accordingly, during 1998-2002 (Sato et.al., 2006). On our model a slow closing of the core to the Ny-Alesund station causes a positive variation of a gravity in 1.60 ?Gal/yr and a negative variation of height of station in -5.09 mm/yr [5]. These data testify a deformation of a surface of the Earth in area of station with a velocity +11.99±0.9 mm/yr owing to which the gravity tests a negative variation -3.74±0.28 ?Gal/yr. Putting effects of a variation of a gravity because of displacement of the core and from deformation of a surface, we obtain negative value for secular trend of gravity in - (2.14±0.28) ?Gal/yr, that within the limits of errors it will be coordinated with observable value - (2.5±0.9) ?Gal/yr. Similar results we have obtained for 7 another's gravimetric stations. All results are summarized in the table 1. Here we have used known data about observable secular trends of gravity and GPS heights at considered here stations of the following authors: Ny-Alesund (Sato et al., 2006); Churchill (Larson et al., 2000); Medicine (Zerbini et al., 2001); Syowa (Fukuda et.al., 2007); Strastburg (Almavict et. al., 2004); Membach (Francis et al., 2004); Wuhan (Xu et al., 2008); Metsahovi (Gitlein et. al., 2009). Table 1. Theoretical and observable values of secular variations of a gravity. Stations Core attractionSurface deformation Theory Observations Ny-Alesund+1.60 ?Gal/yr -(3.77±0.09) ?Gal/yr -(2.17±0.03) ?Gal/yr -(2.5±0.9) ?Gal/yr Churchill +1.11 ?Gal/yr -(3.38±0.28) ?Gal/yr -(2.22±0.28) ?Gal/yr -(2.13±0.23) ?Gal/yr Medicina +1.13 ?Gal/yr +(1.07±0.20) ?Gal/yr+(2.20±0.20) ?Gal/yr+(1.90±0.20) ?Gal/yr Syowa -1.44 ?Gal/yr +(0.63±0.08) ?Gal/yr-(0.81±0.08) ?Gal/yr -0.56 ?Gal/yr Strastburg +1.18 ?Gal/yr +(0.71±0.02) ?Gal/yr+(1.89±0.02) ?Gal/yr+(1.90±0.20) ?Gal/yr Membach +1.21 ?Gal/yr -(1.98±0.16) ?Gal/yr -(0.77±0.16) ?Gal/yr -(0.6±0.1) ?Gal/yr Wuhan +1.34 ?Gal/yr -(0.17±0.05) ?Gal/yr +(1.17±0.05) ?Gal/yr+(1.39±0.02) ?Gal/yr Metsahovi +1.47 ?Gal/yr -(2.82±0.06) ?Gal/yr +(1.35±0.06) ?Gal/yr-(0.88±0.52) ?Gal/yr</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900039984&hterms=william+scholl&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwilliam%2Bscholl','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900039984&hterms=william+scholl&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwilliam%2Bscholl"><span>Secular resonances. [of asteroidal dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scholl, H.; Froeschle, CH.; Kinoshita, H.; Yoshikawa, M.; Williams, J. G.</p> <p>1989-01-01</p> <p>Theories and numerical experiments regarding secular resonances are reviewed. The basic dynamics and the positions of secular resonances are discussed, and secular perturbation theories for the nu16 resonance case, the nu6 resonance, and the nu5 resonance are addressed. What numerical experiments have revealed about asteroids located in secular resonances, the stability of secular resonances, variations of eccentricities and inclinations, and chaotic orbits is considered. Resonant transport of meteorites is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990099278&hterms=Uti&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DUti','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990099278&hterms=Uti&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DUti"><span>Lunar and Solar Torques on the Oceanic Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.</p> <p>1998-01-01</p> <p>Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PEPI..215...29F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PEPI..215...29F"><span>Archeointensities in Greece during the Neolithic period: New insights into material selection and secular variation curve</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fanjat, G.; Aidona, E.; Kondopoulou, D.; Camps, P.; Rathossi, C.; Poidras, T.</p> <p>2013-02-01</p> <p>Numerous archeomagnetic studies have provided high quality data for both the direction and the intensity of the geomagnetic field, essentially in Europe for the last 10 millennia. In particular, Greece supplies a lot of archeological materials due to its impressive cultural heritage and volcanic activity, so that numerous data have been obtained from burnt clays or historical lava flows. The most recent Greek secular variation curves are available for the last 8 millennia for the intensity and the last 6 millennia for the direction. Nevertheless, the coverage still presents several gaps for periods older than 2500 BC. In an effort to complete the Greek curve and extend it to older times, we present the archeointensity results from three Neolithic settlements in Northern Greece. The samples are of two different natures: burnt structures from Avgi (5250 ± 150 BC) and Vasili (4800 ± 200 BC), as well as ceramics from Dikili Tash (4830 ± 80 BC) and Vasili (4750 ± 250 BC). The samples have been subjected to standard rock magnetic analyses in order to estimate the thermal stability and the domain state of the magnetic carriers before archeointensity measurements. Surprisingly, very few ceramic samples provided reliable archeointensities whereas samples from burnt structures presented a very good success rate. Complementary studies showed that a detailed examination of the matrix color, following archeological information and classification standards can be a decisive test for pre-selection of sherds. In spite of these unsuccessful measurements from ceramics, we obtained an intensity value of 73.5 ± 1.1 μT for Dikili Tash, a higher value than the other data obtained in the same area, during the same period. However we do not have evidences for a technical artefact during the experiment. The burnt structures yielded two reliable archeointensities of 36.1 ± 1.8 μT and 46.6 ± 3.4 μT for Avgi and Vasili, respectively. Finally, we achieved a new archeomagnetic dating for these sites by comparing these new archeointensity values, combined to the directional measurements already published, with the Bulgarian secular variation curve. These new results contribute to extend the Greek secular variation reference curve towards older periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP21A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP21A..03S"><span>Paleomagnetic Directions of 3-4ka Basaltic Volcanoes in the Aso Central Cone, Kyushu Japan: Contributions to the Paleosecular Variation and the Volcano-Stratigraphic Studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibuya, H.; Mochizuki, N.; Miyabuchi, Y.</p> <p>2017-12-01</p> <p>In the central cone of Aso volcano, Kyushu Japan, there are 4 basaltic volcanic cones of 3-4 ka in age. The lava flows from those cones spread on the flank of the cones, and they were classified in the relation to each cone. The composition and lithology of those lavas are, however, often difficult to distinguish each other. Thus, we try the magnetostratigraphic study of those lava flows to confirm the classification. The samples were collected from 22 sites, one from a scoria cone and others are from lava, and measured their paleomagnetism. The magnetization of those samples is quite simple, as expected, and alternating field demagnetization well defines the primary component. The site mean directions aligns well on an arc, which defines the paleosecular variation of those ages, 3-4ka. The lava flows and a welded scoria classified as of two centers (Komezuka and Kamikomezuka) are well clustered and confirmed to a single or very closely erupted in time for each center. On the other hand, lava flows related to the other two centers (Ojo and Kijima) have multiple clusters in paleomagnetic directions, and their ages estimated from the paleosecular variation curve interfingers to the classification. It is also very interesting that there seems to be a stagnant point in secular variation just before 3ka, whose direction is similar to the known stagnant point in archeomagnetic secular variation at around 800CE. If there is tendency to stop the SV at the direction, it may be related to the core dynamo processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015171','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015171"><span>Localized sudden changes in the geomagnetic secular variation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alldredge, L.R.</p> <p>1987-01-01</p> <p>There is much debate as to whether there was a worldwide geomagnetic jerk in 1969 or 1970. It is agreed that there was an unusual sharp change in the secular variation in the east component, Y, in Europe at that time. This note points out how a localized sudden change in the secular variation pattern of one component in Europe can occur without having any large worldwide effects in any of the components. The accompanying changes in the spherical harmonic coefficients for such a localized change are also discussed. -after Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960009733&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960009733&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bradiation"><span>Effects of solar radiation pressure torque on the rotational motion of an artificial satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho</p> <p>1992-01-01</p> <p>The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940020381','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940020381"><span>Geomagnetic field models incorporating physical constraints on the secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Constable, Catherine; Parker, Robert L.</p> <p>1993-01-01</p> <p>This proposal has been concerned with methods for constructing geomagnetic field models that incorporate physical constraints on the secular variation. The principle goal that has been accomplished is the development of flexible algorithms designed to test whether the frozen flux approximation is adequate to describe the available geomagnetic data and their secular variation throughout this century. These have been applied to geomagnetic data from both the early and middle part of this century and convincingly demonstrate that there is no need to invoke violations of the frozen flux hypothesis in order to satisfy the available geomagnetic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870047342&hterms=function+museums&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunction%2Bmuseums','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870047342&hterms=function+museums&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunction%2Bmuseums"><span>Geomagnetic temporal change: 1903-1982 - A spline representation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langel, R. A.; Kerridge, D. J.; Barraclough, D. R.; Malin, S. R. C.</p> <p>1986-01-01</p> <p>The secular variation of the earth's magnetic field is itself subject to temporal variations. These are investigated with the aid of the coefficients of a series of spherical harmonic models of secular variation deduced from data for the interval 1903-1982 from the worldwide network of magnetic observatories. For some studies it is convenient to approximate the time variation of the spherical harmonic coefficients with a smooth, continuous, function; for this a spline fitting is used. The phenomena that are investigated include periodicities, discontinuities, and correlation with the length of day. The numerical data presented will be of use for further investigations and for the synthesis of secular variation at any place and at any time within the interval of the data - they are not appropriate for temporal extrapolations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMGP23A0161S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMGP23A0161S"><span>Archaeomagnetic studies in Mesoamerica using non-conventional materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soler-Arechalde, A.; Gogichaishvili, A.; Urrutia-Fucugauchi, J.</p> <p>2004-12-01</p> <p>For the first time results of an archaeomagnetic study of mural paintings and unburned lime-plasters from Mesoamerica are presented. The magnetic measurements show that at least four murals (sites: Cacaxtla, Cholula and Templo Mayor) retain a remanent magnetization carried by a mixture of hematite and magnetite grains. In most specimens, a characteristic magnetization is successfully isolated by alternating field demagnetization. The mean directions are reasonably well determined for each murals and within the range of secular variation during the last centuries. Studied Mesoamerican murals apparently retain the direction of the magnetic field at the time they were painted and are therefore an invaluable source of information concerning its secular variation. Lime-plaster samples were selected from two archaeological excavation projects in the Teopancazco residential compound of Teotihuacan and the large multi-stage structure of Templo Mayor in Tenochtitlan, where chronological information is available. The intensity of remanent magnetization and low-field susceptibility are weak reflecting low relative content of magnetic minerals. NRM directions are well grouped and alternating field demagnetization shows single or two-component magnetizations. Rock-magnetic experiments point to fine-grained titanomagnetites with pseudo-single domain behavior. Anisotropy of magnetic susceptibility measurements document a depositional fabric, with normal to free-surface minimum AMS axes. Characteristic mean site directions were correlated to the paleosecular variation curve for Mesoamerica. Our results suggest that archaeomagnetic dating can be applied to mural paintings and lime-plasters, which are materials widely employed in Mesoamerica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4850403B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4850403B"><span>Secular obliquity variations for Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bills, Bruce; Scott, Bryan R.; Nimmo, Francis</p> <p>2016-10-01</p> <p>We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..145L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..145L"><span>On the frequency spectra of the core magnetic field Gauss coefficients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lesur, Vincent; Wardinski, Ingo; Baerenzung, Julien; Holschneider, Matthias</p> <p>2018-03-01</p> <p>From monthly mean observatory data spanning 1957-2014, geomagnetic field secular variation values were calculated by annual differences. Estimates of the spherical harmonic Gauss coefficients of the core field secular variation were then derived by applying a correlation based modelling. Finally, a Fourier transform was applied to the time series of the Gauss coefficients. This process led to reliable temporal spectra of the Gauss coefficients up to spherical harmonic degree 5 or 6, and down to periods as short as 1 or 2 years depending on the coefficient. We observed that a k-2 slope, where k is the frequency, is an acceptable approximation for these spectra, with possibly an exception for the dipole field. The monthly estimates of the core field secular variation at the observatory sites also show that large and rapid variations of the latter happen. This is an indication that geomagnetic jerks are frequent phenomena and that significant secular variation signals at short time scales - i.e. less than 2 years, could still be extracted from data to reveal an unexplored part of the core dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI33A0396A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI33A0396A"><span>Main field and secular variation modeling with Defense Meteorological Satellite Program magnetic measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.</p> <p>2017-12-01</p> <p>In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1722B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1722B"><span>Prediction of secular acceleration of axial rotation of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yu. V.</p> <p>2009-04-01</p> <p>Secular motion of the Earth pole and non-tidal acceleration of its diurnal rotation have obtained rather precise explanation with the help of simple one-point model of the directed transport of fluid masses from a southern hemisphere in northern hemisphere with the general direction, given by geocentric axis OP directed to pole P with coordinates 700N, 10403 E[1]. The another generalized model represents a system of two material points with masses m2 and m1, located on surface of the Earth at poles of geocentric axis OP. Masses are linearly changed in the time with velocities [2]: ṁ2 = 0.179 × 1015kg/yrand ṁ1 = 0.043 × 1015kg/yr. A reduction of fluid masses of the appropriate thin spherical layer of the Earth correspond to secular increasing of masses of model points. The specified model has allowed to explain values of fundamental geodynamic parameters observably and determined during decades: a direction and velocity of drift of a pole of the Earth; value of non-tidal acceleration of axial rotation; to explain a secular variations of coefficients of the second, third, fourth, sixth and eighth zonal harmonics of a geopotential; coefficients of secular changes of a surface of ocean for the last approximately 150 years; a direction of secular drift of a geocenter and other planetary phenomena [3]. The role of the angular momentum of redistributed masses of the Earth in rotation of the Earth appeared not essential at the given stage of researches. On the essence the offered model has semi-empirical character as it bases on values of velocities of change of masses of points and the given position of axis OP. For their determination and estimations the part of the observant data was used, and other parameters were designed under analytical formulas. The obtained results have precisely confirmed competency and affectivity of geodynamic model [4] about existence of secular drift of a liquid core along radial direction OP with velocity about 2.6 cm/yr in the northern direction to Taimyr peninsula. Thus the gravitational attraction of superfluous mass of the core (19 % from the Earth mass) causes secular asymmetric inversion tide [2] of fluids which effectively manages to be modeled by two points with variable masses. In the given work the attempt to construct a similar model of the directed secular redistribution of fluid masses of Mars from a southern hemisphere in northern is undertaken with the purpose of an explanation of observably tendencies in redistribution of masses between hemispheres and with the purpose of a prediction of the new phenomena in its rotary motion. The hypothetical assumption is made, that secular redistribution of fluid masses from a southern hemisphere in northern hemisphere of Mars mainly is determined by areocentric axis OP directed to the pole P with coordinates 570N, 820 E (as is known in this direction the centre of mass of Mars relatively the centre of a figure on 2.8 km is displaced). Material points with masses m2 and m1 settle down at poles of geocentric axis OP on a surface of Mars, and their masses change linearly in the time with velocities [5]: ṁ2 = 0.402 × 1015kg/yr and ṁ1 = 0.257 × 1015kg/yr. The given modeling characteristics correspond to prospective secular variations of coefficients of the second and third zonal harmonics of gravitational potential of Mars: J˙2= - 57.0 × 10-11 1/yr and ˙J3 = -4.94 × 10-11 1/yr, more less agreed for today with the data of observations (Dehant, private communication, 2008) [6]. Let's emphasize, that the discussed phenomena of asymmetry of hemispheres, intensity of inversion processes, and bipolarity and inversion of all structures of Mars much more expressive, than at the Earth. Therefore we in the right to expect the greater efficiency in application of geodynamic model and more significant secular effects in rotation of Mars in comparison with the Earth. The constructed model has allowed to estimate non-tidal acceleration of axial rotation which as it would be possible to expect, essentially surpasses the similar characteristic of rotation of the Earth. The obtained result means, that angular velocity of Mars in present period increases on the law r = (0.708821808000+ 0.000000001038×t) × 10-4 1/s, here t - in years. It is possible assume that the estimation of acceleration can be obtained directly on the basis of the data of observations in the nearest years. Velocity of secular change of duration of day for Mars (LOD) thus can make significant value about -0.0903 ms/yr, that considerably surpasses similar value for non-tidal acceleration of the Earth (-0.006 ms/yr). The ratio of positive acceleration of the Earth rotation ṙ to its angular velocity ? makes ṙ•? = (6.9± 1.7) × 10-11 1/yr[7]. In case of Mars the estimation of acceleration was carried out under the formula [8]: ṙ/ ? = -Ċ• C -á¹ °• G ?-Ċ• C = 103.8 × 10-11 1/yr. We here have neglected by an influence of secular change of the axial angular momentum of fluid masses (atmospheric and underground) of Marsá¹ °. As shown in other my report on EGU GA 2009 in case of the Earth the total angular momentum of fluids really is small and within the limits of mistakes can be accepted equal to zero. In the case of Mars we the same as and in case of the Earth, expect of secular change of the angular momentum of Mars and change of global superrotation of its atmosphere which, at least, in part, will be compensated by the angular momentum of fluids. Thus, expected non-tidal acceleration of axial rotation of Mars can be at 10-15 times more those, but observably by astronomical methods, for the Earth. Certainly, the estimations obtained here are preliminary and the phenomena discussed here require more detailed studying with using of new data of precision observations. First of all it is important to obtain the specified values of secular variations ˙ J2 and ˙ J3. In case of the Earth the tidal deceleration of daily rotation of the Earth essentially surpasses non-tidal acceleration (35 %) which as shown the author is caused by the directed redistribution of fluid masses of the Earth, in turn caused by polar drift of the centre of mass of the liquid core of the Earth to the north [1]. In case of Mars the opposite picture is expected. It is quite possible, as show the executed estimations, that tidal deceleration of axial rotation of Mars much less than its positive acceleration caused by global dynamics of shells (the core and mantle). And it means, that as against the Earth in axial rotation of Mars in the present epoch an acceleration, instead of deceleration of rotation should be observed. References [1] Barkin Yu.V. (2001) Explanation and prediction of the secular variations of the Earth rotation, geopotential, force of gravity and geocenter drift. Proceedings of International Conference «AstroKazan-2001». Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher «DAS», pp. 73-79. [2] Barkin Yu.V. (2007) To an explanation of non-tidal acceleration of the Earth diurnal rotation and secular trend of its pole. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (G) - IAG, GS003, p. 3799. www. iugg2007perugia.it. [3] Barkin Yu.V. (2007) Celestial geodynamics and solution of the fundamental problems of geodesy, gravimetry and geophysics. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (S) - IASPEI, JSS011, p. 2149. www. iugg2007perugia.it. [4] Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JGR...10220259A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JGR...10220259A"><span>Geomagnetic fluctuations during a polarity transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audunsson, Haraldur; Levi, Shaul</p> <p>1997-01-01</p> <p>The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DDA....4920103B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DDA....4920103B"><span>Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula</p> <p>2018-04-01</p> <p>Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049208&hterms=earth+day&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dearth%2Bday','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049208&hterms=earth+day&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dearth%2Bday"><span>Present-day secular variations in the zonal harmonics of earth's geopotential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mitrovica, J. X.; Peltier, W. R.</p> <p>1993-01-01</p> <p>The mathematical formulation required for predicting secular variation in the geopotential is developed for the case of a spherically symmetric, self-gravitating, viscoelastic earth model and an arbitrary surface load which can include a gravitational self-consistent ocean loading component. The theory is specifically applied to predict the present-day secular variation in the zonal harmonics of the geopotenial arising from the surface mass loading associated with the late Pleistocene glacial cycles. A procedure is outlined in which predictions of the present-day geopotential signal due to the late Pleistocene glacial cycles may be used to derive bounds on the net present-day mass flux from the Antarctic and Greenland ice sheets to the local oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoJI.175..913A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoJI.175..913A"><span>Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amit, Hagay; Christensen, Ulrich R.</p> <p>2008-12-01</p> <p>We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP24A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP24A..08L"><span>Evaluating secular acceleration in geomagnetic field model GRIMM-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lesur, V.; Wardinski, I.</p> <p>2012-12-01</p> <p>Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053165&hterms=centennials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcentennials','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053165&hterms=centennials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcentennials"><span>Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, Michael E.; Lall, Upmanu; Saltzman, Barry</p> <p>1995-01-01</p> <p>We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720033993&hterms=inequality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinequality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720033993&hterms=inequality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinequality"><span>The influence of the great inequality on the secular disturbing function of the planetary system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musen, P.</p> <p>1971-01-01</p> <p>This paper derives the contribution by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations. The Krylov-Bogoliubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing function derived in this paper can be included in existing theories of the secular effects of principal planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....7794A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....7794A"><span>High-Resolution Paleomagnetic Observations from Ocean Drilling: Insights from Coring Thick Sediment Drift Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Acton, G. D.; Clement, B. M.; Lund, S. P.; Okada, M.; Williams, T.</p> <p>2003-04-01</p> <p>With the advent of the Hydraulic Piston Corer at the end of the Deep Sea Drilling Program and its enhanced successor, the Advanced Piston Corer (APC), developed by the Ocean Drilling Program (ODP), coring through thick (>100 m), rapidly deposited sequences of unconsolidated to partially consolidated sediments with near 100% recovery has become common place. Although much of the emphasis for site selection has been based on paleoceanographic objectives, the impact to the field of paleomagnetism has been dramatic, both in the instruments used to analyze the large quantity of core recovered and in the questions that can be answered concerning geomagnetic field behavior and paleoenvironmental conditions. The largest change has come in the construction of relative paleointensity records, which have provided previously unimagined details about how the geomagnetic field varies in strength during stable polarity intervals as well as during reversals and excursions. These records have allowed more realistic models of the geomagnetic field to be developed while also providing a new chronologic tool for high-resolution dating and global correlation of geomagnetic events. Studies of how the paleomagnetic direction varies through time have not advanced as rapidly and have instead mainly been focused on short time intervals across a few geomagnetic reversals. It should, however, be possible to construct and compare secular variation records with millennial or better resolution that span the past one million years from sites around the world as correlation and chronologies between sites improve. We will give an overview that focuses on secular variation records that are being constructed from sediment drifts drilled in the western North Atlantic during ODP Leg 172. Our results will be used to address questions concerning what percent of time the geomagnetic field is in a stable state versus transitional or excursional states, what the relationship is between directional variability and relative paleointensity, which secular variation features are global and which are local, what is the origin of local directional changes, and how climate and rock magnetic changes influence the paleomagnetic signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EP%26S...67...81F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EP%26S...67...81F"><span>A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fournier, Alexandre; Aubert, Julien; Thébault, Erwan</p> <p>2015-05-01</p> <p>In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP43A1213W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP43A1213W"><span>Spatial Distribution and Secular Variation of Geomagnetic Filed in China Described by the CHAOS-6 Model and its Error Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.; Gu, Z.; Chen, B.; Yuan, J.; Wang, C.</p> <p>2016-12-01</p> <p>The CHAOS-6 geomagnetic field model, presented in 2016 by the Denmark's national space institute (DTU Space), is a model of the near-Earth magnetic field. According the CHAOS-6 model, seven component data of geomagnetic filed at 30 observatories in China in 2015 and at 3 observatories in China spanning the time interval 2008.0-2016.5 were calculated. Also seven component data of geomagnetic filed from the geomagnetic data of practical observations in China was obtained. Based on the model calculated data and the practical data, we have compared and analyzed the spatial distribution and the secular variation of the geomagnetic field in China. There is obvious difference between the two type data. The CHAOS-6 model cannot describe the spatial distribution and the secular variation of the geomagnetic field in China with comparative precision because of the regional and local magnetic anomalies in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP53A3757I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP53A3757I"><span>Spherical Cap Harmonic Modelling of 400 Years of Secular Variation in the South-west Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ingham, M.; Alfheid, M.; Ingham, E. M.; Turner, G. M.</p> <p>2014-12-01</p> <p>Historical magnetic data recorded in ship's logs on voyages of exploration and trade in the south-west Pacific have been used as a basis for constructing a model of secular variation in the region using spherical cap harmonic (SCH) analysis. The spherical cap used is centred on colatitude 115° and longitude 160° and has a radius of 50°, thus covering New Zealand, Australia and parts of Antarctica. Gaps in the observational data have been filled by an iterative procedure started by using IGRF field values to obtain SCH models for 2000, 1950 and 1900 and assuming that the spherical cap coefficients have a linear variation in time over the 400 year time period of the model, as is observed to a first approximation for Gauss coefficients calculated from a global spherical harmonic analysis. The resulting field models have generally smooth spatial and temporal variations in declination, inclination and intensity which show some differences from the variations calculated using the global spherical harmonic model gufm1. The technique clearly shows promise for producing more refined models of secular variation in the south-west Pacific when the historical data are supplemented by archeomagnetic and paleomagnetic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840019581&hterms=test+hypothesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtest%2Bhypothesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840019581&hterms=test+hypothesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtest%2Bhypothesis"><span>The Solar Constant, Climate, and Some Tests of the Storage Hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eddy, J. A.</p> <p>1984-01-01</p> <p>Activity related modulation of the solar constant can have practical consequences for climate only if storage is involved, as opposed to a detailed balance between sunspot blocking and facular reemission. Four empirical tests are considered that might distinguish between these opposing interpretations: monochromatic measurements of positive and negative flux; comparison of modelled and measured irradiance variations; the interpretation of secular trends in irradiance data; and the direct test of an anticipated signal in climate records of surface air temperature. The yet unanswered question of the role of faculae as possible reemitters of blocked radiation precludes a definitive answer, although other tests suggest their role to be minor, and that storage and an 11 year modulation is implicated. A crucial test is the behavior of the secular trend in irradiance in the declining years of the present activity cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880040223&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfashion%2Bmodels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880040223&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfashion%2Bmodels"><span>A model for solar constant secular changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schatten, Kenneth H.</p> <p>1988-01-01</p> <p>In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41A1003N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41A1003N"><span>Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nigam, S.; Thomas, N. P.</p> <p>2017-12-01</p> <p>The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018475','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018475"><span>An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.</p> <p>1996-01-01</p> <p>We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209.1660N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209.1660N"><span>Secular variations in zonal harmonics of Earth's geopotential and their implications for mantle viscosity and Antarctic melting history due to the last deglaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi</p> <p>2017-06-01</p> <p>Secular variations in zonal harmonics of Earth's geopotential based on the satellite laser ranging observations, {\\dot{J}_n}, contain important information about the Earth's deformation due to the glacial isostatic adjustment (GIA) and recent melting of glaciers and the Greenland and Antarctic ice sheets. Here, we examine the GIA-induced {\\dot{J}_n}, \\dot{J}_n^{GIA} (2 ≤ n ≤ 6), derived from the available geopotential zonal secular rate and recent melting taken from the IPCC 2013 Report (AR5) to explore the possibility of additional information on the depth-dependent lower-mantle viscosity and GIA ice model inferred from the analyses of the \\dot{J}_2^{GIA} and relative sea level changes. The sensitivities of the \\dot{J}_n^{GIA} to lower-mantle viscosity and GIA ice model with a global averaged eustatic sea level (ESL) of ∼130 m indicate that the secular rates for n = 3 and 4 are mainly caused by the viscous response of the lower mantle to the melting of the Antarctic ice sheet regardless of GIA ice models adopted in this study. Also, the analyses of the \\dot{J}_n^{GIA} based on the available geopotential zonal secular rates indicate that permissible lower-mantle viscosity structure satisfying even zonal secular rates of n = 2, 4 and 6 is obtained for the GIA ice model with an Antarctic ESL component of ∼20 or ∼30 m, but there is no viscosity solution satisfying \\dot{J}_3^{GIA} and \\dot{J}_5^{GIA} values. Moreover, the inference model for the lower-mantle viscosity and GIA ice model from each odd zonal secular rate is distinctly different from that satisfying GIA-induced even zonal secular rate. The discrepancy between the inference models for the even and odd zonal secular rates may partly be attributed to uncertainties of the geopotential zonal secular rates for n > 2 and particularly those for odd zonal secular rates due to weakness in the orbital geometry. If this problem is overcome at least for the secular rates of n < 5, then the analyses of the \\dot{J}_n^{GIA} would make it possible to put more convincing constraints on the lower-mantle viscosity structure and GIA ice model, particularly for the controversial Antarctic melting history in GIA community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920017163','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920017163"><span>The joint US/UK 1990 epoch world magnetic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Quinn, John M.; Coleman, Rachel J.; Peck, Michael R.; Lauber, Stephen E.</p> <p>1991-01-01</p> <p>A detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained in the course of the 1990 Epoch World Magnetic Modeling effort are given. Also, use and limitations of the GEOMAG algorithm are presented. Charts and tables related to the 1990 World Magnetic Model (WMM-90) for the Earth's main field and secular variation in Mercator and polar stereographic projections are presented along with useful tables of several magnetic field components and their secular variation on a 5-degree worldwide grid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014180','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014180"><span>Evaluation of the 1985-1990 IGRF secular variation candidates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cain, J.C.; Kluth, C.</p> <p>1987-01-01</p> <p>The IGRF secular variation model for 1985-1990 was adopted by the International Association of Geomagnetism and Aeronomy at its Prague meeting in August 1985 as an average of the three candidate models submitted to the committee. We compared the three models at epoch 1985.0 against each other and against a new model based on observatory data available as of July 1, 1985. These comparisons showed that one of the three candidate models disagreed more with the other two and our model, especially in the eastern Pacific. None of the candidate models was seen to respond to a change in the secular variation of the vertical component that appears to have taken place most strongly in the western Pacific area since 1982. The lack of satellite data was seen to be a significant handicap towards prediction of the field change over most of the Earth's surface, especially the southern oceans. Maximum errors of any model are estimated to be of the order of 80 nT a-1. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930037356&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dearths%2Bouter%2Bcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930037356&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dearths%2Bouter%2Bcore"><span>The steady part of the secular variation of the Earth's magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy</p> <p>1992-01-01</p> <p>The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011272','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011272"><span>The use of MAGSAT data to determine secular variation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cain, J.C.; Frayser, J.; Muth, L.; Schmitz, D.</p> <p>1983-01-01</p> <p>A combined spatial and secular variation model of the geomagnetic field, labeled M061581, is derived from a selection of MAGSAT data. Secular variation (SV) data computed from linear fits to midnight hourly values from 19 magnetic observatories were also included in the analysis but were seen to have little effect on the model. The SV patterns from this new model are compared with those from the 1980 IGRF and with those for 1970 computed by the DGRF and with the 1960 patterns computed using the GSFC(12/66) model. Most of the features of the M061581 are identical in location and level with those of the 1980 IGRF. Together they confirm that the reversals in sign of field change seen over Asia and North America between 1965 and 1975 are reverting to the pre-1965 states. The M061581 model gives -32 nT/yr for the dipole decay rate, larger than the 70% increase already reported since 1965. -Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1361H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1361H"><span>New Archeomagnetic Directional Records From Iron Age Southern Africa (ca. 425-1550 CE) and Implications for the South Atlantic Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, Vincent J.; Tarduno, John A.; Huffman, Thomas; Watkeys, Michael; Thebe, Phenyo C.; Manyanga, Munyaradzi; Bono, Richard K.; Cottrell, Rory D.</p> <p>2018-02-01</p> <p>The paucity of Southern Hemisphere archeomagnetic data limits the resolution of paleosecular variation models. At the same time, important changes in the modern and historical field, including the recent dipole decay, appear to originate in this region. Here a new directional record from southern Africa is presented from analysis of Iron Age (ca. 425-1550 CE) archeological materials, which extends the regional secular variation curve back to the first millennium. Previous studies have identified a period of rapid directional change between 1225 and ˜1550 CE. The new data allow us to identify an earlier period of relatively rapid change between the sixth and seventh centuries CE. Implications for models of recurrent flux expulsion at the core-mantle boundary are discussed. In addition, we identify a possible relationship of changes recorded in these African data with archeomagnetic jerks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013082','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013082"><span>More on the alleged 1970 geomagnetic jerk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alldredge, L.R.</p> <p>1985-01-01</p> <p>French and United Kingdom workers have published reports describing a sudden change in the secular acceleration, called an impulse or a jerk, which took place around 1970. They claim that this change took place in a period of a year or two and that the sources of the alleged jerk are internal. An earlier paper by this author questioned their method of analysis pointing out that their method of piecemeal fitting of parabolas to the data will always create a discontinuity in the secular acceleration where the parabolas join and that the place where the parabolas join is an a priori assumption and not a result of the analysis. This paper gives a very brief summary of this first paper and then adds additional reasons for questioning the allegation that there was a worldwide sudden jerk in the magnetic field of internal origin around 1970. These new reasons are based largely on new field models which give cubic approximations of the field right through the 1970 timeframe and therefore have no discontinuities in the second derivative (jerk) around 1970. Some recent Japanese work shows several sudden changes in the secular variation pattern which cover limited areas and do not seem to be closely related to each other or to the irregularity noted in the European area near 1970. The secular variation picture which seems to be emerging is one with many local or limited-regional secular variation changes which appear to be almost unrelated to each other in time or space. A worldwide spherical harmonic model including coefficients up to degree 13 could never properly depict such a situation. ?? 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGP41A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGP41A..06B"><span>Secular Variation and Paleomagnetic Studies of Southern Patagonian Plateau Lavas, 46S to 52S, Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, L.; Gorring, M.; Mason, D.; Condit, C.; Lillydahl-Schroeder, H.</p> <p>2007-12-01</p> <p>Regional studies of paleosecular variation of the Earth's magnetic field can provide us with information beyond that available from one location. Southern Patagonia, Argentina (46S to 52S latitude and 68W to 72W longitude) is a place where numerous Plio-Pleistocene lava flows are available for such a study. Volcanic activity in this area is related to back arc volcanism due to slab window activity as the South Chile Ridge is subducted beneath western South America, producing Neogene volcanic centers capping Mesozoic basement extending far to the east of the active plate boundary. Published studies on young lavas from both the northern (Meseta del Lago Buenos Aires, Brown et al, 2004) and southern (Pali Aike Volcanic Field, Mejia et al, 2004) portions provide stable paleomagnetic data on nearly 70 lava flows. Paleosecular variation values for the two studies differ, with 17.1 degrees obtained from the Pali Aike field and 20.0 degrees from the Lago Buenos Aires field. Recent fieldwork in the plateau lavas between these two locations has provided some 80 new sites allowing us to better investigate secular variation and the time-averaged field over this entire region during the past 5 myr. Rock magnetic studies on selected new samples (isothermal remanent magnetization and hysteresis measurements) as well as optical observations indicate low titanium magnetite as the primary carrier of remanence. Hysteresis properties range from 0.1 to 0.4 for Mr/Ms and 1.4 to 3.0 for Hcr/Hc indicating psuedo-single domain behavior. Mean destructive fields for AF demagnetization average 40 to 60 mT. Thirty-three new sites, mostly from Gran Meseta Central (48°S), yield a mean direction of inclination -61.8, declination of 356.6 with an alpha-95 of 5.7 degrees. These directions, with additional sites recently collected from Meseta de la Muerte south to Rio Santa Cruz, will allow us to further investigate paleosecular variation over this wide region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27737581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27737581"><span>Craniofacial Secular Change in Recent Mexican Migrants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spradley, Katherine; Stull, Kyra E; Hefner, Joseph T</p> <p>2016-01-01</p> <p>Research by economists suggests that recent Mexican migrants are better educated and have higher socioeconomic status (SES) than previous migrants. Because factors associated with higher SES and improved education can lead to positive secular changes in overall body form, secular changes in the craniofacial complex were analyzed within a recent migrant group from Mexico. The Mexican group represents individuals in the act of migration, not yet influenced by the American environment, and thus can serve as a starting point for future studies of secular change in this population group. The excavation of a historic Hispanic cemetery in Tucson, Arizona, also allows for a comparison between historic Hispanics and recent migrants to explore craniofacial trends over a broad time period, as both groups originate from Mexico. The present research addresses two main questions: (1) Are cranial secular changes evident in recent Mexican migrants? (2) Are historic Hispanics and recent Mexican migrants similar? By studying secular changes within a migrant population group, secular trends may be detected, which will be important for understanding the biological variation of the migrants themselves and will serve as a preliminary investigation of secular change within Mexican migrants. The comparison of a sample of recent Mexican migrants with a historic Hispanic sample, predominantly of Mexican origin, allows us to explore morphological similarities and differences between early and recent Mexicans within the United States. Vault and face size and a total of 82 craniofacial interlandmark distances were used to explore secular changes within the recent Mexican migrants (females, n = 38; males, n = 178) and to explore the morphological similarities between historic Hispanics (females, n = 54; males, n = 58) and recent migrants. Sexes were separated, and multivariate adaptive regression splines and basis splines (quadratic with one knot) were used to assess the direction and magnitude of secular trends for the recent Mexican migrants. Because dates of birth were unavailable for the historic sample, partial least squares discriminant analysis (PLS-DA) was used to evaluate morphological differences between historic and recent Mexican migrant samples. The data were separated into a training data set and a testing data set to ensure realistic results. Males had eight variables (four positive and four negative) and females had six variables (two positive and four negative) that demonstrated significant differences over time. In the PLS-DA, three components were identified as important in model creation and resulted in a classification accuracy of 87% when applied to a testing sample. The high classification accuracy demonstrates significant morphological differences between the two groups, with the historic Hispanic sample displaying overall larger craniofacial dimensions. While differences in cranial morphology are evident between historic Hispanics and recent Mexican migrants, relatively few positive and negative secular trends were detected within the recent migrant sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17792941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17792941"><span>Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dunn, J R; Fuller, M; Ito, H; Schmidt, V A</p> <p>1971-05-21</p> <p>A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IBVS.6231....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IBVS.6231....1P"><span>Secular Variation and Physical Characteristics Determination of the HADS Star EH Lib</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pena, J. H.; Villarreal, C.; Pina, D. S.; Renteria, A.; Soni, A., Guillen, J. Calderon, J.</p> <p>2017-12-01</p> <p>Physical parameters of EH Lib have been determined based on observations carried out in 2015 with photometry. They have also served, along with samples from the years 1969 and 1986, to analyse the frequency content of EH Lib with Fourier Transforms. Recent CCD observations increased the times of maximum with twelve new times which helped us study the secular variation of the period with a method based on the minimization of the standard deviation of the O-C residuals. It is concluded that there may be a long-term period change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009052','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009052"><span>The Study of Effects of Time Variations in the Earth's Gravity Field on Geodetic Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shum, C. K.</p> <p>1998-01-01</p> <p>The temporal variations in the Earth's gravity field are the consequences of complex interactions between atmosphere, ocean, solid Earth, hydrosphere and cryosphere. The signal ranges from several hours to 18.6 years to geological time scale. The direct and indirect consequences of these variations are manifested in such phenomena as changes in the global sea level and in the global climate pattern. These signals produce observable geodetic satellites. The primary objectives of the proposed effects on near-Earth orbiting investigation include (1) the improved determination of the time-varying gravity field parameters (scale from a few hour to 18.6 year and secular) using long-term satellite laser rs ranging (SLR) observations to multiple geodetic satellites, and (2) the enhanced understanding of these variations with their associated meteorological and geophysical consequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ethic&pg=5&id=EJ1104248','ERIC'); return false;" href="https://eric.ed.gov/?q=ethic&pg=5&id=EJ1104248"><span>Secular Ethics Education as an Alternative to Religious Education--Finnish Teachers' Views</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zilliacus, Harriet; Kallioniemi, Arto</p> <p>2016-01-01</p> <p>This study provides a Finnish perspective to international discussions on religious and worldviews education through the subject of secular ethics. This subject has been offered in Finland since 1985 throughout comprehensive schools and is primarily directed at students who are non-affiliated. Secular ethics education has scarcely been researched…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3612706Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3612706Q"><span>On the secular change of spring onset at Stockholm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Cheng; Fu, Congbin; Wu, Zhaohua; Yan, Zhongwei</p> <p>2009-06-01</p> <p>A newly developed method, the Ensemble Empirical Mode Decomposition, was applied to adaptively determine the timing of climatic spring onset from the daily temperature records at Stockholm during 1756-2000. Secular variations of spring onset and its relationships to the North Atlantic Oscillation (NAO) and to the temperature variability were analyzed. A clear turning point of secular trend in spring onset around 1884/1885, from delaying to advancing, was found. The delaying trend of spring onset (6.9 days/century) during 1757-1884 and the advancing one (-7 days/century) during 1885-1999 were both significant. The winter NAO indices were found to be correlated with the spring onset at Stockholm at an inter-annual timescale only for some decades, but unable to explain the change of the long-term trends. The secular change from cooling to warming around the 1880s, especially in terms of spring temperature, might have led to the secular change of spring onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...765....5D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...765....5D"><span>Periodic Variations in the O - C Diagrams of Five Pulsation Frequencies of the DB White Dwarf EC 20058-5234</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalessio, J.; Sullivan, D. J.; Provencal, J. L.; Shipman, H. L.; Sullivan, T.; Kilkenny, D.; Fraga, L.; Sefako, R.</p> <p>2013-03-01</p> <p>Variations in the pulsation arrival time of five independent pulsation frequencies of the DB white dwarf EC 20058-5234 individually imitate the effects of reflex motion induced by a planet or companion but are inconsistent when considered in unison. The pulsation frequencies vary periodically in a 12.9 year cycle and undergo secular changes that are inconsistent with simple neutrino plus photon-cooling models. The magnitude of the periodic and secular variations increases with the period of the pulsations, possibly hinting that the corresponding physical mechanism is located near the surface of the star. The phase of the periodic variations appears coupled to the sign of the secular variations. The standards for pulsation-timing-based detection of planetary companions around pulsating white dwarfs, and possibly other variables such as subdwarf B stars, should be re-evaluated. The physical mechanism responsible for this surprising result may involve a redistribution of angular momentum or a magnetic cycle. Additionally, variations in a supposed combination frequency are shown to match the sum of the variations of the parent frequencies to remarkable precision, an expected but unprecedented confirmation of theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18048345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18048345"><span>Gravitational dynamos and the low-frequency geomagnetic secular variation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olson, P</p> <p>2007-12-18</p> <p>Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2154401','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2154401"><span>Gravitational dynamos and the low-frequency geomagnetic secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Olson, P.</p> <p>2007-01-01</p> <p>Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP23A1028Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP23A1028Z"><span>Holocene paleomagnetic secular variation records from the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Y.; Zheng, H.; Kissel, C.; Laj, C. E.; Deng, C.</p> <p>2011-12-01</p> <p>Paleomagnetic study on marine sediments can provide continuous, high-resolution records of short-term fluctuations of the Earth's magnetic field, which can be used for inter-core correlations at regional scale. However, Holocene paleomagnetic secular variation (PSV) records from marine sediment are still rare. Detailed paleomagnetic and rock magnetic studies were conducted on u-channel samples from rapidly deposited sediment core MD06-3040 (27.72°N, 121.78°E; 46 m water depth), on the East China Sea (ECS) inner continental shelf Holocene marine sequence, during IMAGES XIV Marco Polo 2 cruise on the R. V. Marion Dufresne (IPEV). The 19.22 m long core spans the entire Holocene, with theoretical high-resolution of about 20-year for paleomagnetic studies, and paleomagnetic secular variation (PSV) for the last 7500 years was retrieved from the uppermost 15.8 m fine-grained sediments. The dominant carrier of the remanent magnetization is magnetite, with some contributions from iron sulfide, such as greigite below 3.5 m, due to post-depositional diagenesis. The Characteristic Remanent magnetization (ChRM) is well defined by a single magnetization component and Maximum Angular Deviations (MAD) lower than 5°. Therefore, the information of paleomagnetic directions is still preserved after diagenetic alteration. Inclination of core MD06-3040 presents seven relatively high peaks, and declination presents four obvious eastern ward drifts during the last 7500 years. These variations can be well compared to that obtained from lakes in Japan, and some features are also comparable to the records from Europe with temporal offset. The power spectrum analysis shows that the inclination has significant power at the period of ~660 years, and declination at the period of ~3500 years and 1300 years. These periods are similar to that from Japan and North America, in which the period of ~1300 years for declination has been reported in many areas around the world. The observed PSV from the ECS reflects the behavior of geomagnetic field at the ECS during the Holocene, and can be used for site correlations, at least in eastern China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EP%26S...55..327Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EP%26S...55..327Y"><span>Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamazaki, T.; Abdeldayem, A. L.; Ikehara, K.</p> <p>2003-06-01</p> <p>A rock-magnetic and paleomagnetic study was conducted on a sediment core of about 4.4 m long taken from the northeastern part of the Japan Sea. The core covers the last about 30 kyrs, which was dated by nineteen radiocarbon (14C) ages. Remanent magnetization is carried dominantly by magnetite. Reductive dissolution of magnetic minerals occurs between 1.2 and 1.6 m in depth (about 5-8 ka in age). A rapid downcore decrease of anhysteretic remanent magnetization (ARM) begins at the shallowest depth. Saturation isothermal remanent magnetization (SIRM) follows, and a decrease of magnetic susceptibility (k) takes place at the deepest. Within this zone, coercivity of natural remanent magnetization (NRM) and the ratios of ARM to k and SIRM to k also decreases with depth. These observations indicate that finer magnetic grains were lost earlier than larger grains. A decrease of S ratios, wasp-waisted hysteresis curves, and a deviation from a mixing trend of single-domain and multi-domain grains in a Day plot occur as the dissolution proceeds, which suggests that high coercivity minerals like hematite are more resistive to dissolution than low coercivity minerals like magnetite. The start of the dissolution at 1.2 m in depth is synchronous with increases in organic-carbon and total-sulfur contents, but the horizon does not coincide with the present Fe-redox boundary at about 0.02 m below the sediment-water interface. From low-temperature magnetometry, it is estimated that magnetites with maghemite skin are reduced to pure magnetites prior to dissolution. There is no evidence for precipitation of secondary magnetic phases and acquisition of chemical remanent magnetization (CRM). Neither pyrrhotite nor greigite was detected. Information of paleomagnetic directions have survived the reductive dissolution. Inclination variations of this core resembles closely to the secular variation records available around Japan. Well-dated records older than 10 ka are still very rare, and hence our new record could be useful for establishing regional secular variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910041889&hterms=earths+outer+core&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearths%2Bouter%2Bcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910041889&hterms=earths+outer+core&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearths%2Bouter%2Bcore"><span>Fluid flow near the surface of earth's outer core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy; Jackson, Andrew</p> <p>1991-01-01</p> <p>This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045158','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045158"><span>Sunspot random walk and 22-year variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.; Rigler, E. Joshua</p> <p>2012-01-01</p> <p>We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMGP72A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMGP72A..06M"><span>Time Average Field and Secular Variations of Pleistocene to Recent Lava Flows From the Ruiz-Tolima Volcanic Complex (Colombia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mejia, V.; Sánchez-Duque, A.; Opdyke, N. D.; Huang, K.; Rosales, A.</p> <p>2009-05-01</p> <p>Thirty three Pleistocene to recent lava flows from the Ruiz-Tolima Volcanic Complex (Colombian Andes) have been sampled for time average field (TAF) and paleosecular variation studies. A total of 10 cores were drilled per flow (site) and stepwise AF demagnetization has been carried out. After principal component analysis and mean-site direction calculations, 29 sites (25 and 4 with normal and reverse polarity, respectively), with α95 < 5.5° were selected for further calculations. The overall mean direction among the sites (D = 1.8°, I = 6.3°, α95 = 5.6°) closely fits (at the 95% confidence level) the expected paleomagnetic direction (at the area of study) of a geomagnetic field composed primarily by a geocentric axial dipole with 5% axial quadrupole component (I = 5.72°), but also coincides with a simple GAD model. VGP scatter (13°) is similar to that expected from Model G (12.8°).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.U21C0630L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.U21C0630L"><span>Annual, Seasonal, and Secular Changes in Time-Variable Gravity from GRACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemoine, F. G.; Luthcke, S. B.; Klosko, S. M.; Rowlands, D. D.; Chinn, D. S.; McCarthy, J. J.; Ray, R. D.; Boy, J.</p> <p>2007-12-01</p> <p>The NASA/DLR GRACE mission, launched in 2002, has now operated for more than five years, producing monthly and ten-day snapshots of the variations of the gravity field of the Earth. The available solutions, either from spherical harmonics or from mascons, allow us new insights into the variations of surface gravity on the Earth at annual, inter-annual, and secular time scales. Our baseline time series, based on GGM02C, NCEP Atmospheric Gravity with IB, and GOT00 tides now is extended to July 2007, spanning four+ years, and we analyze both mascon and spherical harmonic solutions from this time series with respect to global hydrology variations. Our 4degx4deg mascon solutions are extended to cover all continental regions of the globe. Comparisons with hydrology (land-surface) models can offer insights into how these models might be improved. We compare our baseline time series, with new time series that include an updated Goddard Ocean Tide (GOT) model, ECMWF- 3hr atmosphere de-aliasing data, and the MOG-2D ocean dealiasing product. Finally, we intercompare the spherical harmonic solutions at low degree from GRACE from the various product centers (e.g., GFZ, CSR, GRGS), and look for secular signals in both the GSFC mascon and spherical harmonic solutions, taking care to compare the results for secular gravity field change with independent solutions developed over 25 years of independent tracking to geodetic satellites by Satellite Laser Ranging (SLR) and DORIS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730017649','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730017649"><span>Plate motion and the secular shift of the mean pole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, H.; Carpenter, L.; Agreen, R. W.</p> <p>1973-01-01</p> <p>The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ARep...62..264K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ARep...62..264K"><span>The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khaliullina, A. I.</p> <p>2018-04-01</p> <p>A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26654502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26654502"><span>[Nursing care at home and secularism].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lecointre, Brigitte</p> <p>2015-12-01</p> <p>The question of secularism, long-time confined to schools and the relationships between the Church and State, is today being raised in the field of public health. Nurses are directly affected and are integrating this dimension of secularism into their care practices. A private practice nurse describes the effect these changes are having on her practice in patients' homes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3952H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3952H"><span>SAMPEX/PET model of the low altitude trapped proton environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heynderickx, D.; Looper, M. D.; Blake, J. B.</p> <p></p> <p>The low-altitude trapped proton population exhibits strong time variations related to geomagnetic secular variation and neutral atmosphere conditions. The flux measurements of the Proton Electron Telescope (PET) onboard the polar satellite SAMPEX constitute an adequate data set to distinguish different time scales and to characterise the respective variations. As a first step towards building a dynamic model of the low altitude proton environment we binned the 1995-1996 PET data into a model map with functional dependencies of the proton fluxes on the F10.7 solar radio flux and on the time of year to represent variations on the time scale of the solar cycle and seasonal variations. Now, a full solar cycle of SAMPEX/PET data is available, so that the preliminary model could be extended. The secular variation of the geomagnetic field is included in the model, as it is constructed using Kaufmann's K=I √{B} instead of McIlwain's L as a map coordinate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014510','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014510"><span>Comments on 'Remarks on the secular change in the energy density spectrum of the geomagnetic field' by Joachim Meyer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alldredge, L.R.</p> <p>1986-01-01</p> <p>Meyer has discussed only the Rn aspect of the Alldredge (1984) paper he is criticising. He has ignored the pictorial demonstration of the need for higher harmonics to properly describe the secular variation field than the main field as demonstrated. This more or less independent demonstration supports the general conclusion of that paper. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000067672&hterms=great+bear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgreat%2Bbear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000067672&hterms=great+bear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgreat%2Bbear"><span>Antarctic Rebound and the Time-Dependence of the Earth's Shape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivins, Erik R.; James, Thomas S.</p> <p>2000-01-01</p> <p>Great strides have been made during the past 30 years in refining models of the last global glaciation. The refinements draw upon a vastly expanded relative sea level and sedimentary core record. Furthermore, we now possess a sharpened understanding of the mechanisms that drive climate changes associated with deglaciation. Some 15 years ago, using only 5.5 years of ranging data, analyses of the drift in LAGEOS I node acceleration was used to infer that postglacial rebound was responsible for a secular change in the Earth's ellipsoidal shape (Yoder et al., .1983]. Today there exists a wealth of geodynamics satellite orbit data that constrain the secular time-dependence of the Earth's shape and low order gravity field, which includes mass redistribution from present-day glacier and great ice sheet imbalance and from postglacial rebound. We have shown that an unambiguous determination of the secular variation in the Earth's pear shaped harmonic (l = 3, m = 0) might provide information that bears on the present-day mass balance of Antarctica. This issue is revisited in light of new constraints on glacial loading during the late-Pleistocene and Holocene. An especially critical issue for the interpretation of secular odd degree zonal harmonics, l = 3 to 7, is the timing and magnitude of the deglaciation of Antarctica from Last Glacial Maximum. We explore ways in which the recovery of secular variation in both zonal and non-zonal harmonics for l = 2 through 7 can improve constraints on both rebound and present-day ice sheet balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880003508','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880003508"><span>Statistics of the geomagnetic secular variation for the past 5Ma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Constable, C. G.; Parker, R. L.</p> <p>1986-01-01</p> <p>A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150008968','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150008968"><span>Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuang, Weijia; Tangborn, Andrew</p> <p>2014-01-01</p> <p>Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890024906&hterms=probability+statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dprobability%2Bstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890024906&hterms=probability+statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dprobability%2Bstatistics"><span>Statistics of the geomagnetic secular variation for the past 5 m.y</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Constable, C. G.; Parker, R. L.</p> <p>1988-01-01</p> <p>A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoJI.143..545D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoJI.143..545D"><span>A global analysis of the 1991 geomagnetic jerk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Michelis, Paola; Cafarella, Lili; Meloni, Antonio</p> <p>2000-12-01</p> <p>A recent examination of the geomagnetic annual mean values for the European magnetic observatories has shown the existence of a sudden change in the secular acceleration in about 1991 (Cafarella & Meloni 1995; Macmillan 1996). Using first differences of the Y (east geomagnetic field component) mean values from 74 observatories, the worldwide character of the 1991 impulse has been determined (De Michelis et al. 1998). Using data from 109 observatories widely distributed all over the world, the structure of the secular variation for the X (north) and Z (vertical) magnetic field intensities around 1990 was investigated, and evidence of this most recent jerk was found. External effects were removed from the annual mean data by comparing the long-term variations of the geomagnetic field components at individual observatories with the long-term variations of two geomagnetic indices, aa and Dst, and of a solar index, the Wolf number R. A careful analysis has been carried out on the amplitude of the external disturbance, on its dependence on latitude, and on the weights of the geomagnetic indices in the evaluation of the resulting external field. The secular variation has been evaluated from the corrected annual means. Around 1990, the secular variation can be fitted at many observatories by two straight lines with a sudden and marked change in slope. In this manner the jerk occurrence time and the intensity of the step in the second time derivative (ΔX'', ΔY'' and ΔZ'') were computed. Maps of ΔX'', ΔY'' and ΔZ'' provide information on the worldwide intensity distribution of the examined event. Maps of the jerk occurrence-time distributions are also given. The mean jerk occurrence time is 1990.1+/-0.6. Finally, a spherical harmonic analysis was used to complete the quantitative description of this phenomenon in order to study the trend of the energy density spectrum as a function of the harmonic degree n.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011657','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011657"><span>A proposed International Geomagnetic Reference Field for 1965- 1985.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peddie, N.W.; Fabiano, E.B.</p> <p>1982-01-01</p> <p>A set of spherical harmonic models describing the Earth's main magnetic field from 1965 to 1985 has been developed and is proposed as the next revision of the International Geomagnetic Reference Field (IGRF). A tenth degree and order spherical harmonic model of the main field was derived from Magsat data. A series of eighth degree and order spherical harmonic models of the secular variation of the main field was derived from magnetic observatory annual mean values. Models of the main field at 1965, 1970, 1975, and 1980 were obtained by extrapolating the main-field model using the secular variation models.-Authors spherical harmonic models Earth main magnetic field Magsat data</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.492..174L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.492..174L"><span>A 20-15 ka high-resolution paleomagnetic secular variation record from Black Sea sediments - no evidence for the 'Hilina Pali excursion'?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jiabo; Nowaczyk, Norbert R.; Frank, Ute; Arz, Helge W.</p> <p>2018-06-01</p> <p>A comprehensive magnetostratigraphic investigation on sixteen sediment cores from the southeastern Black Sea yielded a very detailed high-quality paleosecular variation (PSV) record spanning from 20 to 15 ka. The age models are based on radiocarbon dating, stratigraphic correlation, and tephrochronology. Further age constraints were obtained by correlating four meltwater events, described from the western Black Sea, ranging in age from about 17 to 15 ka, with maxima in K/Ti ratios, obtained from X-ray fluorescence (XRF) scanning, and minima in S-ratios, reflecting increased hematite content, in the studied cores. Since the sedimentation rates in the investigated time window are up to 50 cm ka-1, the obtained PSVs records enabled a stacking using 50-yr bins. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in relative paleointensity (rPI), is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60°N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGP23A1296S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGP23A1296S"><span>Secular variation between 5 and 10c CE in Japan: remeasurements of 2000 samples collected between 1960-70's from Sueki earthenware kilns in Osaka.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibuya, H.; Mochizuki, N.; Hatakeyama, T.</p> <p>2015-12-01</p> <p>In Japan, archeomagnetic measurements are vigorously developed for years, though it is not well known to paleomagnetism community in english. One of the works is massive archeomagnetic study of Suemura kiln group carried out in Osaka University in 1960's to early 70's. More than 500 kilns were excavated in Sakai city and vicinities, Osaka Prefecture, Japan. The kiln group is called as Suemura Kilns, and are for Sueki earthenware of 5c to 10c CE. About 300 kilns were sampled and most of the samples were measured at the time, and the results are reported in e.g. Hirooka (1971) and Shibuya (1980). However, the results have significant scatter in direction, which may be due to the limitation of old astatic magnetometer measurements and handwriting graphic determination of magnetic direction, and/or the lack of demagnetization. We recently inherited many of those samples and remeasured them with spinner magnetometer applying alternation field demagnetization (afd). The magnetizations are generally very stable, as usual as other archeomagnetic samples, and afd does not change the magnetic direction mostly. However, significant number of sites show large scatter in magnetic directions, which might be due to the wrong identification of kiln floor or disturbance at the time of collapsing or excavation. Taking kilns of α95<4o, we recovered 131 paleomagnetic directions. Although third of them are dated by pottery shape chronology, the range of each pottery style is not precisely known and the relation of the baked floor and the potteries excavated around kilns are not always clear. The carbon dating of those kilns are very scares. Thus we first try to draw secular variation curve in declination-inclination plot. With the rough ages of those kilns, it is pretty easy to draw the SVC. It is also numerically determined taking the distance of each direction from nearest point in SVC and the velocity change of the SVC as penalty function, within a couple of degrees in the error. The the age of each point is assigned to satisfy the archeological ages. This precise SVC in the far east will improve understanding the geomagnetic variations, as well as application to the archeological dating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMGP51A..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMGP51A..03G"><span>Paleosecular Type Curves for South America Based on Holocene-Pleistocene Lake Sediments Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gogorza, C. S.</p> <p>2007-05-01</p> <p>Most of the high-resolution paleomagnetic secular variation (PSV) results were obtained from records on sediments from the Northern Hemisphere. Experimental results from South America are scarce. The first results were obtained by Creer et al. (1983) and have been continued since few years ago by the author and collaborators. This review deals with studies of PSV records from bottom sediments from three lakes: Escondido, Moreno and El Trébol (south-western Argentina, 41° S, 71° 30'W). Measurements of directions (declination D and inclination I) and intensity of natural remanent magnetization (NRM), magnetic susceptibility at low and high frequency (specific, X and volumetric, k), isothermal remanent magnetization (IRM), saturation isothermal remanent magnetization (SIRM), and back field were carried out. Stability of the NRM was investigated by alternating-field demagnetization. Rock magnetic studies suggest that the main carriers of magnetization are ferrimagnetic minerals, predominantly pseudo single domain magnetite. The correlation between cores was based on magnetic parameters as X and NRM. The tephra layers were identified from the lithologic profiles and also from the magnetic susceptibility logs. Due to their different chronological meaning and their rather bad behavior as magnetic recorder, these layers were removed from the sequence and the gaps that were produced along the profiles by the removal were closed, obtaining a "shortened depth". Radiocarbon age estimates from these cores and from earlier studies allow us to construct paleosecular variation records for the past 22,000 years. Inclination and declination curves (Gogorza et al., 2000a; Gogorza et al., 2002; Irurzun et al., 2006) show trends that are similar to a paleomagnetic secular variation curve for SW of Argentina (Gogorza et al., 2000b). References Creer, K.M., Tucholka, P. and Barton, C.E. 1983. Paleomagnetism of lake sediments, in Geomagnetism of Baked Clays and Recent Sediments, edited by K. M. Creer, P. Tucholka and C. E. Barton, pp 172-197, Elsevier, Amsterdam. Gogorza C.S.G., Sinito A.M., Di Tomasso I., Vilas J.F., Creer K.M., Nuñez, H., 2000a. Geomagnetic secular variations 0-12000 year as recorded by sediments from Moreno Lake (South Argentina). J. South Am. Earth Sci., 13(7), 627-645. Gogorza, C., Sinito, A. M., Vilas, J. F., Creer, K. M., Nuñez, H., 2000b. Geomagnetic Secular Variations 0-6500 Yr. As Recorded By Sediments from Lakes of South Argentina. Geophys. J. Int., 143(3), 787-798. Gogorza, C.S.G., Sinito, A. M., Lirio, J.M., Nuñez, H., Chaparro, M.,Vilas, J. F., 2002. Paleosecular variations 0-19,000 years recorded by sediments from Escondido Lake (Argentina). Phys. Earth Planet. Inter., 133, 35-55. Irurzun M.A. Gogorza C.S.G, Chaparro M.A.E., Lirio J.M., Nuñez H., Vilas J.F., Sinito A.M., 2006. Paleosecular variations recorded by Holocene-Pleistocene sediments from Lake El Trébol (Patagonia, Argentina). Phys. Earth and Planet. Inter., 154(1), 1-17.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016116','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016116"><span>Revised paleomagnetic pole for the Sonoma Volcanics, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mankinen, E.A.</p> <p>1989-01-01</p> <p>Paleomagnetic sampling of the Miocene and Pliocene Sonoma Volcanics, northern California, was undertaken to supplement an earlier collection. Data from 25 cooling units yield positive fold and reversal tests, and a paleomagnetic pole located at 80.2??N., 069.2??E., with ??95 = 6.8??. This paleopole is significantly displaced (9.6?? ?? 5.3?? of latitude) to the farside of the geographic pole. A highly elliptical distribution of the data in both direction and VGP space indicates that incomplete averaging of geomagnetic secular variation is a more likely explanation for this anomaly than is northward translation of the volcanic field. -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10446048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10446048"><span>Hafnium isotope stratigraphy of ferromanganese crusts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee; Halliday; Hein; Burton; Christensen; Gunther</p> <p>1999-08-13</p> <p>A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997GeoRL..24..539S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997GeoRL..24..539S"><span>Why are earthquakes nudging the pole towards 140°E?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spada, Giorgio</p> <p></p> <p>Earthquakes have collectively the tendency to displace the pole of rotation of the earth towards a preferred direction (∼140°E). This trend, which is still unexplained on quantitative grounds, has been revealed by computations of earthquake-induced inertia variations on both a secular and a decade time-scale. Purpose of this letter is to show that the above trend results from the combined effects of the geographical distribution of hypocenters and of the prevailing dip-slip nature of large earthquakes in this century. Our findings are based on the static dislocation theory and on simple geometrical arguments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..278...47F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..278...47F"><span>The geomagnetic jerk of 2003.5-characterisation with regional observatory secular variation data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Yan; Holme, Richard; Cox, Grace Alexandra; Jiang, Yi</p> <p>2018-05-01</p> <p>The 2003.5 geomagnetic jerk was identified in geomagnetic records from satellite data, and a matching feature reported in variations in length-of-day (ΔLOD), but detailed study has been hampered by lack of geomagnetic observatory data where it appears strongest. Here we examine secular variation (annual differences of monthly means) based on a new resource of 43 Chinese observatory records for 1998 until the present, focusing on 10 series of particularly high quality and consistency. To obtain a clean series, we calculate the covariance matrix of residuals between measurements and a state-of-the-art field model, CHAOS-6, and use eigenvalue analysis to remove noisy contributions from the uncorrected data. The magnitude of the most significant eigenvector correlates well with Dcx (corrected, extended Dst), suggesting the noise originates from unmodelled external magnetic field. Removal of this noise eliminates much coherent misfit around 2003-2005; nevertheless, the 2003.5 jerk is seen clearly in the first time derivative of the East component in Chinese data, and is also seen in the first time derivative of the vertical component in European data. Estimates of the jerk time are centred on 2003.5, but with some spatial variation; this variation can be eliminated if we allow a discontinuity in the secular variation as well as its temporal gradient. Both regions also provide evidence for a jerk around 2014, although less clearly than 2003.5. We create a new field model based on new data and CHAOS-6 to further examine the regional signals. The new model is close to CHAOS-6, but better fits Chinese data, although modelling also identifies some data features as unphysical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..270..183P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..270..183P"><span>New archaeomagnetic directions from Portugal and evolution of the geomagnetic field in Iberia from Late Bronze Age to Roman Times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palencia-Ortas, A.; Osete, M. L.; Campuzano, S. A.; McIntosh, G.; Larrazabal, J.; Sastre, J.; Rodriguez-Aranda, J.</p> <p>2017-09-01</p> <p>This study presents new archaeomagnetic results from 33 combustion structures (kilns and hearths) from the archaeological sites of Castelinho, Crestelos, Olival Poço da Barca and Fonte do Milho in NE Portugal. The age of the investigated structures ranges from 1210 BC to 200 AD according to calibrated radiocarbon dating, thermoluminescence dating and archaeological constraints. Stepwise thermal and alternating field demagnetization isolate a single, stable, characteristic remanence component with very well defined directions. Rock magnetic analyses suggest low-Ti titanomagnetite/maghemite as the main magnetic carrier of the remanence. Mean directions are well grouped in most structures. The effect of thermoremanent anisotropy on mean directions has been evaluated and was found to be important. Inclination increases of between 2° and 13° after applying the anisotropy correction at specimen level. This highlights the requirement of evaluating this effect on the directions of small and flattened thin kilns and hearths. The 31 new directional data improve both the temporal and spatial distribution of the Iberian archaeomagnetic dataset from Late Bronze Age to Roman Times. Finally, a new directional palaeosecular variation curve for Iberia for the last twelve centuries BC is proposed. The curve has been computed using the bootstrap method and includes data coming from sites within 900 km of Madrid. The new palaeodirectional secular variation curve for Iberia is consistent with the Western European palaeosecular variation curve and with the prediction of regional European models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513690M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513690M"><span>Dating of palaeomagnetic secular variation in Swedish varved lake sediments using radiocarbon wiggle-matching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellström, Anette; Nilsson, Andreas; Stanton, Tania; Muscheler, Raimund; Snowball, Ian</p> <p>2013-04-01</p> <p>Well-dated natural archives are crucial when investigating the timing between climate change and climate forcing. Annually laminated (varved) lake sediments, in particular, can provide valuable knowledge about past climatic and environmental conditions as the annual nature of the sediments enables the establishment of high-resolution archives. In addition, lake sediments can record variations in the Earth's magnetic field, which has the potential to be used as a dating validation technique if the palaeo-secular and -intensity curves are dated correctly. If individual and well-defined geomagnetic events can be dated accurately, they can then be used as isochrones, thereby allowing the synchronisation of different records. We therefore aim to date the "f" event, a late Holocene secular variation change, which is recorded in many sites in the northern hemisphere. Varved sites in Sweden have dated the "f" event to ~2700 cal. yrs BP. In order to constrain this date further, we have used the radiocarbon wiggle-matching method on a lake in central west Sweden, Kälksjön (Stanton et al., 2010), whose chronology has previously been validated using a number of complimentary dating methods. With the radiocarbon wiggle-matching technique, closely spaced samples are measured and matched to distinct wiggles in the radiocarbon calibration curve. The advantage of using varve-dated sediments is that it is possible to know the exact number of years between each sample, and therefore improve the initial age model. We compare the wiggle-match results of Kälksjön with results from a newly discovered varved lake sediment sequence in southern Sweden, Gyltigesjön. This comparison can provide information about magnetisation processes in sediments, such as the length of the palaeomagnetic lock-in delay. Stanton, T., Snowball, I., Zillén, L., Wastegård, S., 2010. Validating a Swedish varve chronology using radiocarbon, palaeomagnetic secular variation, lead pollution history and statistical correlation, Quaternary Geochronology 5, 611-624.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..274...72P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..274...72P"><span>Continuous millennial decrease of the Earth's magnetic axial dipole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe</p> <p>2018-01-01</p> <p>Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP53A1109W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP53A1109W"><span>A High-resolution Palaeomagnetic Secular Variation Record from the Chukchi Sea, Arctic Ocean for the Last 4200 Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>West, G.; O'Regan, M.; Jakobsson, M.; Nilsson, A.; Pearce, C.; Snowball, I.; Wiers, S.</p> <p>2017-12-01</p> <p>The lack of high-temporal resolution and well-dated palaeomagnetic records from the Arctic Ocean hinders our understanding of geomagnetic field behaviour in the region, and limits the applicability of these records in the development of accurate age models for Arctic Ocean sediments. We present a palaeomagnetic secular variation (PSV) record from a sediment core recovered from the Chukchi Sea, Arctic Ocean during the SWERUS-C3 Leg 2 Expedition. The 8.24-metre-long core was collected at 57 m water depth in the Herald Canyon (72.52° N 175.32° W), and extends to 4200 years BP based on 14 AMS 14C dates and a tephra layer associated with the 3.6 cal ka BP Aniakchak eruption. Palaeomagnetic measurements and magnetic analyses of discrete samples reveal stable characteristic remanent magnetisation directions, and a magnetic mineralogy dominated by magnetite. Centennial to millennial scale declination and inclination features, which correlate well to other Western Arctic records, can be readily identified. The relative palaeointensity record of the core matches well with spherical harmonic field model outputs of pfm9k (Nilsson et al., 2014) and CALS10k.2 (Constable et al. 2016) for the site location. Supported by a robust chronology, the presented high-resolution PSV record can potentially play a key role in constructing a well-dated master chronology for the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410478C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410478C"><span>Geomagnetic excursions in the Brunhes and Matuyama Chrons: Do they come in bunches?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Channell, J. E. T.</p> <p>2012-04-01</p> <p>Geomagnetic excursions, defined here as brief directional aberrations of the main dipole field outside the range of expected secular variation, remain controversial. Poorly-correlated records of apparent excursions from lavas and sediments can often be assigned to sampling artifacts, sedimentological phenomena, volcanic terrane effects, or local secular variation, rather than behavior of the main dipole field. Although records of magnetic excursions date from the 1960s, the number of Brunhes excursions in recent reviews of the subject have reached the 12-17 range, of which only about ~7 are adequately and/or consistently recorded. For the Matuyama Chron, the current inventory of excursions stands at about 10. The better quality excursion records, with reasonable age control, imply millennial-scale or even sub-millennial-scale durations. When "adequately" recorded, excursions are manifest as paired polarity reversals flanking virtual geomagnetic poles (VGPs) that reach high latitudes in the opposite hemisphere. At the young end of the excursion record, the Mono Lake (~33 ka) and Laschamp (~41 ka) excursions are well documented, although records of the former are not widely distributed. Several excursions younger than the Mono Lake excursion (at 17 ka and 25 ka) have recently been recorded in lavas and sediments, respectively. Is the 17-41 ka interval characterized by multiple excursions? Similarly, multiple excursions have been recorded in the 188-238 ka interval that encompasses records of the Iceland Basin excursion (~188 ka) and the Pringle Falls (PF) excursion. The PF excursion has been assigned ages in the 211-238 ka range. Does this mean that this interval is also characterized by several discrete excursions? The 500-600 ka interval incorporates not only the Big Lost excursion at ~565 ka, but also anomalous magnetization directions from lava flows, particularly in the West Eifel volcanics that yield mid-latitude northern-hemisphere VGPs with a range of Ar/Ar ages. The key question is whether such intervals of mid-latitude VGPs denote high-amplitude secular variation or inadequately recorded magnetic excursions. We propose that excursions characterized by high VGP latitudes in the opposite hemisphere should be termed Category 1 excursions, and those manifest by low/mid-latitude VGPs should be termed Category 2 excursions. In the future, improved records may "elevate" Category 2 excursions to Category 1. We do not view this subdivision of Category 1 and Category 2 excursions as necessarily a geomagnetic distinction, but possibly a distinction based on recording fidelity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1818D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1818D"><span>Sea level variations during rapid changing Arctic Ocean from tide gauge and satellite altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Ling; Xu, Daohuan</p> <p>2016-04-01</p> <p>Sea level variations can introduce the useful information under the circumstance of the rapid changing Arctic. Based on tide gauge records and the satellite altimetry data in the Arctic Ocean, the sea level variations in the 20th century are analyzed with the stochastic dynamic method. The average secular trend of the sea level record is about 1 mm/yr, which is smaller than the global mean cited by the IPCC climate assessment report. The secular trend in the coastal region differs from that in the deep water. After the mid-1970s, a weak acceleration of sea level rise is found along the coasts of the Siberian and Aleutian Islands. Analysis of synchronous TOPEX/Poseidon altimetry data indicates that the amplitude of the seasonal variation is less than that of the inter-annual variation, whose periods vary from 4.7 to 6 years. This relationship is different from that in the mid-latitudes. The climate indices are the pre-cursors of the sea level variations on multi-temporal scales. The model results show that while steric effects contribute significantly to the seasonal variation, the influence of atmospheric wind forcing is an important factor of sea level during ice free region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI43A2664F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI43A2664F"><span>An accelerating high-latitude jet in Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, C. C.; Livermore, P. W.; Hollerbach, R.</p> <p>2016-12-01</p> <p>The structure of the core-generated magnetic field, and how it changes in time (its secular variation or SV), supplies an invaluable constraint on the dynamics of the outer core. At high latitude, previous studies have noted distinctive behaviour of secular change, in particular suggesting a polar vortex tied to the dynamics within the tangent cylinder region. Recent high-resolution observational models that include data from the Swarm satellites have refined the structure of observed SV, to a rapidly changing circular daisy-chain configuration centred on the north geographic pole, on or very close to the tangent cylinder itself. Motivated by theoretical considerations of the likely dynamical regime of the core, we demonstrate that this feature can be explained by a localised westwards cylindrical jet of 420 km width centred the tangent cylinder, whose amplitude appears to have increased in strength by a factor of three over the period 2000-2016 to about 40 km/yr. The current accelerating phase may be a short fragment of decadal fluctuations of the jet strength linked to both torsional wave activity and the rotation direction of the inner core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AJ....127..531H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AJ....127..531H"><span>A New Determination of Planetary Precession</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harada, Wataru; Fukushima, Toshio</p> <p>2004-01-01</p> <p>By using a nonlinear method of harmonic analysis, we have analyzed the motion of two angles, Ω and ɛ, specifying the direction of the Newtonian heliocentric orbital angular momentum of the Earth-Moon barycenter in the latest lunar and planetary ephemeris, DE405, from 1629 to 2169. Here Ω is the longitude of the node of the ecliptic of date with respect to the International Celestial Reference Frame (ICRF) equator, measured from the ICRF x-axis, while ɛ is the obliquity of the ecliptic of date referred to the ICRF equator. After dropping 86 Fourier terms and four mixed secular terms that were detected, we determined their secular variation in the form of quadratic polynomials as ΩDE405=-0.02109+10.54227t+0.48609t2 and ɛDE405=84,381.40578-46.81972t+0.04817t2 , where the units are arcseconds and t is the time since J2000.0 measured in Julian centuries. This is the latest determination of the planetary precession in the inertial sense and referred to the ICRF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...854...31J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...854...31J"><span>The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnstone, Doug; Herczeg, Gregory J.; Mairs, Steve; Hatchell, Jennifer; Bower, Geoffrey C.; Kirk, Helen; Lane, James; Bell, Graham S.; Graves, Sarah; Aikawa, Yuri; Chen, Huei-Ru Vivien; Chen, Wen-Ping; Kang, Miju; Kang, Sung-Ju; Lee, Jeong-Eun; Morata, Oscar; Pon, Andy; Scicluna, Peter; Scholz, Aleks; Takahashi, Satoko; Yoo, Hyunju; The JCMT Transient Team</p> <p>2018-02-01</p> <p>We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ∼ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082342','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082342"><span>On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance</p> <p>2004-01-01</p> <p>We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6300S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6300S"><span>VO-ESD: a virtual observatory approach to describe the geomagnetic field temporal variations with application to Swarm data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric</p> <p>2017-04-01</p> <p>A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8464P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8464P"><span>Evaluation of a new paleosecular variation activity index as a diagnostic tool for geomagnetic field variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panovska, Sanja; Constable, Catherine</p> <p>2015-04-01</p> <p>Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals. Currently reversals can only be detected after they have occurred. A baseline for the new index is established using modern and Holocene geomagnetic field data and models to analyze 'normal' variability. We extend our analyses to the 100 ka interval where several excursions have been identified. We discuss the diminished or absent signatures of excursions in some records, the apparent transgressive behavior of detected excursions, and implications for transitional field behavior. The absence of specific excursions in some sediment records is attributed to smoothing by the sedimentary remanence acquisition process and low sedimentation rates. Overall PSV activity index is inversely correlated with dipole moment, indicating stronger impacts of non-axial-dipole secular variations during periods of low axial dipole strength. Excursional events found with the PSV activity index are analyzed in the context of global probability density functions for VGP positions. We studied the appearance of VGP clusters of the excursions to find the common characteristics of these instabilities, including the non-axial dipole features of the geomagnetic field. A better understanding of geomagnetic excursions will aid attempts to predict when such events might occur in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880029595&hterms=Legendre+polynomials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DLegendre%2Bpolynomials','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880029595&hterms=Legendre+polynomials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DLegendre%2Bpolynomials"><span>Simultaneous stochastic inversion for geomagnetic main field and secular variation. I - A large-scale inverse problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy</p> <p>1987-01-01</p> <p>The method of stochastic inversion is extended to the simultaneous inversion of both main field and secular variation. In the present method, the time dependency is represented by an expansion in Legendre polynomials, resulting in a simple diagonal form for the a priori covariance matrix. The efficient preconditioned Broyden-Fletcher-Goldfarb-Shanno algorithm is used to solve the large system of equations resulting from expansion of the field spatially to spherical harmonic degree 14 and temporally to degree 8. Application of the method to observatory data spanning the 1900-1980 period results in a data fit of better than 30 nT, while providing temporally and spatially smoothly varying models of the magnetic field at the core-mantle boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016888','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016888"><span>Evaluation of models proposed for the 1991 revision of the International Geomagnetic Reference Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peddie, N.W.</p> <p>1992-01-01</p> <p>The 1991 revision of the International Geomagnetic Reference Field (IGRF) comprises a definitive main-field model for 1985.0, a main-field model for 1990.0, and a forecast secular-variation model for the period 1990-1995. The five 1985.0 main-field models and five 1990.0 main-field models that were proposed have been evaluated by comparing them with one another, with magnetic observatory data, and with Project MAGNET aerial survey data. The comparisons indicate that the main-field models proposed by IZMIRAN, and the secular-variation model proposed jointly by the British Geological Survey and the US Naval Oceanographic Office, should be assigned relatively lower weight in the derivation of the new IGRF models. -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030053446&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030053446&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddynamo"><span>Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuang, Weijia; Tangborn, Andrew</p> <p>2003-01-01</p> <p>Modeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720035492&hterms=lindstrom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D70%26Ntt%3Dlindstrom','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720035492&hterms=lindstrom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D70%26Ntt%3Dlindstrom"><span>Response of trapped particles to a collapsing dipole moment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heckman, H. H.; Lindstrom, P. J.</p> <p>1972-01-01</p> <p>Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20857575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20857575"><span>Sex, secularism and religious influence in US politics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bernstein, Elizabeth; Jakobsen, Janet R</p> <p>2010-01-01</p> <p>Through an analysis of alliances between secular and religious actors in US politics and a specific case study on anti-trafficking policy, we show that the intertwining of religion and politics in the US comes from two sources: 1) the secular political and cultural institutions of American public life that have developed historically out of Protestantism, and which predominantly operate by presuming Protestant norms and values; and 2) the direct influence on US politics of religious groups and organisations, particularly in the past quarter-century of lobby groups and political action committees identified with conservative evangelical Christianity. The sources of policies that promote gender and sexual inequality in the US are both secular and religious and we conclude that it is inaccurate to assume that religious influence in politics is necessarily conservative or that more secular politics will necessarily be more progressive than the religious varieties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024989','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024989"><span>Holocene geomagnetic secular variation recorded by volcanic deposits at Mount St. Helens, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hagstrum, J.T.; Hoblitt, R.P.; Gardner, C.A.; Gray, T.E.</p> <p>2002-01-01</p> <p>A compilation of paleomagnetic data from volcanic deposits of Mount St. Helens is presented in this report. The database is used to determine signature paleomagnetic directions of products from its Holocene eruptive events, to assign sampled units to their proper eruptive period, and to begin the assembly of a much larger database of paleomagnetic directions from Holocene volcanic rocks in western North America. The paleomagnetic results from Mount St. Helens are mostly of high quality, and generally agree with the division of its volcanic deposits into eruptive episodes based on previous geologic mapping and radiocarbon dates. The Muddy River andesite's paleomagnetic direction, however, indicates that it is more likely part of the Pine Creek eruptive period rather than the Castle Creek period. In addition, the Two-Fingers andesite flow is more likely part of the Middle Kalama eruptive period and not part of the Goat Rocks period. The paleomagnetic data from Mount St. Helens and Mount Hood document variation in the geomagnetic field's pole position over the last ~2,500 years. A distinct feature of the new paleosecular variation (PSV) record, similar to the Fish Lake record (Oregon), indicates a sudden change from rapid clockwise movement of the pole about the Earth's spin axis to relatively slow counterclockwise movement at ???800 to 900 years B.P.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.215..162C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.215..162C"><span>Uranium isotope fractionation induced by aqueous speciation: Implications for U isotopes in marine CaCO3 as a paleoredox proxy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xinming; Romaniello, Stephen J.; Anbar, Ariel D.</p> <p>2017-10-01</p> <p>Natural variations of 238U/235U in marine CaCO3 rocks are being explored as a novel paleoredox proxy to investigate oceanic anoxia events. Although it is generally assumed that U isotopes in CaCO3 directly record 238U/235U of seawater, recently published laboratory experiments demonstrate slight U isotope fractionation during U(VI) incorporation into abiotic calcium carbonates. This fractionation is hypothesized to depend on aqueous U(VI) speciation, which is controlled by pH, ionic strength, pCO2 and Mg2+ and Ca2+ concentrations. Secular variation in seawater chemistry could lead to changes in aqueous U(VI) speciation, and thus, may affect the extent of U isotope fractionation during U(VI) incorporation into CaCO3. In this study, we combine estimates of seawater composition over the Phanerozoic with a model of aqueous U speciation and isotope fractionation to explore variations in the expected offset between the U isotope composition of seawater and primary marine CaCO3 through time. We find that U isotope fractionation between U in primary marine CaCO3 and seawater could have varied between 0.11 and 0.23‰ over the Phanerozoic due to secular variations in seawater chemistry. Such variations would significantly impact estimates of the extent of marine anoxia derived from the U isotope record. For example, at the Permo-Triassic boundary, this effect might imply that the estimated extent of anoxia is ∼32% more extreme than previously inferred. One significant limitation of our model is that the existing experimental database covers only abiotic carbonate precipitation, and does not include a possible range of biological effects which might enhance or suppress the range of isotopic fractionation calculated here. As biotic carbonates dominate the marine carbonate record, more work is need to assess controls on U isotopic fractionation into biotic marine carbonates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920023411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920023411"><span>Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Voorhies, Coerte V.</p> <p>1992-01-01</p> <p>Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..533K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..533K"><span>Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi</p> <p>2015-07-01</p> <p>New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910047153&hterms=ethane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dethane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910047153&hterms=ethane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dethane"><span>Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ehhalt, D. H.; Schmidt, U.; Zander, R.; Demoulin, P.; Rinsland, C. P.</p> <p>1991-01-01</p> <p>The secular trend and the seasonal cycle of the total and the tropospheric column abundances of C2H6 over the Jungfraujoch Station (Switzerland) were deduced from infrared solar spectra recorded in 1951 and from 1984 to 1988. Results show a definite seasonal variation in the total vertical column abundance of C2H6, with a maximum of (1.43 + or - 0.03) x 10 to the 16th molecules/sq cm during March and April and a minimum in the fall; the ratio between the maximum and the minimum column abundances was found to be 1.62 + or - 0.11. The secular trend in the tropospheric burden above the Jungfraujoch was found to be (0.85 + or - 0.3) percent/yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA518143','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA518143"><span>Relative Orbit Elements for Satellites in Elliptical Orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-03-01</p> <p>studied subject; many important contributions to the study were made before and during the dawn of the Space Age . In fact, the most celebrated...accomplishments of the Space Age would not have been possible without a good understanding of relative satellite motion. The Apollo astronauts could not... secular terms (containing t and 2t ) in the y-direction and mixed- secular terms (of the form  1 2 3sint t   ) in all three directions. In 1999</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17387252','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17387252"><span>Physical fitness of children and adolescents in the United States: status and secular change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malina, Robert M</p> <p>2007-01-01</p> <p>The physical fitness of school-age children in the United States is considered from two perspectives--status and secular change. This chapter principally examines health-related fitness, including the BMI, though performance-related fitness is briefly considered. Concepts of reference data and standards and factors that may influence secular change are initially discussed. National data on the physical fitness status of school children in the continental United States are limited to the 1980s. Ethnic variation in physical fitness is not considered except for the prevalence of overweight and obesity. More recent physical fitness data, including examination of ethnic variation, are based on several statewide and more local surveys. Although results vary by test, the majority of American school children meet or exceed criterion-referenced standards, although sex differences are not consistent. Poor morphological fitness manifest in obesity is an exception. The prevalence of overweight and obesity has increased since the early 1980s. Secular data for specific fitness items are less extensive. Regression analyses suggest a recent decline in maximal aerobic power in girls, but fairly stable levels between the 1930s and today in boys. However, the highest values for boys occur in the 1960s and 1970s and more recent values are somewhat lower. The general trend may be consistent with the decline since the 1980s in aerobic performance assessed with the 20 m shuttle run. These trends highlight the need for updated national physical fitness data for American youth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014592','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014592"><span>Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benton, E. R.</p> <p>1986-01-01</p> <p>A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012A%26A...541A..27B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012A%26A...541A..27B"><span>Reconstruction of total solar irradiance 1974-2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Wenzler, T.; Mortlock, D. J.; Jaffe, A. H.</p> <p>2012-05-01</p> <p>Context. The study of variations in total solar irradiance (TSI) is important for understanding how the Sun affects the Earth's climate. Aims: Full-disk continuum images and magnetograms are now available for three full solar cycles. We investigate how modelled TSI compares with direct observations by building a consistent modelled TSI dataset. The model, based only on changes in the photospheric magnetic flux can then be tested on rotational, cyclical and secular timescales. Methods: We use Kitt Peak and SoHO/MDI continuum images and magnetograms in the SATIRE-S model to reconstruct TSI over cycles 21-23. To maximise independence from TSI composites, SORCE/TIM TSI data are used to fix the one free parameter of the model. We compare and combine the separate data sources for the model to estimate an uncertainty on the reconstruction and prevent any additional free parameters entering the model. Results: The reconstruction supports the PMOD composite as being the best historical record of TSI observations, although on timescales of the solar rotation the IRMB composite provides somewhat better agreement. Further to this, the model is able to account for 92% of TSI variations from 1978 to 2009 in the PMOD composite and over 96% during cycle 23. The reconstruction also displays an inter-cycle, secular decline of 0.20+0.12-0.09 W m-2 between cycle 23 minima, in agreement with the PMOD composite. Conclusions: SATIRE-S is able to recreate TSI observations on all timescales of a day and longer over 31 years from 1978. This is strong evidence that changes in photospheric magnetic flux alone are responsible for almost all solar irradiance variations over the last three solar cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=human+AND+development+AND+index&pg=3&id=EJ903790','ERIC'); return false;" href="https://eric.ed.gov/?q=human+AND+development+AND+index&pg=3&id=EJ903790"><span>Does Individual Secularism Promote Life Satisfaction? The Moderating Role of Societal Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Li, Liman Man Wai; Bond, Michael H.</p> <p>2010-01-01</p> <p>This study was designed to examine the link between values and life satisfaction, examining the role of culture in this process. Secularism was found to predict life satisfaction scores at a small but statistically very significant level in persons from all nations participating in all four waves of the World Values Survey. The direction and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26C....17...86Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26C....17...86Z"><span>N-body simulations of collective effects in spiral and barred galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.</p> <p>2016-10-01</p> <p>We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3464B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3464B"><span>Decreasing of axial angular momentum of oceanic both fluid continental masses and its contribution to non-tidal acceleration of rotation of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yu. V.</p> <p>2009-04-01</p> <p>Modeling constructions have shown, that a variation of geopotential coefficients, since the second harmonic, are determined basically by redistributions of fluid masses in the top shells of the Earth [1]. Only on a variation of coefficients of the first harmonic essential influence renders displacement of the centre of mass in the basic mantle reference system. By the similar redistribution of masses it is obviously possible to estimate a variation of the axial moment of inertia of the full Earth, including an atmosphere and ocean, on a value of variation of coefficient of the second zonal harmonic of geopotential: Ċ• C = 2˙J2•(3I) (I = 0.3307is a dimensionless polar moment of inertia of the Earth, C is the polar moment of inertia of the Earth). According to satellite observations ˙ J2 = (2.7 ± 0.4) × 10-11 1/yr[2] and, hence, we obtain an estimation Ċ•C = -(5.4 ± 0.8) × 10-11 1/yr. We use this value for an establishment of the new phenomenon - acceleration of return superrotation of fluids in western direction. For what we shall take advantage of known estimations of secular non-tidal acceleration of rotation of the rigid Earth: ˙?•? = (6.9± 1.2) × 10-11 1/yr (corresponding variation LOD makes -0.6 ± 0.1 ms/cy) [3] and variations of angular velocity of axial rotation of the Earth because of secular increase of a polar atmosphere angular moment: -0.56 ms/cy[4]. On Salstein's data for 1970 - 2002 a positive trend of polar component of the angular momentum really exists. Corresponding reduction of duration of day is characterized by velocity-0.525 ms/cy. First of the given values has been obtained by results of observations of solar eclipses over last 2500. And the second value has been obtained on the data on variations of specified component of the angular momentum for last 60 years. Thus, in present epoch an acceleration of superrotation of an atmosphere is observed. Which results in delay of rotation of the Earth with relative acceleration ˙?•? = (-6.5) × 10-11 1/yr. It means, that there is other mechanism which results in significant positive angular acceleration of rotation of the Earth ?˙•? = (13.4 ±1.2) × 10-11 (to this value there corresponds a negative variation LOD in-1.16 ± 0.10 ms/cy). The similar mechanism can be only a redistribution of oceanic masses (currents) and subsoil waters and fluids in aggregate. Thus, the data of astronomical and geophysical observations unequivocally specify that the phenomenon of strengthening of circulation of continental waters (in particular subsoil waters) in the western direction should be observed. Or negative trend in total value of the angular axial momentum of ocean and a hydrology of continents. Attributes of an intensification of the western drift of oceanic masses are seen in rather old data for 1981-1989 (Brosche et al., [5]). On these data secular changes in redistribution of oceanic masses cause reduction of LOD with velocity of ?-0.16 ms/cy. And both hemispheres northern and southern bring contributions comparable on value: ~-0.074 ms/cy (NH) and ~-0.089 ms/cy (SH). These values, certainly, are rather approached and have estimated character. In global currents at ocean the similar situation in strengthening of circulation in the western direction in present epoch should be observed. We shall emphasize, that the question is not existence of those or other planetary currents, but about their slow changes as it is described above. As the size of a variation of angular velocity because of redistribution of water masses is rather significant, it should be observed in the modern data on variations of the angular momentum of ocean and as a whole of fluid masses. Let á¹ ° is a secular variation of the angular momentum of fluid masses of the Earth in present epoch. G = C? is unperturbed value of the angular momentum of rotary motion of full system the Earth. According to the mentioned above works the following estimations of secular variations of the axial angular momentum of ocean and its northern and southern hemispheres [5] were obtained: ( ) ( ) ( ) ˙R•G = - 0.12 ms/cy, R˙•G = - 0.12 ms/cy, ˙R•G = - 0.24 ms/cy, ON OS O and according to work [6] for hydrological, oceanic and their total fluids making the axial angular momentum the following estimations have been obtained: ( ) ( ) ( ) ˙R•G = - 0.34 ms/cy, ˙R•G = - 0.22 ms/cy, R˙•G = - 0.55 ms/cy. H O H+O Results will be coordinated among themselves. For example, for the full axial momentum of all fluids (atmospheres, ocean, continental and ground) in the specified two models turn out small values:( ) ˙R•C0?A+H+O = -0.03 ms/cy, ( ) R˙•C0 ?A+H+O = -0.05 ms/cy, as it follows from dynamic conclusions about non-tidal acceleration of rotation of the Earth. Excluding from consideration a time interval 1997.0-1999.0, which corresponds to spasmodic changes of all natural processes of the Earth (Barkin, 2002), for velocity of decrease of the hydrological and oceanic angular momentums before and after the specified period we obtain rough estimates: - 0.7-0.9 ÷ ms/cy. These estimations at least do not contradict the basic conclusions to the given work about increase of the western displacement and currents of fluids of the Earth. More exact analysis will need the data of supervision for longer time intervals. The similar rough estimate on the data [5] turns out for oceanic making secular changes of the angular momentum. It gives negative change LOD with velocity -0.16 ms/cy. Thus, it is possible to assume, that there is an effective mechanism of secular increase of streams of water (fluid) masses on continents in the western direction. On the other hand according to work [5] roughly it is possible to estimate trend of the angular momentum of in common oceanic and hydrological fluids. It appears, that redistributions of these masses in present epoch results in acceleration of rotation of the Earth. The appropriate reduction of duration of day here makes approximately-0.52 ms/cy. Thus strengthening of redistribution of terrestrial waters and fluids in the western direction really proves to be true. These estimations are obtained at exception of the period 1997.0-1999.0 when there was rather fast spasmodic change (increase) of duration of day approximately on 0.038 ms. References [1] Barkin Yu.V. (2007) Celestial geodynamics and solution of the fundamental problems of geodesy, gravimetry and geophysics. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (S) - IASPEI, JSS011, p. 2149. www. iugg2007perugia.it. [2] Cheng M.R., Shum C.K. and Tapley B.D. (1997) Determination of long-periodic changes in the Earth's gravity field from satellite laser ranging observations. Journal of Geophysical research, V. 102, No. B10. pp. 22377-22390. [3] Stephenson F.R. and Morrison L.V. (1995) Long term fluctuations in the Earth's rotation:700 BC to AD 1990, Phil. Trans. R. Soc. Lond., A, 351, p. 165-202. [4] Abarca del Rio R. (1999) The influence of global warming in Earth rotation speed. Ann. Geophys., 17, 806-811. [5] Brosche P., Wunsch J., Maier-Reimer E., Segschneider J., Sundermann J. (1997) The axial angular momentum of the general circulation of the oceans. Astron. Nachr. 318, V.3, 193-199. [6] Chen J. (2005) Global mass balance an the length-of-day variation. Journal of Geophysical research, V. 110, B08404, doi: 10.1029/2004JB003474. [7] Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FBS....59....4V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FBS....59....4V"><span>Secular Effect of Sun Oblateness on the Orbital Parameters of Mars and Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaishwar, Avaneesh; Kushvah, Badam Singh; Mishra, Devi Prasad</p> <p>2018-01-01</p> <p>In this paper we considered the Mars-Jupiter system to study the behaviour of Near Earth Asteroids (NEAs) as most of the NEAs originate in the main asteroid belt located between Mars and Jupiter. The materials obtained from NEAs are very useful for space industrialisation. The variations in orbital parameters, such as eccentricity, inclination, longitude of pericenter and longitude of ascending node of Mars and Jupiter were investigated for a time span of 200,000 years centered on J2000 (January 2000) using secular perturbation theory. We considered the Sun oblateness and studied the effect of Sun oblateness on orbital parameters of Mars and Jupiter. Moreover, we determined the orbital parameters for asteroids moving under the perturbation effect of Mars and Jupiter by using a secular solution of Mars-Jupiter system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..118S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..118S"><span>Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric</p> <p>2018-03-01</p> <p>A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68...23K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68...23K"><span>Morphology of the southern African geomagnetic field derived from observatory and repeat station survey observations: 2005-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotzé, P. B.; Korte, M.</p> <p>2016-02-01</p> <p>Geomagnetic field data from four observatories and annual field surveys between 2005 and 2015 provide a detailed description of Earth's magnetic field changes over South Africa, Namibia and Botswana on time scales of less than 1 year. The southern African area is characterized by rapid changes in the secular variation pattern and lies in close proximity to the South Atlantic Anomaly (SAA) where the geomagnetic field intensity is almost 30 % weaker than in other regions at similar latitudes around the globe. Several geomagnetic secular acceleration (SA) pulses (geomagnetic jerks) around 2007, 2010 and 2012 could be identified over the last decade in southern Africa. We present a new regional field model for declination and horizontal and vertical intensity over southern Africa (Southern African REGional (SAREG)) which is based on field survey and observatory data and covering the time interval from 2005 to 2014, i.e. including the period between 2010 and 2013 when no low Earth-orbiting vector field satellite data are available. A comparative evaluation between SAREG and global field models like CHAOS-5, the CHAMP, Orsted and SAC-C model of the Earth's magnetic field and International Geomagnetic Reference Field (IGRF-12) reveals that a simple regional field model based on a relatively dense ground network is able to provide a realistic representation of the geomagnetic field in this area. We particularly note that a global field model like CHAOS-5 does not always indicate similar short-period patterns in the field components as revealed by observatory data, while representing the general secular variation reasonably well during the time interval without near-Earth satellite vector field data. This investigation further shows the inhomogeneous occurrence and distribution of secular variation impulses in the different geomagnetic field components and at different locations in southern African.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PEPI..253....5B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PEPI..253....5B"><span>Paleomagnetism and dating of a thick lava pile in the Permian Bakaly formation of eastern Kazakhstan: Regularities and singularities of the paleomagnetic record in thick lava series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazhenov, Mikhail L.; Van der Voo, Rob; Menzo, Zachary; Dominguez, Ada R.; Meert, Joseph G.; Levashova, Natalia M.</p> <p>2016-04-01</p> <p>Paleomagnetic results on thick lava series are among the most important sources of information on the characteristics of ancient geomagnetic fields. Most paleo-secular variation data from lavas (PSVL) are of late Cenozoic age. There are far fewer results from lavas older than 5 Ma. The Central Asia Orogenic Belt that occupies several million square kilometers in Asia is probably the world's largest area of Paleozoic volcanism and is thus an attractive target for PSVL studies. We studied a ca. 1700 m thick lava pile in eastern Kazakhstan of Early Permian age. Magmatic zircons, successfully separated from an acid flow in this predominantly basaltic sequence, yielded an Early Permian age of 286.3 ± 3.5 Ma. Oriented samples were collected from 125 flows, resulting in 88 acceptable quality flow-means (n ⩾ 4 samples, radius of confidence circle α95 ⩽ 15°) of the high-temperature magnetization component. The uniformly reversed component is pre-tilting and arguably of a primary origin. The overall mean direction has a declination = 242.0° and an inclination = -56.2° (k = 71.5, α95 = 1.8°; N = 88 sites; pole at 44.1°N, 160.6°E, A95 = 2.2°). Our pole agrees well with the Early Permian reference data for Baltica, in accord with the radiometric age of the lava pile and geological views on evolution of the western part of the Central Asia Orogenic Belt. The new Early Permian result indicates a comparatively low level of secular variation especially when compared to PSVL data from intervals with frequent reversals. Still, the overall scatter of dispersion estimates that are used as proxies for SV magnitudes, elongation values and elongation orientations for PSVL data is high and cannot be fitted into any particular field model with fixed parameters. Both observed values and numerical simulations indicate that the main cause for the scatter of form parameters (elongation values and elongation orientations) is the too small size of collections. Dispersion estimates (concentration parameter and standard angular deviation) are more robust, and their scatter stems from other sources, which may include non-stochastic features of datasets like clusters, loops etc., or non-stationary behavior of secular variation magnitude over time intervals of many million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012069','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012069"><span>Main field and recent secular variation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alldredge, L.R.</p> <p>1983-01-01</p> <p>As Cain (1979) indicated might happen in the last IUGG quadrennial report, added resources were made available during the past few years and a real impulse was added to the geomagnetic work in the US by the launching of the MAGSAT Satellite. This new effort paid off in terms of new charts, additional long wavelength studies, and external source studies. As before, however, the future funding for new starts in geomagnetism does not look bright at the present time. A single MAGSAT in orbit a little more than seven months did wonders for main field (M.F.) charting, but did little or nothing for secular variation (S.V.) charting. It would take a number of repeated MAGSATS to help the S.V. picture. Meanwhile, the world magnetic observatory net and surface repeat stations remain as the main source of S.V. data. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAsGe...6..104D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAsGe...6..104D"><span>The Egyptian geomagnetic reference field to the Epoch, 2010.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.</p> <p>2017-06-01</p> <p>The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780030721&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhistory%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780030721&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhistory%2Btheory"><span>Scale-covariant theory of gravitation and astrophysical applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Canuto, V.; Adams, P. J.; Hsieh, S.-H.; Tsiang, E.</p> <p>1977-01-01</p> <p>A scale-covariant theory of gravitation is presented which is characterized by a set of equations that are complete only after a choice of the scale function is made. Special attention is given to gauge conditions and units which allow gravitational phenomena to be described in atomic units. The generalized gravitational-field equations are derived by performing a direct scale transformation, by extending Riemannian geometry to Weyl geometry through the introduction of the notion of cotensors, and from a variation principle. Modified conservation laws are provided, a set of dynamical equations is obtained, and astrophysical consequences are considered. The theory is applied to examine certain homogeneous cosmological solutions, perihelion shifts, light deflections, secular variations of planetary orbital elements, stellar structure equations for a star in quasi-static equilibrium, and the past thermal history of earth. The possible relation of the scale-covariant theory to gauge field theories and their predictions of cosmological constants is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830006325','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830006325"><span>The intermediate wavelength magnetic anomaly field of the north Pacific and possible source distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Labrecque, J. L.; Cande, S. C.; Jarrard, R. D. (Principal Investigator)</p> <p>1983-01-01</p> <p>A technique that eliminates external field sources and the effects of strike aliasing was used to extract from marine survey data the intermediate wavelength magnetic anomaly field for (B) in the North Pacific. A strong correlation exists between this field and the MAGSAT field although a directional sensitivity in the MAGSAT field can be detected. The intermediate wavelength field is correlated to tectonic features. Island arcs appear as positive anomalies of induced origin likely due to variations in crustal thickness. Seamount chains and oceanic plateaus also are manifested by strong anomalies. The primary contribution to many of these anomalies appears to be due to a remanent magnetization. The source parameters for the remainder of these features are presently unidentified ambiguous. Results indicate that the sea surface field is a valuable source of information for secular variation analysis and the resolution of intermediate wavelength source parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17..538S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17..538S"><span>Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez-Duque, A.; Mejia, V.; Opdyke, N. D.; Huang, K.; Rosales-Rivera, A.</p> <p>2016-02-01</p> <p>Paleomagnetic results obtained from 47 Plio-Pleistocene volcanic flows from the Ruiz-Tolima Volcanic Chain (Colombia) are presented. The mean direction of magnetization among these flows, which comprise normal (n = 43) and reversed (n = 4) polarities, is Dec = 1.8°, Inc = 3.2°, α95 = 5.0°, and κ = 18.4. This direction of magnetization coincides with GAD plus a small persistent axial quadrupolar component (around 5%) at the site-average latitude (4.93°). This agreement is robust after applying several selection criteria (α95 < 10º α95 < 5.5º polarities: normal, reversed, and tentatively transitional). The data are in agreement with Model G proposed by McElhinny and McFadden (1997) and the fit is improved when sites tentatively identified as transitional (two that otherwise have normal polarity) are excluded from the calculations. Compliance observed with the above mentioned time-averaged field and paleosecular variation models, is also observed for many recent similar studies from low latitudes, with the exception of results from Galapagos Islands that coincide with GAD and tend to be near sided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3202908','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3202908"><span>Secular trends and smoke-free policy development in rural Kentucky</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fallin, Amanda; Parker, Lindsay; Lindgreen, Janine; Riker, Carol; Kercsmar, Sarah; Hahn, Ellen J.</p> <p>2011-01-01</p> <p>Secondhand smoke (SHS) exposure causes cardiovascular disease, lung cancer and pulmonary disorders. Smoke-free policies are the most effective way to prevent exposure to SHS. A 5-year community-based randomized control trial (RCT) is in progress to assess factors associated with smoke-free policy development in rural communities. Considering secular trends is critical when conducting community-based RCTs as they may threaten the internal validity of the study. For the purposes of this paper, secular trends are defined as patterns or recurring events that are not directly related to smoke-free policy but have the potential to influence policy development. There are no established protocols to monitor secular trends in the study of smoke-free policy in rural communities. The purpose of this paper is to (i) describe the development of a protocol to identify and monitor secular trends that may threaten the internal validity of a community-based RCT to promote smoke-free policy development and (ii) describe secular trends identified in the first 2 years of the RCT. The sample includes 854 secular events captured from media outlets covering the 40 study counties over the first 2 years of the RCT. Of these 854 events, there were 281 secular events in Year 1 and 573 in Year 2. This paper focuses on five specific categories: ‘tobacco use and cessation activities’, ‘farming’, ‘economics’, ‘city/county infrastructure’ and ‘wellness’. This protocol is a feasible yet time-intensive method of identifying events that may threaten the internal validity of a community-based RCT. PMID:21558440</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.3430S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.3430S"><span>Seismic anisotropy and its precursory change before eruptions at Piton de la Fournaise volcano, La Réunion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.</p> <p>2015-05-01</p> <p>The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25905822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25905822"><span>Secular trends, race, and geographic disparity of early-stage breast cancer incidence: 25 years of surveillance in Connecticut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crabbe, J Christopher F; Gregorio, David I; Samociuk, Holly; Swede, Helen</p> <p>2015-07-01</p> <p>We considered changes in the geographic distribution of early stage breast cancer among White and non-White women while secular trends in lifestyle and health care were under way. We aggregated tumor registry and census data by age, race, place of residence, and year of diagnosis to evaluate rate variation across Connecticut census tracts between 1985 and 2009. Global and local cluster detection tests were completed. Age-adjusted incidence rates increased by 2.71% and 0.44% per year for White and non-White women, respectively. Significant global clustering was identified during surveillance of these populations, but the elements of clustering differed between groups. Among White women, fewer local clusters were detected after 1985 to 1989, whereas clustering increased over time among non-White women. Small-area variation of breast cancer incidence rates across time periods proved to be dynamic and race-specific. Incidence rates might have been affected by secular trends in lifestyle or health care. Single cross-sectional analyses might have confused our understanding of disease occurrence by not accounting for the social context in which patient preferences or provider capacity influence the numbers and locations of diagnosed cases. Serial analyses are recommended to identify "hot spots" where persistent geographic disparities in incidence occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115469&hterms=satellite+radiation+damage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsatellite*%2Bradiation%2Bdamage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115469&hterms=satellite+radiation+damage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsatellite*%2Bradiation%2Bdamage"><span>Future Radiation Damage in Space due to South Atlantic Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heirtzler, J. R.</p> <p>1999-01-01</p> <p>Predictions of radiation damage for Low Earth Orbit (LEO) satellites now use semi-empirical models developed from prior satellite data. From these models it is clear that the low field strength of the South Atlantic Anomaly (SAA) controls where the maximum radiation damage occurs. One may make an estimate of future radiation damage to LEO spacecraft if one can predict the future of the SAA. Although reliable maps of the geomagnetic field strength and its secular change have only been made in the last few decades, certain geomagnetic observatories in South America and Africa have recorded the geomagnetic field for a much longer time. These observatories show that the present geomagnetic field change has persisted for more than 100 years. In spite of the fact that a few observatories have shown sudden changes in secular variation, those around the SAA have shown a stable secular variation. Assuming that this will continue for the next 50 to 100 years one can show that the SAA will expand to cover most of the South Atlantic Ocean and will become much weaker. This will greatly intensify the radiation hazard in LEO, put significant new limitations on radiation-hardened hardware, severely restrict the length of time that humans can remain in orbit, and materially change the configuration of the radiation belts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7061389-structure-secular-variation-seawater-sup-sr-sup-sr-ivorian-chadian-osagean-lower-carboniferous','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7061389-structure-secular-variation-seawater-sup-sr-sup-sr-ivorian-chadian-osagean-lower-carboniferous"><span>Structure in the secular variation of seawater sup 87 Sr/ sup 86 Sr for the Ivorian/Chadian (Osagean, Lower Carboniferous)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Douthit, T.L.; Hanson, G.N.; Meyers, W.J.</p> <p>1990-05-01</p> <p>The secular variations of {sup 87}Sr/{sup 86}Sr in seawater for the Ivorian/Chadian, (equivalent to the Osagean, Lower Carboniferous) were determined through detailed analysis of well-preserved marine cements from the Waulsortian facies of Ireland. The results indicate that marine cements have utility in characterizing marine paleochemistries. Marine cements were judged pristine on the basis of nonluminescent character and stable isotopic composition comparable to previous estimates of Mississippian marine calcite. Analysis of the marine cements yielded {sup 87}Sr/{sup 86}Sr ratios lower than previously reported values for the Ivorian/Chadian. Error resulting from chronostratigraphic correlation between different geographic areas was avoided by restricting themore » sample set to a single 1,406-ft-long core (core P-1). The P-1 core is estimated to represent a minimum of 8.7 m.y. of continuous Waulsortian Limestone deposition. The {sup 87}Sr/{sup 86}Sr ratios of 11 nonluminescent cements document a non-monotonic variation in seawater {sup 87}Sr/{sup 86}Sr along the length of the core. {sup 87}Sr/{sup 86}Sr ranges from a high of 0.707908 in the early Ivorian to a low of about 0.707650 in the late Ivorian and middle Chadian with an early Chadian maximum at 0.707800 (all data are adjusted to a value of 0.710140 for SRM 987). The indicated maximum rate of change in seawater {sup 87}Sr/{sup 86}Sr is {minus}0.00011/Ma, comparable in magnitude to Tertiary values. The secular variation curve of seawater {sup 87}Sr/{sup 86}Sr for the Ivorian/Chadian has previously been thought to decrease monotonically with decreasing age. These data suggest that the seawater {sup 87}Sr/{sup 86}Sr variation over this interval may be sinusoidal in nature and emphasize the importance of well-characterized intraformational isotopic base lines.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ARep...52..487D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ARep...52..487D"><span>Spectroscopic monitoring of SS 433: A search for long-term variations of kinematic model parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davydov, V. V.; Esipov, V. F.; Cherepashchuk, A. M.</p> <p>2008-06-01</p> <p>Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of H α. We determined Doppler shifts of the moving emission lines, H α + and H α -, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for H α - and 389 for H α +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for H α - and 630 for H α + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561 c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916450M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916450M"><span>First archaeointensity catalogue and intensity secular variation curve for Iberia spanning the last 3000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molina-Cardín, Alberto; Campuzano, Saioa A.; Rivero, Mercedes; Osete, María Luisa; Gómez-Paccard, Miriam; Pérez-Fuentes, José Carlos; Pavón-Carrasco, F. Javier; Chauvin, Annick; Palencia-Ortas, Alicia</p> <p>2017-04-01</p> <p>In this work we present the first archaeomagnetic intensity database for the Iberian Peninsula covering the last 3 millennia. In addition to previously published archaeointensities (about 100 data), we present twenty new high-quality archaeointensities. The new data have been obtained following the Thellier and Thellier method including pTRM-checks and have been corrected for the effect of the anisotropy of thermoremanent magnetization upon archaeointensity estimates. Importantly, about 50% of the new data obtained correspond to the first millennium BC, a period for which there was not possible to develop an intensity palaeosecular variation curve before due to the lack of high-quality archaeointensity data. The different qualities of the data included in the Iberian dataset have been evaluated following different palaeomagnetic criteria, such as the number of specimens analysed, the laboratory protocol applied and the kind of material analysed. Finally, we present the first intensity palaeosecular variation curve for the Iberian Peninsula centred at Madrid for the last 3000 years. In order to obtain the most reliable secular variation curve, it has been generated using only selected high-quality data from the catalogue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25772853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25772853"><span>The ethical implications and religious significance of organ transplantation payment systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Hunter Jackson</p> <p>2016-03-01</p> <p>One of the more polarizing policies proposed to alleviate the organ shortage is financial payment of donors in return for organs. A priori and empirical investigation concludes that such systems are ethically inadequate. A new methodological approach towards policy formation and implementation is proposed which places ethical concerns at its core. From a hypothetical secular origin, the optimal ethical policy structure concerning organ donation is derived. However, when applied universally, it does not yield ideal results for every culture and society due to region-specific variation. Since religion holds significant influence in the organ donation debate, three religions-Catholicism, Islam, and Shinto-were examined in order to illustrate this variation. Although secular ethical concerns should rest at the core of policy construction, certain region-specific contexts require cultural and religious competence and necessitate the adjustment of the optimal template policy accordingly to yield the best moral and practical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022403','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022403"><span>The 2000 revision of the joint UK/US geomagnetic field models and an IGRF 2000 candidate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Macmillan, S.; Quinn, J.M.</p> <p>2000-01-01</p> <p>The method of derivation of the joint UK/US spherical harmonic geomagnetic main-field and secular-variation models is presented. Early versions of these models, with the main field truncated at degree 10, are the UK/US candidates for the IGRF 2000 model. The main-field model describes the Earth's magnetic field at the 2000.0 epoch, while the secular-variation model predicts the evolution of this field between 2000.0 and 2005.0. A revised 1995.0 main-field model was also generated. Regional models for the continental US, Alaska and Hawaii were also produced as a by-product of the UK/US global modelling effort. Copy right?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900029101&hterms=stochastic+inversion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstochastic%2Binversion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900029101&hterms=stochastic+inversion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstochastic%2Binversion"><span>Simultaneous stochastic inversion for geomagnetic main field and secular variation. II - 1820-1980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy; Jackson, Andrew</p> <p>1989-01-01</p> <p>With the aim of producing readable time-dependent maps of the geomagnetic field at the core-mantle boundary, the method of simultaneous stochastic inversion for the geomagnetic main field and secular variation, described by Bloxham (1987), was applied to survey data from the period 1820-1980 to yield two time-dependent geomagnetic-field models, one for the period 1900-1980 and the other for 1820-1900. Particular consideration was given to the effect of crustal fields on observations. It was found that the existing methods of accounting for these fields as sources of random noise are inadequate in two circumstances: (1) when sequences of measurements are made at one particular site, and (2) for measurements made at satellite altitude. The present model shows many of the features in the earth's magnetic field at the core-mantle boundary described by Bloxham and Gubbins (1985) and supports many of their earlier conclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014179','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014179"><span>A model of geomagnetic secular variation for 1980-1983</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peddie, N.W.; Zunde, A.K.</p> <p>1987-01-01</p> <p>We developed an updated model of the secular variation of the main geomagnetic field during 1980 through 1983 based on annual mean values for that interval from 148 worldwide magnetic observatories. The model consists of a series of 80 spherical harmonics, up to and including those of degree and order 8. We used it to form a proposal for the 1985 revision of the International Geomagnetic Reference Field (IGRF). Comparison of the new model, whose mean epoch is approximately 1982.0, with the Provisional Geomagnetic Reference Field for 1975-1980 (PGRF 1975), indicates that the moment of the centered-dipole part of the geomagnetic field is now decreasing faster than it was 5 years ago. The rate (in field units) indicated by PGRF 1975 was about -25 nT a-1, while for the new model it is -28 nT a-1. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E2701C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E2701C"><span>Debris perturbed by radiation pressure: relative velocities across circular orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Celestino, C.; Winter, O.; Prado, A.</p> <p></p> <p>It is widely know that there is a large amount of space debris and meteoroid particles around the Earth. The objects larger than 10 cm can be tracked by radar and others means allowing the satellites/ships to be maneuvered to avoid collisions. However, the detection and the attendance of the orbital dynamics of objects smaller than 10 cm (particles) is very difficult. These particles can be generated by explosions of larger objects, collisions between large objects, or simply for the reaction of the oxygen in the wall of an object could generate the escape of paint pieces. The importance of studying the dynamics of these particles is that they can have relative high speeds and their effects in a collision could cause damages and even compromise the space missions. In this present work we considered a dynamical system of mm size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity to the circular orbits that it crosses.Firstly, it is considered that the particle is initially in circular orbit. The effect of the radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results show that the variation of the radial distance and the relative velocity can be divided in three parts: secular, long period and short period. For the radial distance the secular variation is constant, because the semi-axis is constant. The long period variation presents a configuration that repeats with period inferior to the orbital period of the Earth. And, finally, the short period variation presents points of local maxima and minima for the variation of the width of the radial distance. When considering the variation of the relative velocity we have that the secular behavior and of long period are similar to those obtained for the variation of the radial distance. However, for the short period variation, we have a larger number of local maxima and minima in comparison to the radial distance. The relative velocity for particles initially geostationary of size 5,0 mm are around 4,0 km/s. Acknowledgments: The authors thank FAPESP, CNPq and FUNDUNESP for the financial support.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NewA...62...20H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NewA...62...20H"><span>On orbital period changes of two low-mass-ratio and deep-contact binaries: FN Cam and KN Per</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Ke; Jiang, Zhen-Hua; Yu, Yun-Xia; Xiang, Fu-Yuan</p> <p>2018-07-01</p> <p>The orbital period changes of two low-mass-ratio and deep-contact binaries, FN Cam and KN Per, are investigated by using all available times of light minimum taken from the databases and literature. It is found that the orbital periods of FN Cam and KN Per show secular increase at a rate of P˙ = 4.38 ×10-7 days year-1 and P˙ = 4.18 ×10-7 days year-1 , respectively. The secular period increase suggests that FN Cam and KN Per are undergoing continuous mass transfer from the less massive secondary component to the more massive primary one. A statistical analysis of 53 low-mass-ratio and deep-contact binaries indicates that all of them should contain at least a continuous period change (secular increase/decrease or cyclic oscillation). Moreover, the rates of the secular period variations can be at a common level of P˙ ∼10-7 days year-1. In addition, the cyclic period oscillation has been detected for only 43% of sample stars, which indicates that it should be not popular for all low-mass-ratio and deep-contact binaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.475.4208J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.475.4208J"><span>Blazhko modulation in the infrared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jurcsik, J.; Hajdu, G.; Dékány, I.; Nuspl, J.; Catelan, M.; Grebel, E. K.</p> <p>2018-04-01</p> <p>We present first direct evidence of modulation in the K band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of Optical Gravitational Lensing Experiment-IV. A method has been developed to decompose the K-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611938G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611938G"><span>An integrated model for Jupiter's dynamo action and mean jet dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gastine, Thomas; Wicht, Johannes; Duarte, Lucia; Heimpel, Moritz</p> <p>2014-05-01</p> <p>Data from various space crafts revealed that Jupiter's large scale interior magnetic field is very Earth-like. This is surprising since numerical simulations have demonstrated that, for example, the radial dependence of density, electrical conductivity and other physical properties, which is only mild in the iron cores of terrestrial planets but very drastic in gas planets, can significantly affect the interior dynamics. Jupiter's dynamo action is thought to take place in the deeper envelope where hydrogen, the main constituent of Jupiter's atmosphere, assumes metallic properties. The potential interaction between the observed zonal jets and the deeper dynamo region is an unresolved problem with important consequences for the magnetic field generation. Here we present the first numerical simulation that is based on recent interior models and covers 99% of the planetary radius (below the 1 bar level). A steep decease in the electrical conductivity over the outer 10% in radius allowed us to model both the deeper metallic region and the outer molecular layer in an integrated approach. The magnetic field very closely reproduces Jupiter's known large scale field. A strong equatorial zonal jet remains constrained to the molecular layer while higher latitude jets are suppressed by Lorentz forces. This suggests that Jupiter's higher latitude jets remain shallow and are driven by an additional effect not captured in our deep convection model. The dynamo action of the equatorial jet produces a band of magnetic field located around the equator. The unprecedented magnetic field resolution expected from the Juno mission will allow to resolve this feature allowing a direct detection of the equatorial jet dynamics at depth. Typical secular variation times scales amount to around 750 yr for the dipole contribution but decrease to about 5 yr at the expected Juno resolution (spherical harmonic degree 20). At a nominal mission duration of one year Juno should therefore be able to directly detect secular variation effects in the higher field harmonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.304...22C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.304...22C"><span>Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Hao; Russell, Christopher T.; Christensen, Ulrich R.; Dougherty, Michele K.; Burton, Marcia E.</p> <p>2011-04-01</p> <p>Saturn is the only planet in the solar system whose observed magnetic field is highly axisymmetric. At least a small deviation from perfect symmetry is required for a dynamo-generated magnetic field. Analyzing more than six years of magnetometer data obtained by Cassini close to the planet, we show that Saturn's observed field is much more axisymmetric than previously thought. We invert the magnetometer observations that were obtained in the "current-free" inner magnetosphere for an internal model, varying the assumed unknown rotation rate of Saturn's deep interior. No unambiguous non-axially symmetric magnetic moment is detected, with a new upper bound on the dipole tilt of 0.06°. An axisymmetric internal model with Schmidt-normalized spherical harmonic coefficients g10 = 21,191 ± 24 nT, g20 = 1586 ± 7 nT. g30 = 2374 ± 47 nT is derived from these measurements, the upper bounds on the axial degree 4 and 5 terms are 720 nT and 3200 nT respectively. The secular variation for the last 30 years is within the probable error of each term from degree 1 to 3, and the upper bounds are an order of magnitude smaller than in similar terrestrial terms for degrees 1 and 2. Differentially rotating conducting stable layers above Saturn's dynamo region have been proposed to symmetrize the magnetic field (Stevenson, 1982). The new upper bound on the dipole tilt implies that this stable layer must have a thickness L >= 4000 km, and this thickness is consistent with our weak secular variation observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12110231M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12110231M"><span>Equatorial E region electric fields at the dip equator: 2. Seasonal variabilities and effects over Brazil due to the secular variation of the magnetic equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moro, J.; Denardini, C. M.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.</p> <p>2016-10-01</p> <p>In this work, the seasonal dependency of the E region electric field (EEF) at the dip equator is examined. The eastward zonal (Ey) and the daytime vertical (Ez) electric fields are responsible for the overall phenomenology of the equatorial and low-latitude ionosphere, including the equatorial electrojet (EEJ) and its plasma instability. The electric field components are studied based on long-term backscatter radars soundings (348 days for both systems) collected during geomagnetic quiet days (Kp ≤ 3+), from 2001 to 2010, at the São Luís Space Observatory (SLZ), Brazil (2.33°S, 44.20°W), and at the Jicamarca Radio Observatory (JRO), Peru (11.95°S, 76.87°W). Among the results, we observe, for the first time, a seasonal difference between the EEF in these two sectors in South America based on coherent radar measurements. The EEF is more intense in summer at SLZ, in equinox at JRO, and has been highly variable with season in the Brazilian sector compared to the Peruvian sector. In addition, the secular variation on the geomagnetic field and its effect on the EEJ over Brazil resulted that as much farther away is the magnetic equator from SLZ, later more the EEJ is observed (10 h LT) and sooner it ends (16 h LT). Moreover, the time interval of type II occurrence decreased significantly after the year 2004, which is a clear indication that SLZ is no longer an equatorial station due to the secular variation of the geomagnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AAS...21340613B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AAS...21340613B"><span>Secular Acceleration of Barnard's Star</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartlett, Jennifer L.; Ianna, P. A.</p> <p>2009-01-01</p> <p>Barnard's Star should have significant secular acceleration because it lies close to the Sun and has the highest known proper motion along with a large radial velocity. It will pass within about 1.4 pc in another 9,750 years. Secular changes in proper motion and radial velocity are essentially the Coriolis and centrifugal accelerations, respectively, arising from use of a rotating coordinate system defined by the Sun-star radius vector. Although stellar space velocities measured with respect to the Sun are essentially constant, these perspective effects arise with changing distance and viewing angle. Hipparcos-2 plus Nidever et al. (2002) predict a perspective change in the proper motion of 1.285±0.006 mas yr-2 for Barnard's Star. Recent analysis of 900+ photographic plates between 1968 and 1998 with the 26.25-in (0.67-m) McCormick refractor detected a secular acceleration of 1.25±0.04 mas yr-2, which agrees with the predicted value within the measurement errors. Earlier, Benedict et al. (1999) measured its secular acceleration to be 1.2±0.2 mas yr-2 using 3 years of HST FGS observations. Similarly, a perspective change in radial velocity of 4.50±0.01 m s-1 yr-1 can be predicted for Barnard's Star. Kürster et al. (2003) detected variations in their observations of it that are largely attributable to secular acceleration along the line of sight with some contribution from stellar activity. Although secular acceleration effects have been limited for past studies of stellar motions, they can be significant for observations extending over decades or for high-precision measurements required to detect extrasolar planets. Future studies will need to consider this factor for the nearest stars and for those with large proper motions or radial velocities. NSF grant AST 98-20711; Litton Marine Systems; Peninsula Community Foundation Levinson Fund; UVa Governor's Fellowship, Dean's F&A Fellowship, and Graduate School of Arts and Sciences; and, US Naval Observatory supported this research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4219698','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4219698"><span>Secular Trends in Menarcheal Age in India-Evidence from the Indian Human Development Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pathak, Praveen Kumar; Tripathi, Niharika; Subramanian, S. V.</p> <p>2014-01-01</p> <p>Background Evidence from a number of countries in Europe and North America point towards the secular declining trend in menarcheal age with considerable spatial variations over the past two centuries. Similar trends were reported in several developing countries from Asia, Africa and Latin America. However, data corroborating any secular trend in the menarcheal age of the Indian population remained sparse and inadequately verified. Methods We examined secular trends, regional heterogeneity and association of socioeconomic, anthropometric and contextual factors with menarcheal age among ever-married women (15–49 years) in India. Using the pseudo cohort data approach, we fit multiple linear regression models to estimate secular trends in menarcheal age of 91394 ever-married women using the Indian Human Development Survey. Results The mean age at menarche among Indian women was 13.76 years (95 % CI: 13.75, 13.77) in 2005. It declined by three months from 13.83 years (95% CI: 13.81, 13.85) among women born prior to 1955–1964, to nearly 13.62 years (95% CI: 13.58, 13.67) among women born during late 1985–1989. However, these aggregate national figures mask extensive spatial heterogeneity as mean age at menarche varied from 15.0 years in Himachal Pradesh during 1955–1964 (95% CI: 14.89–15.11) to about 12.1 years in Assam (95% CI: 11.63–12.56) during 1985–1989. Conclusion The regression analysis established a reduction of nearly one month per decade, suggesting a secular decline in age at menarche among Indian women. Notably, the menarcheal age was significantly associated with the area of residence, geographic region, linguistic groups, educational attainment, wealth status, caste and religious affiliations among Indian women. PMID:25369507</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRB..117.7101D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRB..117.7101D"><span>Paleomagnetic secular variation at the Azores during the last 3 ka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>di Chiara, Anita; Speranza, Fabio; Porreca, Massimiliano</p> <p>2012-07-01</p> <p>We report on 33 new paleomagnetic directions obtained from 16 lava flows emplaced in the last 3 ka on São Miguel, the largest island of the Azores. The data provide 27 well-dated directions from historical or 14C dated flows which, together with 6 directions previously gathered from the same flows by Johnson et al. (1998), yield the first paleomagnetic directional record of the last 3 ka from the Atlantic Ocean. Within-flow directions are consistent, suggesting that inclination swings from 60° to 25° and declination changes between -10° to 20° reflect variations in the geomagnetic field over the last 3 ka. To a first approximation, the declination record is consistent with predictions from CALS3k.4 and gufm1 global field models. Conversely, inclination values are lower than model predictions at two different ages: 1) four sites from the 1652 AD flow yield I = 48° instead of I = 63° predicted by gufm1; 2) data from several flows nicely mimic the inclination minimum of 800-1400 AD, but inclination values are lower by ˜10° than CALS3k.4 model predictions. By interpolating a cubic spline fit on declination / inclination versus age data, we tentatively infer the directional evolution of the geomagnetic field at the Azores from 1000 BC to 1600 AD. The obtained curve shows three tracks in virtual overlap during the 1000-800 BC, 800-500 BC, and 400-700 AD time spans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55697','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55697"><span>The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Abby G. Frazier; Oliver Elison Timm; Thomas W. Giambelluca; Henry F. Diaz</p> <p>2017-01-01</p> <p>Over the last century, significant declines in rainfall across the state of Hawai‘i have been observed, and it is unknown whether these declines are due to natural variations in climate, or manifestations of human-induced climate change. Here, a statistical analysis of the observed rainfall variability was applied as first step towards better understanding causes for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGeod..88..839B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGeod..88..839B"><span>Secular changes in Earth's shape and surface mass loading derived from combinations of reprocessed global GPS networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Booker, David; Clarke, Peter J.; Lavallée, David A.</p> <p>2014-09-01</p> <p>The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religion&pg=7&id=EJ984007','ERIC'); return false;" href="https://eric.ed.gov/?q=religion&pg=7&id=EJ984007"><span>Ideologies of Religion and Diversity in Australian Public Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Byrne, Catherine</p> <p>2012-01-01</p> <p>In many multicultural democracies, education has a Christian history. However, teaching religion has ideological variation. Progressives teach about many religions, while conservatives favor (often exclusive) instruction into one tradition. Australian secular education controversially prioritizes faith-forming instruction (mostly Christian). In…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002NewA....7..435Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002NewA....7..435Q"><span>Orbital period study of the Algol-type eclipsing binary system TW Draconis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, S. B.; Boonrucksar, S.</p> <p>2002-10-01</p> <p>The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010510','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010510"><span>The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Batterson, Courtney</p> <p>2016-01-01</p> <p>Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.130...91T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.130...91T"><span>Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsidu, Gizaw Mengistu</p> <p>2017-10-01</p> <p>Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP43B..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP43B..05F"><span>A Secular Variation Model for Igrf-12 Based on Swarm Data and Inverse Geodynamo Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fournier, A.; Aubert, J.; Erwan, T.</p> <p>2014-12-01</p> <p>We are proposing a secular variation candidate model for the 12th generation of the international geomagnetic reference field, spanning the years 2015-2020. The novelty of our approach stands in the initialization of a 5-yr long integration of a numerical model of Earth's dynamo by means of inverse geodynamo modelling, as introduced by Aubert (GJI, 2014). This inverse technique combines the information coming from the observations (in the form of an instantaneous estimate of the Gauss coefficients for the magnetic field and its secular variation) with that coming from the multivariate statistics of a free run of a numerical model of the geodynamo. The Gauss coefficients and their error covariance properties are determined from Swarm data along the lines detailed by Thébault et al. (EPS, 2010). The numerical model of the geodynamo is the so-called Coupled Earth Dynamo model (Aubert et al., Nature, 2013), whose variability possesses a strong level of similarity with that of the geomagnetic field. We illustrate and assess the potential of this methodology by applying it to recent time intervals, with an initialization based on CHAMP data, and conclude by presenting our SV candidate, whose initialization is based on the 1st year of Swarm data This work is supported by the French "Agence Nationale de la Recherche" under the grant ANR-11-BS56-011 (http://avsgeomag.ipgp.fr) and by the CNES. References: Aubert, J., Geophys. J. Int. 197, 1321-1334, 2014, doi: 10.1093/gji/ggu064 Aubert, J., Finlay, C., Fournier, F. Nature 502, 219-223, 2013, doi: 10.1038/nature12574 Thébault E. , A. Chulliat, S. Maus, G. Hulot, B. Langais, A. Chambodut and M. Menvielle, Earth Planets Space, Vol. 62 (No. 10), pp. 753-763, 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP44A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP44A..08S"><span>Development of a Process Based Paleomagnetic Secular Variation Dating Curve for the Northern Hemisphere Through the Radiocarbon Interval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoner, J. S.; Reilly, B. T.; Walczak, M. H.; Mix, A. C.; Lavoie, N.; Velle, J. H.; St-Onge, G.; Xuan, C.</p> <p>2017-12-01</p> <p>Paleomagnetic secular variation is a well-known centennial to millennial stratigraphic dating tool, but is generally considered to be regionally limited. Recent observations from the Holocene suggest that such spatial limitations may result from our incomplete understanding of field dynamics, rather than actual geomagnetic limitations. Comparisons of independently well-dated, high-resolution paleomagnetic secular variation records from the mid-latitudes of the Northern Hemisphere—including Asia, Northwest Pacific, Northeast Pacific, North America, North Atlantic, and Europe—reveal the existence of a primary (there may be others) coherent millennial scale oscillation of the geomagnetic field. This oscillation is observed using different geomagnetic parameters (e.g., inclination, declination, intensity) and signs depending on the site's location relative to the region of primary geomagnetic flux. This distinct spatial and temporal pattern is consistent with oscillations of geomagnetic flux recurring at just a few locations. The recurring persistence of this pattern, through the Holocene and possibly much longer, implicates lower mantle heterogeneity as a likely driver of field morphology. As with any paleo reconstructions, data coverage is far from perfect and as a result the geomagnetic details are just coming into focus. Yet, the stratigraphic potential is readily apparent and, if iteratively used, could significantly enhance our geomagnetic understanding as well as facilitate chronological control in a variety of settings. Here we explore the nature, uncertainties, and implications; including our initial attempt to extend the oscillation beyond the Holocene and through the radiocarbon interval starting from a Northeast Pacific perspective. Our intent is to develop a type curve with constrained uncertainties that can be used for stratigraphic correlation around the Northern Hemisphere as we move toward a process based dynamic magnetostratigraphic understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=earths+AND+orbit&pg=3&id=EJ206976','ERIC'); return false;" href="https://eric.ed.gov/?q=earths+AND+orbit&pg=3&id=EJ206976"><span>Simple Astronomical Theory of Climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Benumof, Reuben</p> <p>1979-01-01</p> <p>The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840023663','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840023663"><span>The near-Earth magnetic field at 1980 determined from MAGSAT data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langel, R. A.; Estes, R. H.</p> <p>1984-01-01</p> <p>Data from the MAGSAT spacecraft for November 1979 through April 1980 and from 91 magnetic observatories for 1978 through 1982 are used to derive a spherical harmonic model of the Earth's main magnetic field and its secular variation. Constant coefficients are determined through degree and order 13 and secular variation coefficients through degree and order 10. The first degree external terms and corresponding induced internal terms are given as a function of Dst. Preliminary modeling using separate data sets at dawn and dusk local time showed that the dusk data contains a substantial field contribution from the equatorial electrojet current. The final data set is selected first from dawn data and then augmented by dusk data to achieve a good geographic data distribution for each of three time periods: (1) November/December, 1979; (2) January/February; 1980; (3) March/April, 1980. A correction for the effects of the equatorial electrojet is applied to the dusk data utilized. The solution included calculation of fixed biases, or anomalies, for the observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850044257&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dearth%2Bmagnetic%2Bfield','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850044257&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dearth%2Bmagnetic%2Bfield"><span>The near-earth magnetic field at 1980 determined from Magsat data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langel, R. A.; Estes, R. H.</p> <p>1985-01-01</p> <p>Data from the Magsat spacecraft for November 1979 through April 1980 and from 91 magnetic observatories for 1978 through 1982 are used to derive a spherical harmonic model of the earth's main magnetic field and its secular variation. Constant coefficients are determined through degree and order 13 and secular variation coefficients through degree and order 10. The first degree external terms and corresponding induced internal terms are given as a function of Dst. Preliminary modeling using separate data sets at dawn and dusk local time showed that the dusk data contains a substantial field contribution from the equatorial electrojet current. The final data set is selected first from dawn data and then augmented by dusk data to achieve a good geographic data distribution for each of three time periods: (1) November/December, 1979; (2) January/February, 1980; (3) March/April, 1980. A correction for the effects of the equatorial electrojet is applied to the dusk data utilized. The solution included calculation of fixed biases, or anomalies, for the observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...807L...5N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...807L...5N"><span>Asteroid Secular Dynamics: Ceres’ Fingerprint Identified</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novaković, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knežević, Zoran</p> <p>2015-07-01</p> <p>Here we report on the significant role of a so far overlooked dynamical aspect, namely, a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e., to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an important and entirely new aspect of the long-term dynamics of small bodies. Ceres’ fingerprint in asteroid dynamics, expressed through the discovered secular resonance effect, completely changes our understanding of the way in which perturbations by Ceres-like objects affect the orbits of nearby bodies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025975','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025975"><span>Gaussian statistics for palaeomagnetic vectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, J.J.; Constable, C.G.</p> <p>2003-01-01</p> <p>With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GeoJI.152..515L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GeoJI.152..515L"><span>Gaussian statistics for palaeomagnetic vectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Love, J. J.; Constable, C. G.</p> <p>2003-03-01</p> <p>With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2261Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2261Z"><span>Long-term Variations of The Solar Activity -- Lower Atmosphere Relationship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaitseva, S.; Akhremtchik, S.; Pudovkin, M.; Besser, B.; Rijnbeek, R.</p> <p></p> <p>Long-term variations of the air temperature in St.Petersburg, Stockholm, Salzburg and English Midlands are considered. There is shown that in the regions under consider- ation the air temperature distinctly depends on the intensity of the lower atmospheric zonal circulation (Blinova index and North Atlantic Oscillation index (NAO)). In turn, the NAO-index is shown to depend on the solar activity. However, this dependence is rather complicated and exhibits long-period variations associated with secular varia- tions of the solar activity. A possible mechanism of this phenomena is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...754...42M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...754...42M"><span>Secular Dynamical Anti-friction in Galactic Nuclei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madigan, Ann-Marie; Levin, Yuri</p> <p>2012-07-01</p> <p>We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole. We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity; (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration; and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H14B..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H14B..08S"><span>Assessment of the Spatial and Temporal Variations in TWS and GWS in Michigan's Lower Peninsula and Identification of the Controlling Factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahour, H.; Sultan, M.; Fathy, K.; Yellich, J. A.; Karki, S.; Wireman, M.</p> <p>2017-12-01</p> <p>The Gravity Recovery and Climate Experiment (GRACE) has been successfully used to track changes in terrestrial water storage (TWS) and ground water storage (GWS) across the globe. We use GRACE RL05 monthly mascon solutions from the Center for Space Research (CSR) and outputs of the Global Land Data Assimilation Systems (GLDAS) to investigate/extract: (1) secular trends in TWS over the entire landscape of the Lower Peninsula of Michigan throughout the GRACE operational period (2002 to 2016), (2) secular trends in GWS using the extracted TWS trends and GLDAS outputs (soil moisture, canopy water storage, surface runoff and snow water equivalent), and (3) the major natural and anthropogenic factors controlling the observed TWS and GWS variations. The extracted TWS and GWS trends were downscaled from 1º x 1º to 0.25º x 0.25º (local county scale) using logistical regression techniques. Findings include: (1) in the central and northern sections of the Lower Peninsula (43.06 °N to 45.77 °N ) the secular trends in TWS reveal two general patterns a near-steady state to modest increase in TWS (0.3 to 0.8 mm/year) for the period 2002 to 2011 (hereafter referred to as the early period [EP]), followed by an increase in TWS (9.6 to 13.8 mm/year) for the period 2012 to 2016 (hereafter referred to as the late period [LP]). (2) Similar trends for TWS were observed for the southern sections of the Lower Peninsula (41.76 °N to 43.06 °N); a near-steady to a slight increase during the EP (0.6 to 0.8 mm/year), yet a less pronounced increase was detected during the LP (4.8 to7.2 mm/year). (3) The GWS secular trends over northern and central parts of the Lower Peninsula on one hand and those for the southern sections follow the general observed patterns for the TWS throughout the EP and LP. Research is underway to accomplish the following: (1) correlate spatially and temporarily the observed variations in TWS and GWS with variations in other relevant datasets including snowfall, precipitation, land surface temperature, groundwater extraction, and groundwater levels in search for causal effects, and (2) refine our preliminary downscaling attempts by including in our logistical regression analysis as many of the relevant available variables in our analysis (e.g., precipitation, snow fall, snow water equivalent, runoff, soil moisture, and NDVI).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28599768','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28599768"><span>Exposure to science, perspectives on science and religion, and religious commitment in young adulthood.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uecker, Jeremy E; Longest, Kyle C</p> <p>2017-07-01</p> <p>Social scientists know very little about the consequences of exposure to scientific knowledge and holding different perspectives on science and religion for individuals' religious lives. Drawing on secularization and post-secular theories, we develop and test several hypotheses about the relationships among exposure to scientific knowledge, perspectives on religion and science, and religious commitment using panel data from the National Study of Youth and Religion. Our findings indicate that religious faith is strongest among young adults who: (1) accommodate scientific knowledge into their religious perspective, or (2) reject scientific knowledge that directly contradicts their religious beliefs about the origins of the world. Young adults are also more likely to have lower religious commitment when they view science and religion as independent institutions, lending support to secularization ideas about how social differentiation secularizes individuals. We further find that mere exposure to scientific knowledge, in terms of majoring in biology or acknowledging conflict between the teachings of religion and science, is usually not sufficient to undermine religious commitment. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667206-non-parametric-approach-constrain-transfer-function-reverberation-mapping','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667206-non-parametric-approach-constrain-transfer-function-reverberation-mapping"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn</p> <p></p> <p>Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function ismore » expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5369B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5369B"><span>Gravitational mechanism of active life of the Earth, planets and satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial bodies on shells of the given body. Dynamical oblatenesses of shells, thus, characterize the endogenous activity of a planet by external celestial bodies. Other important factor of endogenous activity of a planet is a eccentric position of the centers of mass of the shells (for example, of the core and the mantle). The eccentricity of the shells is inherited during geological evolution of a planet as system of shells (Barkin, 2002). Consequences of exitation of the Earth system. The new tides (Barkin, 2005) are caused by relative displacements of the core and mantle. These displacements are reflected in variations of many natural processes due to gravitational action of the core. The displacing core causes deformations of all layers of viscous-elastic mantle. In the given work from more general positions the mechanisms of excitation of a system of shells of the Earth under action of a gravitational attraction of the Sun, the Moon and planets, the phenomena of their relative swings, translational displacements and turns relatively from each other, and the wide list geodynamical consequences of the specified excitation of the Earth are studied. At once we shall emphasize, that the developed geodynamic model has allowed to carry out the important dynamic researches of displacements of shells of the Earth, their deformations and changes, and variations of its natural processes and for the first time to explain the nature of such fundamental phenomena and processes in geodynamics, geology and geophysics as: cyclicity of natural processes and its mechanism; power of processes in various time scales; unity of cyclic processes and universality of their frequency bases; synchronism of geodynamic, geophysical, biophysical and social events; inversion, contrast and opposite directed changes of activity of natural processes in opposite hemispheres of the Earth; step-by-step variations of natural processes, sawtooth course of activity of natural processes in various time scales; orderliness in an distribution of geological formations on the Earth, planets and satellites; existence of antipodal formations on planets and satellites; the phenomenon of twisting of hemispheres of bodies of solar system, twisting of layers and latitudinal zones of shells of celestial bodies including inner layers and shells, etc. All the specified phenomena from the resulted list to some extent are discussed in the given work and illustrated on the basis of modern researches in Earth's sciences and the researches executed by means of space missions. In a complex, the executed researches have shown universality of discussed mechanisms and their important role in dynamics and geoevolution of planets and satellites in other planetary systems, and also stars and pulsars with the systems of planets (Barkin, 2009). Cyclicity. The excitation on the part of external celestial bodies of the system core-mantle depends from relative positions of external celestial bodies, from particularities of their perturbed orbital motions and from rotary motion of the planet. The specified motions have a cyclic nature which is shown in various time scales. Hence, and excitation of shells and their layers will have also cyclic character and to be shown in various time scales. Hence, cyclic variations of all planetary natural processes in all the variety widely should be observed, as takes place in reality. The periods of variations are characterized by extremely wide range - from hours up to tens and hundreds millions years. If the core makes slow secular drift relatively to the mantle all layers and shells of the Earth test secular deformation, thermodynamic and other changes. The cavity of the core and its flows are changed slowly that results in secular variations of a magnetic field (Barkin, 2002, 2009). Inversion and asymmetry of cyclic and secular variations of natural processes. The essence of it rather wide distributed phenomena is, that activity of natural processes varies in an antiphase in opposite hemispheres of the Earth (first of all in northern and southern hemispheres). Told concerns to all geodynamic and geophysical processes, to variations of physical fields, to tectonic and geodetic reorganizations of layers of the Earth, to redistributions of atmospheric, oceanic and other fluid masses of the Earth. The certain asymmetry of displays of processes in northern and southern hemispheres on the other hand is marked. So secular trends of some processes are contrast in northern and southern hemispheres, i.e. velocities of secular changes are essentially different. All described phenomena are caused first of all by cyclic oscillations and secular drift of the core to the north (in present epoch). In longer time scales the similar phenomena of inversion, dissymmetry also have place and determine a nature and style of displacements of continents and lithospheric plates, planetary magmatic activity and plume tectonics as a whole, formation of mountains, elevations and depressions, systems of lineaments and cracks, regressions and transgressions of sea level (Barkin, 2002). Synchronous steps of activity of natural processes. 'For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core') is offered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28527477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28527477"><span>Secular Trends in Anthropometrics and Physical Fitness of Young Portuguese School-Aged Children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Costa, Aldo Matos; Costa, Mário Jorge; Reis, António Antunes; Ferreira, Sandra; Martins, Júlio; Pereira, Ana</p> <p>2017-02-27</p> <p>The purpose of this study was to analyze secular trends in anthropometrics and physical fitness of Portuguese children. A group of 1819 students (881 boys and 938 girls) between 10 and 11 years old was assessed in their 5th and 6th scholar grade throughout a 20 years' time-frame. ANCOVA models were used to analyze variations in anthropometrics (height, weight and body mass index) and physical fitness (sit and reach, curl-up, horizontal jump and sprint time) across four quinquennials (1993 - 1998; 1998 - 2003; 2003 - 2008; 2008 - 2013). Secular trends showed the presence of heavier boys and girls with higher body mass index in the 5th and 6th grade throughout the last 20 years. There was also a presence of taller girls but just until the 3rd quinquennial. Both boys and girls were able to perform better on the core strength test and sprint time but become less flexible over the years. Mean jumping performance remained unchanged for both genders. The present study provides novel data on anthropometrics and physical fitness trends over the last two decades in young Portuguese children, consistent with the results reported in other developed countries. Evidence for the start of a positive secular trend in body mass index and in some physical fitness components over the last two decades among the Portuguese youth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PEPI..173..162H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PEPI..173..162H"><span>Paleomagnetic field variation with strong negative inclination during the Brunhes chron at the Banda Sea, equatorial southwestern Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Yin-Sheng; Lee, Teh-Quei; Hsu, Shu-Kun; Yang, Tein-Nan</p> <p>2009-03-01</p> <p>We reconstruct the earth magnetic field in the Brunhes epoch at the Banda Sea by studying the paleomagnetic data from core MD012380, collected during the International Marine Global Change Study (IMAGES) VII Cruise in 2001. Magnetic analysis is carried out for whole core with a sampling spacing of 1 cm by using u-channel. Magnetic susceptibility (χ), nature remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), and isothermal remanent magnetization (IRM) are measured in our paleomagnetic experiment. Results show the low latitude geomagnetic field variation at the Banda Sea during the last ∼820 kyr. Except for the Brunhes/Matuyama boundary (BMB), there is no clear signal of reverse events in paleo- inclination and paleo-declination patterns. However, the synthetic paleointensity curve displays the asymmetrical saw-tooth pattern that can be used for determining reverse events, and shows a maximum intensity drop at the BMB. The characteristics of paleointensity provide a useful tool to identify reverse signals and improve the difficulties from only using inclination and declination patterns, especially at low latitude. With the help of paleointensity, inclination and declination, we have identified five reverse events. Furthermore if we consider the secular variation effect, we think that the strong negative inclination observed in our study may be the zonal time-averaged field with paleo secular variation, rather than non-dipole effect within the Brunhes epoch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AJ....155..139G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AJ....155..139G"><span>The Dynamics of Tightly-packed Planetary Systems in the Presence of an Outer Planet: Case Studies Using Kepler-11 and Kepler-90</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granados Contreras, A. P.; Boley, A. C.</p> <p>2018-03-01</p> <p>We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007EP%26S...59..807H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007EP%26S...59..807H"><span>Environmental magnetic record and paleosecular variation data for the last 40 kyrs from the Lake Biwa sediments, Central Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashida, Akira; Ali, Mohammed; Kuniko, Yoshiki; Kitagawa, Hiroyuki; Torii, Masayuki; Takemura, Keiji</p> <p>2007-07-01</p> <p>We have conducted paleomagnetic and environmental magnetic analysis of a sediment piston core recovered from Lake Biwa, central Japan. Tephrochronology and AMS radiocarbon dating showed that this core covers the time period since about 40 kyr BP. The variation of paleomagnetic direction shows a good agreement with the PSV record for the last 10 kyrs from the deeper water site (BIWA SV-3; Ali et al., 1999), although the amplitudes are subdued probably due to the relatively lower accumulation rate at the shallower site. Inclination lows of the pre-Holocene interval are correlated to PSV records reported from the marine sediments off Shikoku and in the Japan Sea. In addition, the variation of magnetic mineral concentration reflects environmental changes during the last glacial period. It is suggested that the flux of fine-grained magnetite, probably associated with greater precipitation, was increased during interstadial periods. The variation of anhysteretic remanent magnetization is likely correlated to the Dansgaard-Oeschger (D-O) cycles recorded in Greenland ice cores. An apparent swing of the PSV curve is recognized at about 27 ka, but evidence for the Mono Lake excursion at 32 ka around the D-O events 6 and 7 is unclear. Combination of the detailed paleomagnetic record and the sub-Milankovitch climate cycles thus provides better resolution for understanding geomagnetic secular variation and polarity excursions in space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5965M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5965M"><span>Modeling of geomagnetic field secular variations observed in the Balkan area for purposes of regional topographic mapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metodiev, Metodi; Trifonova, Petya; Buchvarov, Ivan</p> <p>2014-05-01</p> <p>The most significant of the Earth's magnetic field elements is the geomagnetic declination, which is widely used in geodesy, cartography and their associated navigational systems. The geomagnetic declination is incorporated in the naval navigation maps and is used in the navigation process. It is also a very important factor for aviation where declination data have major importance for every airport (civil or military). As the geomagnetic field changes with time but maps of the geomagnetic declination are not published annually and are reduced to an epoch in the past, it is necessary to define two additional parameters in the maps, needed to determine the value of the geomagnetic declination for a particular moment in the future: 1) estimated value of the annual declination variation and 2) a table with the average diurnal variation of the declination for a given month and hour. The goal of our research is to analyze the annual mean values of geomagnetic declination on the territory of the Balkan Peninsula for obtaining of a best fitting model of that parameter which can be used for prediction of the declination value for the next 10 years. The same study was performed in 1990 for the purposes of Bulgarian declination map's preparation. As a result, a linear model of the declination annual variation was obtained for the neighboring observatories and repeat stations data, and a map of the obtained values for the Bulgarian territory was drawn. We use the latest version of the GFZ Reference Internal Magnetic Model (GRIMM-3.0) to compare the magnetic field evolution predicted by that model between 2001 and 2010 to the data collected in five independent geomagnetic observatories in the Balkan region (PAG, SUA, PEG, IZN, GCK) over the same time interval. We conclude that the geomagnetic core field secular variation in this area is well described by the global model. The observed small-scale differences might indicate induced lithospheric anomalies but it is still an open question in geomagnetism whether induction by the slowly changing main field in conductive structures in the lithosphere is a measurable part of what is observed as secular variation at and above the Earth's surface. In our study we test different time-scale periods and different order polynomials to create the most appropriate prediction model and to estimate our results. We find that linear models which are used to determine the annual declination variation in cartography provide enough accurate information for the declination map's users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SolE....9..491D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SolE....9..491D"><span>Geomagnetic field declination: from decadal to centennial scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobrica, Venera; Demetrescu, Crisan; Mandea, Mioara</p> <p>2018-04-01</p> <p>Declination annual mean time series longer than 1 century provided by 24 geomagnetic observatories worldwide, together with 5 Western European reconstructed declination series over the last 4 centuries, have been analyzed in terms of the frequency constituents of the secular variation at inter-decadal and sub-centennial timescales of 20-35 and 70-90 years. Observatory and reconstructed time series have been processed by several types of filtering, namely Hodrick-Prescott, running averages, and Butterworth. The Hodrick-Prescott filtering allows us to separate a quasi-oscillation at a decadal timescale, which is assumed to be related to external variations and called the <q>11-year constituent</q>, from a long-term trend. The latter has been decomposed into two other oscillations called <q>inter-decadal</q> and <q>sub-centennial</q> constituents by applying a Butterworth filtering with cutoffs at 30 and 73 years, respectively. The analysis shows that the generally accepted geomagnetic jerks occur around extrema in the time derivative of the trend and coincide with extrema in the time derivative of the 11-year constituent. The sub-centennial constituent is traced back to 1600 in the five 400-year-long time series and seems to be a major constituent of the secular variation, geomagnetic jerks included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAsGe...2...21H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAsGe...2...21H"><span>Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanna, Magdy A.</p> <p>2013-06-01</p> <p>Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 24 36000 to JD. ≈ 24 47500 and a secular period increase rate (dP/dt = 2.44 × 10-7 d/year) starting from JD. ≈ 24 48500 up to 24 55262, in a time scale equals to 5 × 106 year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BAAA...58..291G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BAAA...58..291G"><span>Efectos dinámicos de las resonancias orbitales en el Sistema Solar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallardo, T.</p> <p>2016-08-01</p> <p>We describe the different orbital resonances in the Solar System that primarily affect minor bodies and some satellites. We present an idea of how to study the two body and three body mean motion resonances, secular resonances and Kozai-Lidov mechanism and the conclusions that can be drawn from these studies. Weak resonances generate subtle periodic orbital variations and produce temporary concentrations of objects while strong resonances can generate large variations in eccentricity and inclination risking the orbital stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PEPI..151..155E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PEPI..151..155E"><span>Archaeomagnetic results from southern Italy and their bearing on geomagnetic secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, M. E.; Hoye, G. S.</p> <p>2005-07-01</p> <p>Archaeodirectional results from kilns and other baked structures in southern Italy are presented. They are generally compatible with the much larger data sets from France and Bulgaria. In particular, a summary of all the results associated with the well-known eruption of Vesuvius that destroyed Pompeii ( n = 9, D = 355°, I = 58°, α95 = 1.5°) provides a reliable archaeomagnetic anchor point supporting the French and Bulgarian master curves. It is extremely well-constrained in time and it comprises independent studies carried out in four different countries. Furthermore, it is derived from a diverse set of features agreement amongst which argues strongly against significant perturbations due to magnetic refraction, structural disturbance, or depositional shallowing. In terms of geomagnetic secular variation, we interpret the western European archaeomagnetic data summarized here in terms of an open loop caused by westward drift, followed by an inclination low spanning the first few centuries CE representing the signal of a static flux pulse that reaches a maximum magnetic moment of a few percent of the earth's main central dipole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.1507R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.1507R"><span>Galileo magnetometer results from the Millennium Mission: Rotation rate and secular variation of the internal magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Yu, Z. J.; Kivelson, M. G.; Khurana, K. K.</p> <p>2000-10-01</p> <p>The System III (1965.0) rotation period of Jupiter, as defined by the IAU based on early radio astronomical data, is 9h 55m 29.71s. Higgins et al. (JGR, 22033, 1997) have suggested, based on more recent radio data, that this period is too high by perhaps 25 ms. In the 25 years since the Pioneer and Voyager measurements, such an error would cause a 6 degree shift in apparent longitude of features tied to the internal magnetic field. A comparison of the longitude of the projection of the dipole moment obtained over the period 1975-1979 with that obtained by Galileo today shows that the average dipole location has drifted only one degree eastward in System III (1965.0). This one-degree shift is not significant given the statistical errors. A possible resolution to this apparent paradox is that the dipole moment observation is sensitive to the lower order field while the radio measurement is sensitive to the high order field at low altitude. Estimates of the secular variation from the in situ data are being pursued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013E%26PSL.363..168F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013E%26PSL.363..168F"><span>First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fanjat, G.; Camps, P.; Alva Valdivia, L. M.; Sougrati, M. T.; Cuevas-Garcia, M.; Perrin, M.</p> <p>2013-02-01</p> <p>We present archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas, Mexico, covering much of the Mesoamerican Classic period, from A.D. 400 to A.D. 850. We worked on pieces from 24 incense burners encompassing the five Classic ceramic phases of Palenque: Motiepa (A.D. 400-500), Cascadas (A.D. 500-600), Otulum (A.D. 600-700), Murcielagos (A.D. 700-770), and Balunté (A.D. 770-850). All the samples come from highly elaborate, flanged pedestal of incense burners that are undoubtedly assigned to a ceramic phase by means of their iconographic, morphological and stylistic analyses. Archeointensity measurements were performed with the Thellier-Thellier's method on pre-selected samples by means of their magnetic properties. We obtained archeointensities of very good technical quality from 19 of 24 pieces, allowing the determination of a precise mean value for each ceramic phase, between 29.1±0.9 μT and 32.5±1.2 μT. The firing temperatures of ceramics were estimated with Mössbauer spectroscopy between 700 °C and 1000 °C. These values ensure that a full thermo-remanent magnetization was acquired during the original heating. Our results suggest a relative stability of the field intensity during more than 400 years in this area. The abundance of archeological material in Mesoamerica contrasts with the small amount of archeomagnetic data available that are, in addition, of uneven quality. Thus, it is not possible to establish a trend of intensity variations in Mesoamerica, even using the global databases and secular variation predictions from global models. In this context, our high technical quality data represent a strong constraint for the Mesoamerican secular variation curve during the first millennium AD. The corresponding Virtual Axial Dipole Moments (VADM) are substantially smaller than the ones predicted by the last global geomagnetic models CALS3k.4, suggesting the need for additional data to develop a regional model and a reference curve for Mesoamerica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543117','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543117"><span>Intergenerational Transmission of Religious Beliefs and Practices and the Reduction of Adolescent Delinquency in Urban Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chamratrithirong, Aphichat; Miller, Brenda A.; Byrnes, Hilary F.; Rhucharoenpornpanich, Orratai; Cupp, Pamela K.; Rosati, Michael J.; Fongkaew, Warunee; Atwood, Katharine A.; Todd, Michael</p> <p>2012-01-01</p> <p>This study examines the intergenerational transmission of family religion as measured by parent’s and adolescent’s beliefs and practices in Buddhism, and its relation to delinquent behaviors among early adolescents in Thailand. The data set is from the Thai Family Matters Project 2007, a representative sample of 420 pairs of parents and teens in Bangkok. A structural equation model is employed for the analysis. The intergenerational transmission and the direct and indirect association between parents’ and adolescents’ beliefs and practices in Buddhism and adolescents’ minor and serious delinquent behaviors are revealed to be significant, controlling for secular parental monitoring. Spirituality within the family can play an important role in preventing delinquency among early adolescents. Policies in the areas related to family empowerment and delinquency prevention may need to consider integrating both secular and non-secular program inputs in their implementation design. PMID:23218782</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39..985K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39..985K"><span>Long-term reconstructions of total solar irradiance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria</p> <p>2012-07-01</p> <p>Solar irradiance is the main external driver of the Earth's climate, although its relative contribution compared to other internal and anthropogenic factors is not yet well determined. Variations of total solar irradiance have being measured for over three decades and are relatively well understood. Reconstructions of the irradiance into the past remain, however, rather uncertain. In particular, the magnitude of the secular change is highly debated. The reason is the lack of direct and well-sampled proxies of solar magnetic activity on time scales longer than a few decades. Reconstructions on time scales of centuries rely on sunspot observations available since 1610. Reconstructions on millennial time scales use concentrations of the cosmogenic isotopes in terrestrial archives. We will review long-term reconstructions of the solar irradiance using the SATIRE set of models, compare them with other recent models and discuss the remaining uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021770','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021770"><span>Geodetic estimates of fault slip rates in the San Francisco Bay area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savage, J.C.; Svarc, J.L.; Prescott, W.H.</p> <p>1999-01-01</p> <p>Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et al. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20094797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20094797"><span>American medicine as religious practice: care of the sick as a sacred obligation and the unholy descent into secularization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wardlaw, Margaret P</p> <p>2011-03-01</p> <p>Modern medicine serves a religious function for modern Americans as a conduit through which science can be applied directly to the human body. The first half of this paper will focus on the theoretical foundations for viewing medicine as a religious practice arguing that just as a hierarchical structured authoritarian church historically mediated access to God, contemporary Western medicine provides a conduit by which the universalizable truths of science can be applied to the human being thereby functioning as a new established religion. I will then illustrate the many parallels between medicine and religion through an analysis of rituals and symbols surrounding and embedded within the modern practice of medicine. This analysis will pay special attention to the primacy placed on secret interior knowledge of the human body. I will end by responding to the hope for a "secularization of American medicine," exploring some of the negative consequences of secularization, and arguing that, rather than seeking to secularize, American medicine should strive to use its religious features to offer hope and healing to the sick, in keeping with its historically religious legacy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43B2102B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43B2102B"><span>Secular Orbit and Spin Variations of Asteroid (16) Psyche</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bills, B. G.; Park, R. S.; Scott, B.</p> <p>2016-12-01</p> <p>The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole trajectory is such that, over a million year time span, centered on the present, the minimum and maximum values of obliquity are 92.36 and 98.56 deg. The obliquity oscillates with dominant periods of 18.45 and 48.40 kyr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CQGra..35b4001I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CQGra..35b4001I"><span>Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isoyama, Soichiro; Nakano, Hiroyuki</p> <p>2018-01-01</p> <p>Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than  ∼10) and large aligned-spins (larger than  ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25716212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25716212"><span>Do Secular Trends in Skeletal Maturity Occur Equally in Both Sexes?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duren, Dana L; Nahhas, Ramzi W; Sherwood, Richard J</p> <p>2015-08-01</p> <p>Skeletal maturity assessment provides information on a child's physical development and expectations based on chronological age. Given recently recognized trends for earlier maturity in a variety of systems, most notably puberty, examination of sex-specific secular trends in skeletal maturation is important. For the orthopaedist, recent trends and changes in developmental timing can affect clinical management (eg, treatment timing) if they are currently based on outdated sources. (1) Has the male or female pediatric skeleton experienced a secular trend for earlier maturation over the past 80 years? (2) Do all indicators of maturity trend in the same direction (earlier versus later)? In this retrospective study, a total of 1240 children were examined longitudinally through hand-wrist radiographs for skeletal maturity based on the Fels method. All subjects participate in the Fels Longitudinal Study based in Ohio and were born between 1930 and 1964 for the "early" cohort and between 1965 and 2001 for the "recent" cohort. Sex-specific secular trends were estimated for (1) mean relative skeletal maturity through linear mixed models; and (2) median age of maturation for individual maturity indicators through logistic regression and generalized estimating equations. Overall relative skeletal maturity was significantly advanced in the recent cohort (maximum difference of 5 months at age 13 years for girls, 4 months at age 15 years for boys). For individual maturity indicators, the direction and magnitude of secular trends varied by indicator type and sex. The following statistically significant secular trends were found: (1) earlier maturation of indicators of fusion in both sexes (4 months for girls, 3 months for boys); (2) later maturation of indicators of projection in long bones in both sexes (3 months for girls, 2 months for boys); (3) earlier maturation of indicators of density (4 months) and projection (3 months) in carpals and density in long bones (6 months), for girls only; and (4) later maturation of indicators of long bone shape (3 months) for boys only. A secular trend has occurred in the tempo of maturation of individual components of the pediatric skeleton, and it has occurred in a sex-specific manner. The mosaic nature of this trend, with both earlier and later maturation of individual components of the skeletal age phenotype, calls for greater attention to specific aspects of maturation in addition to the overall skeletal age estimate. The Fels method is currently the most robust method for capturing these components, and future work by our group will deliver an updated, user-friendly version of the Fels assessment tool. Appreciation of sex-specific secular changes in maturation is important for clinical management, including treatment timing, of orthopaedic patients, because children today exhibit a different pattern of maturation than children on whom original maturity assessments were based (including Fels and Greulich-Pyle).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Death+AND+rates&pg=6&id=EJ356565','ERIC'); return false;" href="https://eric.ed.gov/?q=Death+AND+rates&pg=6&id=EJ356565"><span>Suicide in Japan: Socioeconomic Effects on Its Secular and Seasonal Trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Araki, Shunichi; Murata, Katsuyuki</p> <p>1987-01-01</p> <p>Analyzed suicide death rates for 33 years following the end of World War II in Japan. Death rates for men and women decreased during periods of economic prosperity and increased during the years preceding economic depression; and for men, after economic depression. Death by suicide and its seasonal variation are affected by changes in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170830','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170830"><span>The 2010 slow slip event and secular motion at Kilauea, Hawai`i inferred from TerraSAR-X InSAR data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chen, Jingyi; Zebker, Howard A.; Segall, Paul; Miklius, Asta</p> <p>2014-01-01</p> <p>We present here an Small BAseline Subset (SBAS) algorithm to extract both transient and secular ground deformations on the order of millimeters in the presence of tropospheric noise on the order of centimeters, when the transient is of short duration and known time, and the background deformation is smooth in time. We applied this algorithm to study the 2010 slow slip event as well as the secular motion of Kīlauea's south flank using 49 TerraSAR-X images. We also estimate the tropospheric delay variation relative to a given reference pixel using an InSAR SBAS approach. We compare the InSAR SBAS solution for both ground deformation and tropospheric delays with existing GPS measurements and confirm that the ground deformation signal andtropospheric noise in InSAR data are successfully separated. We observe that the coastal region on the south side of the Hilina Pali moves at a higher background rate than the region north side of the Pali. We also conclude that the 2010 SSE displacement is mainly horizontal and the maximum magnitude of the 2010 SSE vertical component is less than 5 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870064213&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870064213&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica"><span>Azimuthal dependence in the gravity field induced by recent and past cryospheric forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuen, David A.; Gasperini, Paolo; Sabadini, Roberto; Boschi, Enzo</p> <p>1987-01-01</p> <p>Present-day glacial activities and the current variability of the Antarctic ice volume can cause variations in the long-wavelength gravity field as a consequence of transient viscoelastic responses in the mantle. The azimuthal dependence of the secular variations of the gravitational potential are studied and it is found that the nonaxisymmetric contributions are more important for recent glacial retreats than for Pleistocene deglaciation. Changes in land-based ice covering Antarctica can be detected by monitoring satellite orbits and their sensitivity to variations in gravitational harmonic for degree l greater than 3. Resonances in satellite orbits may be useful for detecting these azimuthally-dependent gravity signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.2597X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.2597X"><span>Paleomagnetic Secular Variation Constraints on the Rapid Eruption of the Emeishan Continental Flood Basalts in Southwestern China and Northern Vietnam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yingchao; Yang, Zhenyu; Tong, Ya-Bo; Jing, Xianqing</p> <p>2018-04-01</p> <p>Estimating the duration of magma eruptions using isotopic dating methods is difficult because of the intrinsic errors of the technique regarding the dated materials (such as zircon). However, the long-term variation of the geomagnetic field recorded by lava flows can be used to estimate the net duration of an eruption sequence. The Emeishan basalts at Dongchuan, with a thickness of 630 m, yielded a reliable characteristic remanent magnetization of normal polarity and which passed the fold test (Tauxe & Watson, 1994, https://doi.org/10.1016/0012-821X(94)90006-X). Stratigraphic and magnetostratigraphic correlations of the Emeishan basalts in the Dongchuan section with other sections indicate that the eruption of the Emeishan basalts at Dongchuan spans the entire normal polarity zone in the early stage of the Emeishan large igneous province. A flow-by-flow analysis of geomagnetic directions of the Emeishan basalts at Dongchuan indicates that four directional groups and fifteen individual lava directions were recorded, with a net duration (excluding quiescent intervals) of no more than 3100 years. The averaged site directions from the Emeishan basalts with normal polarity conforming to a geocentric axial dipole direction indicate that this interval is longer than 104-105 years. In addition, a magnetostratigraphic study indicates that the normal polarity interval recorded by the Emeishan basalts was shorter than 2-20 × 104 years. Thus, the total duration of the normal polarity stage of the Emeishan large igneous province was roughly 105 years. There is a possible relationship between the rapid eruption and the Late Capitanian mass extinction (259.8 ± 0.4 Ma, Henderson et al., 2012).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...831..206L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...831..206L"><span>A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming</p> <p>2016-11-01</p> <p>Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (I.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477.1744O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477.1744O"><span>An affine model of the dynamics of astrophysical discs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogilvie, Gordon I.</p> <p>2018-06-01</p> <p>Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V54A..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V54A..08R"><span>Secular variations of iron isotopes in ferromanganese crusts: evidences for deeply sourced iron in the Pacific Ocean?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rouxel, O. J.; Gueguen, B.</p> <p>2016-12-01</p> <p>Ferromanganese (Fe-Mn) crusts are potential archive of the Fe isotope composition of deep seawater through time. Here, we report Fe isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of the Fe isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. The results show that, despite different growth rates, diagenetic history, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Fe isotope compositions over the last 17 Ma, yielding average δ56Fe values of -0.22 ± 0.20‰ (1sd, n = 54). The results also show striking correlations between Fe and Pb isotope ratios, indicating that local mixing between water masses is the main factor controlling Fe isotope composition in FeMn crusts. Recently, Horner et al. (2015) reported a range of δ56Fe values from -1.12‰ to 1.54‰ along a 76 Ma-old FeMn crust from the central pacific. However, secular variations of Fe isotopes inferred from other FeMn crusts in the Central North Pacific and Western Pacific (Yang and Rouxel, unpublished) show different patterns over the last 40 Ma, with δ56Fe ranging from -0.07 to -0.61‰ (n=81). Hence, the application of Fe isotopes as paleoceanographic proxies to trace deeply sourced iron at the scale of oceanic basins should be used with caution, prompting for an integrative approach combining diverse yet complimentary geochemical proxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920004867','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920004867"><span>Elimination of secular terms from the differential equations for the elements of perturbed two-body motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bond, Victor R.; Fraietta, Michael F.</p> <p>1991-01-01</p> <p>In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910026461&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dearths%2Bouter%2Bcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910026461&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dearths%2Bouter%2Bcore"><span>Lateral temperature variations at the core-mantle boundary deduced from the magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bloxham, Jeremy; Jackson, Andrew</p> <p>1990-01-01</p> <p>Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850043537&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850043537&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic"><span>Secular rotational motions and the mechanical structure of a dynamical viscoelastic earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuen, D. A.; Sabadini, R.</p> <p>1984-01-01</p> <p>A survey is presented of analytical methods for computing the linear responses of the rotational axis of a layered viscoelastic earth to surface loading. Theoretical research in this area is first summarized, and the differences between the mechanical boundary conditions to be applied at the interface separating the upper and lower mantles for an adiabatically and chemically stratified mantle are discussed. Some examples of polar wander and secular variation of the spin rate from glacial excitation are presented for various types of chemical and viscosity stratifications. The effects of an artificial density jump at the base of the lithosphere in models are examined, and certain issues concerning the fluid tidal Love number for different types of density stratification are addressed. The meaning of effective plate thickness over geological time scales for rotational dynamics is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012E%26PSL.345...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012E%26PSL.345...72M"><span>Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Ulrich; Jäggi, Adrian; Beutler, Gerhard</p> <p>2012-09-01</p> <p>The main objective of the Gravity Recovery And Climate Experiment (GRACE) satellite mission consists of determining the temporal variations of the Earth's gravity field. These variations are captured by time series of gravity field models of limited resolution at, e.g., monthly intervals. We present a new time series of monthly models, which was computed with the so-called Celestial Mechanics Approach (CMA), developed at the Astronomical Institute of the University of Bern (AIUB). The secular and seasonal variations in the monthly models are tested for statistical significance. Calibrated errors are derived from inter-annual variations. The time-variable signal can be extracted at least up to degree 60, but the gravity field coefficients of orders above 45 are heavily contaminated by noise. This is why a series of monthly models is computed up to a maximum degree of 60, but only a maximum order of 45. Spectral analysis of the residual time-variable signal shows a distinctive peak at a period of 160 days, which shows up in particular in the C20 spherical harmonic coefficient. Basic filter- and scaling-techniques are introduced to evaluate the monthly models. For this purpose, the variability over the oceans is investigated, which serves as a measure for the noisiness of the models. The models in selected regions show the expected seasonal and secular variations, which are in good agreement with the monthly models of the Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ). The results also reveal a few small outliers, illustrating the necessity for improved data screening. Our monthly models are available at the web page of the International Centre for Global Earth Models (ICGEM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP21A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP21A..01H"><span>Fast geomagnetic Field Intensity Variations between 1400 and 400 BCE: New Archaeointensity Data from Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.</p> <p>2017-12-01</p> <p>Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..270..143H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..270..143H"><span>Fast geomagnetic field intensity variations between 1400 and 400 BCE: New archaeointensity data from Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hervé, Gwenaël; Faβbinder, Jörg; Gilder, Stuart A.; Metzner-Nebelsick, Carola; Gallet, Yves; Genevey, Agnès; Schnepp, Elisabeth; Geisweid, Leonhard; Pütz, Anja; Reuβ, Simone; Wittenborn, Fabian; Flontas, Antonia; Linke, Rainer; Riedel, Gerd; Walter, Florian; Westhausen, Imke</p> <p>2017-09-01</p> <p>Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of ∼70 μT around 1000-900 BCE and another up to ∼90 μT around 600-500 BCE. The maximum rate of variation was ∼0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 2·1022 A·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20712152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20712152"><span>IQ variations across time, race, and nationality: an artifact of differences in literacy skills.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marks, David F</p> <p>2010-06-01</p> <p>A body of data on IQ collected over 50 years has revealed that average population IQ varies across time, race, and nationality. An explanation for these differences may be that intelligence test performance requires literacy skills not present in all people to the same extent. In eight analyses, population mean full scale IQ and literacy scores yielded correlations ranging from .79 to .99. In cohort studies, significantly larger improvements in IQ occurred in the lower half of the IQ distribution, affecting the distribution variance and skewness in the predicted manner. In addition, three Verbal subscales on the WAIS show the largest Flynn effect sizes and all four Verbal subscales are among those showing the highest racial IQ differences. This pattern of findings supports the hypothesis that both secular and racial differences in intelligence test scores have an environmental explanation: secular and racial differences in IQ are an artifact of variation in literacy skills. These findings suggest that racial IQ distributions will converge if opportunities are equalized for different population groups to achieve the same high level of literacy skills. Social justice requires more effective implementation of policies and programs designed to eliminate inequities in IQ and literacy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A31E0112Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A31E0112Y"><span>Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.</p> <p>2015-12-01</p> <p>Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoJI.143..185H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoJI.143..185H"><span>A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halls, Henry C.; Li, Jianghai; Davis, Don; Hou, Guiting; Zhang, Baoxing; Qian, Xianglin</p> <p>2000-10-01</p> <p>A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U-Pb dating of primary zircon, is 1769.1+/-2.5Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D=36°, I=-5°, k=63, α95=4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp=2°, dm=4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800Ma</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23218782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23218782"><span>Intergenerational transmission of religious beliefs and practices and the reduction of adolescent delinquency in urban Thailand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chamratrithirong, Aphichat; Miller, Brenda A; Byrnes, Hilary F; Rhucharoenpornpanich, Orratai; Cupp, Pamela K; Rosati, Michael J; Fongkaew, Warunee; Atwood, Katharine A; Todd, Michael</p> <p>2013-02-01</p> <p>This study examines the intergenerational transmission of family religion as measured by parent's and adolescent's beliefs and practices in Buddhism, and its relation to delinquent behaviors among early adolescents in Thailand. The data set is from the Thai Family Matters Project 2007, a representative sample of 420 pairs of parents and teens in Bangkok. A structural equation model is employed for the analysis. The intergenerational transmission and the direct and indirect association between parents' and adolescents' beliefs and practices in Buddhism and adolescents' minor and serious delinquent behaviors are revealed to be significant, controlling for secular parental monitoring. Spirituality within the family can play an important role in preventing delinquency among early adolescents. Policies in the areas related to family empowerment and delinquency prevention may need to consider integrating both secular and non-secular program inputs in their implementation design. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=conflict+AND+management&pg=7&id=EJ900152','ERIC'); return false;" href="https://eric.ed.gov/?q=conflict+AND+management&pg=7&id=EJ900152"><span>The Incidence and Management of Conflicts in Secular and Non-Secular Tertiary Institutions in South West Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ayodele, Joseph Babatola; Adewumi, Joseph Olukayode</p> <p>2007-01-01</p> <p>This paper compared the incidence and management of conflicts in secular and non-secular tertiary institutions in Nigeria. The sample of this study was made of sixty staff, and two hundred and forty students randomly selected each from two secular and two non-secular tertiary institutions in south western Nigeria. A validated questionnaire was…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..290..156S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..290..156S"><span>Diurnal observations of HCl altitude variation in the 70-100 km mesosphere of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandor, Brad J.; Todd Clancy, R.</p> <p>2017-07-01</p> <p>First submm spectroscopic observations of the 625.9 GHz H35Cl absorption lines of the Venus dayside atmosphere were obtained with the James Clerk Maxwell Telescope (JCMT) on March 2, 2013. These data, which support retrieval of HCl altitude distributions in the Venus mesosphere (70-100 km), are presented here and compared with previously reported JCMT observations of Venus nightside HCl (Sandor et al., 2012). The measured dayside profile agrees with that of the nightside, indicating no diurnal variation is present. More specifically, the nightside spectra revealed a secular decrease of upper mesospheric HCl between observations one month apart, at fixed latitude and local time. The dayside profile reported here presents upper mesospheric abundances that are bracketed by the two previously measured nightside profiles, indicating that if diurnal variation is present, it must be weaker than the secular variations occurring at fixed local time. The previous study, which measured nightside HCl abundances above 85 km to be much smaller than predicted from photochemical modeling, suggested a dynamical explanation for the disagreement wherein nightside downwelling associated with the SubSolar to AntiSolar (SSAS) atmospheric circulation might suppress upper mesospheric abundances predicted purely from photochemistry. However a straightforward prediction from the proposed mechanism is that HCl abundance on the dayside, where the SSAS drives upward rather than downward transport should at least agree with, and perhaps exceed that of the photochemical model. The finding that dayside HCl abundance agrees with that of the nightside, hence also is much smaller than that of the model shows the SSAS hypothesis to be incorrect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U51D..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U51D..04M"><span>Secular and annual hydrologic effects from the Plate Boundary Observatory GPS network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meertens, C. M.; Wahr, J. M.; Borsa, A. A.; Jackson, M. E.; Herring, T.</p> <p>2009-12-01</p> <p>The Plate Boundary Observatory (PBO) GPS network is providing accurate and spatially coherent vertical signals that can be interpreted in terms of hydrological loading and poroelastic effects from both natural and anthropogenic changes in water storage. Data used for this analysis are the precise coordinate time series produced on a daily basis by PBO Analysis Centers at New Mexico Institute of Mining and Technology and at Central Washington University and combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology. These products, as well as derived velocity solutions, are made freely available from the UNAVCO Data Center in Boulder. Analysis of secular trends and annual variations in the time series was made using the analysis software of Langbein, 2008. Spatial variations in the amplitude and phase of the annual vertical component of motion allow for identification of anthropogenic effects due to water pumping, irrigation, and reservoir lake variations, and of outliers due to instrumental or other local site effects. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and the Pacific Northwest. The peak annual uplift is in October and is correlated to hydrological loading effects. Mountainous areas appear to be responding elastically to the load of the water contained in surface soil, fractures, and snow. Vertical signals are highest when the water load is at a minimum. The vertical elastic hydrologic loading signal was modeled using the 0.25 degree community NOAH land-surface model (LSM) and generally fits the observed GPS signal. Addition comparisons will be made using the Mosaic LSM and the NOAA “Leaky Bucket” hydrologic model. In contrast to mountain stations that are installed principally in bedrock, stations in the valleys of California are installed in sediments. Observations from these stations show greater spatial variability ranging from almost no detectable annual signal to very large, 20-30 mm, vertical amplitudes that reach a maximum in March. Vertical signals in the valleys are the result of poroelastic effects induced by groundwater variations caused by pumping for irrigation or other purposes and are highest when groundwater is at maximum recharge level. Secular trends in the vertical time series show 1-3 mm/yr of subsidence across the western U.S. In areas of groundwater pumping the rates are up to several cm/yr showing subsidence as pumping exceeds annual recharge over a multi-year time period. In the mountainous areas where hydrologic loading is evident in the annual signals, secular trends show uplift of 1-3 mm/yr possibly due to regional drought and decreased overall water volumes that result in less load and vertical uplift. Overall, these results illustrate the potential of using GPS data to constrain hydrological models. In return, accurate hydrologic loading models will be needed to better measure and detect vertical tectonic motions at the mm-level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4721008L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4721008L"><span>The visible spectrum of Pluto: secular and longitudinal variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzi, Vania; Pinilla-Alonso, Noemí; Emery, Joshua P.; Licandro, Javier; Cruikshank, Dale P.; Grundy, Will; Binzel, Richard P.</p> <p>2015-11-01</p> <p>Continuous near-infrared spectroscopic observations during the last 30 years enabled the characterization of the Pluto's surface and the study of its variability. Nevertheless, only few data are available in the visible range, where the nature of the complex-organics can be studied.For this reason, we started an observational campaign to obtain the Pluto's relative reflectance in the visible range, with the aim of characterizing the different components of its surface, and providing ground based observations in support of the New Horizons mission. We observed Pluto on six nights in 2014, with the imager/spectrograph ACAM@WHT (La Palma, Spain). We obtained six spectra in the 0.40 - 0.93 µm range, that covered a whole Pluto's rotational period (6.4 days).To study longitudinal variations, we computed for all the spectra the spectral slope, and the position and the depth of the methane ice absorption bands. Also, to search for secular or seasonal variations we compared our data with previously published results.All the spectra present a red slope, indicating the presence of complex organics on Pluto's surface, and show the methane ice absorption bands between 0.73 and 0.90 μm. We also report the detection of the CH4 absorption band at 0.62 μm, already detected in the spectra of Makemake and Eris. The measurement of the band depth at 0.62 μm in the new spectra of Pluto, and in the spectra of Makemake and Eris, permits us to estimate the Lambert coefficient, not measured yet at this wavelength, at a temperature of 30 K and 40 K.We find that all the CH4 bands present a blue shift. This shift is minimum at the Charon-facing hemisphere, where the CH4 is also more abundant, indicating a higher degree of saturation of CH4 in the CH4:N2 dilution at this hemisphere.Comparing with data in the literature, we found that the longitudinal and secular variations of the parameters measured in our spectra are in accordance with previous results and with the distribution of the dark and bright material as showed by the Pluto's albedo maps from New Horizons.In 2015, new observations were run quasi-simultaneously with the New Horizons flyby at 10 different Pluto longitudes (July 3 to 14) . The data are currently being reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP51A0781W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP51A0781W"><span>True Polar Wander and the Origin of the Hawaiian-Emperor Bend: New Evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodworth, D.; Gordon, R. G.; Seidman, L.; Zheng, L.</p> <p>2017-12-01</p> <p>We present an updated apparent polar wander (APW) path for the Pacific plate constructed from paleomagnetic poles determined from the skewness of marine magnetic anomalies, from equatorial sediment facies, and from paleocolatitudes of vertical cores of igneous rock. While paleocolatitude data provide some constraints, their usefulness is limited because they only limit the pole position in one direction, and the uncertainty in that direction is large because of the challenges of averaging secular variation. In contrast, secular variation contributes negligibly to the poles from skewness data, which give compact confidence limits for a well-defined interval of time. We review, update, or present six useful poles available for chrons 12r, 20r, 25r, 26r, 27r-31, and 32, corresponding respectively to 32 Ma, 44 Ma, 58 Ma, 60 Ma, 65 Ma, and 72 Ma. Moreover, we incorporate spin axis locations inferred from equatorial sediment facies [Suárez and Molnar; 1980; Gordon and Cape, 1981; Parés and Moore, 2005] and estimate their 95% confidence limits. An APW path for Pacific hotspots can be obtained by moving each Pacific plate paleomagnetic pole with the Pacific plate relative to the hotspots to a reconstruction that corresponds to the age of the pole. This path has a stillstand from 44 Ma to 12 Ma at a location (P1) about 3° from the present spin axis and a second stillstand from 81 Ma to 58 Ma at a location (P2) about 11° from the present spin axis. We hypothesize that the shift from P2 to P1 records an episode of true polar wander sometime between 58 and 44 Ma and that the shift from P1 to the present spin axis records another episode of true polar that has occurred since 12 Ma and may continue today. We test these hypotheses by comparing the APW path of Pacific hotspots with the APW path of Indo-Atlantic hotspots and find them in agreement. Our results imply that global hotspots have moved in unison with respect to the spin axis and that the Hawaiian-Emperor Bend (HEB) does not record a change in motion through the mantle of the Hawaiian plume. Instead the HEB records a change in Pacific plate motion over a stationary plume as originally proposed by W. J. Morgan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.4101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.4101C"><span>Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chenet, Anne-Lise; Fluteau, FréDéRic; Courtillot, Vincent; GéRard, Martine; Subbarao, K. V.</p> <p>2008-04-01</p> <p>Flow-by-flow reanalysis of paleomagnetic directions in two sections of the Mahabaleshwar escarpment, coupled with analysis of intertrappean alteration levels shows that volcanism spanned a much shorter time than previously realized. The sections comprise the upper part of magnetic chron C29r, transitional directions and the lowermost part of C29n. Lack of paleosecular variation allows identification of four directional groups, implying very large (40 to 180 m thick) single eruptive events (SEEs) having occurred in a few decades. Paleomagnetism allows temporal constraints upon the formation of 9 out of 23 thin red bole levels found in the sections to no more than a few decades; the two thickest altered layers could have formed in 1 to 50 ka. The typical volumes of SEEs (corresponding to magnetic directional groups) are estimated at 3000 to 20,000 km3, with flux rates ˜100 km3 a-1, having lasted for decades. Flood basalt emission can be translated into SO2 injection rates of several Gt a-1, which could have been the main agent of environmental change. The total volume of SO2 emitted by the larger SEEs could be on the order of that released by the Chicxulub impact. Moreover, each SEE may have injected 10 to 100 times more SO2 in the atmosphere than the deleterious 1783 Laki eruption. The detailed time sequence of SEEs appears to be the key feature having controlled the extent of climate change. If several SEEs erupted in a short sequence (compared to the equilibration time of the ocean), they could have generated a runaway effect leading to mass extinction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989CeMDA..46..231F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989CeMDA..46..231F"><span>The three principal secular resonances nu(5), nu(6), and nu(16) in the asteroidal belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Froeschle, Ch.; Scholl, H.</p> <p>1989-09-01</p> <p>Theoretical and numerical results obtained for secular resonant motion in the asteroidal belt are reviewed. William's (1969) theory yields the locations of the principal secular resonances nu(5), Nu(6), and nu(16) in the asteroidal belt. Theories by Nakai and Kinoshita (1985) and by Yoshikawa (1987) make it possible to model the basic features of orbital evolution at the secular resonances nu(16) and nu(6), respectively. No theory is available for the secular resonance nu(5). Numerical experiments by Froeschle and Scholl yield quantitative and new qualitative results for orbital evolutions at the three principal secular resonances nu(5), nu(6), and nu(16). These experiments indicate possible chaotic motion due to overlapping resonances. A secular resonance may overlap with another secular resonance or with a mean motion resonance. The role of the secular resonances as possible sources of meteorites is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19068295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19068295"><span>Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz</p> <p>2008-11-01</p> <p>Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3570586','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3570586"><span>Secular trends in the association between nativity/length of US residence with body mass index and waist circumference among Mexican-Americans, 1988–2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diez Roux, Ana V.; Aiello, Allison E.; Schulz, Amy J.; Abraido-Lanza, Ana F.</p> <p>2012-01-01</p> <p>Objectives We investigated whether associations between nativity/length of US residence and body mass index (BMI) and waist circumference (WC) varied over the past two decades. Methods Mexican-Americans aged 20–64 years from the National Health and Nutrition Survey (NHANES) III (1988–1994), and NHANES (1999–2008). Sex-stratified multivariable linear regression models further adjusted for age, education, and NHANES period. Results We found no evidence of secular variation in the nativity/length of US residence gradient for men or women. Foreign-born Mexican-Americans, irrespective of residence length, had lower mean BMI and WC than their US-born counterparts. However among women, education modified secular trends in nativity differentials: notably, in less-educated women, nativity gradients widened over time due to alarming increases in BMI among the US-born and little increase in the foreign-born. Conclusions Associations between nativity/length of US residence and BMI/WC did not vary over this 20-year period, but we noted important modifications by education in women. Understanding these trends is important for identifying vulnerable subpopulations among Mexican-Americans and for the development of effective health promotion strategies in this fast-growing segment of the population. PMID:23052250</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27757580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27757580"><span>Secular change of sexually dimorphic cranial variables in Euro-Americans and Germans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manthey, Laura; Jantz, Richard L; Bohnert, Michael; Jellinghaus, Katharina</p> <p>2017-07-01</p> <p>Crania are a reliable source for sex estimation in Euro-Americans, Europeans, and most other populations. Besides morphological assessments, the application of Fordisc® has become a useful tool within the last two decades, creating discriminant functions from morphometric data. Unfortunately, until now, white populations are mostly represented by measurements of American individuals. Therefore, classification rates are lower for European skulls than for Euro-Americans. The aim of this study was to show differences in sexual dimorphism between German and Euro-American crania. Furthermore, their secular change from the nineteenth to the twentieth century has been investigated. Analyses have been performed on glabella subtense (GLS), mastoid height (MDH), and bizygomatic breadth (ZYB). Fordisc® 3.1 was used to study sexual dimorphism and secular change, whereas SAS® was used to perform a two-level ANOVA to test for variation in sex dimorphism. Euro-Americans show greater dimorphism than Germans in all three measurements tested. This larger difference is even increasing from the late nineteenth through the late twentieth century in terms of GLS and MDH, while it stays almost the same in the present Europeans. These results explain the unsatisfying classification rates of German and other European crania on Fordisc®. Data collection for European Fordisc® samples is in progress and should improve the current situation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020044830','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020044830"><span>Solar-System Tests of Gravitational Theories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shapiro, Irwin I.</p> <p>2002-01-01</p> <p>We are engaged in testing gravitational theory by means of observations of objects in the solar system. This work tests the equivalence principle (EP), the Shapiro time delay, the advances of planetary perihelion, the possibility of a secular variation G(dot) in the 'gravitational constant' G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. We describe here the results under this contract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2227116F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2227116F"><span>Recent developments in INPOP planetary ephemerides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fienga, Agnes; Viswanathan, Vishnu; Laskar, Jacques; Manche, Hervé; Gastineau, Mickael</p> <p>2015-08-01</p> <p>We present here the new version of the INPOP planetary ephemerides based on an update of the observational data sets as well as new results in term of asteroid masses and constraints obtained for General relativity parameters PPN β, γ, J2 and the secular variations of G. New constraints about the hypothetical existence of a super-Earth beyond the Neptune orbit will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3620101K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3620101K"><span>ACRIM-gap and total solar irradiance revisited: Is there a secular trend between 1986 and 1996?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krivova, N. A.; Solanki, S. K.; Wenzler, T.</p> <p>2009-10-01</p> <p>A gap in the total solar irradiance (TSI) measurements between ACRIM-1 and ACRIM-2 led to the ongoing debate on the presence or not of a secular trend between the minima preceding cycles 22 (in 1986) and 23 (1996). It was recently proposed to use the SATIRE model of solar irradiance variations to bridge this gap. When doing this, it is important to use the appropriate SATIRE-based reconstruction, which we do here, employing a reconstruction based on magnetograms. The accuracy of this model on months to years timescales is significantly higher than that of a model developed for long-term reconstructions used by the ACRIM team for such an analysis. The constructed ‘mixed’ ACRIM — SATIRE composite shows no increase in the TSI from 1986 to 1996, in contrast to the ACRIM TSI composite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43..111C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43..111C"><span>Gravity increase before the 2015 Mw 7.8 Nepal earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shi; Liu, Mian; Xing, Lelin; Xu, Weimin; Wang, Wuxing; Zhu, Yiqing; Li, Hui</p> <p>2016-01-01</p> <p>The 25 April 2015 Nepal earthquake (Mw 7.8) ruptured a segment of the Himalayan front fault zone. Four absolute gravimetric stations in southern Tibet, surveyed from 2010/2011 to 2013 and corrected for secular variations, recorded up to 22.40 ± 1.11 μGal/yr of gravity increase during this period. The gravity increase is distinct from the long-wavelength secular trends of gravity decrease over the Tibetan Plateau and may be related to interseismic mass change around the locked plate interface under the Himalayan-Tibetan Plateau. We modeled the source region as a disk of 580 km in diameter, which is consistent with the notion that much of the southern Tibetan crust is involved in storing strain energy that drives the Himalayan earthquakes. If validated in other regions, high-precision ground measurements of absolute gravity may provide a useful method for monitoring mass changes in the source regions of potential large earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrASS...5...18B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrASS...5...18B"><span>Proper motion and secular variations of Keplerian orbital elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butkevich, Alexey G.</p> <p>2018-05-01</p> <p>High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850023818','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850023818"><span>Earth Albedo and the orbit of LAGEOS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, D. P.; Weiss, N. R.</p> <p>1985-01-01</p> <p>The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025713&hterms=bouguer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbouguer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025713&hterms=bouguer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbouguer"><span>Earth albedo and the orbit of Lageos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, D. P.; Weiss, N. S.</p> <p>1986-01-01</p> <p>The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5558823-intermittent-upwelling-asthenosphere-beneath-gregory-rift-kenya','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5558823-intermittent-upwelling-asthenosphere-beneath-gregory-rift-kenya"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tatsumi, Yoshiyuki; Kimura, Nobukazu; Itaya, Tetsumaru</p> <p></p> <p>K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of themore » Gregory Rift.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026711','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026711"><span>Solar wind velocity and daily variation of cosmic rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahluwalia, H. S.; Riker, J. F.</p> <p>1985-01-01</p> <p>Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840055065&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmarine%2Bbiology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840055065&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmarine%2Bbiology"><span>Changes in atmospheric CO2 - Influence of the marine biota at high latitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, F.; Mcelroy, M. B.</p> <p>1984-01-01</p> <p>Approximately half of the nitrogen and phosphorus entering deep waters of the contemporary ocean are transported from the surface in inorganic form as preformed nutrients. A simple model for ocean chemistry is presented and shown to account for the present level of atmospheric CO2. Fluctuations in preformed nutrients, modulated by changes in insolation and circulation at high latitudes, can result in significant variations in CO2. It is suggested that these changes may account for the apparent control on climate exercised by secular variations in the orbital parameters of the earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36.3496R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36.3496R"><span>Computing gas solubility in reservoir waters for environmental chemistry applications: the role of satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosa, R.; Lima, I.; Ramos, F.; Bambace, L.; Assireu, A.; Stech, J.; Novo, E.; Lorenzeti, L.</p> <p></p> <p>Atmospheric greenhouse gases concentration has increased during the past centuries basically due to biogenic and pyrogenic anthopogenic emissions Recent investigations have shown that gas emission methane as an important example from tropical hydroelectric reservoirs may comprise a considerable fraction of the total anthropogenic bulk In order to evaluate the concentration of gases of potential importance in environmental chemistry the solubility of such gases have been collected and converted into a uniform format using the Henry s law which states that the solubility of a gas in a liquid is directly proportional to its partial pressure However the Henry s law can be derived as a function of temperature density molar mixing ratio in the aqueous phase and molar mass of water In this paper we show that due to the complex temperature variation and water composition measured in brazilian tropical reservoirs as Serra da Mesa and Manso expressive secular variation on the traditional solubility constants concentration of a species in the aqueous phase by the partial pressure of that species in the gas phase can change in a rate of approximately 30 in 6 decades This estimation comes from a computational analysis of temperature variation measured during 6 months in Serra da Mesa and Manso reservoirs taking into account a simulated density and molar mass variation of the aqueous composition in these environments As an important global change issue from this preliminary analysis we discuss its role in the current estimations on the concentration emission rates</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.1366P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.1366P"><span>An activity index for geomagnetic paleosecular variation, excursions, and reversals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panovska, S.; Constable, C. G.</p> <p>2017-04-01</p> <p>Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASMS..27.1243S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASMS..27.1243S"><span>Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham</p> <p>2016-07-01</p> <p>Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27032650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27032650"><span>Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham</p> <p>2016-07-01</p> <p>Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089681&hterms=succession&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsuccession','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089681&hterms=succession&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsuccession"><span>The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knoll, A. H.; Kaufman, A. J.; Semikhatov, M. A.</p> <p>1995-01-01</p> <p>Thick carbonate-dominated successions in northwestern Siberia document secular variations in the C-isotopic composition of seawater through Mesoproterozoic and early Neoproterozoic (Early to early Late Riphean) time. Mesoproterozoic dolomites of the Billyakh Group, Anabar Massif, have delta 13C values that fall between 0 and -1.9 permil versus PDB, with values in the upper part of the succession (Yusmastakh Formation) consistently higher than those of the lower (Ust'-Il'ya and Kotuikan formations). Consistent with available biostratigraphic and radiometric data, delta 13C values for Billyakh carbonates compare closely with those characterizing early Mesoproterozoic carbonates (about 1600-1200 Ma) worldwide. In contrast, late Mesoproterozoic to early Neoproterozoic limestones and dolomites in the Turukhansk Uplift exhibit moderate levels of secular variation. Only the lowermost carbonates in the Turukhansk succession (Linok Formation) have delta 13C values that approximate Billyakh values. Higher in the Turukhansk succession, delta 13C values vary from -2.7 to +4.6 permil (with outliers as low as -5.0 permil interpreted as diagentically altered). Again, consistent with paleontological and radiometric data, these values compare well with isotopic values from 1200 to 850 Ma successions elsewhere. Five sections measured in different parts of the Turukhansk basin show nearly identical patterns of variation, confirming that carbonate delta 13C correlates primarily with time and not facies. The Siberian sections illustrate the potential of integrated biostratigraphic and chemostratigraphic data in the intra- and interbasinal correlation of Mesoproterozoic and early Neoproterozoic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AJ....151..103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AJ....151..103D"><span>Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deines, Steven D.; Williams, Carol A.</p> <p>2016-04-01</p> <p>This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Biblical+AND+theory&pg=2&id=EJ396465','ERIC'); return false;" href="https://eric.ed.gov/?q=Biblical+AND+theory&pg=2&id=EJ396465"><span>Apocalypticism in Secular Public Discourse: A Proposed Theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mixon, Harold; Hopkins, Mary Frances</p> <p>1989-01-01</p> <p>Examines Biblical apocalyptic theory and secular apocalyptic literature. Proposes a new theory of apocalypticism in secular public discourse derived from those two major theories. Provides examples of apocalypticism in secular public discourse. (MM)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..161A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..161A"><span>Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aubert, Julien</p> <p>2018-04-01</p> <p>Geomagnetic secular acceleration, the second temporal derivative of Earth's magnetic field, is a unique window on the dynamics taking place in Earth's core. In this study, the behaviours of the secular acceleration and underlying core dynamics are examined in new numerical simulations of the geodynamo that are dynamically closer to Earth's core conditions than earlier models. These new models reside on a theoretical path in parameter space connecting the region where most classical models are found to the natural conditions. The typical time scale for geomagnetic acceleration is found to be invariant along this path, at a value close to 10 years that matches Earth's core estimates. Despite this invariance, the spatio-temporal properties of secular acceleration show significant variability along the path, with an asymptotic regime of rapid rotation reached after 30% of this path (corresponding to a model Ekman number E = 3 - 7). In this regime, the energy of secular acceleration is entirely found at periods longer than that of planetary rotation, and the underlying flow acceleration patterns acquire a two-dimensional columnar structure representative of the rapid rotation limit. The spatial pattern of the secular acceleration at the core-mantle boundary shows significant localisation of energy within an equatorial belt. Rapid hydromagnetic wave dynamics is absent at the start of the path because of insufficient time scale separation with convective processes, weak forcing and excessive damping but can be clearly exhibited in the asymptotic regime. This study reports on ubiquitous axisymmetric geostrophic torsional waves of weak amplitude relatively to convective transport, and also stronger, laterally limited, quasi-geostrophic Alfvén waves propagating in the cylindrical radial direction from the tip of convective plumes towards the core-mantle boundary. In a system similar to Earth's core where the typical Alfvén velocity is significantly larger than the typical convective velocity, quasi-geostrophic Alfvén waves are shown to be an important carrier of flow acceleration to the core surface that links with the generation of strong, short-lived and intermittent equatorial pulses in the secular acceleration energy. The secular acceleration time scale is shown to be insensitive to magnetic signatures from torsional waves because of their weak amplitude, and from quasi-geostrophic Alfvén waves because of their intermittent character, and is therefore only indicative of convective transport phenomena that remain invariant along the parameter space path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH51B1283B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH51B1283B"><span>Custom auroral electrojet indices calculated by using MANGO value-added services</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bargatze, L. F.; Moore, W. B.; King, T. A.</p> <p>2009-12-01</p> <p>A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NewA...55...13Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NewA...55...13Y"><span>Orbital period variations of two W UMa-type binaries: UY UMa and EF Boo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Yun-Xia; Zhang, Xu-Dong; Hu, Ke; Xiang, Fu-Yuan</p> <p>2017-08-01</p> <p>The orbital period variations of two W UMa-type contact binaries, UY UMa and EF Boo, are analyzed by using all available times of light minimum. It is detected that the general trends of their (O - C) curves show an upward parabolic variation, which reveals their continuous period increases at the rates of dP / dt = 2.545 ×10-7 days yr-1 and dP / dt = 2.623 ×10-7 days yr-1 , respectively. Meanwhile, UY UMa also shows a cyclic period variation with a small amplitude of A = 0.0026 days superposed on the long-term increase. Due to their contact configurations, the secular period increases are interpreted as a result of mass transfer from the less massive component to the more massive one. The cyclic period variation of UY UMa may be interpreted in terms of either the magnetic activity or the light time effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100015507&hterms=piezo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpiezo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100015507&hterms=piezo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpiezo"><span>Preliminary Investigations of an Optical Assembly Tracking Mechanism for LISA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thorpe, James Ira; Stebbins, Robin</p> <p>2010-01-01</p> <p>After injection into their specific orbits, the position of the LISA spacecraft are not actively controlled. Rather the spacecraft are allowed to passively follow their trajectories and the roughly equilateral triangular constellation is preserved. Slight variations in the orbits cause the constellation to experience both periodic and secular variations, one consequence of which is a variation in the interior angles of the constellation on the order of one degree. This variation is larger than the field of view of the LISA telescope, requiring a mechanism for each spacecraft to maintain pointing to its two companions. This Optical Assembly Tracking Mechanism (OATM) will be used to accommodate these variations while maintaining pointing at the ten nanoradian level to the far spacecraft. Here we report on a possible design for the OATM as well as initial results from a test campaign of a piezo-inchworm actuator used to drive the mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA148466','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA148466"><span>The Shock and Vibration Digest. Volume 16, Number 11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-11-01</p> <p>wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EP%26S...65..351I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EP%26S...65..351I"><span>Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); Geologic evidences for the chaotic behavior of solar planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikeda, Masayuki; Tada, Ryuji</p> <p>2013-04-01</p> <p>Astronomical theory predicts that ~2 Myr eccentricity cycle have changed its periodicity and amplitude through time because of the chaotic behavior of solar planets, especially Earth-Mars secular resonance. Although the ~2 Myr eccentricity cycle has been occasionally recognized in geological records, their frequency transitions have never been reported. To explore the frequency evolution of ~2 Myr eccentricity cycle, we used the bedded chert sequence in Inuyama, Japan, of which rhythms were proven to be of astronomical origin, covering the ~30 Myr long spanning from the Triassic to Jurassic. The frequency modulation of ~2 Myr cycle between ~1.6 and ~1.8 Myr periodicity detected from wavelet analysis of chert bed thickness variation are the first geologic record of chaotic transition of Earth-Mars secular resonance. The frequency modulation of ~2 Myr cycle will provide new constraints for the orbital models. Additionally, ~8 Myr cycle detected as chert bed thickness variation and its amplitude modulation of ~2 Myr cycle may be related to the amplitude modulation of ~2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DDA....4940103R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DDA....4940103R"><span>Chaotic Transport in Circumterrestrial Orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosengren, Aaron Jay</p> <p>2018-04-01</p> <p>The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.207..934H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.207..934H"><span>Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry</p> <p>2016-11-01</p> <p>We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PEPI..147..103H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PEPI..147..103H"><span>On the suitability of refractory bricks from a mediaeval brass melting and working site near Dinant (Belgium) as geomagnetic field recorders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hus, J.; Geeraerts, R.; Plumier, J.</p> <p>2004-11-01</p> <p>Directional field archaeomagnetic data from two oval shaped kilns, of which still one was lined with refractory bricks, unearthed in a brass melting and working site in Bouvignes-sur-Meuse in Belgium, confirm the archaeologic dating as 14-15th century A.D. for the main site activities. The archaeomagnetic dates, obtained using reference secular variation curves of the geomagnetic field direction for France and Great Britain, lead to better time constraints for the cessation of kiln operations. Refractory bricks (firebricks) that are used for their chemical and thermal properties, and in particular for their resistance to high temperatures and temperature changes, are not unusual in metal melting and working sites. The firebricks from the examined site are coarse-grained and very porous inside but possess a very stable remanent magnetisation and revealed to be suitable magnetic field recorders. Although the firebricks have a single-component remanent magnetization, non-random deviations in remanence direction in function of the relative azimuth from the centre of the kiln or with the position of the bricks in the kiln wall, were observed. Several hypotheses for the origin of the deviations were considered: anisotropy, refraction, magnetic interaction, magnetic field distortion and the presence of a local disturbing magnetic source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAVSO..45..197P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAVSO..45..197P"><span>Amplitude Variations in Pulsating Red Giants. II. Some Systematics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Percy, J. R.; Laing, J.</p> <p>2017-12-01</p> <p>In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27737575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27737575"><span>The Remarkable Change in Euro-American Cranial Shape and Size.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jantz, Richard L; Jantz, Lee Meadows</p> <p>2016-01-01</p> <p>Secular changes in stature, weight, or other components of the body that can be obtained from historical records have been extensively studied. Cranial change has been central to anthropology for more than a century, but the focus has normally been on change measured in centuries or millennia. Cranial change measured in decades, normally considered to result from plastic response to the environment, has been less studied. This article reports on change in cranial vault dimensions in white Americans. Variables were glabello-occipital length (GOL), basion-bregma height (BBH), basion-nasion length (BNL), maximum cranial breadth (XCB), and biauricular breadth (AUB). Cranial size was calculated as the geometric mean of these variables, and shape dimensions were calculated as described by Darroch and Mosimann ( 1985 ). Cranial module and cranial capacity were also calculated. Samples consisted of 1,112 males and 668 females complete for those variables. Samples were organized into 10-year birth cohorts, with birth years ranging from 1820 to 1990. One-way ANOVA was used to test for variation among cohorts. The pattern of secular change was examined graphically and was compared with quality-of-life and environmental indicators, including stature, infant mortality, calories per person, and relative number of immigrants. All variables showed significant secular change, but BBH, XCB, and BNL responded most strongly. Over the past 170 years, crania became relatively higher, narrower, and larger with longer cranial bases. Both sexes changed, but female change was less pronounced than male change. The cranial variables tracked secular changes in stature, most prominently BNL. The highest correlation between a cranial variable and quality-of-life indicator was BBH and infant mortality. We are not able to identify specific causes of secular changes in cranial morphology. However, given that modern Americans have introduced themselves into a novel environment never before experienced by human populations, we consider it unlikely that it is pure plasticity. In addition to possible plastic responses, it is likely that selection, acting through the dramatic changes in infant mortality, is also involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3155M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3155M"><span>Coming of spring in Europe and on Day Night Year Globe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marković-Topalović, Tatjana; Božić, Mirjana; Stojićević, Goran</p> <p>2014-05-01</p> <p>Day and night cycles, change of seasons, secular variations of climate on Earth are phenomena that depend on insolation of the Earth, its internal rotation and the orientation of its axis with respect to the Sun. For teaching about these phenomena, we have been using, since 2011, the outdoor globe that has the same orientation in space as the Earth. We call it Day Night Year Globe (DING). It was erected in the Center for advanced education of teachers in Šabac, Serbia [1]. Such globes were also erected in the Weizmann Institute in Israel, near the Max Valier Observatory in Italy, in the courtyard of the Tre University in Rome, in the Science Park in Zurich. During 2010 and 2011, the High Medical School took part and coordinated the realization of the Greenwave project [2] in the Šabac region. Twenty-two teachers, in seven primary schools, inspired and instructed their students to observe how exactly spring arrives and moves across Europe. Their task was to measure on daily basis: wind speed, temperature and rain precipitation. They also recorded sightings of species (barn swallow and frog spawns), common to all European countries, and of local species, which act as early indicators of the arrival of spring. The scientific contribution of the Šabac team consisted of correlating these observations and observations of changes of illumination on DING. During one sunny day, students observe the mapping of Earth's daily rotation onto DING. By observing the circle of illumination, day by day, students see how the inclination of this circle changes during the year. At the spring equinox the circle of illumination lies along the meridian. Our idea was that participants in other country could incorporate observations on DING, or a hands-on globe with two-rotation axes, properly oriented. We tried to induce interest for this idea to the authors and leaders of the Greenwave project. In Milanković's theory of the climate change of Earth, the orientation of Earth's axis with respect to the Sun is an essential parameter. Because of that, DING may be useful [3] in teaching an introduction to Milanković's theory.In his Mathematical theory of thermic phenomena caused by solar radiations (1920) and in Canon (1941), Milanković concisely explained astronomical mechanisms behind the climate change on Earth during last 600000 years. Secular variations of parameters of Earth's motion and impact of these variations on insolation of Earth have caused the secular changes of climate on Earth, resulting in the series of ice ages with interglacial periods. If we would live long enough, we could follow the DING changes that are consequences of secular variations of Earth's parameters. But during our short lives we can only make thought observations, i.e. we could imagine how these changes on DING would be. References 1. T. M. Topalović and M. Božić,Physics Education,46 (2011) 365. 2.http://greenwave-europe.eu/ 3. M. Božić, M. Popović, L. Vu\\vsković, S. Popović, J. Popović, T. M. Topalović, Day Night Year Globe, submitted to Science &Education</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G41C0370D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G41C0370D"><span>Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dumberry, M.</p> <p>2005-12-01</p> <p>Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical rotational variations of the inner core, and also provides constraints on structure, rheology and dynamics of the Earth's deep interior that cannot be observed directly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJMPD..2430015I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJMPD..2430015I"><span>Gravitational anomalies in the solar system?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iorio, Lorenzo</p> <p>2015-02-01</p> <p>Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27084220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27084220"><span>Stroke survivors in low- and middle-income countries: A meta-analysis of prevalence and secular trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ezejimofor, Martinsixtus C; Chen, Yen-Fu; Kandala, Ngianga-Bakwin; Ezejimofor, Benedeth C; Ezeabasili, Aloysius C; Stranges, Saverio; Uthman, Olalekan A</p> <p>2016-05-15</p> <p>To provide an up-to-date estimate on the changing prevalence of stroke survivors, and examines the geographic and socioeconomic variations in low and middle-income countries (LMICs). We searched MEDLINE, EMBASE, SCOPUS and Web of Science databases and systematically reviewed articles reporting stroke prevalence and risk factors from inception to July 2015. Pooled prevalence estimates and secular trends based on random-effects models were conducted across LMICs, World Bank regions and income groups. Overall, 101 eligible community-based studies were included in the meta-analysis. The pooled crude prevalence of stroke survivors was highest in Latin America and Caribbean (21.2 per 1000, 95% CI 13.7 to 30.29) but lowest in sub-Saharan Africa (3.5 per 1000, 95% CI 1.9 to 5.7). Steepest increase in stroke prevalence occurred in low-income countries, increasing by 14.3% annually while the lowest increase occurred in lower-middle income countries (6% annually), and for every 10years increase in participants' mean age, the prevalence of stroke survivors increases by 62% (95% CI 6% to 147%). The prevalence estimates of stroke survivors are significantly different across LMICs in both magnitude and secular trend. Improved stroke surveillance and care, as well as better management of the underlying risk factors, primarily undetected or uncontrolled high blood pressure (HBP) are needed. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730003089','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730003089"><span>UK-5 Van Allen belt radiation exposure: A special study to determine the trapped particle intensities on the UK-5 satellite with spatial mapping of the ambient flux environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stassinopoulos, E. G.</p> <p>1972-01-01</p> <p>Vehicle encountered electron and proton fluxes were calculated for a set of nominal UK-5 trajectories with new computational methods and new electron environment models. Temporal variations in the electron data were considered and partially accounted for. Field strength calculations were performed with an extrapolated model on the basis of linear secular variation predictions. Tabular maps for selected electron and proton energies were constructed as functions of latitude and longitude for specified altitudes. Orbital flux integration results are presented in graphical and tabular form; they are analyzed, explained, and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040027546&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgravity%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040027546&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgravity%2Bearth"><span>Measurement and Interpretation of Temporal Variations of the Earths Gravity Field Using GPS and SLR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nerem, R. Steven; Leuliette, Eric; Russell, Gary</p> <p>2003-01-01</p> <p>This investigation has had four main thrusts: 1) The analysis of seasonal variations of the Earth's gravitational field using Lageos 1 and 2 SLR data and comparisons to geophysical models. We have estimated the annual variation of the gravity field via a spherical harmonic expansion complete to degree and order 4. We have also constructed a similar model using models of the annual variation in the gravity field due to atmospheric, hydrologic, and ocean mass redistribution. These three models, when combined together, are in excellent agreement with the variations observed by satellite laser ranging. An article on these results was published in the journal Geophysical Research Letters. 2) The second thrust of our investigation has been to analyze the output of a Global Climate Model (GCM) to determine if the GRACE gravity mission can be expected to detect climate change signals. Working with Gary Russell at the Goddard Institute for Space Studies (GISS), we have determined that there are several large secular signals that GRACE might be able to detect, including secular changes in snow cover, sea ice, polar ice, ocean mass, and other variables. It is possible that some of these signals could be detected with 5 years of GRACE measurements - its hard to judge this because the interannual variability in the GCM, which could mask the climate signals, is unreliable. Certainly a follow-on GRACE mission could detect these signals when compared to the data from the initial GRACE mission.). An article on these results will be published in the journal Journal of Geophysical Research. 3) In the last year of the investigation, we developed a new technique for analyzing temporal gravity variations using "geophysical fingerprints", which was successfully demonstrated on 20 years of satellite laser ranging data [Nerem et al., 20031. 4]. We also participated in a workshop on future satellite gravity measurements, which resulted in paper on measuring ocean mass variations using GRACE [Nerem et al., 20031 and on using laser interferometry for future gravity missions [Bender et al., 20031].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26652795','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26652795"><span>Nonsecular Medical Anthropology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whitmarsh, Ian; Roberts, Elizabeth F S</p> <p>2016-01-01</p> <p>A nonsecular medical anthropology insists on the ways medicine and science have constituted 'the secular' itself through the 'secular self'-how medical knowing has been used to craft the secular political subject. As James Boon noted, too often in social theory, "religion gets safely tucked away-restricted theoretically to 'meaning' rather than power" (1998:245). The authors of the six articles in this special issue 'untuck' religiosity from within the norms and numbers of medicine itself, and examine how 'secular' medicine has relied on religious traditions to produce political secularity. These articles demonstrate that 'secular' medicine relies on religious others whose exclusion bespeaks latent religious commitments of citizenship in the modern political realm of health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29764902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29764902"><span>Secular trend, seasonality and effects of a community-based intervention on neonatal mortality: follow-up of a cluster-randomised trial in Quang Ninh province, Vietnam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eriksson, Leif; Nga, Nguyen T; Hoa, Dinh T Phuong; Duc, Duong M; Bergström, Anna; Wallin, Lars; Målqvist, Mats; Ewald, Uwe; Huy, Tran Q; Thuy, Nguyen T; Do, Tran Thanh; Lien, Pham T L; Persson, Lars-Åke; Selling, Katarina Ekholm</p> <p>2018-05-15</p> <p>Little is know about whether the effects of community engagement interventions for child survival in low-income and middle-income settings are sustained. Seasonal variation and secular trend may blur the data. Neonatal mortality was reduced in a cluster-randomised trial in Vietnam where laywomen facilitated groups composed of local stakeholders employing a problem-solving approach for 3 years. In this analysis, we aim at disentangling the secular trend, the seasonal variation and the effect of the intervention on neonatal mortality during and after the trial. In Quang Ninh province, 44 communes were allocated to intervention and 46 to control. Births and neonatal deaths were assessed in a baseline survey in 2005, monitored during the trial in 2008-2011 and followed up by a survey in 2014. Time series analyses were performed on monthly neonatal mortality data. There were 30 187 live births and 480 neonatal deaths. The intervention reduced the neonatal mortality from 19.1 to 11.6 per 1000 live births. The reduction was sustained 3 years after the trial. The control areas reached a similar level at the time of follow-up. Time series decomposition analysis revealed a downward trend in the intervention areas during the trial that was not found in the control areas. Neonatal mortality peaked in the hot and wet summers. A community engagement intervention resulted in a lower neonatal mortality rate that was sustained but not further reduced after the end of the trial. When decomposing time series of neonatal mortality, a clear downward trend was demonstrated in intervention but not in control areas. ISRCTN44599712, Post-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..280..300T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..280..300T"><span>Secular resonances with Ceres and Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsirvoulis, Georgios; Novaković, Bojan</p> <p>2016-12-01</p> <p>In this work we explore dynamical perturbations induced by the massive asteroids Ceres and Vesta on main-belt asteroids through secular resonances. First we determine the location of the linear secular resonances with Ceres and Vesta in the main belt, using a purely numerical technique. Then we use a set of numerical simulations of fictitious asteroids to investigate the importance of these secular resonances in the orbital evolution of main-belt asteroids. We found, evaluating the magnitude of the perturbations in the proper elements of the test particles, that in some cases the strength of these secular resonances is comparable to that of known non-linear secular resonances with the giant planets. Finally we explore the asteroid families that are crossed by the secular resonances we studied, and identified several cases where the latter seem to play an important role in their post-impact evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930068763&hterms=administration+values&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dadministration%2Bvalues','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930068763&hterms=administration+values&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dadministration%2Bvalues"><span>Total solar irradiance values determined using Earth Radiation Budget Experiment (ERBE) radiometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Robert B., III; Gibson, Michael A.; Natarajan, Sudha</p> <p>1988-01-01</p> <p>During the October 1984 through January 1988 period, the ERBE solar monitors on the NASA Earth Radiation Satellite and on the National Oceanic and Atmospheric Administration NOAA 9 and NOAA 10 spacecraft were used to obtain mean total solar irradiance values of 1365, 1365, and 1363 W/sq m, respectively. Secular variations in the solar irradiance have been observed, and they appear to be correlated with solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PEPI..152...62V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PEPI..152...62V"><span>A note on some measurements of geomagnetic declination in 1776 and 1778</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaquero, J. M.; Gallego, M. C.; de Sanjosé, J. J.</p> <p>2005-09-01</p> <p>In this short contribution, measurements of magnetic declination across the Atlantic Ocean during the years 1776 and 1778 made by Antonio de Ulloa, a Spanish scientist and sailor, are provided and briefly analysed through a comparison with a global geomagnetic model by Jackson et al. [Jackson, A., Jonkers, A., Walker, M., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. 358, 957-990].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JaJAP..54i1202S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JaJAP..54i1202S"><span>Interacting quasi-band model for electronic states in compound semiconductor alloys: Zincblende structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinozuka, Yuzo; Oda, Masato</p> <p>2015-09-01</p> <p>The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy’s energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp3s* model. Using the resulting 15 × 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AJ....155...60D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AJ....155...60D"><span>Exo-Milankovitch Cycles. I. Orbits and Rotation States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn</p> <p>2018-02-01</p> <p>The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409248-response-water-use-efficiency-global-environmental-change-based-output-from-terrestrial-biosphere-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409248-response-water-use-efficiency-global-environmental-change-based-output-from-terrestrial-biosphere-models"><span>Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.</p> <p></p> <p>Here, water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO 2more » explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO 2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO 2, but this direct CO 2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO 2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO 2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31.1639Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31.1639Z"><span>Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.; Ciais, Philippe; Zhang, Yao; Fisher, Joshua B.; Michalak, Anna M.; Wang, Weile; Poulter, Benjamin; Huntzinger, Deborah N.; Niu, Shuli; Mao, Jiafu; Jain, Atul; Ricciuto, Daniel M.; Shi, Xiaoying; Ito, Akihiko; Wei, Yaxing; Huang, Yuefei; Wang, Guangqian</p> <p>2017-11-01</p> <p>Water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..263...55T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..263...55T"><span>Evaluation of using R-SCHA to simultaneously model main field and secular variation multilevel geomagnetic data for the North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talarn, Àngela; Pavón-Carrasco, F. Javier; Torta, J. Miquel; Catalán, Manuel</p> <p>2017-02-01</p> <p>One efficient approach to modelling the Earth's core magnetic field involves the inclusion of crossover marine data which cover areas lacking in observatory and repeat station data for epochs when precise three-component satellite magnetic field measurements were not common. In this study, we show how the Revised Spherical Cap Harmonic Analysis (R-SCHA) can appropriately provide a continuous-time field model for the North Atlantic region by using multilevel sets of geomagnetic data such as marine, repeat station, observatory, and satellite data. Taking advantage of the properties of the R-SCHA basis functions we can model the radial and horizontal variations of the main field and its secular variation with the most suitable spatial and temporal wavelengths. To assess the best compromise between the data fit and the model roughness, temporal and spatial regularization matrices were implemented in the modelling approach. Two additional strategies were also used to obtain a satisfactory regional model: the opportunity to fit the anomaly bias at each observatory location, and constraining the regional model to the CHAOS-6 model at the end of its period of validity, i.e. 1999-2000, allowing a smooth transition with the predictions of this recent model. In terms of the root mean square error, the degree of success was limited partly because of the high uncertainties associated with some of the datasets (especially the marine ones), but we have produced a model that performs comparably to the global models for the period 1960-2000, thus showing the benefits of using this regional technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026773"><span>Estimating the change in asymptotic direction due to secular changes in the geomagnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flueckiger, E. O.; Smart, D. F.; Shea, M. A.; Gentile, L. C.; Bathurat, A. A.</p> <p>1985-01-01</p> <p>The concept of geomagnetic optics, as described by the asymptotic directions of approach, is extremely useful in the analysis of cosmic radiation data. However, when changes in cutoff occur as a result of evolution in the geomagnetic field, there are corresponding changes in the asymptotic cones of acceptance. A method is introduced of estimating the change in the asymptotic direction of approach for vertically incident cosmic ray particles from a reference set of directions at a specific epoch by considering the change in the geomagnetic cutoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT........62L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT........62L"><span>Archaeomagnetic research in the United States midcontinent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lengyel, Stacey Nicole</p> <p></p> <p>This dissertation combines archaeomagnetic and independent chronometric data from 240 archaeological features to develop a regional secular variation curve for the U.S. midcontinent. These data were obtained from features located between 31.5--40.5° N latitude and 82.5--93.5° W longitude that have been dated to between 60 and 10,700 cal BP. The archaeomagnetic samples were collected from 41 sites within this region over the past 35 years under the direction of four different researchers: Robert DuBois (University of Oklahoma), Daniel Wolfman (University of Arkansas and New Mexico State Museum), Wulf Gose (University of Texas at Austin), and myself. In this project, the data are initially smoothed through the moving windows method to form the first approximation of the curve. Outlier analyses and pairwise statistical comparisons are utilized to refine the smoothed curve, and the results are compared to other Holocene-aged secular variation records from North America. These analyses indicate that the final curve should be treated as three distinct segments with different precision and use recommendations. First, the 850--75 cal BP segment can be used to date archaeomagnetic sample from the project area with expected temporal precision of 100--200 years. Second, the 2528--850 cal BP segment can be used cautiously to date archaeomagnetic samples with an expected temporal precision of 200--300 years. Third, the 9755--4650 cal BP segment should be used for contextual dating purposes only, in that an undated sample can be put into a regional context through comparison with the segment's constituent samples. Finally, three archaeological problems are addressed through the archaeomagnetic data. First, archaeomagnetic data are used to resolve the temporal conflict between an eastern Tennessee structure's morphology and a much earlier radiocarbon date obtained for the structure. Then, archaeomagnetic data are used to address a number of internal chronology questions regarding three Powers phase sites in eastern Missouri. Finally, the sequencing of several protohistoric and historic sites in eastern Tennessee is examined through a series of archaeomagnetic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850052418&hterms=bts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850052418&hterms=bts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbts"><span>On the geomagnetic jerk of 1969</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcleod, M. G.</p> <p>1985-01-01</p> <p>Courtillot et al. (1978) have first reported a sudden change in the slope of the first time derivatives of the geomagnetic field components which occurred around 1970. It was found that the change took place in a large part of the northern hemisphere. Malin and Hodder (1982) reported on studies which were conducted to determine whether this 1970 step change in the second time derivative of the geomagnetic field components, which they termed a geomagnetic 'jerk', was of internal or external origin. It was concluded that internal sources can give rise to changes in secular variation on time scales as short as one or two years and that these were the major factor in the geomagnetic jerk which occurred around 1970. The present paper provides new supporting evidence for the existence of a worldwide geomagnetic jerk, its (average) time of occurrence, and its internal nature. New estimates are given of the spherical harmonic coefficients of the jerk and of the pre-1969 and post-1969 secular acceleration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CeMDA.118..197R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CeMDA.118..197R"><span>On the Milankovitch orbital elements for perturbed Keplerian motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosengren, Aaron J.; Scheeres, Daniel J.</p> <p>2014-03-01</p> <p>We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.214..531A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.214..531A"><span>Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aubert, Julien</p> <p>2018-07-01</p> <p>Geomagnetic secular acceleration, the second temporal derivative of the Earth's magnetic field, is a unique window on the dynamics taking place in the Earth's core. In this study, the behaviours of the secular acceleration and underlying core dynamics are examined in new numerical simulations of the geodynamo that are dynamically closer to the Earth's core conditions than earlier models. These new models reside on a theoretical path in parameter space connecting the region where most classical models are found to the natural conditions. The typical timescale for geomagnetic acceleration is found to be invariant along this path, at a value close to 10 yr that matches the Earth's core estimates. Despite this invariance, the spatio-temporal properties of secular acceleration show significant variability along the path, with an asymptotic regime of rapid rotation reached after 30 per cent of this path (corresponding to a model Ekman number E = 3 × 10-7). In this regime, the energy of secular acceleration is entirely found at periods longer than that of planetary rotation, and the underlying flow acceleration patterns acquire a 2-D columnar structure representative of the rapid rotation limit. The spatial pattern of the secular acceleration at the core-mantle boundary shows significant localization of energy within an equatorial belt. Rapid hydromagnetic wave dynamics is absent at the start of the path because of insufficient timescale separation with convective processes, weak forcing and excessive damping but can be clearly exhibited in the asymptotic regime. This study reports on ubiquitous axisymmetric geostrophic torsional waves of weak amplitude relatively to convective transport, and also stronger, laterally limited, quasi-geostrophic Alfvén waves propagating in the cylindrical radial direction from the tip of convective plumes towards the core-mantle boundary. In a system similar to the Earth's core where the typical Alfvén velocity is significantly larger than the typical convective velocity, quasi-geostrophic Alfvén waves are shown to be an important carrier of flow acceleration to the core surface that links with the generation of strong, short-lived and intermittent equatorial pulses in the secular acceleration energy. The secular acceleration timescale is shown to be insensitive to magnetic signatures from torsional waves because of their weak amplitude, and from quasi-geostrophic Alfvén waves because of their intermittent character, and is therefore only indicative of convective transport phenomena that remain invariant along the parameter space path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22519963-earths-rotational-deceleration-determination-tidal-friction-independent-timescales','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22519963-earths-rotational-deceleration-determination-tidal-friction-independent-timescales"><span>EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deines, Steven D.; Williams, Carol A., E-mail: steven.deines@gmail.com, E-mail: cw@math.usf.edu</p> <p></p> <p>This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, icemore » age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468.3000M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468.3000M"><span>The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders</p> <p>2017-07-01</p> <p>We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ecological+AND+ethics&pg=6&id=ED167324','ERIC'); return false;" href="https://eric.ed.gov/?q=ecological+AND+ethics&pg=6&id=ED167324"><span>Does Mother Nature Really Sell Margarine?: The Uncertain Rural Future.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schwartz, Peter</p> <p></p> <p>There exists a question as to whether United States society and its agricultural system will continue to follow the long-term trend of Western civilization or move in a new direction. The "modernization trend" of Western civilization has 4 components: scientification of knowledge, secularization of human values, industrialization of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27164836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27164836"><span>Spatial patterns and secular trends in human leishmaniasis incidence in Morocco between 2003 and 2013.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sadeq, Mina</p> <p>2016-05-11</p> <p>Few studies on spatial patterns or secular trends in human leishmanias have been conducted in Morocco. This study aimed to examine spatial patterns and trends associated with the human leishmaniasis incidence rate (HLIR) at the province/prefecture level between 2003 and 2013 in Morocco. Only the available published country data on the HLIR between 2003 and 2013, from the open access files of the Ministry of Health, were used. Secular trends were examined using Kendall's rank correlation. An exploratory spatial data analysis was also conducted to examine the spatial autocorrelation (Global Moran's I and local indicator of spatial association [LISA]), and spatial diffusion at the province/prefecture level. The influence of various covariates (poverty rate, vulnerability rate, population density, and urbanization) on the HLIR was tested via spatial regression (ordinary least squares regression). At the country level, no secular variation was observed. Poisson annual incidence rate estimates were 13 per 100 000 population (95 % CI = 12.9-13.1) for cutaneous leishmaniasis (CL) and 0.4 per 100 000 population (95 % CI = 0.4-0.5) for visceral leishmaniasis (VL). The available data on HLIR were based on combined CL and VL cases, however, as the CL cases totally outnumbered the VL ones, HLIR may be considered as CL incidence rate. At the provincial level, a secular increase in the incidence rate was observed in Al Hoceima (P = 0.008), Taounate (P = 0.04), Larache (P = 0.002), Tétouan (P = 0.0003), Khenifra (P = 0.008), Meknes (P = 0.03), and El Kelaa (P = 0.0007), whereas a secular decrease was observed only in the Chichaoua province (P = 0.006). Even though increased or decreased rate was evident in these provinces, none of them showed clustering of leishmaniasis incidence. Significant spatial clusters of high leishmaniasis incidence were located in the northeastern part of Morocco, while spatial clusters of low leishmaniasis incidence were seen in some northwestern and southern parts of Morocco; there was spatial randomness in the remaining parts of the country. Significant clustering was seen from 2005 to 2013, during which time the Errachidia province was a permanent 'hot spot'. Global Moran's I increased from 0.2844 (P = 0.006) in 2005 to 0.5886 (P = 0.001) in 2011, and decreased to 0.2491 (P = 0.004) in 2013. It was found that only poverty had an effect on the HLIR (P = 0.0003), contributing only 23 % to this (Adjusted R-squared = 0.226). Localities showing either secular increase in human leishmaniasis or significant clustering have been identified, which may guide decision-making as to where to appropriately allocate funding and implement control measures. Researchers are also urged to undertake further studies focusing on these localities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860011526','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860011526"><span>Geomagnetic main field modeling using magnetohydrodynamic constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Estes, R. H.</p> <p>1985-01-01</p> <p>The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..172N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..172N"><span>On the thermo-chemical origin of the stratified region at the top of the Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakagawa, Takashi</p> <p>2018-03-01</p> <p>I developed a combined model of the thermal and chemical evolution of the Earth's core and investigated its influence on a thermochemically stable region beneath the core-mantle boundary (CMB). The chemical effects of the growing stable region are caused by the equilibrium chemical reaction between silicate and the metallic core. The thermal effects can be characterized by the growth of the sub-isentropic shell, which may have a rapid growth rate compared to that of the chemically stable region. When the present-day CMB heat flow was varied, the origin of the stable region changed from chemical to thermochemical to purely thermal because the rapid growth of the sub-isentropic shell can replace the chemically stable region. Physically reasonable values of the present-day CMB heat flow that can maintain the geodynamo action over 4 billion years should be between 8 and 11 TW. To constrain the thickness of the thermochemically stable region beneath the CMB, the chemical diffusivity is important and should be ∼O(10-8) m2/s to obtain a thickness of the thermochemically stable region beneath the CMB consistent with that inferred from geomagnetic secular variations (140 km). However, the strength of the stable region found in this study is too high to be consistent with the constraint on the stability of the stable region inferred from geomagnetic secular variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..190A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..190A"><span>On equatorially symmetric and antisymmetric geomagnetic secular variation timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amit, Hagay; Coutelier, Maélie; Christensen, Ulrich R.</p> <p>2018-03-01</p> <p>It has been suggested that the secular variation (SV) timescales of the geomagnetic field vary as 1 / ℓ (where ℓ is the spherical harmonic degree), except for the dipole. Here we propose that the same scaling law applies for SV timescales defined for different symmetry classes of the geomagnetic field and SV. We decompose the field and its SV into symmetric and antisymmetric parts and show in geomagnetic field models and numerical dynamo simulations that the corresponding SV timescales also vary as 1 / ℓ , again except for the dipole. The time-average antisymmetric/symmetric SV timescales are larger/smaller than the total, respectively. The difference in SV timescales between these two symmetry classes is probably due to different degrees of alignment of the core flow with different magnetic field structures at the core-mantle boundary. The symmetric dipole SV timescale in the recent geomagnetic field and in long-term time-averages from numerical dynamos is below the extrapolated 1 / ℓ curve, whereas before ∼ 1965 the geomagnetic dipole tilt was rather steady and the symmetric dipole SV timescale exceeded the extrapolated 1 / ℓ curve. We hypothesize that the period of nearly steady geomagnetic dipole tilt between 1810-1965 was anomalous for the geodynamo. Overall, the deviation of the dipole SV timescales from the 1 / ℓ curves may indicate that magnetic diffusion contributes to the dipole SV more than it does for higher degrees.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8343M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8343M"><span>Improving geomagnetic observatory data in the South Atlantic Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia</p> <p>2016-04-01</p> <p>The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16149207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16149207"><span>Engelhardt and children: the failure of libertarian bioethics in pediatric interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanson, Stephen</p> <p>2005-06-01</p> <p>In Engelhardt's secular bioethics, moral obligations derive from contracts and agreements between rational persons, and no infants or children and few adolescents meet Engelhardt's requirements for being a rational person. This is a problem, as one cannot have any direct secular moral obligations toward nonpersons such as infants and adolescents. The Engelhardtian concepts of ownership, indenture, and social personhood, which are meant to allow the theory to accommodate children and adolescents adequately, fail to give an Engelhardtian any actual means of determining the right action to take in difficult cases, even on his or her own terms. Thus, the theory is incapable of determining the morally correct action to take in cases involving children and therefore is unhelpful in dealing with moral questions involving children.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ASPC..504..273Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ASPC..504..273Y"><span>Modelling Solar and Stellar Brightness Variabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeo, K. L.; Shapiro, A. I.; Krivova, N. A.; Solanki, S. K.</p> <p>2016-04-01</p> <p>Total and spectral solar irradiance, TSI and SSI, have been measured from space since 1978. This is accompanied by the development of models aimed at replicating the observed variability by relating it to solar surface magnetism. Despite significant progress, there remains persisting controversy over the secular change and the wavelength-dependence of the variation with impact on our understanding of the Sun's influence on the Earth's climate. We highlight the recent progress in TSI and SSI modelling with SATIRE. Brightness variations have also been observed for Sun-like stars. Their analysis can profit from knowledge of the solar case and provide additional constraints for solar modelling. We discuss the recent effort to extend SATIRE to Sun-like stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830027188','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830027188"><span>Analysis of MAGSAT and surface data of the Indian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Agarwal, G. C. (Principal Investigator)</p> <p>1983-01-01</p> <p>Techniques and significant results of an analysis of MAGSAT and surface data of the Indian region are described. Specific investigative tasks included: (1) use of the multilevel data at different altitudes to develop a model for variation of magnetic anomaly with altitude; (2) development of the regional model for the description of main geomagnetic field for the Indian sub-continent using MAGSAT and observatory data; (3) development of regional mathematical model of secular variations over the Indian sub-continent; and (4) downward continuation of the anomaly field obtained from MAGSAT and its combination with the existing observatory data to produce a regional anomaly map for elucidating tectonic features of the Indian sub-continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15011667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15011667"><span>The new genetic technologies: why a theological perspective is necessary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Engelhardt, H Tristram</p> <p>2003-01-01</p> <p>Secular bioethics poses questions that can be recognized as important, though it lacks the resources to answer them. Secular bioethics may retain the sense that there should be moral limits to the use of germline genetic engineering, but it lacks the basis to justify limits in principle. The contemporary practice of bioethics arose in the United States to fill a moral vacuum created by (1) the marginalization of medical ethics through the deprofessionalization of medicine, (2) the secularization of American society, and (3) an increased reliance on individual decision-making. The result is an ethics at the core of secular bioethics severed from a sense of ultimate purpose or direction for humans or the cosmos. This ethics and its bioethics are marked by (1) moral fragmentation and pluralism and (2) a loss of ultimate orientation. This bioethics can at best require (1) the prudent maximization of benefits over harms, (2) the condemnation of malevolent acts, and (3) the use of persons only with their consent. However, there fails to be a basis for a common view of benefit or of harm. Within this impoverished moral context, human biological nature can only appear to be a contingent outcome of spontaneous mutations, selective pressure, the constraints of physical laws, and random catastrophes. Such a bioethics, deprived of ultimate orientation, can provide no ground in principle for forbidding cloning, germline genetic engineering, or the fundamental recasting of human nature. Absent a theological point of orientation, medicine and the genetic technology are left with more power than ever but no clear moral sense of how to use that power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28523517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28523517"><span>Body Size of Male Youth Soccer Players: 1978-2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malina, Robert M; Figueiredo, António J; Coelho-E-Silva, Manuel J</p> <p>2017-10-01</p> <p>Studies of the body size and proportions of athletes have a long history. Comparisons of athletes within specific sports across time, though not extensive, indicate both positive and negative trends. To evaluate secular variation in heights and weights of male youth soccer players reported in studies between 1978 and 2015. Reported mean ages, heights, and weights of male soccer players 9-18 years of age were extracted from the literature and grouped into two intervals: 1978-99 and 2000-15. A third-order polynomial was fitted to the mean heights and weights across the age range for each interval, while the Preece-Baines model 1 was fitted to the grand means of mean heights and mean weights within each chronological year to estimate ages at peak height velocity and peak weight velocity for each time interval. Third-order polynomials applied to all data points and estimates based on the Preece-Baines model applied to grand means for each age group provided similar fits. Both indicated secular changes in body size between the two intervals. Secular increases in height and weight between 1978-99 and 2000-15 were especially apparent between 13 and 16 years of age, but estimated ages at peak height velocity (13.01 and 12.91 years) and peak weight velocity (13.86 and 13.77 years) did not differ between the time intervals. Although the body size of youth soccer players increased between 1978-99 and 2000-15, estimated ages at peak height velocity and peak weight velocity did not change. The increase in height and weight likely reflected improved health and nutritional conditions, in addition to the selectivity of soccer reflected in systematic selection and retention of players advanced in maturity status, and exclusion of late maturing players beginning at about 12-13 years of age. Enhanced training programs aimed at the development of strength and power are probably an additional factor contributing to secular increases in body weight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24644018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24644018"><span>Secular trends in hip fractures worldwide: opposing trends East versus West.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ballane, Ghada; Cauley, Jane A; Luckey, Marjorie M; Fuleihan, Ghada El-Hajj</p> <p>2014-08-01</p> <p>Despite wide variations in hip rates fractures worldwide, reasons for such differences are not clear. Furthermore, secular trends in the age-specific hip fracture rates are changing the world map of this devastating disease, with the highest rise projected to occur in developing countries. The aim of our investigation is to systematically characterize secular trends in hip fractures worldwide, examine new data for various ethnic groups in the United States, evidence for divergent temporal patterns, and investigate potential contributing factors for the observed change in their epidemiology. All studies retrieved through a complex Medline Ovid search between 1966 and 2013 were examined. For each selected study, we calculated the percent annual change in age-standardized hip fracture rates de-novo. Although occurring at different time points, trend breaks in hip fracture incidence occurred in most Western countries and Oceania. After a steep rise in age-adjusted rates in these regions, a decrease became evident sometimes between the mid-seventies and nineties, depending on the country. Conversely, the data is scarce in Asia and South America, with evidence for a continuous rise in hip fracture rates, with the exception of Hong-Kong and Taiwan that seem to follow Western trends. The etiologies of these secular patterns in both the developed and the developing countries have not been fully elucidated, but the impact of urbanization is at least one plausible explanation. Data presented here show close parallels between rising rates of urbanization and hip fractures across disparate geographic locations and cultures. Once the proportion of the urban population stabilized, hip fracture rates also stabilize or begin to decrease perhaps due to the influence of other factors such as birth cohort effects, changes in bone mineral density and BMI, osteoporosis medication use and/or lifestyle interventions such as smoking cessation, improvement in nutritional status and fall prevention. © 2014 American Society for Bone and Mineral Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MNRAS.413....7R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MNRAS.413....7R"><span>A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.</p> <p>2011-05-01</p> <p>Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GGG....14.3379C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GGG....14.3379C"><span>Revised and updated paleomagnetic results from Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cromwell, G.; Constable, C. G.; Staudigel, H.; Tauxe, L.; Gans, P.</p> <p>2013-09-01</p> <p>Paleomagnetic results from globally distributed lava flows have been collected and analyzed under the time-averaged field initiative (TAFI), a multi-institutional collaboration started in 1996 and designed to improve the geographic and temporal coverage of the 0-5 Ma paleomagnetic database for studying both the time-averaged field and its very long-term secular variations. Paleomagnetic samples were collected from 35 volcanic units, either lava flows or ignimbrites, in Costa Rica in December 1998 and February 2000 from the Cordilleras Central and Guanacaste, the underlying Canas, Liberia and Bagaces formations and from Volcano Arenal. Age estimates range from approximately 40 ka to slightly over 6 Ma. Although initial results from these sites were used in a global synthesis of TAFI data by Johnson et al. (2008), a full description of methodology was not presented. This paper documents the definitive collection of results comprising 28 paleomagnetic directions (24 normal, 4 reversed), with enhanced precision and new geological interpretations, adding two paleointensity estimates and 19 correlated 40Ar/39Ar radiometric ages. The average field direction is consistent with that of a geocentric axial dipole and dispersion of virtual geomagnetic poles (17.3 ± 4.6°) is in general agreement with predictions from several statistical paleosecular variation models. Paleointensity estimates from two sites give an average field strength of 26.3 μT and a virtual axial dipole moment of 65 ZAm2. The definitive results provide a useful augmentation of the global database for the longer term goal of developing new statistical descriptions of paleomagnetic field behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI52A..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI52A..02D"><span>Has Earth's Plate Tectonics Led to Rapid Core Cooling?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Montserrat Navarro, A.; Morgan, J. P.; Vannucchi, P.; Connolly, J. A.</p> <p>2016-12-01</p> <p>Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from secular cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of 35 TW of mantle heat through Earth's surface. The core convects to lose heat from secular cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Until recently, the geodynamo was thought to be powered by 4 TW of heatloss across the core-mantle boundary. More recent determinations of the outer core's thermal conductivity (Pozzo et al., 2012; Gomi et al., 2013) would imply that >15 TW of power should conduct down its adiabat. Secular core cooling has been previously thought to be too slow for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core (cf. Nimmo, 2007). The 500-1000 kg m-3 seismically-inferred jump in density between the liquid outer core and solid inner core allows a direct estimate of the Clapeyron Slope for the outer core's actual composition which contains 0.08±0.02 lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg m-3 density jump yields a Clapeyron Slope for which there has been 774K of core cooling during the freezing and growth of the inner core, cooling that has been releasing an average of 21 TW of power during the past 3 Ga. If so, core cooling could easily have powered Earth's long-lived geodynamo. Another implication is that the present-day mantle is strongly `bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling. This mode of core and mantle convection is consistent with slow, 37.5K/Ga secular cooling of Earth's mantle linked to more rapid secular cooling of the core (cf. Morgan, Rüpke, and White, 2016). Efficient plate subduction, hence plate tectonics, is a key ingredient for such rapid secular core cooling.We also show how a more complete thermodynamic version of Birch's accretional energy calculation predicts that accretion with FeNi-sinking-linked differentiation between an Earth-like mantle and core would naturally generate a core that, post-accretion, was both hotter than overlying mantle and 1000K hotter than today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAP...116m3511S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAP...116m3511S"><span>Room temperature elastic properties of Rh-based alloys studied by surface Brillouin scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sumanya, C.; Mathe, B. A.; Comins, J. D.; Every, A. G.; Osawa, M.; Harada, H.</p> <p>2014-10-01</p> <p>Platinum metal group alloys are promising materials for use in a new generation of gas turbine engines owing to their excellent high-temperature properties. In the present work, room temperature elastic properties of single crystals of Rh3Nb and Rh3Zr are investigated. Surface Brillouin scattering spectra for a range of wave vector directions on the (001) surface have been acquired in order to determine the angular variation of the velocities of the Rayleigh and pseudo-surface acoustic waves and that of the longitudinal lateral wave (LLW) threshold within the Lamb shoulder. The elastic stiffness constants C11, C12, and C44 of these cubic crystal specimens have been derived using two approaches: the first involving the least-squares fit of the combined measured wave velocity data to calculated values and the second an analytical approach using the Rayleigh velocities in the [100] and [110] directions and LLW velocity in the [100] direction, and extracting the elastic stiffness constants from the secular equations for these velocities. Results from the two methods are in good agreement and are for Rh3Nb, C11 = 368 ± 3, C12 = 186 ± 5, and C44 = 161 ± 3 in GPa; and for Rh3Zr, C11 = 329 ± 4, C12 = 185 ± 6, and C44 = 145 ± 4 in GPa.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=theology+AND+work&pg=5&id=EJ884150','ERIC'); return false;" href="https://eric.ed.gov/?q=theology+AND+work&pg=5&id=EJ884150"><span>Pupils' Religious Identity Formation for a Secular Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Miedema, Siebren</p> <p>2010-01-01</p> <p>Starting his work as endowed Hendrik Pierson Professor for Christian Education at VU University Amsterdam in 1993 the author focused on the relationship of education, pedagogy, and religion. However, his attention was rather exclusively directed to Protestant schools. The argument was that in academia at that time, even in the faculties of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22662920-origin-multiple-ring-structure-hidden-planets-hl-tau-unified-picture-secular-gravitational-instability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22662920-origin-multiple-ring-structure-hidden-planets-hl-tau-unified-picture-secular-gravitational-instability"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takahashi, Sanemichi Z.; Inutsuka, Shu-ichiro, E-mail: sanemichi@astr.tohoku.ac.jp, E-mail: inutsuka@nagoya-u.jp</p> <p></p> <p>Recent ALMA observation has revealed multiple ring structures formed in a protoplanetary disk around HL Tau. Prior to the ALMA observation of HL Tau, theoretical analysis of secular gravitational instability (GI) described a possible formation of multiple ring structures with separations of 13 au around a radius of 100 au in protoplanetary disks under certain conditions. In this article, we reanalyze the viability of secular GI by adopting the physical values inferred from the observations. We derive the radial distributions of the most unstable wavelength and the growth timescale of secular GI and verify that secular GI can form themore » ring structures observed in HL Tau. When a turbulent viscosity coefficient α remains small in the inner region of the disk, secular GI grows in the whole disk. Thus, the formation of planetary mass objects should occur first in the inner region as a result of gravitational fragmentation after the nonlinear growth of secular GI. In this case, the resulting objects are expected to create gaps at r  ∼ 10 au and ∼30 au. As a result, all ring structures in HL Tau can be created by secular GI. If this scenario is realized in HL Tau, the outer region corresponds to the earlier growth phase of the most unstable mode of secular GI, and the inner region corresponds to the outcome of the nonlinear growth of secular GI. Therefore, this interpretation suggests that we are possibly witnessing both the beginning and the end of planet formation in HL Tau.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013seg..book.....F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013seg..book.....F"><span>Secular Evolution of Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falcón-Barroso, Jesús; Knapen, Johan H.</p> <p>2013-10-01</p> <p>Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvD..91d4009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvD..91d4009M"><span>Cosmological variation of the MOND constant: Secular effects on galactic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milgrom, Mordehai</p> <p>2015-02-01</p> <p>The proximity of the MOND acceleration constant with cosmological accelerations—for example, a0≈c H0/2 π —points to its possibly decreasing with cosmic time. I begin to consider the secular changes induced in galactic systems by such presumed variations, which are assumed to be adiabatic. It is important to understand these effects, in isolation from other evolutionary influences, in order to identify or constrain a0 variations by detection of induced effects, or lack thereof. I find that as long as the system is fully in the deep-MOND regime—as applies to many galactic systems—the adiabatic response of the system obeys simple scaling laws. For example, in a system that would be stationary for fixed a0, the system expands homologously as a0-1 /4, while internal velocities decrease uniformly as a01 /4. If a0∝c H at all relevant times, this change amounts to a factor of ˜2.5 since redshift 10. For rotating systems, the angular frequency Ω ∝a01 /2. The accelerations increase relative to a0 as a0-1 /4, pushing the system towards the Newtonian regime. All this follows from the appearance of a0 in MOND and the scale invariance of the deep-MOND limit—two basic tenets of MOND. More complicated evolution ensues when parts of the system become Newtonian, or are so from inception. For example, these parts may become unstable since they are not protected by MOND's stabilizing effects. The existence of such regions also modifies the MONDian regime since they affect the potential everywhere, and constituents might migrate between the Newtonian and MONDian regimes. Studying these last effects would require detailed numerical calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990018406','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990018406"><span>Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>1998-01-01</p> <p>A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740048680&hterms=test+hypothesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtest%2Bhypothesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740048680&hterms=test+hypothesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtest%2Bhypothesis"><span>McLaughlin and Mars. [volcanic-aeolian hypotheses for Martian surface features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Veverka, J.; Sagan, C.</p> <p>1974-01-01</p> <p>McLaughlin formulated a novel explanation for the Martian albedo markings and their variations. This explanation, the volcanic-aeolian hypothesis, is one of the very few prespacecraft views of planet-wide phenomena on Mars which have stood the test of time. The distribution of albedo markings is considered along with secular changes on Mars and seasonal changes in region Syrtis Major. Mariner 9 has demonstrated that aeolian transport is the dominant factor in determining the distribution of albedo markings on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011876','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011876"><span>International geomagnetic reference field 1980: a report by IAGA Division I working group.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peddie, N.W.</p> <p>1982-01-01</p> <p>Describes the recommendations of the working group, which suggested additions to IGRF because of the cumulative effect of the inevitable uncertainties in the secular variation models which had led to unacceptable inaccuracies in the IGRF by the late 1970's. The recommendations were accepted by the International Association of Geomagnetism and Aeronomy on August 15, 1981 at the 4th Scientific Assembly, Edinburgh. An extended table sets out spherical harmonic coefficients of the IGRF 1980.-R.House</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA132031','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA132031"><span>Spacecraft Charging at Geosynchronous Orbit and Large Scale Electric Fields in the High Latitude Ionosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-09-30</p> <p>changes are not inductive in nature. San Diego (UCSD), Group and co-workers. We wish to focus ’Dynamic’ injections of plasma are characterized by a...549, 1971. 4555, 1981. Ulmatead, D., On the recent secular period of the King, J. H., Solar cycle variations in the IMF aurora borealis , Smithson...photoemission for the different materials suggest the University of California at San Diego (UCSD) differences exist with regards to the relative impor</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3888069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3888069"><span>Inbreeding and matrimonial structure in a Pyrenean community (Ansó, Huesca, Spain), 1712-1982.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valls, A</p> <p>1985-03-01</p> <p>Using data from parish records from 1712 to 1982 in a Spanish Pyrenean village, Ansó, the effects of the raw nuptiality, the types of consanguineous marriages and the rate and evolution of inbreeding on the mating structure have been studied. This structure has been modified in the course of time mostly through the secular variations in the frequency of consanguineous marriages. Recent inbreeding decrease in Ansó is related to the population diminution and cultural changes associated with isolate breakdown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010796','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010796"><span>Superconducting gravimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodkind, J. M.</p> <p>1982-01-01</p> <p>The superconducting gravimeter was developed and applied to field measurements. The stability of the instrument yielded the highest precision measurements of the Earth tides ever attained. It revealed unprecedented details about the effect of the atmosphere on gravity. Secular variations in gravity and the stability of the instruments were measured by comparing records from co-located instruments. These efforts have resulted in substantial reductions in the noise level at very low frequencies so that the peak differences between two instruments at the same location can be reduced to 0.1 micron gal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720021156','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720021156"><span>Provisional hourly values of equatorial Dst for 1971</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sugiura, M.; Poros, D. J.</p> <p>1972-01-01</p> <p>Tables and plots of provisional hourly values of the equatorial Dst index for 1971 are given, a table of daily mean Dst values for 1971 is also provided. The base line values for the four observatories, Hermanus, Kakioka, Honolulu, and San Juan, were obtained from extrapolations using the coefficients for the secular variations determined for the previous years. Examining the Dst values for quiet days, the base lines so determined appear to be slightly low, so that the Dst index for quiet periods tends to be high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663732-secular-orbit-evolution-systems-strong-external-perturbera-simple-accurate-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663732-secular-orbit-evolution-systems-strong-external-perturbera-simple-accurate-model"><span>Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov</p> <p></p> <p>We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2251303K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2251303K"><span>Solar Variability Magnitudes and Timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopp, Greg</p> <p>2015-08-01</p> <p>The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrEaS...6...17K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrEaS...6...17K"><span>Archeomagnetic intensity spikes: global or regional geomagnetic field features?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korte, Monika; Constable, Catherine G.</p> <p>2018-03-01</p> <p>Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterised by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11^{th} and 8^{th} centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modelling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behaviour, seem sufficient to explain the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16451425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16451425"><span>The art of professional development and caring in cancer nursing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wengström, Yvonne; Ekedahl, Marieanne</p> <p>2006-03-01</p> <p>The impetus for this qualitative study was the premise expressed by lay people that nursing terminally ill cancer patients must be depressing and difficult to cope with. Its focus was nurses' stress and coping strategies, both secular and religious. Data was collected using a narrative life-story approach, and then Lazaruz and Folkman's coping theory and Pargament's theory on the psychology of religion were used during the analysis of the data. Several factors were identified, related to the individual and group levels, that influence a nurse's identity and professional development. A person's life orientation was suggested as a first concept for developing a professional paradigm that includes caritas as a main orienting factor. Directed by the nurse's secular and religious orientation, competence develops, making it possible to understand, analyze, manage, and appreciate the significance of the professional work of caring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18755967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18755967"><span>Magmatically triggered slow slip at Kilauea Volcano, Hawaii.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brooks, Benjamin A; Foster, James; Sandwell, David; Wolfe, Cecily J; Okubo, Paul; Poland, Michael; Myer, David</p> <p>2008-08-29</p> <p>We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23410284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23410284"><span>Domino model for geomagnetic field reversals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M</p> <p>2013-01-01</p> <p>We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...765L...8R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...765L...8R"><span>Planet Formation in Small Separation Binaries: Not so Secularly Excited by the Companion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rafikov, Roman R.</p> <p>2013-03-01</p> <p>The existence of planets in binaries with relatively small separations (around 20 AU), such as α Centauri or γ Cephei, poses severe challenges to standard planet formation theories. The problem lies in the vigorous secular excitation of planetesimal eccentricities at separations of several AU, where some of the planets are found, by the massive, eccentric stellar companions. High relative velocities of planetesimals preclude their growth in mutual collisions for a wide range of sizes, from below 1 km up to several hundred km, resulting in a fragmentation barrier to planet formation. Here we show that, for the case of an axisymmetric circumstellar protoplanetary disk, the rapid apsidal precession of planetesimal orbits caused by the disk gravity acts to strongly reduce the direct secular eccentricity excitation by the companion, lowering planetesimal velocities by an order of magnitude or even more at 1 AU. By examining the details of planetesimal dynamics, we demonstrate that this effect eliminates the fragmentation barrier for in situ growth of planetesimals as small as <~ 10 km even at separations as wide as 2.6 AU (the semimajor axis of the giant planet in HD 196885), provided that the circumstellar protoplanetary disk has a small eccentricity and is relatively massive, ~0.1 M ⊙.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.3854B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.3854B"><span>An prediction and explanation of 'climatic swing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>Introduction. In works of the author [1, 2] the mechanism has been offered and the scenario of formation of congelations and warming of the Earth and their inversion and asymmetric displays in opposite hemispheres has been described. These planetary thermal processes are connected with gravitational forced oscillations of the core-mantle system of the Earth, controlling and directing submission of heat in the top layers of the mantle and on a surface of the Earth. It is shown, that action of this mechanism should observed in various time scales. In particular significant changes of a climate should occur to the thousand-year periods, with the periods in tens and hundred thousand years. Thus excitation of system the core-mantle is caused by planetary secular orbital perturbations and by perturbations of the Earth rotation which as is known are characterized by significant amplitudes. But also in a short time scale the climate variations with the interannual and decade periods also should be observed, how dynamic consequences of the swing of the core-mantle system of the Earth with the same periods [3]. The fundamental phenomenon of secular polar drift of the core relatively to the viscous-elastic and changeable mantle [4] in last years has obtained convincing confirmations various geosciences. Reliable an attribute of influence of oscillations of the core on a variation of natural processes is their property of inversion when, for example, activity of process accrues in northern hemisphere and decreases in a southern hemisphere. Such contrast secular changes in northern and southern (N/S) hemispheres have been predicted on the base of geodynamic model [1] and revealed according to observations: from gravimetry measurements of a gravity [5]; in determination of a secular trend of a sea level, as global, and in northern and southern hemispheres [6, 7]; in redistribution of air masses [6, 8]; in geodetic measurements of changes of average radiuses of northern and southern hemispheres [9]; in contrast changes of physical fields, for example, streams of heat, currents and circulation at ocean and an atmosphere, etc. The geodynamic mechanism [1] also unequivocally specifies, that the secular trend in global climatic characteristics of the Earth, and also inversion and asymmetric tendencies of change of a climate, in its northern and southern hemispheres in present period should be observed. The mechanism of a warming up of layers of the mantle and cyclic inversion changes of a climate. According to a developed geodynamic model all layers of the mantle at oscillations and motions of the core under action of its gravitational attraction test wide class of inversion deformations [1]. Thus the part of energy of deformations passes in heat by virtue of dissipation properties of the mantle. Than more intensively oscillations of the core, the more amplitudes of these oscillations, the occur the specified thermal transformations more intensively. As relative displacements of the core have cyclic character, because of cyclic influences on the core-mantle system of external celestial bodies also a formation of heat flows and warmed plume materials (substances) will have also cyclic character. In particular orbital perturbations with Milankovitch's periods in 100 kyr, 41 kyr, etc. will be precisely reflected in variations of the specified thermal flows and, accordingly, a planetary climate. In it the essence of occurrence of cycles of congelations on the Earth [2] consists. If during any period of time the core behaves passively, amplitudes of its oscillations are small the thermal flows to a surface of a planet will be decrease. This geodynamic conditions corresponds to the periods of a cold snap. And on the contrary, if the core and mantle interact actively and make significant oscillations the thermal flows to a surface of a planet accrues. This geodynamic state corresponds to the periods of warming. At drift of the core to the north and its oscillations with accrueing amplitude (for example, in present period) submission of heat in the top layers of the mantle will accrue. It is warmly allocated in all layers of the mantle deformed by an attraction of the drifting and oscillating core. Mechanisms of warming. But a base layer is the layer D" ("kitchen of plume-tectonics"). As we know the two mechanisms work for warm redistribution into the Earth. First is a mechanism of convection. In our geodynamical model it has forced nature and is organized and controlled by gravitational action of external celestial bodies and as result has cyclical character. Second mechanism is a plume mechanism which organizes the warmed masses redistributions in higher levels of the mantle, on a bottom of ocean and on a surface of the Earth. In accordance with our geodynamical model mentioned redistribution of warmed mass also has forced character. It is organized and controlled by gravitational action of the external celestial bodies on core-mantle system and also has cyclic nature. Contrast secular warming of Northern and Southern hemispheres of the Earth in present epoch. And warm flows are asymmetrically, more intensively warm is redistributed in northern hemisphere of the Earth and less intensively in a southern hemisphere. From here it follows, that the phenomenon of more intensive warming up of northern hemisphere, rather than southern in present period should be observed. Data of climatic observations (in first temperature trends for various latitude belts). Really, the trend of increase of temperature in northern hemisphere is characterized by greater rate, than a trend of temperature in a southern hemisphere. "A climatic swing". In work [2] it was emphasized, that the climatic changes caused by the mechanism of forced oscillations of the core-mantle system, occur to a wide spectrum of frequencies. In particular annual, monthly and even daily fluctuations of the core will inevitably cause thin, but appreciable, climatic changes with the specified periods and it multiple. Similar sort of a variations, for example, are seen in variations of average atmospheric pressure in northern and southern hemispheres. We shall emphasize, what even in these thin variations of climatic conditions on the Earth also should the phenomenon of inversion and asymmetry in relation to corresponding opposite hemispheres of the Earth, in particular in relation to northern and southern hemispheres is precise be shown. New important confirmations of developed geodynamic model, to theoretical results [2, 3] and told above have been obtained by scientists from the Great Britain, Germany, France and the USA [10]. On ice cores they had been studied changes of a climate in area of Greenland and Antarctica and have been obtained confirmations to the phenomenon of inversion changes of a climate in southern and northern hemispheres of the Earth. There was even a name to this phenomenon - "a climatic swing". As authors of clause have established, sharp downturn of temperature in northern hemisphere during last glacial age (100-15 thousand years ago) was accompanied by simultaneous warming of a climate in a southern hemisphere [10]. Scientists have found out this fact, analyzing isotope structure of sedimentary breeds of Atlantic. The phenomenon of contrast (inversion) tendencies in changes of a climate (secular and cyclic, including with the thousand-year periods and periods of Milankovitch) has been predicted in works [1, 2]. The contrast and opposite directed tendencies in change of a climate should be observed first of all in relation to northern and southern hemispheres of the Earth due to polar character of the core displacements. Thus, the nature of "a climatic swing" when one hemisphere gets warm, and the second is cooled, is connected with cyclic polar oscillations of the core-mantle system of the Earth in a corresponding time scale, in particular in a scale of cycles of Milankovitch. The amplitudes of the swing of the core-mantle system and their changes in the time have an important role and value for style and intensity of warming and cooling. References [1] Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, М., VINITI, pp. 45-97. In Russian. [2] Barkin Yu.V. (2004) Dynamics of the Earth shells and variations of paleoclimate. Proceedings of Milutin Milankovitch Anniversary Symposium "Paleoclimate and the Earth climate system" (Belgrade, Serbia, 30 August - 2 September, 2004). Belgrade, Serbian Academy of Sciences and Art, pp. 161-164. [3] Barkin Yu.V. (2007) Inversion of periodic and trend variations of climate in opposite hemispheres of the Earth and their mechanism. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007) (P) - IAPSO, JPS001 "Interannual and Interdecadal Climate Variability", p. 1674. www. iugg2007perugia.it. [4] Barkin Yu.V. (2008) Secular polar drift of the core in present epoch: geodynamical and geophysical consequences and confirmations. General and regional problems of tectonics and geodynamics. Materials of XLI Tectonic Conference. V. 1. -M.:GEOS. p. 55-59. In Russian. [5] Barkin Yu.V. (2009) An explanation of secular variations of a gravity at stations Ny-Alesund, Medicine, Churchill and Syowa. Materials of the International Conference: «Yu.P. Bulashevich's fifth scientific readings. A deep structure. Geodynamics. A thermal field of the Earth. Interpretation of geophysical fields» (Ekaterinburg, 6 - 10 July, 2009). pp. 27-31. In Russian. [6] Barkin Yu.V. (2005) Oscillations of the Earth core, new oceanic tides and dynamical consequences. Materials of XI International Scientific Conference "Structure, geodynamics and mineral genetic processes in lithosphere" (September, 20-22 2005, Syktyvkar, Russia), Publisher of Geology Institute of Komi SC of Ural Section of RAS, Syktyvkar, pp. 26-28. In Russian. [7] Barkin Yu.V. (2009) Prediction and explanation of mean sea levels in northern hemisphere, in southern hemisphere and all ocean of the Earth. EGU General Assembly (Vienna, Austria, 19-24 April 2009). Geophysical Research Abstracts, Volume 11, 2009, abstract # EGU2009-1610. [8] Barkin Yu.V. (2007) Forced redistribution of air masses between southern and northern hemispheres of the Earth. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (A)-IAGA, JAS008, p. 326. www. iugg2007perugia.it. [9] Barkin, Yu.V.; Shuanggen J. (2007) On variations of the mean radius of the Northern and Southern Hemispheres of the Earth. EGU General Assembly (Vienna, Austria, 15-20 April 2007). Geoph. Res. Abs., Vol. 9, 2007, abstract # EGU07-A-08183. [10] Stephen Barker, Paula Diz, Maryline J. Vautravers, Jennifer Pike, Gregor Knorr, Ian R. Hall & Wallace S. Broecker (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 1097-1102 (26 February 2009) | doi:10.1038/nature07770.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=birth+AND+order&pg=7&id=EJ867525','ERIC'); return false;" href="https://eric.ed.gov/?q=birth+AND+order&pg=7&id=EJ867525"><span>The Flynn Effect in Sibships: Investigating the Role of Age Differences between Siblings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sundet, Jon Martin; Eriksen, Willy; Borren, Ingrid; Tambs, Kristian</p> <p>2010-01-01</p> <p>The aim of the study was to investigate the relationship between the Flynn effect and the effects of age differences between siblings on the intelligence difference between them. In Norway, the secular trends in intelligence-test score means vary both in magnitude and direction. We identified three periods: one period where the mean intelligence…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.184.1119M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.184.1119M"><span>Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mémin, A.; Rogister, Y.; Hinderer, J.; Omang, O. C.; Luck, B.</p> <p>2011-03-01</p> <p>The Svalbard archipelago, Norway, is affected by both the present-day ice melting (PDIM) and Glacial Isostatic Adjustment (GIA) subsequent to the Last Pleistocene deglaciation. The induced deformation of the Earth is observed by using different techniques. At the Geodetic Observatory in Ny-Ålesund, precise positioning measurements have been collected since 1991, a superconducting gravimeter (SG) has been installed in 1999, and six campaigns of absolute gravity (AG) measurements were performed between 1998 and 2007. Moreover, the Gravity Recovery and Climate Experiment (GRACE) satellite mission provides the time variation of the Earth gravity field since 2002. The goal of this paper is to estimate the present rate of ice melting by combining geodetic observations of the gravity variation and uplift rate with geophysical modelling of both the GIA and Earth's response to the PDIM. We estimate the secular gravity variation by superimposing the SG series with the six AG measurements. We collect published estimates of the vertical velocity based on GPS and VLBI data. We analyse the GRACE solutions provided by three groups (CSR, GFZ, GRGS). The crux of the problem lies in the separation of the contributions from the GIA and PDIM to the Earth's deformation. To account for the GIA, we compute the response of viscoelastic Earth models having different radial structures of mantle viscosity to the deglaciation histories included in the models ICE-3G or ICE-5G. To account for the effect of PDIM, we compute the deformation of an elastic Earth model for six models of ice-melting extension and rates. Errors in the gravity variation and vertical velocity are estimated by taking into account the measurement uncertainties and the variability of the GRACE solutions and GIA and PDIM models. The ground observations agree with models that involve a current ice loss of 25 km3 water equivalent yr-1 over Svalbard, whereas the space observations give a value in the interval [5, 18] km3 water equivalent yr-1. A better modelling of the PDIM, which would include the precise topography of the glaciers and altitude-dependency of ice melting, is necessary to decrease the discrepancy between the two estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14570750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14570750"><span>The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parent, Anne-Simone; Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E; Toppari, Jorma; Bourguignon, Jean-Pierre</p> <p>2003-10-01</p> <p>During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European countries. These observations are raising the issues of current differences and secular trends in timing of puberty in relation to ethnic, geographical, and socioeconomic background. None of these factors provide an unequivocal explanation for the earlier onset of puberty seen in the United States. In the formerly deprived migrating children, refeeding and catch-up growth may prime maturation. However, precocious puberty is seen also in some nondeprived migrating children. Attention has been paid to the changing milieu after migration, and recently, the possible role of endocrine- disrupting chemicals from the environment has been considered. These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP53C1162S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP53C1162S"><span>Improvement of geomagnetic core field modeling with a priori information about Gauss coefficient correlations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schachtschneider, R.; Rother, M.; Lesur, V.</p> <p>2013-12-01</p> <p>We introduce a method that enables us to account for existing correlations between Gauss coefficients in core field modelling. The information about the correlations are obtained from a highly accurate field model based on CHAMP data, e.g. the GRIMM-3 model. We compute the covariance matrices of the geomagnetic field, the secular variation, and acceleration up to degree 18 and use these in the regularization scheme of the core field inversion. For testing our method we followed two different approaches by applying it to two different synthetic satellite data sets. The first is a short data set with a time span of only three months. Here we test how the information about correlations help to obtain an accurate model when only very little information are available. The second data set is a large one covering several years. In this case, besides reducing the residuals in general, we focus on the improvement of the model near the boundaries of the data set where the accerelation is generally more difficult to handle. In both cases the obtained covariance matrices are included in the damping scheme of the regularization. That way information from scales that could otherwise not be resolved by the data can be extracted. We show that by using this technique we are able to improve the models of the field and the secular variation for both, the short and the long term data set, compared to approaches using more conventional regularization techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CeMDA.120...77P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CeMDA.120...77P"><span>On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pástor, Pavol</p> <p>2014-09-01</p> <p>Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23038471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23038471"><span>Dynamical similarity of geomagnetic field reversals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio</p> <p>2012-10-04</p> <p>No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19852675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19852675"><span>Growth status of indigenous school children 6-14 years in the Tarahumara Sierra, Northern Mexico, in 1990 and 2007.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peña Reyes, Maria Eugenia; Cárdenas Barahona, Eyra E; Lamadrid, Paola Stefani; Del Olmo Calzada, Margarita; Malina, Robert M</p> <p>2009-01-01</p> <p>The study evaluated the growth status and secular change in body size of indigenous Tarahumara children in northern Mexico. Heights and weights of Tarahumara children 6-14 years were measured in 1990 (n = 601) and 2007 (n = 583); the BMI was calculated. International criteria defined weight status while United States reference data defined stunting. Estimated secular gains in height from 1990 to 2007 were greatest in 6-7 year-old boys and declined with age to a small, non-significant secular decline in boys 12-14 years. Among girls secular gains in height were similar at 6-7 and 8-9 years, largest at 10-11 years and small and non-significant at 12-14 years. Secular gains in weight were similar among 6-7 and 8-9 year-old boys and girls, were greater in girls than in boys at 10-11 years and showed a small, non-significant secular decline in boys and girls 12-14 years. Secular change in the BMI paralleled those for weight. The prevalence of stunting declined from 1990 to 2007 in both sexes and all age groups except 12-14 year youth. Overweight was more prevalent in girls than boys in both years and increased from 4% to 7% in boys and 9% to 13% in girls. Obesity was not common among boys and girls in each age group and in both years. Stunting and overweight/obesity were not related in either 1990 or 2007. Positive secular changes in growth status have occurred in Tarahumara children 6-11 years in contrast to negligible changes among children 12-14 years. The results suggest recent improvements in health and nutrition sufficient to support a positive secular trend in younger children.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G52A..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G52A..02A"><span>Geocenter Motion Derived from the JTRF2014 Combination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbondanza, C.; Chin, T. M.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; van Dam, T. M.; Wu, X.</p> <p>2016-12-01</p> <p>JTRF2014 represents the JPL Terrestrial Reference Frame (TRF) recently obtained as a result of the combination of the space-geodetic reprocessed inputs to the ITRF2014. Based upon a Kalman filter and smoother approach, JTRF2014 assimilates station positions and Earth-Orientation Parameters (EOPs) from GNSS, VLBI, SLR and DORIS and combine them through local tie measurements. JTRF is in its essence a time-series based TRF. In the JTRF2014 the dynamical evolution of the station positions is formulated by introducing linear and seasonal terms (annual and semi-annual periodic modes). Non-secular and non-seasonal motions of the geodetic sites are included in the smoothed time series by properly defining the station position process noise whose variance is characterized by analyzing station displacements induced by temporal changes of planetary fluid masses (atmosphere, oceans and continental surface water). With its station position time series output at a weekly resolution, JTRF2014 materializes a sub-secular frame whose origin is at the quasi-instantaneous Center of Mass (CM) as sensed by SLR. Both SLR and VLBI contribute to the scale of the combined frame. The sub-secular nature of the frame allows the users to directly access the quasi-instantaneous geocenter and scale information. Unlike standard combined TRF products which only give access to the secular component of the CM-CN motions, JTRF2014 is able to preserve -in addition to the long-term- the seasonal, non-seasonal and non-secular components of the geocenter motion. In the JTRF2014 assimilation scheme, local tie measurements are used to transfer the geocenter information from SLR to the space-geodetic techniques which are either insensitive to CM (VLBI) or whose geocenter motion is poorly determined (GNSS and DORIS). Properly tied to the CM frame through local ties and co-motion constraints, GNSS, VLBI and DORIS contribute to improve the SLR network geometry. In this paper, the determination of the weekly (CM-CN) time series as inferred from the JTRF2014 combination will be presented. Comparisons with geocenter time series derived from global inversions of GPS, GRACE and ocean bottom pressure models show the JTRF2014-derived geocenter favourably compares to the results of the inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G21A0990B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G21A0990B"><span>Secular Change and Inter-annual Variability of the Gulf Stream Position, 1993-2013, 70°-55°W</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bisagni, J. J.; Gangopadhyay, A.</p> <p>2016-12-01</p> <p>The Gulf Stream (GS) is the northeastward-flowing surface limb of the Atlantic Ocean meridional overturning circulation (AMOC) "conveyer belt" that flows towards Europe and the Nordic Seas. Changes in the GS position after its separation from the coast at Cape Hatteras, i.e., from 75°W to 50°W, may be key to understanding the AMOC, sea level variability and ecosystem behavior along the east coast of North America. In this study we compare secular change and inter-annual variability (IAV) of annual mean Gulf Stream North Wall (GSNW) position with equator-ward Labrador Current (LC) transport along the southwestern Grand Banks near 52° W using 21 years (1993-2013) of satellite altimeter data. Results at 70°, 65°, 60° and 55° W show a southward secular trend for the GSNW, decreasing to the west. IAV of de-trended GSNW position residuals also decreases to the west. The long-term secular trend of annual mean upper layer LC transport increases near 52° W. Furthermore, IAV of LC transport residuals near 52° W is significantly correlated with GSNW position residuals at 55° W at a lag of +1-year. Spectral analysis reveals inter-annual peaks at 5-7 years and 2-3 years for the North Atlantic Oscillation (NAO), GSNW (65°-55°W) and LC transport for 1993-2013. A volume calculation using the LC rms residual of +1.04 Sv near 52° W results in an estimated GSNW residual of 79 km, or 63% of the observed 125.6 km (1.13°) rms value at 55° W. A similar volume calculation using the positive long-term, upper-layer LC transport trend accounts for 68% of the observed southward shift of the GSNW over the 1993-2013 period. Our work provides observational evidence of direct interaction between the upper layers of the sub-polar and sub-tropical gyres within the North Atlantic over secular and inter-annual time scales as suggested by previous workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24367108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24367108"><span>Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lithwick, Yoram; Wu, Yanqin</p> <p>2014-09-02</p> <p>In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4156773','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4156773"><span>Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lithwick, Yoram; Wu, Yanqin</p> <p>2014-01-01</p> <p>In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP41A1115S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP41A1115S"><span>Statistical analysis of archeomagnetic samples of Teotihuacan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soler-Arechalde, A. M.</p> <p>2012-12-01</p> <p>Teotihuacan was the one of the most important metropolis of Mesoamerica during the Classic Period (1 to 600 AC). The city had a continuous growth in different stages that usually concluded with a ritual. Fire was an important element natives would burn entire structures. An example of this is the Quetzalcoatl pyramid in La Ciudadela (350 AC), it was burned and a new structure was built over it, also the Big Fire at 570 AC, that marks its end. These events are suitable to archaeomagnetic dating. The inclusion of ash in the stucco enhances the magnetic signal of detrital type that also allows us to make dating. This increases the number of samples to be processed as well as the number of dates. The samples have been analyzed according to their type: floor, wall, talud and painting and whether or not exposed to fire. Sequences of directions obtained in excavations in strict stratigraphic control will be shown. A sequence of images was used to analyze the improving of Teotihuacan secular variation curve through more than a decade of continuous work at the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoSyR..50..197K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoSyR..50..197K"><span>On the long-period evolution of the sun-synchronous orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuznetsov, E. D.; Jasim, A. T.</p> <p>2016-05-01</p> <p>The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite's passage through the Earth's shadow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21583000-empirical-explanation-anomalous-increases-astronomical-unit-lunar-eccentricity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21583000-empirical-explanation-anomalous-increases-astronomical-unit-lunar-eccentricity"><span>AN EMPIRICAL EXPLANATION OF THE ANOMALOUS INCREASES IN THE ASTRONOMICAL UNIT AND THE LUNAR ECCENTRICITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iorio, L., E-mail: lorenzo.iorio@libero.it</p> <p>2011-09-15</p> <p>The subject of this paper is the empirically determined anomalous secular increases of the astronomical unit, of the order of some cm yr{sup -1}, and of the eccentricity of the lunar orbit, of the order of 10{sup -12} yr{sup -1}. The aim is to find an empirical explanation of both anomalies as far as their orders of magnitude are concerned. The methods employed are working out perturbatively with the Gauss equations the secular effects on the semi-major axis a and the eccentricity e of a test particle orbiting a central body acted upon by a small anomalous radial acceleration Amore » proportional to the radial velocity v{sub r} of the particle-body relative motion. The results show that non-vanishing secular variations <a-dot> and (e) occur. If the magnitude of the coefficient of proportionality of the extra-acceleration is of the same order of magnitude as the Hubble parameter H{sub 0} = 7.47 x 10{sup -11} yr{sup -1} at the present epoch, they are able to explain both astrometric anomalies without contradicting other existing observational determinations for the Moon and the other planets of the solar system. Finally, it is concluded that the extra-acceleration might be of cosmological origin, provided that the relative radial particle-body motion is accounted for in addition to that due to the cosmological expansion only. Further data analyses should confirm or disprove the existence of both astrometric anomalies as genuine physical phenomena.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29370461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29370461"><span>Religiousness as a Predictor of Suicide: An Analysis of 162 European Regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stack, Steven; Laubepin, Frederique</p> <p>2018-01-25</p> <p>Research on religion as a protective factor has been marked by four recurrent limitations: (1) an overemphasis on the United States, a nation where religiosity is relatively high; (2) a neglect of highly secularized zones of the world, where religiousness may be too weak to affect suicide; (3) restriction of religiousness to religious affiliation, a construct which may miss capturing other dimensions of religiousness such as the importance of religion in one's life; and (4) an overwhelming use of the nation as a unit of analysis, which masks variation in religiousness within nations. The present article addresses these limitations by performing a cross-national test of the following hypothesis: The greater the strength of subjective religiousness, the lower the suicide rate, using small units of analysis for a secularized area of the world. All data refer to 162 regions within 22 European nations. Data were extracted from two large databases, EUROSTAT and the European Social Surveys (ESS Round 4), and merged using NUTS-2 (Nomenclature of Statistical Territorial Units) regions as the unit of analysis. Controls are incorporated for level of economic development, education, and measures of economic strain. The results of a multiple regression analysis demonstrated that controlling for the other constructs in the model, religiousness is associated with lower suicide rates, confirming the hypothesis. Even in secularized European nations, where there is a relatively weak moral community to reinforce religion, religiousness acts as a protective factor against suicide. Future work is needed to explore the relationship in other culture zones of the world. © 2018 The American Association of Suicidology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011epsc.conf..991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011epsc.conf..991M"><span>Modeling the secular evolution of migrating planet pairs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michtchenko, T. A.; Rodríguez, A.</p> <p>2011-10-01</p> <p>The secular regime of motion of multi-planetary systems is universal; in contrast with the 'accidental' resonant motion, characteristic only for specific configurations of the planets, secular motion is present everywhere in phase space, even inside the resonant region. The secular behavior of a pair of planets evolving under dissipative forces is the principal subject of this study, particularly, the case when the dissipative forces affect the planetary semi-major axes and the planets move inward/outward the central star, the process known as planet migration. Based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion is determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=representative+AND+heuristic&pg=2&id=ED555193','ERIC'); return false;" href="https://eric.ed.gov/?q=representative+AND+heuristic&pg=2&id=ED555193"><span>Committed Seventh-Day Adventist Students at Secular Institutions of Higher Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Anthony, LaShonda R.</p> <p>2013-01-01</p> <p>The experiences of Seventh-day Adventist students at secular universities was examined. Seven women and two men attending universities in Michigan and New York were interviewed. The researcher employed a heuristically guided phenomenological method to get rich descriptions of the participants' experiences in the secular university setting.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=journal+AND+contemporary+AND+asia&id=EJ778371','ERIC'); return false;" href="https://eric.ed.gov/?q=journal+AND+contemporary+AND+asia&id=EJ778371"><span>Secular and Koranic Literacies in South Asia: From Colonisation to Contemporary Practice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Maddox, Bryan</p> <p>2007-01-01</p> <p>This paper explores the distinction between "secular" and "Koranic" schooling and literacy in South Asia. It begins by tracing an archaeology of the distinction between secular "literacy" and religious "illiteracy". It locates the emergence of the distinction in the colonial census of the 19th century, in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=attractive&pg=7&id=EJ1025939','ERIC'); return false;" href="https://eric.ed.gov/?q=attractive&pg=7&id=EJ1025939"><span>Re-Imagining a Christian University in a Secular Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Warner, Rob</p> <p>2013-01-01</p> <p>The contours of a secular age, as delineated by classical and contemporary sociologists of religion, have tended to result in secularising trajectories for church-founded institutions of Higher Education, some of which have migrated towards secular normativity. This article explores these trends and then proposes five characteristics of an…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1051719.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1051719.pdf"><span>Rethinking Institutional Secularization as an (Im)possible "Policy"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gomez Caride, Ezequiel</p> <p>2015-01-01</p> <p>The paper analyzes through a genealogical discourse analysis how religion as a cultural practice escapes into the borders of state institutions. While most studies about secularization focus on institutional aspects, such approaches tend to link state secularist policies with cultural secularization. This essay argues that state promotion of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=existential+AND+humanist&id=ED548600','ERIC'); return false;" href="https://eric.ed.gov/?q=existential+AND+humanist&id=ED548600"><span>The Jesuit Imaginary: Higher Education in a Secular Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hendrickson, Daniel Scott</p> <p>2012-01-01</p> <p>The philosopher Charles Taylor argues in "A Secular Age" (2007) that people who live in secular cultures are losing the capacity to experience genuine "fullness." Described by Taylor as a philosophical-anthropological conception of human flourishing that corresponds with existential senses of meaning and purpose, fullness is…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DDA....4610002V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DDA....4610002V"><span>Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa L.</p> <p>2015-05-01</p> <p>Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP12A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP12A..04C"><span>Are There Paleomagnetic Signals That Herald the Inner Core?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coe, R. S.</p> <p>2016-12-01</p> <p>Calculated estimates for the age of the inner core (IC) have ranged from 3.5 Ga to as little as 0.5 Ga over the past five decades. A few years ago opinion swung sharply toward the younger end of the range based on a much increased estimate for the thermal conductivity of the core. But more recently these values are contested by other studies, and support for an additional energy source for the geodynamo involving exsolution of MgO has also been proposed, rendering the age of IC initiation wide open again. Thus there is strong motivation to examine the paleomagnetic record for any signal that may constrain when the IC formed. Presence of a solid IC changes the topology of the fluid core, and its growth releases buoyant material that helps power the dynamo, so there is reason to hope that detectable changes in the paleomagnetic record might indeed mark its existence. Such changes, however, must be discerned against the backdrop of ordinary geomagnetic secular variation, which is substantial, so that time averages must be established before looking for telltale signals in the paleomagnetic field. Intuitively, the most likely signal to look for is an increase in the average strength of the field. Paleointensity, though, is the most difficult part of the ancient field vector to determine experimentally, and it can only be obtained from igneous rocks with unaltered magnetic mineralogy. Another potential signal for development of the IC is difference in morphology of the paleomagnetic field, namely a change in the latitudinal pattern of time-averaged secular variation. Again, rapidly cooled igneous rocks are required because only they can provide a reliable snapshot of the field direction, even after substantial overprinting by later geologic events. A third potential marker is a change in average reversal frequency. An advantage over the other two is that polarity is the most robust of paleomagnetic signals, and it can be well recorded by both sedimentary and igneous rocks. However, it may well have the least resolving power of the three. I will discuss some of the candidate changes in long-term paleomagnetic field strength, morphology and reversal frequency that have been proposed as markers of IC nucleation. While some appear to hold promise, none are definitive and all require more data to establish meaningful background averages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMGP11C..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMGP11C..02B"><span>The First Radiocarbon-Constrained Full-Vector Holocene Paleomagnetic Secular Variation Reconstruction for Eastern Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barletta, F.; St-Onge, G.; Stoner, J.; Lajeunesse, P.</p> <p>2009-05-01</p> <p>Here we present the first high-resolution Holocene paleomagnetic secular variation (PSV) master curve and relative paleointensity stack constrained by radiocarbon dates for Eastern Canada. This reconstruction is based on seven sedimentary sequences collected from the St. Lawrence Estuary and Gulf from the head to the mouth of the Laurentian Channel. The natural remanent magnetization (NRM), the anhysteretic remanent magnetization (ARM) and the isothermal remanent magnetization (IRM) were measured on u-channel samples at the Paleomagnetism Laboratory of ISMER using a 2G Enterprises cryogenic magnetometer. Magnetic mineralogy was additionally assessed using a recently installed alternative gradient force magnetometer (AGM). The magnetic mineralogy of the Holocene postglacial sediments is mainly carried by low-coercivity ferrimagnetic minerals (most likely magnetite) in the pseudo-single domain size range. The characteristic remanent magnetization (ChRM), assessed by principal component analysis, reveals the presence of a stable and well-defined magnetization characterized by maximum angular deviation (MAD) values generally lower than 5°. Furthermore, ChRM inclinations fluctuate around the expected geocentric axial dipole (GAD) magnetic inclination for the latitude of the coring sites (from 63° to 66°). The similarity of these records on their own independent timescales implies that all of the individual sedimentary sequences record a reliable Holocene PSV record for Eastern Canada. Relative paleointensity (RPI) was estimated by normalizing the NRM by the ARM which provided the best coercivity match. Lastly, the paleomagnetic directional and RPI records were stacked on a common time scale spanning the last ~10 000 cal BP. The smoothed PSV stack reveal centennial- to millennial-scale geomagnetic features concordant with the CALS7K.2 time-varying spherical harmonic model, as well as with the US eastern stack (King and Peck, 2001). Comparisons further a field with the Fish Lake record from Oregon (Verosub et al., 1996), the Icelandic and E. Greenland continental margin records (Stoner et al., 2007) and the Fennoscandia stack (Snowball et al., 2007) suggest large scale coherence of geomagnetic features. These and other comparisons will be made. In conclusion, the full-vector Holocene PSV and RPI master curves from Eastern Canada provide a new high-resolution regional chronostratigraphic tool as well as new insights into the Holocene geomagnetic field behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED501687.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED501687.pdf"><span>The Historical and Philosophical Influences on Greenleaf's Concept of Servant Leadership: Setting the Stage for Theory Building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Boyum, Ginny</p> <p>2008-01-01</p> <p>Servant leadership has become a popular topic in both the secular and scholarly literature, as organizations increasingly demand both ethical and authentic leaders. Yet we know little about what informs or directs a person to become a servant leader or why someone would engage in servant leadership. This paper offers a philosophical framework that…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9284B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9284B"><span>S-N secular ocean tide: explanation of observably coastal velocities of increase of a global mean sea level and mean sea levels in northern and southern hemispheres and prediction of erroneous altimetry velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>The phenomenon of contrast secular changes of sea levels in the southern and northern hemispheres, predicted on the basis of geodynamic model about the forced relative oscillations and displacements of the Earth shells, has obtained a theoretical explanation. In northern hemisphere the mean sea level of ocean increases with velocity about 2.45±0.32 mm/yr, and in a southern hemisphere the mean sea level increases with velocity about 0.67±0.30 mm/yr. Theoretical values of velocity of increase of global mean sea level of ocean has been estimated in 1.61±0.36 mm/yr. 1 Introduction. The secular drift of the centre of mass of the Earth in the direction of North Pole with velocity about 12-20 mm/yr has been predicted by author in 1995 [1], [2], and now has confirmed with methods of space geodesy. For example the DORIS data in period 1999-2008 let us to estimate velocity of polar drift in 5.24±0.29 mm/yr [3]. To explain this fundamental planetary phenomenon it is possible only, having admitted, that similar northern drift tests the centre of mass of the liquid core relatively to the centre of mass of viscous-elastic and thermodynamically changeable mantle with velocity about 2-3 cm/yr in present [4]. The polar drift of the Earth core with huge superfluous mass results in slow increase of a gravity in northern hemisphere with a mean velocity about 1.4 ?Gal and to its decrease approximately with the same mean velocity in southern hemisphere [5]. This conclusion-prediction has obtained already a number of confirmations in precision gravimetric observations fulfilled in last decade around the world [6]. Naturally, a drift of the core is accompanied by the global changes (deformations) of all layers of the mantle and the core, by inversion changes of their tension states when in one hemisphere the tension increases and opposite on the contrary - decreases. Also it is possible that thermodynamical mechanism actively works with inversion properties of molting and solidification of materials at core-mantle boundary in opposite (northern - southern) hemispheres [7]. 2 Atmospheric and oceanic inversion tides. The gravitational attraction of superfluous mass of the drifting to the North core (in 17 masses of the Moon) causes a planetary inversion tide of air masses of the Earth and its oceanic masses, from the southern hemisphere - to the northern hemisphere [8]. On our theoretical estimations the mean atmospheric pressure in the northern hemisphere accrues with velocity about 0.17 mbar/yr and with similar negative velocity in southern hemisphere. Although mentioned estimations are draft the predicted phenomenon of a slow redistribution of air masses from the southern hemisphere in northern partially has already obtained confirmation according to the meteorological observations in period 1.4. 2002 - 1.4. 2005 [9]: 0.17-0.22 mbar/yr (northern hemisphere) and -0.18 mbar/yr (southern hemisphere). On the basis of modern data of satellite altimetry for 1993-2007 years we for the first time appreciate velocities of secular variations of the mean sea level in northern and southern hemispheres of the Earth which, as well as was supposed, appeared various [10]. In the report the mechanisms of the revealed phenomena, their dynamic interrelation are discussed and an possible interpretation to the data of observations is given. 3 Contrast changes of mean sea levels in northern and southern hemispheres. The air masses slowly are transported from a southern hemisphere in northern. They form an original inversion secular atmospheric tide which existence proves to be true by the modern data of observations [9-11]. The gravitational attraction of the core which is displaced along a polar axis causes the similar tide of oceanic masses [5]. The barometric effect of influence of atmospheric tide will result in reduction of expected secular oceanic tide. Really, an increase of mean atmospheric pressure in the northern hemisphere results in replacement of oceanic masses in the southern hemisphere. Only for this reason (on our model) the mean sea level in the northern hemisphere decreases with secular velocity -1.98 mm/yr. In turn a decrease of atmospheric pressure in the southern hemisphere results in an increase of the mean sea level in this hemisphere with velocity 1.43 mm/yr. Preliminary estimations have shown, that a oceanic inversion tide, caused by a gravitational attraction of the drifting core, gives the basic contribution to the phenomenon of secular variation of the mean sea level in N and S hemispheres (in northern hemisphere the mean sea level increases with velocity 3.01±0.17 mm/yr and in the southern hemisphere it decreases with velocity -2.18±0.12 mm/yr). On the sea level the slow deformation changes of a bottom of the ocean render the essential influence. This tectonic phenomenon is connected with global (planetary) changes of shapes of hemispheres of the Earth. The last have been predicted and described on the basis of developed geodynamic model of the core mantle forced oscillations and drift [5] and revealed by methods of space geodesy [11]. On the basis of these results the estimation of velocity of increase of the mean sea level because of deformations of ocean bottom in 0.55±0.26 mm/yr has been obtained. An analysis has shown that thermal factors play big role in secular change of sea level. Here we will accept conclusions of the last years that due to a heating of ocean layers and their expansion and due to melting of glaciers and other contributions of water masses in ocean its mean sea level rises with velocity about 0.83 mm/yr [12]. Summarizing now all considered factors of increase of the sea level, we come to the important conclusion. In northern hemisphere the mean sea level of ocean increases with velocity about 2.45±0.32 mm/yr, and in a southern hemisphere the mean sea level increases with velocity about 0.67±0.30 mm/yr. This result give clear confirmation of existance in present epoch of the secular S-N oceanic tide. Observations on the coastal guage stations confirm these predicted theoretical velocities [13]. Theoretical values of velocity of increase of global mean sea level of ocean thus has been estimated in 1.61±0.36 mm/yr that is close to value observed by coastal methods. 4 Prediction of erroneous altimetry determinations. An altimetry mehod can not give obtained above values of velocities of increasing of mean sea levels in northern and in southern hemispheres and of course and real value for global change. The reason consists that altimetry determinations include additional effect, we shall name it is fictitious, which is caused by secular drift of the centre of mass of the Earth to the North with velocity 5.24±0.29 mm/yr. It is uneasy to show, that only one effect of drift of the centre of mass results in fictitious effect of decreasing of mean sea level in northern hemisphere with velocity -2.37±0.13 mm/yr and to increasing of the mean sea level in a southern hemisphere with velocity 2.66±0.15 mm/yr, and also to effect of increase of mean global sea level with velocity 0.54±0.03 mm/yr. And the specified effects would take a place in observations even if the real sea level would not vary at all. But we shall add real values of velocities obtained above to fictitious and we shall obtain, accordingly, the values of velocities which can be obtained by altimetry method at scope by observations of all latitudes of ocean areas: 0.08 mm/yr for northern hemisphere; 3.33±0.30 mm/yr for southern hemisphere and 2.15±0.39 mm/yr for a global level of ocean. But they have not any relation to real characteristics of change of sea levels in northern and southern hemispheres of the Earth and to its global secular change. Real values of velocities of increase of mean sea levels in northern hemisphere, in a southern hemisphere and all ocean make: 2.45±0.32 mm/yr, 0.67±0.30 mm/yr and 1.61±0.36 mm/yr. The mentioned values of velocities of change of mean sea levels have been obtained at set of simplifying assumptions concerning of a direction of drift of the centre of mass of the Earth and character of redistribution of atmospheric and oceanic masses and, naturally, in future will be specified. The work was accepted by grants of RFBR: N 07-05-00939. References [1] Barkin Yu.V. (1995) Motion of the Earth's center of mass induced by global changes in its dynamic structure and by tidal deformations. Mosc. Univ. Phys. Bull., 1995, 50(5), 92-94. English translation of Vestni. Mosk. Univ. 3, Fiz., Astron. (Russia). 1995, 50(5), 99-101. [2] Barkin Yu.V. (2009) About possible polar drifts of centers of mass of the Earth and Mars. Abstract Book (CD) of European Planetary Science Congress (Potsdam, Germany, 13 - 18 September 2009), Vol.4, EPSC 2009-118. [3] Zotov L.V., Barkin Yu.V., Lubushin A.A. (2008) Geocenter motion and its geodynamical contenst. 'Space Geodynamics and Modeling of the Global Geodynamic Processes'. International scientific conference in the frames of the 'Asian-Pacific Space Geodynamics' Project (APSG 2008). (22-26 September 2008, Novosibirsk, Russian Federation). Abstract book. P. 28 [4] Barkin Yu.V. (2008) Secular polar drift of the core in present epoch: geodynamical and geophysical consequences and confirmations. General and regional problems of tectonics and geodynamics. Materials of XLI Tectonic Conference. V. 1. -M.:GEOS. p. 55-59. In Russian. [5] Barkin Yu.V. (2005) Oscillations of the Earth core, new oceanic tides and dynamical consequences. Materials of XI International Scientific Conference 'Structure, geodynamics and mineral genetic processes in lithosphere' (September, 20-22 2005, Syktyvkar, Russia). Publisher of Geology Institute of Komi SC of Ural Section of RAS, Syktyvkar, pp. 26-28. In Russian. [6] Barkin Yu.V. (2009) An explanation of secular variations of a gravity at stations Ny-Alesund, Medicine, Churchill and Syowa. Materials of the International Conference: «Yu.P. Bulashevich's fifth scientific readings. A deep structure. Geodynamics. A thermal field of the Earth. Interpretation of geophysical fields» (Ekaterinburg, 6 - 10 July, 2009). pp. 27-31. In Russian. [7] Barkin Yu.V. (2009) The mechanism of translational displacements of the core of the Earth at inversion molten and solidification of substance at core-mantle-boundary in opposite hemispheres. EGU General Assembly (Vienna, Austria, 19-24 April 2009). Geophysical Research Abstracts, Volume 11, 2009, abstract # EGU2009-6241. [8] Barkin Yu.V. (2007) Forced redistribution of air masses between southern and northern hemispheres of the Earth. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (A)-IAGA, JAS008, p. 326. www. iugg2007perugia.it. [9] Burlutsky R.F. (2007) Determination of the global concentration of pair on the ground pressure. Materials of Sagitov's readings. M., SAI, MSU, 2007, www.sai.msu.ru. [10] Barkin Yu.V., J.M. Ferrandiz, Garcia D. (2008) Contrast secular variations of the mean atmospheric presure and mean sea level in northern and southern hemispheres of the Earth. Proceedings of International Symposium "Topical Problems of Nonlinear Wave Physics-2008" (NWP-2008). Session 3. p. 15-16. [11] Barkin Yu.V. and S. Jin (2007) On variations of the mean radius of the Northern and Southern Hemispheres of the Earth. EGU General Assembly (Vienna, Austria, 15-20 April 2007). Geoph. Res. Abstr., Vol. 9, abstr. # EGU07-A-08183. [12] Miller L. and B.C. Douglas, Mass and volume contributions to twentieth-century global sea level rise. Nature, v. 428, 25 March 2004, pp. 406-409. [13] Jevreeva S., Grinsted A., Moore J.C., Holgate S. (2006) Nonlinear trends and multiyear cycles in sea level records. Journal Geophysical Research, v. 111, C09012, doi: 10.1029/2005JC0032 29, 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Ge%26Ae..54..269R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Ge%26Ae..54..269R"><span>First geomagnetic measurements in the Antarctic region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raspopov, O. M.; Demina, I. M.; Meshcheryakov, V. V.</p> <p>2014-05-01</p> <p>Based on data from literature and archival sources, we have further processed and analyzed the results of geomagnetic measurements made during the 1772-1775 Second World Expedition by James Cook and the 1819-1821 overseas Antarctic Expedition by Russian mariners Bellingshausen and Lazarev. Comparison with the GUFM historical model showed that there are systematic differences in the spatial structure of both the declination and its secular variation. The results obtained can serve as a basis for the construction of regional models of the geomagnetic field for the Antarctic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP43A1119B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP43A1119B"><span>High-resolution palaeomagnetic records of the Laschamp geomagnetic excursion from ODP Sites 1061 and 1062</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bourne, M. D.; Henderson, G. M.; Thomas, A. L.; Mac Niocaill, C.</p> <p>2012-12-01</p> <p>The Laschamp geomagnetic excursion (~41 ka) was a brief global deviation in geomagnetic field behaviour from that expected during normal secular variation. Previously published records suggest rapid changes in field direction and a concurrent substantial decrease in field intensity. We present here high-resolution palaeomagnetic records of the Laschamp excursion obtained from two Ocean Drilling Program (ODP) Sites 1061 and 1062 on the Blake-Bahama Outer Ridge (ODP Leg 172) and compare this record with previously published records of the Blake and Iceland Basin Excursions. Relatively high sedimentation rates (>10 cm kyr-1) at these locations allow the determination of transitional field behaviour during the excursion. Rather than assuming a constant sedimentation rate between assigned age tie-points, we employ measurements of 230Thxs concentration in the sediment to assess variations in the sedimentation rates through the core sections of interest. This allows us to better determine the temporal behaviour of the Laschamp excursion with greater accuracy and known uncertainty. The Laschamp excursion at this location appears to be much shorter in duration than the Blake and Iceland Basin excursions. Palaeomagnetic measurements of discrete samples from four cores reveal a single excursional feature, across an interval of 30 cm, associated with a broader palaeointensity low. The excursion is characterised by rapid transitions (less than 500 years) between a stable normal polarity and a partially-reversed, polarity. Peaks in inclination either side of the directional excursion indicate periods of time when the local field is dominated by vertical flux patches. Similar behaviour has been observed in records of the Iceland Basin Excursion from the same region. The palaeointensity record is in good agreement between the two sites. The palaeointensity record shows two minima, where the second dip in intensity is associated with a more limited directional deviation. Similar field intensity behaviour has been observed during the Blake excursion suggesting that the geomagnetic field stability may be reduced for relatively long durations, potentially up to tens of thousands of years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=hre&pg=3&id=EJ979083','ERIC'); return false;" href="https://eric.ed.gov/?q=hre&pg=3&id=EJ979083"><span>Human Rights Education and the Post Secular Turn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bowie, Bob</p> <p>2012-01-01</p> <p>This article questions whether human rights education (HRE) scholarship is responding adequately to the post secular turn in thinking about the place and nature of religion in society. Here the post secular turn is used to describe the discrediting of secularisation theory, the recognition of religion as an enduring and pervasive global cultural…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Freedom+AND+religion&pg=4&id=ED545295','ERIC'); return false;" href="https://eric.ed.gov/?q=Freedom+AND+religion&pg=4&id=ED545295"><span>Unsafe Gods: Security, Secularism and Schooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Davies, Lynn</p> <p>2014-01-01</p> <p>This book makes the compelling argument that religion can be complicit in conflict and that a new secularism is vital to foster security. Using insights from complexity science, it shows how dynamic secularism can be used to accommodate diverse faiths and beliefs within worldly politics. Exploration of the interplay of religion and education in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=euro&pg=3&id=EJ1027760','ERIC'); return false;" href="https://eric.ed.gov/?q=euro&pg=3&id=EJ1027760"><span>The Other Partition: Religious and Secular Education in British Palestine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schneider, Suzanne</p> <p>2014-01-01</p> <p>The recent critical turn toward post-secularism, particularly on behalf of theorists working from the perspective of Christian societies, has highlighted the difficulty of approaching the history of the Middle East through the binary of religion and secularism. This article argues that such terms are of little explanatory value in and of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ethics+AND+religion&id=EJ1024297','ERIC'); return false;" href="https://eric.ed.gov/?q=ethics+AND+religion&id=EJ1024297"><span>Addressing Religious Plurality--A Teacher Perspective on Minority Religion and Secular Ethics Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zilliacus, Harriet</p> <p>2013-01-01</p> <p>The Finnish education system recognizes religious plurality by offering education in pupils' own religion or in secular ethics. However, little research has been undertaken on how plurality is addressed in classroom practice. This study investigates how 31 minority religion and secular ethics teachers view the task of supporting and including…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=symbiosis&pg=5&id=EJ960128','ERIC'); return false;" href="https://eric.ed.gov/?q=symbiosis&pg=5&id=EJ960128"><span>Substitution or Symbiosis? Assessing the Relationship between Religious and Secular Giving</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hill, Jonathan P.; Vaidyanathan, Brandon</p> <p>2011-01-01</p> <p>Research on philanthropy has not sufficiently examined whether charitable giving to religious causes impinges on giving to secular causes. Examining three waves of national panel data, we find that the relationship between religious and secular giving is generally not of a zero-sum nature; families that increase their religious giving also…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009972','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009972"><span>The effect of secular resonances in the asteroid region between 2.1 and 2.4 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Froeschle, Christiane; Scholl, Hans</p> <p>1992-01-01</p> <p>The asteroid region between 2.1 and 2.4 AU appears to be depopulated at inclinations i greater than 12 deg. This region is surrounded by the three main secular resonances nu(sub 5), nu(sub 6), and nu(sub 16) and is crossed by higher order secular resonances. Secular resonances appear to overlap in this region. Numerical integrations of the orbits of seventeen fictituous asteroids with initial inclinations 12 deg less than or equal to i less than or equal to 20 deg show the following: (1) this particular asteroid region is not depopulated in our computer experiment on timescales of 2.7 Myrs; (2) inclinations are pumped up by successive crossings through higher order secular resonances while eccentricities are not increased sufficiently to produce planet-crossers; (3) bodies located in the bordering nu(sub 6) resonance with semi-major axes a less than or equal to 2.4 AU become Earth-crossers on a time scale of 1 Myr; and (4) we confirm the result that modes due to higher order secular resonances must be eliminated when proper elements are computed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGeo...46..144V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGeo...46..144V"><span>Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Wal, Wouter; Wu, Patrick; Sideris, Michael G.; Shum, C. K.</p> <p>2008-10-01</p> <p>Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity. It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate. The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T44A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T44A..02C"><span>Secular Variation in Slip (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cowgill, E.; Gold, R. D.</p> <p>2010-12-01</p> <p>Faults show temporal variations in slip rate at time scales ranging from the hours following a major rupture to the millions of years over which plate boundaries reorganize. One such behavior is secular variation in slip (SVS), which we define as a pulse of accelerated strain release along a single fault that occurs at a frequency that is > 1 order of magnitude longer than the recurrence interval of earthquakes within the pulse. Although numerous mechanical models have been proposed to explain SVS, it has proven much harder to measure long (5-500 kyr) records of fault displacement as a function of time. Such fault-slip histories may be obtained from morphochronologic data, which are measurements of offset and age obtained from faulted landforms. Here we describe slip-history modeling of morphochronologic data and show how this method holds promise for obtaining long records of fault slip. In detail we place SVS in the context of other types of time-varying fault-slip phenomena, explain the importance of measuring fault-slip histories, summarize models proposed to explain SVS, review current approaches for measuring SVS in the geologic record, and illustrate the slip-history modeling approach we advocate here using data from the active, left-slip Altyn Tagh fault in NW Tibet. In addition to SVS, other types of temporal variation in fault slip include post-seismic transients, discrepancies between geologic slip rates and those derived from geodetic and/or paleoseismic data, and single changes in slip rate resulting from plate reorganization. Investigating secular variation in slip is important for advancing understanding of long-term continental deformation, fault mechanics, and seismic risk. Mechanical models producing such behavior include self-driven mode switching, changes in pore-fluid pressure, viscoelasticity, postseismic reloading, and changes in local surface loads (e.g., ice sheets, large lakes, etc.) among others. However, a key problem in testing these models is the paucity of long records of fault slip. Paleoseismic data are unlikely to yield such histories because measurements of the slip associated with each event are generally unavailable and long records require large accumulated offsets, which can result in structural duplication or omission of the stratigraphic records of events. In contrast, morphochronologic data capture both the age and offset of individual piercing points, although this approach generally does not resolve individual earthquake events. Because the uncertainties in both age and offset are generally large (5-15%) for individual markers, SVS is best resolved by obtaining suites of such measurements, in which case the errors can be used to reduce the range of slip histories common to all such data points. A suite of such data from the central Altyn Tagh fault reveals a pulse of accelerated strain release in the mid Holocene, with ~20 m of slip being released from ~6.7 to ~5.9 ka at a short-term rate (~28 mm/yr) that is 3 times greater than the average rate (~9 mm/yr). We interpret this pulse to represent a cluster of two to six, Mw > 7.2 earthquakes. To our knowledge, this is the first possible earthquake cluster detected using morphochronologic techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26073149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26073149"><span>The Role of Secularism of State on the Relationship Between Catholic Identity, Political Orientation, and Gay Rights Issues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hichy, Zira; Gerges, Mina Halim Helmy; Platania, Silvia; Santisi, Giuseppe</p> <p>2015-01-01</p> <p>In discussions of regulations governing same-sex marriage and adoption by gays and lesbians, the issue of state secularism is often called into question. This study aims to test the mediating effects of state secularism on the relationship between Catholic identity, political orientation, and gay civil rights. Participants were Catholic Italians who completed a questionnaire measuring the constructs under investigation. Results showed that state secularism mediates the effects of Catholic identity and political orientation on attitudes toward same-sex marriage and adoption by gays and lesbians.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995AAS...18710103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995AAS...18710103L"><span>Solar Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopresto, James C.; Mathews, John; Manross, Kevin</p> <p>1995-12-01</p> <p>Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780040936&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%2523947','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780040936&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%2523947"><span>Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVIII - Ultraviolet light curves for Alpha Lupi and BW Vulpeculae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lesh, J. R.</p> <p>1978-01-01</p> <p>Photometric data from the Wisconsin Experiment Package on OAO-2 have been used to construct light curves at three ultraviolet wavelengths for Alpha Lup and at seven wavelengths for BW Vul. Both stars are well-known variables of the Beta Cephei (Beta Canis Majoris) type. The light curves for Alpha Lup are in good agreement with the radial-velocity period. A temperature variation of 400-500 K is derived. The BW Vul light curves confirm recent ephemerides based on a secularly varying period and show a stillstand near light maximum at some wavelengths. Both stars exhibit increasing light amplitude at the shortest ultraviolet wavelengths. There is little evidence for cycle-to-cycle variations on a time scale of the order of 1 day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CeMDA.130....6A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CeMDA.130....6A"><span>Secular dynamics of multiplanetary circumbinary systems: stationary solutions and binary-planet secular resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrade-Ines, Eduardo; Robutel, Philippe</p> <p>2018-01-01</p> <p>We present an analytical formalism to study the secular dynamics of a system consisting of N-2 planets orbiting a binary star in outer orbits. We introduce a canonical coordinate system and expand the disturbing function in terms of canonical elliptic elements, combining both Legendre polynomials and Laplace coefficients, to obtain a general formalism for the secular description of this type of configuration. With a quadratic approximation of the development, we present a simplified analytical solution for the planetary orbits for both the single planet and the two-planet cases. From the two-planet model, we show that the inner planet accelerates the precession rate of the binary pericenter, which, in turn, may enter in resonance with the secular frequency of the outer planet, characterizing a secular resonance. We calculate an analytical expression for the approximate location of this resonance and apply it to known circumbinary systems, where we show that it can occur at relatively close orbits, for example at 2.4 au for the Kepler-38 system. With a more refined model, we analyse the dynamics of this secular resonance and we show that a bifurcation of the corresponding fixed points can affect the long- term evolution and stability of planetary systems. By comparing our results with complete integrations of the exact equations of motion, we verified the accuracy of our analytical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6014B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6014B"><span>Warming: mechanism and latitude dependence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers of mass of some bodies of solar system and attributes of secular displacements of their centers of mass are universal and testify to relative translational displacements of shells of these bodies (such as the core, the mantle and others). And it means, that there is a highly effective mechanism of an active life of planets and satellites [1, 2]. This mechanism is distinct from the tidal mechanism of gravitational interaction of deformable celestial bodies. Its action is shown, for example, even in case if the core and the mantle are considered as absolutely rigid gravitating bodies, but separated by a is viscous-elastic layer. Classics of celestial mechanics did not consider gravitational interaction and relative translational displacement of the core and the mantle of the Earth. As our studies have shown the specified new mechanism is high energetic and allows to explain many of the phenomena earlier inaccessible to understanding in various geosciences, including climatology [1] - [5]. It has been shown, that secular changes in activity of all planetary processes on the Earth are connected with a secular drift of the core of the Earth, and are controlled by the core and are reflections and displays of the core drift [5]. It is naturally, that slow climatic changes are connected with drift of the core, with induced by this drift inversion changes in an atmosphere, ocean, with thermodynamic variations of state of layer D ', with changes and variations in mantle convection and in plume activity of the Earth. The drift of the core controls a transmission of heat in the top layers of the mantle and on a surface of the Earth, organizes volcanic and seismic activity of the Earth in planetary scale. The mechanism of a warming up of layers of the mantle and cyclic inversion changes of a climate. According to a developed geodynamic model all layers of the mantle at oscillations and motions of the core under action of its gravitational attraction test wide class of inversion deformations [1]. Thus the part of energy of deformations passes in heat by virtue of dissipation properties of the mantle. Than more intensively oscillations of the core, the more amplitudes of these oscillations, the occur the specified thermal transformations more intensively. As relative displacements of the core have cyclic character, because of cyclic influences on the core-mantle system of external celestial bodies also a formation of heat flows and warmed plume materials (substances) will have also cyclic character. In particular orbital perturbations with Milankovitch's periods in 100 kyr, 41 kyr, etc. will be precisely reflected in variations of the specified thermal flows and, accordingly, a planetary climate. In it the essence of occurrence of cycles of congelations on the Earth [3] consists. If during any period of time the core behaves passively, amplitudes of its oscillations are small the thermal flows to a surface of a planet will be decrease. This geodynamic conditions corresponds to the periods of a cold snap. And on the contrary, if the core and mantle interact actively and make significant oscillations the thermal flows to a surface of a planet accrues. This geodynamic state corresponds to the periods of warming. At drift of the core to the north and its oscillations with accrueing amplitude (for example, in present period) submission of heat in the top layers of the mantle will accrue. It is warmly allocated in all layers of the mantle deformed by an attraction of the drifting and oscillating core. But a base layer is the layer D" ("kitchen of plume-tectonics"). As we know the two mechanisms work for warm redistribution into the Earth. First is a mechanism of convection. In our geodynamical model it has forced nature and is organized and controlled by gravitational action of external celestial bodies and as result has cyclical character. Second mechanism is a plume mechanism which organizes the warmed masses redistributions in higher levels of the mantle, on a bottom of ocean and on a surface of the Earth. In accordance with our geodynamical model mentioned redistribution of warmed mass also has forced character. It is organized and controlled by gravitational cyclic action of the external celestial bodies on core-mantle system. N/S inversion of the natural processes. Reliable an attribute of influence of oscillations of the core on a variation of natural processes is their property of inversion when, for example, activity of process accrues in northern hemisphere and decreases in a southern hemisphere. Such contrast secular changes in northern and southern (N/S) hemispheres have been predicted on the base of geodynamic model [1] and revealed according to observations: from gravimetry measurements of a gravity; in determination of a secular trend of a sea level, as global, and in northern and southern hemispheres; in redistribution of air masses; in geodetic measurements of changes of average radiuses of northern and southern hemispheres; in contrast changes of physical fields, for example, streams of heat, currents and circulation at ocean and an atmosphere, etc. [5]. The geodynamic mechanism [1] also unequivocally specifies, that the secular trend in global climatic characteristics of the Earth, and also inversion and asymmetric tendencies of change of a climate, in its northern and southern hemispheres in present period should be observed. The hemispherical asymmetry of global heat flows. In the paper [6] authors have shown that the mean heat flow of the Southern Hemisphere is 99.3 mW/m2, significantly higher than that of the Northern Hemisphere (74.0 mW/m2). The mantle heat loss from the Southern Hemisphere is 22.1 × 1012 W, as twice as that from the Northern Hemisphere (10.8 × 1012 W). The authors believe that this hemispherical asymmetry of global heat loss is originated by the asymmetry of geographic distribution of continents and oceans. In accordance with our geodynamical model discussed assymmetry of heat flows distribution with respect the Earth's hemispheres in first caused by eccentric position of the Earth core with respect to the mantle (displaced in present geological epoch in direction to Brasil). Of course the asymmetric distribution of heat loss is a long-term phenomenon in the geological history. But in present epoch due to drift of the core to the North we must observe some increasing of the heat flow of the Northern hemisphere and decreasing of the heat flow of the Southern hemisphere. In reality mentioned changes of heat flows are contrast (asymmetrical) and can have general tendency of increasing heat flows in both hemispheres (due to activization of relative oscillations of the core and mantle relatively polar axis). Contrast secular warming of Northern and Southern hemispheres of the Earth in present epoch. Dependence of warming from latitude. And warm flows are asymmetrically, more intensively warm is redistributed in northern hemisphere of the Earth and less intensively in a southern hemisphere. From here it follows, that the phenomenon of more intensive warming up of northern hemisphere, rather than southern in present period should be observed. Data of climatic observations (in first temperature trends for various latitude belts). More detailed analysis shows, that the phenomenon of warming in different form is shown in various latitudinal belts of the Earth. This phenomenon is more clearly shown in latitudinal belts further situated on latitude from South Pole, i.e. in high northern latitudes. Really, the trend of increase of temperature in northern hemisphere is characterized by greater rate, than a trend of temperature in a southern hemisphere. And not only trend components of temperatures increase with increasing of latitudes from southern pole to northern pole, but also amplitudes of decade fluctuations of temperature in high northern breadthes are more bigger than in southern hemisphere. Thus again it is necessary to expect a contrast and asymmetry in decade variations of temperatures in northern and southern hemispheres (smaller variations in a southern hemisphere). References [1] Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, M., VINITI, pp. 45-97. In Russian. [2] Barkin Yu.V. (2009) Moons and planets: mechanism of their life. Proceedings of International Conference 'Astronomy and World Heritage: across Time and Continents' (Kazan, 19-24 August 2009). KSU, pp. 142-161. [3] Barkin Yu.V. (2004) Dynamics of the Earth shells and variations of paleoclimate. Proceedings of Milutin Milankovitch Anniversary Symposium 'Paleoclimate and the Earth climate system' (Belgrade, Serbia, 30 August - 2 September, 2004). Belgrade, Serbian Academy of Sciences and Art, pp. 161-164. [4] Barkin Yu.V. (2007) Inversion of periodic and trend variations of climate in opposite hemispheres of the Earth and their mechanism. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007) (P) - IAPSO, JPS001 'Interannual and Interdecadal Climate Variability', p. 1674. www. iugg2007perugia.it. [5] Barkin Yu.V. (2008) Secular polar drift of the core in present epoch: geodynamical and geophysical consequences and confirmations. General and regional problems of tectonics and geodynamics. Materials of XLI Tectonic Conference. V. 1. -M.:GEOS. p. 55-59. In Russian. [6] Yang Wang, Jiyang Wangand Zongji Ma (1998) On the asymmetric distribution of heat loss from the Earth's interior. Chinese Science Bulletin, Volume 43, Number 18 , p. 1566-1570.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religious+AND+belief&pg=5&id=EJ979082','ERIC'); return false;" href="https://eric.ed.gov/?q=religious+AND+belief&pg=5&id=EJ979082"><span>Faith and Reason in a Post Secular Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Radford, Mike</p> <p>2012-01-01</p> <p>The problems that this article seeks to address are those that are raised in the context of the bilateralism that is established when we think in terms of secularism as primarily orientated towards reason and post secularism, towards faith. The objective of the article is to show that the distinction between the two can be collapsed. Post…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religion&pg=5&id=EJ931485','ERIC'); return false;" href="https://eric.ed.gov/?q=religion&pg=5&id=EJ931485"><span>"Doing the Secular": Academic Practices in the Study of Religion at Two Danish Universities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Johansen, Birgitte Schepelern</p> <p>2011-01-01</p> <p>The academic study of religion at the public university often presents itself as a secular, non-religious, scientific endeavor. The identity of the study is thus firmly rooted within one of the central secular-religious divides, namely that between science and religion. Based on the assumption that such distinctions between religion and the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religion&pg=6&id=EJ1030216','ERIC'); return false;" href="https://eric.ed.gov/?q=religion&pg=6&id=EJ1030216"><span>One Size Does Not Fit All: Complexity, Religion, Secularism and Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Davies, Lynn</p> <p>2014-01-01</p> <p>The continuing incidence of extremist acts committed in the name of religion underscores the need to examine the interplay between religion and learning. This article argues for a secular foundation in society and school to protect against religion contributing to conflict and extremism. However, this is not a hard version of secularism, but a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Loss+AND+cultures&pg=5&id=EJ1103617','ERIC'); return false;" href="https://eric.ed.gov/?q=Loss+AND+cultures&pg=5&id=EJ1103617"><span>The Secular University and Its Critics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jobani, Yuval</p> <p>2016-01-01</p> <p>Universities in the USA have become bastions of secularity in a distinctly religious society. As such, they are subjected to a variety of robust and rigorous religious critiques. In this paper I do not seek to engage in the debate between the supporters of the secular university and its opponents. Furthermore, I do not claim to summarize the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Romi&pg=2&id=EJ751051','ERIC'); return false;" href="https://eric.ed.gov/?q=Romi&pg=2&id=EJ751051"><span>Disruptive Behaviour in Religious and Secular High Schools: Teachers' and Students' Attitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Romi, Shlomo</p> <p>2004-01-01</p> <p>This two-phase study, conducted in religious and secular high schools, investigated the attitudes of teachers and students to disruptive behaviour. The first phase examined a religious school, then applied the same research tools to a secular school. It was assumed that differences of attitude would be found, with teachers viewing disruptive…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Department+AND+War&pg=5&id=EJ930710','ERIC'); return false;" href="https://eric.ed.gov/?q=Department+AND+War&pg=5&id=EJ930710"><span>Unholy Trinity? Secularism Institute Renews Liberal Arts Curriculum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Keysar, Ariela</p> <p>2010-01-01</p> <p>Secularism is controversial in today's political debates, championed by some and vilified by others. So when Trinity College in Hartford, Conn., opened a center for the study of secularism in September 2005, some people worried that it could become a source of friction on campus--yet another battleground in the culture wars that are wreaking havoc…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=world&pg=6&id=EJ1155363','ERIC'); return false;" href="https://eric.ed.gov/?q=world&pg=6&id=EJ1155363"><span>Habermas and the Meaning of the Post-Secular Society: Complementary Learning Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Welton, Michael R.</p> <p>2014-01-01</p> <p>This essay argues that if social justice is to prevail in our world, we must understand the post-secular nature of our globalized society as a prerequisite for moving beyond "might is right" to national and international relations that heed all voices towards evidence-based interaction. Our post-secular world and postmetaphysical…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960011482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960011482"><span>An a priori model for the reduction of nutation observations: KSV(1994.3) nutation series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herring, T. A.</p> <p>1995-01-01</p> <p>We discuss the formulation of a new nutation series to be used in the reduction of modern space geodetic data. The motivation for developing such a series is to develop a nutation series that has smaller short period errors than the IAU 1980 nutation series and to provide a series that can be used with techniques such as the Global Positioning System (GPS) that have sensitivity to nutations but can directly separate the effects of nutations from errors in the dynamical force models that effect the satellite orbits. A modern nutation series should allow the errors in the force models for GPS to be better understood. The series is constructed by convolving the Kinoshita and Souchay rigid Earth nutation series with an Earth response function whose parameters are partly based on geophysical models of the Earth and partly estimated from a long series (1979-1993) of very long baseline interferometry (VLBI) estimates of nutation angles. Secular rates of change of the nutation angles to represent corrections to the precession constant and a secular change of the obliquity of the ecliptic are included in the theory. Time dependent amplitudes of the Free Core Nutation (FCN) that is most likely excited by variations in atmospheric pressure are included when the geophysical parameters are estimated. The complex components of the prograde annual nutation are estimated simultaneously with the geophysical parameters because of the large contribution to the nutation from the S(sub 1) atmospheric tide. The weighted root mean square (WRMS) scatter of the nutation angle estimates about this new model are 0.32 mas and the largest correction to the series when the amplitudes of the ten largest nutations are estimated is 0.18 +/- 0.03 mas for the in phase component of the prograde 18. 6 year nutation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP43D..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP43D..03K"><span>Global Synthesis of Common Era Hydroclimate using Water Isotope Proxies from Multiple Archives: First Results from the PAGES Iso2k Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konecky, B. L.; Partin, J. W.; Conroy, J. L.; Fischer, M.; Jones, M.; Jonkers, L.; McKay, N.; Stevenson, S.; Thompson, D. M.; Tyler, J. J.; Churakova (Sidorova), O.; Comas-Bru, L.; Dassie, E. P.; Dee, S.; DeLong, K. L.; Falster, G.; Martrat, B.</p> <p>2017-12-01</p> <p>Global, multi-proxy paleoclimate data syntheses for the Common Era (CE) have revealed a long-term cooling over the past millennium followed by a recent warming, with possible multi-decadal to centennial temperature variability in some regions. However, changes in atmospheric-oceanic circulation or hydroclimate have yet to be assessed on a global scale. Excellently suited to this purpose are proxies for the δ18O and δD of environmental waters found in glacier and ground ice, speleothems, corals, tree rings, and lake and marine sediments, which track common signals related to circulation and hydroclimate. Here, we utilize the new PAGES Iso2k database, a global compilation of CE δ18O and δD records, to investigate spatiotemporal variability and secular trends in global hydroclimate during the past 2 kyr. Overall, subtle but robust circulation shifts are apparent during the CE. We find preliminary evidence for secular trends in δ18O of lake water, precipitation/soil water, and seawater, with the direction and magnitude of trends varying by the type of environmental water (e.g., precipitation vs. seawater) and by region. We also find evidence for centennial-scale variations in regional δ18O and δD, for example a basin-wide Atlantic δ18Oseawater anomaly emerging during the 18th century and possible freshening of the western Pacific during the 20th century. On land, latitudinal trends in mean CE δ18Olake are consistent with present day gradients of δ18Oprecipitation, with evaporation exerting additional strong influence at mid-latitudes. In the ocean, coral δ18O in the western equatorial Pacific is found to reflect salinity rather than (or in addition to) temperature, providing potential quantitative constraints on past moisture balance from corals. We evaluate the dynamics of these spatiotemporal patterns through comparison with isotope-enabled model simulations, discuss relevant climatic inferences, and reexamine proxy interpretations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=guns&pg=5&id=EJ1132426','ERIC'); return false;" href="https://eric.ed.gov/?q=guns&pg=5&id=EJ1132426"><span>Ten-Year Secular Trends in Youth Violence: Results from the Philadelphia Youth Risk Behavior Survey 2003-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pool, Andrew C.; Patterson, Freda; Luna, Ingrid Y.; Hohl, Bernadette; Bauer, Katherine W.</p> <p>2017-01-01</p> <p>Background: Youth violence reduction is a public health priority, yet few studies have examined secular trends in violence among urban youth, who may be particularly vulnerable to numerous forms of violence. This study examines 10-year secular trends in the prevalence of violence-related behaviors among Philadelphia high school students. Methods:…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.4139H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.4139H"><span>Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamers, Adrian S.</p> <p>2018-05-01</p> <p>We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI33B0414T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI33B0414T"><span>Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.</p> <p>2017-12-01</p> <p>Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981PhDT........78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981PhDT........78K"><span>Numerical Modeling of Climatic Change from the Terminus Record of Lewis Glacier, Mount Kenya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruss, Phillip Donald</p> <p></p> <p>Over the last 100 years, the glaciers and lakes of East Africa have undergone dramatic change in response to climatic forcing. However, the available conventional meterological series have not proven sufficient to explain these environmental events. The secular climatic change at Lewis Glacier, Mount Kenya (0(DEGREES)9'S, 37(DEGREES)19'E), is reconstructed from its terminus record documented since 1893. The short-time-step numerical model developed for this study consists of climate and ice dynamics segments. The climate segment directly computes the effect on the net balance of change in the four forcings: precipitation, albedo, cloudiness, and temperature. The flow segment calculates the dynamic glacier response to net balance variation. Climatic change occurs over a wide range of time scales. Each glacier responds in a unique fashion to this spectrum of climatic forcings. The response of the Lewis terminus extent to repeated sinusoidal fluctuation in the net balance is calculated. The net balance versus elevation profile is separately translated along the orthogonal balance and elevation axes. Net balance amplitudes of 0.1 to 0.5 m a('-1) of ice and 10 to 50 m elevation, respectively, and periods ranging from 20 to 1000 years are covered. Consideration of the Lewis response is perspective with similar results for Hintereisferner, Storglaciaren, and Berendon and South Cascade Glaciers identifies general characteristics of the time lag and amplitude of the terminus response. The magnitude and timing of the change in only one of the climatic forcings precipitation, albedo, cloudiness, or temperature necessary to produce the retreat of the Lewis terminus from its late 19th century maximum are computed. Equivalent changes for two scenarios of simultaneous variation, namely precipitation/albedo/cloudiness and temperature/albedo, are also estimated. These numerical results are interpreted in the light of long-term lake level, river flow, and instrumental information. A decrease in the annual precipitation of about 160 (+OR-) 70 mm between the early 1880's and the very beginning of the 20th century followed by a secular air temperature rise of 0.35 (+OR-) 0.2(DEGREES)C during the first half of the 1900's, with most warming occurring after about 1920--these climatic changes together with associated albedo and cloudiness variation constitute the most likely cause of the Lewis Glacier wastage during the last 100 years. The modeling and interpretation techniques developed offer the potential for deriving climatic information from the long terminus records and dated geological evidence of past ice extents available for other glaciers. Given the difficulty of documenting climatic change by conventional techniques, the possible role for glaciers and other climate -sensitive environmental components in the monitoring of recent climatic change should be explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.185.1220P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.185.1220P"><span>A new 200 Ma paleomagnetic pole for Africa, and paleo-secular variation scatter from Central Atlantic Magmatic Province (CAMP) intrusives in Morocco (Ighrem and Foum Zguid dykes)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palencia-Ortas, A.; Ruiz-Martínez, V. C.; Villalaín, J. J.; Osete, M. L.; Vegas, R.; Touil, A.; Hafid, A.; McIntosh, G.; van Hinsbergen, D. J. J.; Torsvik, T. H.</p> <p>2011-06-01</p> <p>Available apparent polar wander (APW) paths for the 200 Ma configuration of Pangea, just prior to the opening of the Central Atlantic Ocean, differ as much as 10o in arc length. Here, we add new data from northwest Africa for this time, obtained from the northeast-trending Foum-Zguid and Ighrem dykes (ca. 200 Ma). These dykes form part of the northern domain of the Central Atlantic Magmatic Province (CAMP), and crosscut the Anti-Atlas Ranges in Morocco, and compositionally correspond to quartz-normative tholeiites intruded in continental lithosphere shortly before the opening of the Central Atlantic Ocean. The Foum-Zguid dyke has been intensively studied, whereas the Ighrem dyke has received less scientific focus. We sampled both dykes for paleomagnetic investigation along 100 km of each dyke (12 sites for Foum-Zguid and 11 for Ighrem, 188 samples included in the final analyses). Rock magnetic experiments indicate a mixture of multidomain and single-domain magnetite and/or low-Ti titanomagnetite particles as the principal remanence carriers. In both dykes, the primary nature of the characteristic remanent magnetization is supported by positive contact tests, related to Fe-metasomatism or baked overprints of the corresponding sedimentary country rocks. The directions of the characteristic magnetization exhibit exclusively normal polarity. Site-mean virtual geomagnetic poles are differently grouped in each dyke, suggesting distinct geomagnetic secular variation records. The Foum-Zguid paleomagnetic pole (N= 12, PLat= 67.9°N, PLon= 247.9°E, κ= 125, A95= 3.9°) plots close to that of Ighrem (N= 11, PLat= 78.4°N, PLon= 238.2°E, κ= 47, A95= 6.7°), confirming those mineralogical and geochemical evidences supporting that they represent dissimilar magmatic stages. Virtual geomagnetic poles dispersion from both dykes (S= 10.5°13.0°8.1°) is in line with those obtained from recent studies of a CAMP-related dyke in Iberia and results from CAMP lavas in the Argana basin. These three new estimates of paleosecular variation at low latitudes around the Triassic-Jurassic boundary are concordant with a recently proposed dispersion curve for the Jurassic but suggest a slightly lower geomagnetic scatter than considered so far. After combining results from both dykes, the resulting paleomagnetic pole (PLat= 73.0°N, PLon= 244.7°E, N= 23, κ= 55, A95= 4.1°) is statistically compared with existing and coeval African paleopoles, and with global synthetic 200 Ma running mean poles in northwest Africa coordinates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999Litho..48..153D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999Litho..48..153D"><span>The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.</p> <p>1999-09-01</p> <p>Incorporating upper mantle differentiation through decompression melting in a numerical mantle convection model, we demonstrate that a compositionally distinct root consisting of depleted peridotite can grow and remain stable during a long period of secular cooling. Our modeling results show that in a hot convecting mantle partial melting will produce a compositional layering in a relatively short time of about 50 Ma. Due to secular cooling mantle differentiation finally stops before 1 Ga. The resulting continental root remains stable on a billion year time scale due to the combined effects of its intrinsically lower density and temperature-dependent rheology. Two different parameterizations of the melting phase-diagram are used in the models. The results indicate that during the Archaean melting occurred on a significant scale in the deep regions of the upper mantle, at pressures in excess of 15 GPa. The compositional depths of continental roots extend to 400 km depending on the potential temperature and the type of phase-diagram parameterization used in the model. The results reveal a strong correlation between lateral variations of temperature and the thickness of the continental root. This shows that cold regions in cratons are stabilized by a thick depleted root.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018569','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018569"><span>Late Quaternary variations in relative sea level due to glacial cycle polar wander</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bills, B.G.; James, T.S.</p> <p>1996-01-01</p> <p>Growth and decay of continental ice sheets can excite significant motion of the Earth's rotation pole and cause a complex spatio-temporal pattern of changes in relative sea level. These two effects have generally been considered separately, but may interact in important ways. In particular, a simple model of the melting of the Laurentide ice sheet causes a uniform eustatic sea level rise of 55 m, and also induces a motion of the rotation pole by 0.1 to 1 degree, depending on viscosity structure in the mantle. This motion produces a secular pole tide, which is a spherical harmonic degree 2, order 1 component of the relative sea level pattern, with peak-to-peak amplitude of 20 to 40 m. The maximum effect is along the great circle passing through the path of the pole and at latitudes of ??45??. This secular pole tide has been ignored in most previous attempts to estimate ice sheet loading history and mantle viscosity from global patterns of relative sea level change. It has a large influence along the East coast of North America and the West coast of South America, and significantly contributes to present day rates of relative sea level change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053271&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053271&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Global-scale modes of surface temperature variability on interannual to century timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, Michael E.; Park, Jeffrey</p> <p>1994-01-01</p> <p>Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24958451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24958451"><span>Sleep behavior and unemployment conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antillón, Marina; Lauderdale, Diane S; Mullahy, John</p> <p>2014-07-01</p> <p>Recent research has reported that habitually short sleep duration is a risk factor for declining health, including increased risk of obesity, diabetes and coronary heart disease. In this study we investigate whether macroeconomic conditions are associated with variation in mean sleep time in the United States, and if so, whether the effect is procyclical or countercyclical. We merge state unemployment rates from 2003 through 2012 with the American Time Use Survey, a nationally representative sample of adults with 24h time diaries. We find that higher aggregate unemployment is associated with longer mean sleep duration, with each additional point of state unemployment associated with an additional average 0.83 min of sleep (p<0.001), after adjusting for a secular trend of increasing sleep over the time period. Despite a national poll in 2009 that found one-third of Americans reporting losing sleep over the economy, we do not find that higher state unemployment is associated with more sleeplessness. Instead, we find that higher state unemployment is associated with less frequent time use described as "sleeplessness" (marginal effect=0.05 at 4% unemployment and 0.034 at 14% unemployment, p<0.001), after controlling for a secular trend. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EP%26S...62..787F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EP%26S...62..787F"><span>Evaluation of candidate geomagnetic field models for IGRF-11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.</p> <p>2010-10-01</p> <p>The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP21A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP21A..02C"><span>The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Constable, C.</p> <p>2017-12-01</p> <p>Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow configuration for several millennia.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..262..140J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..262..140J"><span>The current impact flux on Mars and its seasonal variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>JeongAhn, Youngmin; Malhotra, Renu</p> <p>2015-12-01</p> <p>We calculate the present-day impact flux on Mars and its variation over the martian year, using the current data on the orbital distribution of known Mars-crossing minor planets. We adapt the Öpik-Wetherill formulation for calculating collision probabilities, paying careful attention to the non-uniform distribution of the perihelion longitude and the argument of perihelion owed to secular planetary perturbations. We find that, at the current epoch, the Mars crossers have an axial distribution of the argument of perihelion, and the mean direction of their eccentricity vectors is nearly aligned with Mars' eccentricity vector. These previously neglected angular non-uniformities have the effect of depressing the mean annual impact flux by a factor of about 2 compared to the estimate based on a uniform random distribution of the angular elements of Mars-crossers; the amplitude of the seasonal variation of the impact flux is likewise depressed by a factor of about 4-5. We estimate that the flux of large impactors (of absolute magnitude H < 16) within ±30° of Mars' aphelion is about three times larger than when the planet is near perihelion. Extrapolation of our results to a model population of meter-size Mars-crossers shows that if these small impactors have a uniform distribution of their angular elements, then their aphelion-to-perihelion impact flux ratio would be 11-15, but if they track the orbital distribution of the large impactors, including their non-uniform angular elements, then this ratio would be about 3. Comparison of our results with the current dataset of fresh impact craters on Mars (detected with Mars-orbiting spacecraft) appears to rule out the uniform distribution of angular elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6677Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6677Z"><span>High resolution paleo-geomagnetic field variations as recorded in sediments from Prince William Sound, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziegler, Leah; Stoner, Joseph</p> <p>2013-04-01</p> <p>The dynamic changes in the Earth's magnetic field, caused by fluid motions in its outer core, can be captured in global marine sediments. Here we extend recent efforts to reconstruct Holocene paleomagnetic secular variation and environmental conditions in the mid-high latitude North Pacific with analyses of a marine sediment core taken from Prince William Sound, southern Alaska. Natural and laboratory remanent magnetizations were studied by progressive alternating field (AF) demagnetization of u-channel samples from jumbo piston core EW0408-95JC (60.66278N, 147.70847W, water depth 745m). The lithology is monitored by physical properties measurements, including CT Scans and core descriptions. The lithology of the upper 8.5 m of the 17.6 meter core consists primarily of magnetically homogenous bioturbated muds. Component directions calculated by PCA analysis are characterized by low MAD values (<4°) with inclinations consistent with GAD predictions and declinations varying in a manner consistent with PSV. Normalized remanences are comparable using a variety of normalizers and show minimal scatter through demagnetization suggesting that reliable paleointenisty estimates may be preserved. A detailed chronology developed from calibrated radiocarbon dating of benthic forams shows that the 8.5m spans ~1500 years, and yields sedimentation rates of several hundred cm/kyr - ultra high for marine sediments. Comparison with Pacific Northwest and broader North American records, provides a degree of reproducibility and allows us to assess the spatial scale of signal coherence at centennial resolution . The resulting record of paleosecular variation (PSV) and relative paleointensity are consistent with predictions from global geomagnetic field models, yet allow investigations of rates of change of the local field, that cannot be accessed from global field models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...575A..64N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...575A..64N"><span>Efficiency of ETV diagrams as diagnostic tools for long-term period variations. II. Non-conservative mass transfer, and gravitational radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.</p> <p>2015-03-01</p> <p>Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of gravitational radiation proved to be rather undetectable, except for systems with physical characteristics that only refer to cataclysmic variables. Conclusions: The monotonicity of the period variations and the curvature of the respective ETV diagrams depend strongly on the accretion mode and the degree of conservatism of the transfer process. Unlike the hot-spot effects, the Lagrangian points L2 and L3 support very efficient routes of strong angular momentum loss. It is further shown that escape of mass via the L3 point - when the donor is the less massive component - safely provides critical mass ratios above which the period is expected to decrease, no matter how intense the process is.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcASn..57..252X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcASn..57..252X"><span>The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, M. H.</p> <p>2016-03-01</p> <p>Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA470541','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA470541"><span>Secular Evolution of Spiral Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-01-01</p> <p>recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=SEO&pg=3&id=EJ1029312','ERIC'); return false;" href="https://eric.ed.gov/?q=SEO&pg=3&id=EJ1029312"><span>What Lies between the Religious and the Secular?: Education beyond the Human</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Seo, Yong-Seok</p> <p>2014-01-01</p> <p>The current age is characterised by many as secular, and a source of such a characterisation can be found in the Nietzschean claim that thoughts about there being some ultimate reality have to be jettisoned, and human existence and the world need to be embraced as they are. That claim is renewed by some secular thinkers who insist that education…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7607635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7607635"><span>Intersection of economics, history, and human biology: secular trends in stature in nineteenth-century Sioux Indians.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prince, J M</p> <p>1995-06-01</p> <p>An unusual confluence of historical factors may be responsible for nineteenth-century Sioux being able to sustain high statures despite enduring adverse conditions during the early reservation experience. An exceptionally long span of Dakota Sioux history was examined for secular trends using a cross-sectional design. Two primary sources were used: One anthropometric data set was collected in the late nineteenth century under the direction of Franz Boas, and another set was collected by James R. Walker in the early twentieth century. Collectively, the data represent the birth years between 1820 and 1880 for adult individuals 20 years old or older. Adult heights (n = 1197) were adjusted for aging effects and regressed on age, with each data set and each sex analyzed separately. Tests for differences between the adult means of age cohorts by decade of birth (1820-1880) were also carried out. Only one sample of adults showed any convincing secular trend (p < 0.05): surprisingly, a positive linear trend for Walker's sample of adult males. This sample was also the one sample of adults that showed significant differences between age cohorts. The failure to find any negative secular trend in this population of Amerindians is remarkable, given the drastic socioeconomic changes that occurred with the coming of the reservation period (ca. 1868). Comparisons with contemporary white Americans show that the Sioux remained consistently taller than whites well into the reservation period and that Sioux children (Prince 1989) continued to grow at highly favorable rates during this time of severe conditions. A possible explanation for these findings involves the relatively favorable level of subsistence support received by most of the Sioux from the US government, as stipulated by various treaties. Conservative estimates suggest that the Sioux may have been able to sustain net levels of per capita annual meat consumption that exceeded the US average for several years before 1893.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...580A.109D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...580A.109D"><span>Infrequent visitors of the Kozai kind: the dynamical lives of 2012 FC71, 2014 EK24, 2014 QD364, and 2014 UR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Fuente Marcos, C.; de la Fuente Marcos, R.</p> <p>2015-08-01</p> <p>Context. Asteroids with semi-major axes very close to that of a host planet can avoid node crossings when their nodal points are at perihelion and at aphelion. This layout protects the asteroids from close encounters, and eventual collisions, with the host planet. Aims: Here, we study the short-term dynamical evolution of four recently discovered near-Earth asteroids (NEAs) - 2012 FC71, 2014 EK24, 2014 QD364, and 2014 UR - that follow very Earth-like orbits. Methods: Our analysis is based on results of direct N-body calculations that use the most updated ephemerides and include perturbations from the eight major planets, the Moon, the barycentre of the Pluto-Charon system, and the three largest asteroids. Results: These four NEAs exhibit an orbital evolution unlike any other known near-Earth object (NEO). Beyond horseshoe, tadpole, or quasi-satellite trajectories, they follow co-orbital passing orbits relative to the Earth within the Kozai domain. Our calculations show that secular interactions induce librations of their relative argument of perihelion with respect to our planet but also to Venus, Mars, and Jupiter. Secular chaos is also present. The size of this transient population is probably large. Conclusions: Although some of these NEAs can remain orbitally stable for many thousands of years, their secular dynamics are substantially more complicated than commonly thought and cannot be properly described within the framework of the three-body problem alone owing to the overlapping of multiple secular resonances. Objects in this group are amongst the most atypical NEOs regarding favourable visibility windows because these are separated in time by many decades or even several centuries. Figures 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, Table 2, and Appendix A are available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9564088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9564088"><span>Nihilism, relativism, and Engelhardt.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wreen, M</p> <p>1998-01-01</p> <p>This paper is a critical analysis of Tristram Engelhardt's attempts to avoid unrestricted nihilism and relativism. The focus of attention is his recent book, The Foundations of Bioethics (Oxford University Press, 1996). No substantive or "content-full" bioethics (e.g., that of Roman Catholicism or the Samurai) has an intersubjectively verifiable and universally binding foundation, Engelhardt thinks, for unaided secular reason cannot show that any particular substantive morality (or moral code) is correct. He thus seems to be committed to either nihilism or relativism. The first is the view that there is not even one true or valid moral code, and the second is the view that there is a plurality of true or valid moral codes. However, Engelhardt rejects both nihilism and relativism, at least in unrestricted form. Strictly speaking, he himself is a universalist, someone who believes that there is a single true moral code. Two argumentative strategies are employed by him to fend off unconstrained nihilism and relativism. The first argues that although all attempts to establish a content-full morality on the basis of secular reason fail, secular reason can still establish a content-less, purely procedural morality. Although not content-full and incapable of providing positive direction in life, much less a meaning of life, such a morality does limit the range of relativism and nihilism. The second argues that there is a single true, content-full morality. Grace and revelation, however, are needed to make it available to us; secular reason alone is not up to the task. This second line of argument is not pursued in The Foundations at any length, but it does crop up at times, and if it is sound, nihilism and relativism can be much more thoroughly routed than the first line of argument has it. Engelhardt's position and argumentative strategies are exposed at length and accorded a detailed critical examination. In the end, it is concluded that neither strategy will do, and that Engelhardt is probably committed to some form of relativism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMGP21B1304H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMGP21B1304H"><span>Holocene Paleosecular Variation From Dated Lava Flows on East Maui (Hawaii)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrero-Bervera, E.; Valet, J.</p> <p>2006-12-01</p> <p>A quasi-static inclination anomaly and low secular variation seem to dominate the historical and the long-term time averaged field in central Pacific. The period covering the past 10 kyr is crucial to study the field variability and to fill the gap between historical field measurements and long-term paleomagnetic records. We have conducted a paleomagnetic study of 13 sites of basaltic lava flows from the Maui island with 14C ages between 10.3 and 0.015 Ka. Two other sites dated at 45 Ka and 730 Ka were also sampled. Eight to ten samples from each site were demagnetized using thermal treatment and companion specimens from the same samples were demagnetized by alternating fields (af). Thermomagnetic and hysteresis measurements indicated that magnetite (575 degrees C) in fine grains was the dominant magnetic carrier, although in many cases we observed also a low-temperature phase which is likely carried by titanomagnetite with low titanium content. The existence of relatively high coercivities associated with these two mineralogical phases generated overlapping components which could not be properly isolated using af demagnetization. Successful results were obtained after thermal demagnetization for 13 sites with a mean inclination of 34.2 degrees +/-9 degrees. The mean inclination (Inc = 36.3 degrees) of the eleven sites younger than 10.5 Ka is very close to the value (37 degrees) of the geocentric axial dipole (GAD) at the site latitude, but the angular dispersion of 6.7 degrees for the VGPs about the spin axis is significantly lower than the predictions of the models of paleosecular variation at this latitude. The inclination variations for the past 10 Kyr are in excellent agreement with the very detailed dataset which has previously been obtained from the Big Island of Hawaii. The mean inclination is slightly lower than expected but this is likely caused by the lack of records between 5 and 7 ka B.P. Thus, there is no striking evidence for a magnetic anomaly under Hawaii during this period and the recently published records obtained for the past millions of years neither show any conclusive evidence in favor of a long-term persistent anomaly. However all studies report a very low dispersion of the VGPs which reflects low secular variation and likely low non-dipole field during the Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.740E.274B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.740E.274B"><span>Geomagnetic Jerks in the Swarm Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, William; Beggan, Ciaran; Macmillan, Susan</p> <p>2016-08-01</p> <p>The timely provision of geomagnetic observations as part of the European Space Agency (ESA) Swarm mission means up-to-date analysis and modelling of the Earth's magnetic field can be conducted rapidly in a manner not possible before. Observations from each of the three Swarm constellation satellites are available within 4 days and a database of close-to-definitive ground observatory measurements is updated every 3 months. This makes it possible to study very recent variations of the core magnetic field. Here we investigate rapid, unpredictable internal field variations known as geomagnetic jerks. Given that jerks represent (currently) unpredictable changes in the core field and have been identified to have happened in 2014 since Swarm was launched, we ask what impact this might have on the future accuracy of the International Geomagnetic Reference Field (IGRF). We assess the performance of each of the IGRF-12 secular variation model candidates in light of recent jerks, given that four of the nine candidates are novel physics-based predictive models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16759353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16759353"><span>Secular humanism and "scientific psychiatry".</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szasz, Thomas</p> <p>2006-04-25</p> <p>The Council for Secular Humanism identifies Secular Humanism as a "way of thinking and living" committed to rejecting authoritarian beliefs and embracing "individual freedom and responsibility ... and cooperation." The paradigmatic practices of psychiatry are civil commitment and insanity defense, that is, depriving innocent persons of liberty and excusing guilty persons of their crimes: the consequences of both are confinement in institutions ostensibly devoted to the treatment of mental diseases. Black's Law Dictionary states: "Every confinement of the person is an 'imprisonment,' whether it be in a common prison, or in private house, or in the stocks, or even by forcibly detaining one in the public streets." Accordingly, I maintain that Secular Humanism is incompatible with the principles and practices of psychiatry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740005454','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740005454"><span>Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frey, H.</p> <p>1973-01-01</p> <p>Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..279...92G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..279...92G"><span>Corrigendum for "New and revised palaeomagnetic secular variation records from post-glacial volcanic materials in New Zealand" [Phys. Earth Planet. Int. 269 (2017) 1-17</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greve, Annika; Turner, Gillian M.</p> <p>2018-06-01</p> <p>Since publication we have noticed mistakes in the calculation of the flow mean palaeointensities. These are generally within the standard error of the mean of each result, and so do not affect the interpretations or overall conclusions of the paper. Tables 2 and 3 of the paper are reproduced below. The reader is referred to the original publication, Greve and Turner (2017) for a full discussion of the study and references. We thank the editors for the opportunity to make these corrections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AcHA...28...91B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AcHA...28...91B"><span>"The captain and canon" C. W. A. von Wahl (1760-1846) (German Title: "Der Hauptmann und Kanonikus" C. W. A. von Wahl (1760-1846) )</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brosche, Peter</p> <p></p> <p>Von Wahl was an active member of the group of independent scholars, who were working in the German states within Goethe's time, and who performed astrometric and geodetic observations and calculations. Here we present some cornerstones of his life; longer intervals of it took place in Allstedt south of the Harz and in Halberstadt. Small scientific assets have been preserved at the Universitäts-Sternwarte Bonn. Therein, a lecture on secular variations of the ecliptic is of singular nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880031725&hterms=perovskite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dperovskite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880031725&hterms=perovskite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dperovskite"><span>Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Xiaoyuan; Jeanloz, Raymond</p> <p>1987-01-01</p> <p>Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68..112F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68..112F"><span>Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, Christopher C.; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars</p> <p>2016-07-01</p> <p>We use more than 2 years of magnetic data from the Swarm mission, and monthly means from 160 ground observatories as available in March 2016, to update the CHAOS time-dependent geomagnetic field model. The new model, CHAOS-6, provides information on time variations of the core-generated part of the Earth's magnetic field between 1999.0 and 2016.5. We present details of the secular variation (SV) and secular acceleration (SA) from CHAOS-6 at Earth's surface and downward continued to the core surface. At Earth's surface, we find evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90°E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the SV up to at least degree 16. The radial field SA at the core surface in 2015 is found to be largest at low latitudes under the India-South-East Asia region, under the region of northern South America, and at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for significant SA in the central Pacific region, for example near Hawaii where radial field SA is observed on either side of a jerk in 2014. On the other hand, little SV or SA has occurred over the past 17 years in the southern polar region. Inverting for a quasi-geostrophic core flow that accounts for this SV, we obtain a prominent planetary-scale, anti-cyclonic, gyre centred on the Atlantic hemisphere. We also find oscillations of non-axisymmetric, azimuthal, jets at low latitudes, for example close to 40°W, that may be responsible for localized SA oscillations. In addition to scalar data from Ørsted, CHAMP, SAC-C and Swarm, and vector data from Ørsted, CHAMP and Swarm, CHAOS-6 benefits from the inclusion of along-track differences of scalar and vector field data from both CHAMP and the three Swarm satellites, as well as east-west differences between the lower pair of Swarm satellites, Alpha and Charlie. Moreover, ground observatory SV estimates are fit to a Huber-weighted rms level of 3.1 nT/year for the eastward components and 3.8 and 3.7 nT/year for the vertical and southward components. We also present an update of the CHAOS high-degree lithospheric field, making use of along-track differences of CHAMP scalar and vector field data to produce a new static field model that agrees well with the MF7 field model out to degree 110.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.462.1029S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.462.1029S"><span>21 year timing of the black-widow pulsar J2051-0827</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaifullah, G.; Verbiest, J. P. W.; Freire, P. C. C.; Tauris, T. M.; Wex, N.; Osłowski, S.; Stappers, B. W.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lazarus, P.; Lyne, A. G.; McKee, J. W.; Perrodin, D.; Possenti, A.; Tiburzi, C.</p> <p>2016-10-01</p> <p>Timing results for the black-widow pulsar J2051-0827 are presented, using a 21 year data set from four European Pulsar Timing Array telescopes and the Parkes radio telescope. This data set, which is the longest published to date for a black-widow system, allows for an improved analysis that addresses previously unknown biases. While secular variations, as identified in previous analyses, are recovered, short-term variations are detected for the first time. Concurrently, a significant decrease of ˜ 2.5 × 10- 3 cm- 3 pc in the dispersion measure associated with PSR J2051-0827 is measured for the first time and improvements are also made to estimates of the proper motion. Finally, PSR J2051-0827 is shown to have entered a relatively stable state suggesting the possibility of its eventual inclusion in pulsar timing arrays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27391569','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27391569"><span>Sacred Spaces: Religious and Secular Coping and Family Relationships in the Neonatal Intensive Care Unit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brelsford, Gina M; Ramirez, Joshua; Veneman, Kristin; Doheny, Kim K</p> <p>2016-08-01</p> <p>Preterm birth is an unanticipated and stressful event for parents. In addition, the unfamiliar setting of the intensive care nursery necessitates strategies for coping. The primary study objective of this descriptive study was to determine whether secular and religious coping strategies were related to family functioning in the neonatal intensive care unit. Fifty-two parents of preterm (25-35 weeks' gestation) infants completed the Brief COPE (secular coping), the Brief RCOPE (religious coping), and the Family Environment Scale within 1 week of their infant's hospital admission. This descriptive study found that parents' religious and secular coping was significant in relation to family relationship functioning. Specifically, negative religious coping (ie, feeling abandoned or angry at God) was related to poorer family cohesion and use of denial. These findings have relevance for interventions focused toward enhancing effective coping for families. Further study of religious and secular coping strategies for neonatal intensive care unit families is warranted in a larger more diverse sample of family members.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Icar..209..863R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Icar..209..863R"><span>Zero secular torque on asteroids from impinging solar photons in the YORP effect: A simple proof</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubincam, David Parry; Paddack, Stephen J.</p> <p>2010-10-01</p> <p>YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack," arise mainly from sunlight reflected off a Solar System object and the infrared radiation emitted by it. We show here, through the most elementary demonstration that we can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245e2079P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245e2079P"><span>Technical Limitations in Merging Secular and Sacred Functions in Monumental Churches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piatkowska, Ksenia</p> <p>2017-10-01</p> <p>The abandonment of churches and their adaptation for secular purposes is a current subject in Europe and worldwide. Most cases involve objects that were desacralized and then rebuilt as a whole object for alternative functions. Thus far, the merging of secular and sacred functions in one monumental Catholic church has not raised any issues. The paper describes the case of St. Catherine’s Church in Gdansk, Poland, where sacred function exists parallel to the new secular function being implemented. The study is based on the authentic, professional experience of the author. It describes the technical limitations arising from the need to ensure destinies for the optimal conditions of both sacred and secular function, while avoiding undesirable interference between them. The author further identifies architectural solutions most relevant to current requirements for protection of sacred zones in the church, for preservation of the monument, and for optimal function of a modern science museum. Significant design issues include: the inviolability of the sacred zone, preservation of the historical value of the monument, proper operation of new secular zones in compliance with contemporary standards of safety, performance of the assumed mission and profitability. The research indicates specific areas where the highest probability of collision exists between the sacred and profane and where technical problems are likely to occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.458.4143S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.458.4143S"><span>Stellar dynamics around a massive black hole - II. Resonant relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sridhar, S.; Touma, Jihad R.</p> <p>2016-06-01</p> <p>We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.484...15N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.484...15N"><span>A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.</p> <p>2018-02-01</p> <p>A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP23C..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP23C..08H"><span>Impact of surface processes and climate variability on clumped isotope thermometry of soil carbonates, southern Central Andes, Argentina (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huntington, K. W.; Peters, N.; Roe, G.; Hoke, G. D.; Eiler, J.</p> <p>2010-12-01</p> <p>Soil carbonates archive a potentially rich record of past climate, but rates of pedogenic carbonate formation, erosion, and deposition impact how the isotopic composition and formation temperature of carbonate-bearing paleosols reflect the local environmental conditions under which they form. We investigate these processes using conventional stable isotope (δ18O and δ13C) and clumped isotope thermometry data for Quaternary pedogenic carbonates from the southern Central Andes at ~33°S, Argentina. The study area spans over 2 km of relief in the Río Mendoza and Río de las Cuevas valleys, accessing a range of mean annual temperature conditions and vegetative cover and exhibiting large seasonal variations in temperature, precipitation, and soil moisture. Variations in soil conditions influence carbonate precipitation and dissolution reactions and the rate and depth of pedogenic carbonate formation. Because soil temperature varies predictably as a function of depth in the soil and seasonal and secular variations in air temperature, clumped isotope thermometry of samples collected in soil pits offers a direct way to estimate the seasonality of pedogenic carbonate formation and potential biases in the long-term climate record. We explore potential complications due to the effects of radiative solar heating on the relationship between air and soil temperatures by examining clumped isotope thermometry results in the context of site-to-site variations in vegetative cover. Temperature estimates from clumped isotope thermometry of pedogenic carbonate collected 5-110 cm below geomorphically stable soil surfaces from 1200-3400 m a.s.l. are compared to temperature profiles predicted by simple rule-based models of soil carbonate formation. The models use climate reanalysis daily diagnostic data (soil temperature, soil moisture, and latent heat flux as a proxy for evaporation) and weather station data as input to assess how varying rates of pedogenic carbonate formation integrated over millennial timescales might impact the geologic record of temperature and isotopic composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP24E..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP24E..03P"><span>Eliminating large-scale magnetospheric current perturbations from long-term geomagnetic observatory data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pick, L.; Korte, M. C.</p> <p>2016-12-01</p> <p>Magnetospheric currents generate the largest external contribution to the geomagnetic field observed on Earth. Of particular importance is the solar-driven effect of the ring current whose fluctuations overlap with internal field secular variation (SV). Recent core field models thus co-estimate this effect but their validity is limited to the last 15 years offering satellite data. We aim at eliminating magnetospheric modulation from the whole geomagnetic observatory record from 1840 onwards in order to obtain clean long-term SV that will enhance core flow and geodynamo studies.The ring current effect takes form of a southward directed external dipole field aligned with the geomagnetic main field axis. Commonly the Dst index (Sugiura, 1964) is used to parametrize temporal variations of this dipole term. Because of baseline instabilities, the alternative RC index was derived from hourly means of 21 stations spanning 1997-2013 (Olsen et al., 2014). We follow their methodology based on annual means from a reduced station set spanning 1960-2010. The absolute level of the variation so determined is "hidden" in the static lithospheric offsets taken as quiet-time means. We tackle this issue by subtracting crustal biases independently calculated for each observatory from an inversion of combined Swarm satellite and observatory data.Our index reproduces the original annual RC index variability with a reasonable offset of -10 nT in the reference time window 2000-2010. Prior to that it depicts a long-term trend consistent with the external dipole term from COV-OBS (Gillet et al., 2013), being the only long-term field model available for comparison. Sharper variations that are better correlated with the Ap index than the COV-OBS solution lend support to the usefulness of our initial modeling approach. Following a detailed sensitivity study of station choice future work will focus on increasing the resolution from annual to hourly means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.416...98H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.416...98H"><span>Independently dated paleomagnetic secular variation records from the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberzettl, Torsten; Henkel, Karoline; Kasper, Thomas; Ahlborn, Marieke; Su, Youliang; Wang, Junbo; Appel, Erwin; St-Onge, Guillaume; Stoner, Joseph; Daut, Gerhard; Zhu, Liping; Mäusbacher, Roland</p> <p>2015-04-01</p> <p>Magnetostratigraphy has been serving as a valuable tool for dating and confirming chronologies of lacustrine sediments in many parts of the world. Suitable paleomagnetic records on the Tibetan Plateau (TP) and adjacent areas are, however, extremely scarce. Here, we derive paleomagnetic records from independently radiocarbon-dated sediments from two lakes separated by 250 km on the southern central TP, Tangra Yumco and Taro Co. Studied through alternating field demagnetization of u-channel samples, characteristic remanent magnetization (ChRM) directions document similar inclination patterns in multiple sediment cores for the past 4000 years. Comparisons to an existing record from Nam Co, a lake 350 km east of Tangra Yumco, a varve-dated record from the Makran Accretionary Wedge, records from Lakes Issyk-Kul and Baikal, and a stack record from East Asia reveal many similarities in inclination. This regional similarity demonstrates the high potential of inclination to compare records over the Tibetan Plateau and eventually date other Tibetan records stratigraphically. PSV similarities over such a large area (>3000 km) suggest a large-scale core dynamic origin rather than small scale processes like drift of the non-dipole field often associated with PSV records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....4613H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....4613H"><span>Archaeomagnetism of a Mediaeval brass melting &working site near Dinant (Belgium) and the suitability of firebricks as geomagnetic field recorders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hus, J.; Geeraerts, R.; Plumier, J.</p> <p>2003-04-01</p> <p>Field directional archaeomagnetic data from several kilns, unearthed in a brass melting and working site in Bouvignes-sur-Meuse (Dinant, Namur province) in Belgium during a rescue excavation, confirm the archaeological dating as 15th century A.D. for the main site activities.The archaeomagnetic dates, obtained using reference secular variation curves for France and Great Britain, lead to better time constraints for the cessation of kiln operations. Refractory bricks (firebricks), which are used for their chemical and thermal properties, and in particular for their resistance to high temperatures and temperature changes, are not unusual in metal melting &working sites. In the examined site, circular-, square- and oval-shaped kilns, lined with firebricks, were present. The firebricks, which are very porous and coarse-grained, possess a very stable remanent magnetisation and revealed to be suitable geomagnetic field recorders. In the square-shaped kiln two stable magnetisation components could be isolated in the firebricks: a low-temperature component acquired below 420 C, yielding an age near the middle of the 15th century A.D. and a high-temperature component with non-coherent directions. Although the firebricks from the oval-shaped kiln have a very stable, single-component remanent magnetisation, very large non-random deviations in remanence direction in function of the relative azimuth from the centre of the kiln, or with the position of the bricks in the kiln wall, were found. Several hypothesis for the origin of the deviations were tested: anisotropy, refraction and the presence of a local disturbing magnetic source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GGG....10.8003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GGG....10.8003S"><span>Geomagnetic paleointensity between 1300 and 1750 A.D. derived from a bread oven floor sequence in Lübeck, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schnepp, Elisabeth; Lanos, Philippe; Chauvin, Annick</p> <p>2009-08-01</p> <p>Geomagnetic paleointensities have been determined from a single archaeological site in Lübeck, Germany, where a sequence of 25 bread oven floors has been preserved in a bakery from medieval times until today. Age dating confines the time interval from about 1300 A.D. to about 1750 A.D. Paleomagnetic directions have been published from each oven floor and are updated here. The specimens have very stable directions and no or only weak secondary components. The oven floor material was characterized rock magnetically using Thellier viscosity indices, median destructive field values, Curie point determinations, and hysteresis measurements. Magnetic carriers are mixtures of SD, PSD, and minor MD magnetite and/or maghemite together with small amounts of hematite. Paleointensity was measured from selected specimens with the double-heating Thellier method including pTRM checks and determination of TRM anisotropy tensors. Corrections for anisotropy as well as for cooling rate turned out to be unnecessary. Ninety-two percent of the Thellier experiments passed the assigned acceptance criteria and provided four to six reliable paleointensity estimates per oven floor. Mean paleointensity values derived from 22 oven floors show maxima in the 15th and early 17th centuries A.D., followed by a decrease of paleointensity of about 20% until 1750 A.D. Together with the directions the record represents about 450 years of full vector secular variation. The results compare well with historical models of the Earth's magnetic field as well as with a selected high-quality paleointensity data set for western and central Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013478&hterms=zero+one&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dzero%2Bone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013478&hterms=zero+one&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dzero%2Bone"><span>Zero Secular Torque on Asteroids from Impinging Solar Photons in the YORP Effect: A Simple Proof</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, David Perry; Paddack, Stephen J.</p> <p>2010-01-01</p> <p>YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack." arise mainly from sun light reflected off a Solar System object and the infrared radiation emi tted by it. We show here, through the most elementary demonstration that we Can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=esthetic&pg=4&id=ED563578','ERIC'); return false;" href="https://eric.ed.gov/?q=esthetic&pg=4&id=ED563578"><span>"Text-Books and Textpeople" (A. J. Heschel): What Is the Role of the Mehanekh in the Jewish Secular High School in Israel, and What Is the Place of Jewish Texts within That Role?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sela Kol, Aviva Helena</p> <p>2011-01-01</p> <p>My study concerns the teacher knowledge of "mehankhim," teachers in Israeli high schools entrusted to promote students' moral, civic, and social growth. It examines two "mehankhim" from a secular Israeli high school who participated in a long-term professional development program in secular Jewish education, centered by…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1483825','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1483825"><span>Secular humanism and "scientific psychiatry"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Szasz, Thomas</p> <p>2006-01-01</p> <p>The Council for Secular Humanism identifies Secular Humanism as a "way of thinking and living" committed to rejecting authoritarian beliefs and embracing "individual freedom and responsibility ... and cooperation." The paradigmatic practices of psychiatry are civil commitment and insanity defense, that is, depriving innocent persons of liberty and excusing guilty persons of their crimes: the consequences of both are confinement in institutions ostensibly devoted to the treatment of mental diseases. Black's Law Dictionary states: "Every confinement of the person is an 'imprisonment,' whether it be in a common prison, or in private house, or in the stocks, or even by forcibly detaining one in the public streets." Accordingly, I maintain that Secular Humanism is incompatible with the principles and practices of psychiatry. PMID:16759353</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PEPI..133..181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PEPI..133..181H"><span>Geomagnetic field model for the last 5 My: time-averaged field and secular variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatakeyama, Tadahiro; Kono, Masaru</p> <p>2002-11-01</p> <p>Structure of the geomagnetic field has bee studied by using the paleomagetic direction data of the last 5 million years obtained from lava flows. The method we used is the nonlinear version, similar to the works of Gubbins and Kelly [Nature 365 (1993) 829], Johnson and Constable [Geophys. J. Int. 122 (1995) 488; Geophys. J. Int. 131 (1997) 643], and Kelly and Gubbins [Geophys. J. Int. 128 (1997) 315], but we determined the time-averaged field (TAF) and the paleosecular variation (PSV) simultaneously. As pointed out in our previous work [Earth Planet. Space 53 (2001) 31], the observed mean field directions are affected by the fluctuation of the field, as described by the PSV model. This effect is not excessively large, but cannot be neglected while considering the mean field. We propose that the new TAF+PSV model is a better representation of the ancient magnetic field, since both the average and fluctuation of the field are consistently explained. In the inversion procedure, we used direction cosines instead of inclinations and declinations, as the latter quantities show singularity or unstable behavior at the high latitudes. The obtained model gives reasonably good fit to the observed means and variances of direction cosines. In the TAF model, the geocentric axial dipole term ( g10) is the dominant component; it is much more pronounced than that in the present magnetic field. The equatorial dipole component is quite small, after averaging over time. The model shows a very smooth spatial variation; the nondipole components also seem to be averaged out quite effectively over time. Among the other coefficients, the geocentric axial quadrupole term ( g20) is significantly larger than the other components. On the other hand, the axial octupole term ( g30) is much smaller than that in a TAF model excluding the PSV effect. It is likely that the effect of PSV is most clearly seen in this term, which is consistent with the conclusion reached in our previous work. The PSV model shows large variance of the (2,1) component, which is in good agreement with the previous PSV models obtained by forward approaches. It is also indicated that the variance of the axial dipole term is very small. This is in conflict with the studies based on paleointensity data, but we show that this conclusion is not inconsistent with the paleointensity data because a substantial part of the apparent scatter in paleointensities may be attributable to effects other than the fluctuations in g10 itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21730366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21730366"><span>Morphometric distances among five ethnic groups and evaluation of the secular trend in historical Libya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danubio, Maria Enrica; Martorella, Domenico; Rufo, Fabrizio; Vecchi, Elvira; Sanna, Emanuele</p> <p>2011-01-01</p> <p>This study analysed the variations, both in space and time, of 10 body dimensions and 2 anthropometric indexes of 745 adult males belonging to 5 ethnic groups of historical Lybia (el-Haràbi, el-Baraghìts, Marabtìn, Oases inhabitants and Tuareg). The data were collected in the years 1928 and 1932 by Puccioni and Cipriani, two Italian anthropologists. The aim was to reconstruct the biological history of Libya at the time, and thus contribute to the ongoing debate on the evolution of the biological standard of living in developing Countries. The subjects were analysed by ethnicity and by 10-year age groups, after adjusting for age. The results of ANCOVA and Tukey's post-hoc test show that among and between groups there are statistical significant differences overall for armspan, height, head breadth, bizygomatic breadth, biiliac breadth/height and head breadth/head length indexes. By means of the cluster analysis, the el-Haràbi, el-Baraghìts and Marabtìn groups cluster together, whereas the Tuareg and Oases inhabitants cluster separately one from the other and both from the other three ethnic groups. Within-group variations are not very marked in all ethnicities. In general, there is the tendency, not statistically significant, to the reduction and/or stasis of body dimensions from the older to the younger, and the differences are greater among the older than the younger age classes. In conclusion, it can be argued that these groups, all different culturally and geographically, were following the same tendency of stasis of the secular trend of the body dimensions considered in this study, and such stasis persisted since, at least, the last twenty years of the 19th century, when the older were born.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.2131A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.2131A"><span>Reconstruction of secular variation in seawater sulfate concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.</p> <p>2015-04-01</p> <p>Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (<5 mM), rose sharply across the Ediacaran-Cambrian boundary (~5-10 mM), and rose again during the Permian (~10-30 mM) to levels that have varied only slightly since 250 Ma. However, Phanerozoic seawater sulfate concentrations may have been drawn down to much lower levels (~1-4 mM) during short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18821325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18821325"><span>Secular change in the growth status of urban and rural schoolchildren aged 6-13 years in Oaxaca, southern Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malina, Robert M; Peña Reyes, Maria Eugenia; Little, Bertis B</p> <p>2008-01-01</p> <p>Populations in the state of Oaxaca in southern Mexico are at high risk for malnutrition and marginalization. The study compared secular changes in the growth status of urban and rural schoolchildren in the Valley of Oaxaca between the 1970s and 2000. Cross-sectional surveys of boys and girls aged 6-13 years (n = 1472) were carried out in an urban colonia populares in 1972 and 2000 and a rural indigenous community in 1978 and 2000. Height, sitting height and weight were measured; leg length, sitting height ratio, BMI, and prevalence of stunting, underweight, overweight and obesity were calculated. Sex-specific ANCOVA controlling for age was used. Both urban and rural children experienced significant secular gains in linear dimensions, body weight and the BMI between the 1970s and 2000. Estimated rates of secular gain overlapped considerably between urban and rural children. Secular gains in the BMI are significantly greater in urban than rural boys and girls. Urban-rural differences in linear dimensions and body weight in 2000 compared to the 1970s do not differ in either sex, but urban-rural differences in the BMI are greater in boys and girls in 2000 compared to the 1970s. The prevalence of stunting declined while that of overweight and obesity increased. Significant secular increases in body size occurred between the 1970s and 2000, but there was considerable overlap between urban and rural children. Only secular gains in the BMI were significantly greater in urban than rural boys and girls and the magnitudes of urban-rural differences in the BMI were greater in 2000 than in the 1970s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29734662','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29734662"><span>Secular and Religious Social Support Better Protect Blacks than Whites against Depressive Symptoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Assari, Shervin; Moghani Lankarani, Maryam</p> <p>2018-05-04</p> <p>Purpose: Although the protective effect of social support against depression is well known, limited information exists on racial differences in this association. The current study examined Black-White differences in the effects of religious and secular emotional social support on depressive symptoms in a national sample of older adults in the United States. Methods: With a longitudinal prospective design, the Religion, Aging and Health Survey, 2001⁻2004, followed 1493 Black ( n = 734) and White ( n = 759) elderly individuals (age 66 and older) for three years. Race, demographics (age and gender), socio-economics (education and marital status) and frequency of church attendance were measured at baseline in 2001. Secular social support, religious social support, chronic medical conditions and depressive symptoms [8- item Center for Epidemiological Studies-Depression scale (CES-D)] were measured in 2004. Multiple linear regression models were used for data analysis. In the pooled sample, secular and religious social support were both protective against depressive symptoms, net of all covariates. Race interacted with secular ( β = −0.62 for interaction) and religious ( β = −0.21 for interaction) social support on baseline depressive symptoms ( p < 0.05 for both interactions), suggesting larger protections for Blacks compared to Whites. In race-specific models, the regression weight for the effect of secular social support on depressive symptoms was larger for Blacks ( β = −0.64) than Whites ( β = −0.16). Conclusion: We found Black—White differences in the protective effects of secular and religious social support against depressive symptoms. Blacks seem to benefit more from the same level of emotional social support, regardless of its source, compared to Whites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5981240','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5981240"><span>Secular and Religious Social Support Better Protect Blacks than Whites against Depressive Symptoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moghani Lankarani, Maryam</p> <p>2018-01-01</p> <p>Purpose: Although the protective effect of social support against depression is well known, limited information exists on racial differences in this association. The current study examined Black-White differences in the effects of religious and secular emotional social support on depressive symptoms in a national sample of older adults in the United States. Methods: With a longitudinal prospective design, the Religion, Aging and Health Survey, 2001–2004, followed 1493 Black (n = 734) and White (n = 759) elderly individuals (age 66 and older) for three years. Race, demographics (age and gender), socio-economics (education and marital status) and frequency of church attendance were measured at baseline in 2001. Secular social support, religious social support, chronic medical conditions and depressive symptoms [8- item Center for Epidemiological Studies-Depression scale (CES-D)] were measured in 2004. Multiple linear regression models were used for data analysis. Results: In the pooled sample, secular and religious social support were both protective against depressive symptoms, net of all covariates. Race interacted with secular (β = −0.62 for interaction) and religious (β = −0.21 for interaction) social support on baseline depressive symptoms (p < 0.05 for both interactions), suggesting larger protections for Blacks compared to Whites. In race-specific models, the regression weight for the effect of secular social support on depressive symptoms was larger for Blacks (β = −0.64) than Whites (β = −0.16). Conclusion: We found Black—White differences in the protective effects of secular and religious social support against depressive symptoms. Blacks seem to benefit more from the same level of emotional social support, regardless of its source, compared to Whites. PMID:29734662</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8151238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8151238"><span>Talking ethics with strangers: a view from Jewish tradition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Newman, L E</p> <p>1993-12-01</p> <p>The work of H. Tristram Engelhardt provides an important set of reflections for bioethics in a secular context. Taking Engelhardt's work as its point of departure this article explores the challenges that Jewish ethicists face in contributing to bioethics in a secular context. The article explores how the Jewish tradition can address issues in bioethics in ways that are true to its tradition and at the same time accessible and relevant to "moral strangers" in a secular society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MNRAS.415.2275M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MNRAS.415.2275M"><span>Modelling the secular evolution of migrating planet pairs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michtchenko, T. A.; Rodríguez, A.</p> <p>2011-08-01</p> <p>The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5498099','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5498099"><span>Religious and Secular Coping and Family Relationships in the Neonatal Intensive Care Unit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brelsford, Gina M.; Ramirez, Joshua; Veneman, Kristin; Doheny, Kim K.</p> <p>2017-01-01</p> <p>Background Preterm birth is an unanticipated and stressful event for parents. In addition, the unfamiliar setting of the intensive care nursery necessitates strategies for coping. Purpose The primary study objective of this descriptive study was to determine whether secular and religious coping strategies were related to family functioning in the neonatal intensive care unit. Methods Fifty-two parents of preterm (25–35 weeks’ gestation) infants completed the Brief COPE (secular coping), the Brief RCOPE (religious coping), and the Family Environment Scale within 1 week of their infant’s hospital admission. Findings This descriptive study found that parents’ religious and secular coping was significant in relation to family relationship functioning. Specifically, negative religious coping (ie, feeling abandoned or angry at God) was related to poorer family cohesion and use of denial. Implications for Practice These findings have relevance for interventions focused toward enhancing effective coping for families. Implications for Research Further study of religious and secular coping strategies for neonatal intensive care unit families is warranted in a larger more diverse sample of family members. PMID:27391569</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUS..318...46N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUS..318...46N"><span>Secular evolution of asteroid families: the role of Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novaković, Bojan; Tsirvoulis, Georgios; Marò, Stefano; Đošović, Vladimir; Maurel, Clara</p> <p>2016-01-01</p> <p>We consider the role of the dwarf planet Ceres on the secular dynamics of the asteroid main belt. Specifically, we examine the post impact evolution of asteroid families due to the interaction of their members with the linear nodal secular resonance with Ceres. First, we find the location of this resonance and identify which asteroid families are crossed by its path. Next, we summarize our results for three asteroid families, namely (1726) Hoffmeister, (1128) Astrid and (1521) Seinajoki which have irregular distributions of their members in the proper elements space, indicative of the effect of the resonance. We confirm this by performing a set of numerical simulations, showcasing that the perturbing action of Ceres through its linear nodal secular resonance is essential to reproduce the actual shape of the families.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002547&hterms=swarm&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dswarm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002547&hterms=swarm&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dswarm"><span>The Swarm Initial Field Model for the 2014 Geomagnetic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger</p> <p>2015-01-01</p> <p>Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3516313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3516313"><span>Epidemic Distribution and Variation of Plasmodium falciparum and Plasmodium vivax Malaria in Hainan, China during 1995–2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xiao, Dan; Long, Yong; Wang, Shanqing; Wu, Kejian; Xu, Dezhong; Li, Haitao; Wang, Guangze; Yan, Yongping</p> <p>2012-01-01</p> <p>Hainan Province is the main area threatened by malaria in China. However, the epidemiologic patterns of malaria in this region are not yet defined. In this study, we determined the spatio-temporal distribution and variation of Plasmodium falciparum and Plasmodium vivax malaria in Hainan during 1995–2008 by using wavelet and cluster quantitative approaches. The results indicated a decreasing secular trend and obvious seasonal fluctuation of malaria in Hainan. In addition, the characteristic annual peak of malaria could not be detected after 2005. The southcentral region of Hainan has remained an area of relatively high malaria risk, but the incidence of P. falciparum malaria increased significantly in the southeast and southwest regions during 2002–2008. These findings identify epidemic patterns of malaria in Hainan, and are applicable for designing an effective and dynamic public health campaign to combat malaria in this region. PMID:22869636</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23864994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23864994"><span>Ethics of surrogacy: a comparative study of Western secular and islamic bioethics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Islam, Sharmin; Nordin, Rusli Bin; Bin Shamsuddin, Ab Rani; Mohd Nor, Hanapi Bin; Al-Mahmood, Abu Kholdun</p> <p>2012-01-01</p> <p>The comparative approach regarding the ethics of surrogacy from the Western secular and Islamic bioethical view reveals both commensurable and incommensurable relationship. Both are eager to achieve the welfare of the mother, child and society as a whole but the approaches are not always the same. Islamic bioethics is straightforward in prohibiting surrogacy by highlighting the lineage problem and also other social chaos and anarchy. Western secular bioethics is relative and mostly follows a utilitarian approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1032511','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1032511"><span>The Importance of Turkish and US Relations: Contributing for Joint Objectives of a Secure Middle East</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-03-31</p> <p>As a Muslim-majority country that is transitioning from being a secular democratic state toward its Islamic roots, a member of NATO, and a long...being a secular democratic state toward its Islamic roots, a member of NATO, and a long-standing US ally, Turkey is pivotal to the US strategy to shape...productive country needed education, so Kemal advocated a unified school system with secular, Turkish language schools.2 Under Mustafa Kemal’s leadership</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3708631','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3708631"><span>Ethics of Surrogacy: A Comparative Study of Western Secular and Islamic Bioethics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Islam, Sharmin; Nordin, Rusli Bin; Bin Shamsuddin, Ab Rani; Mohd Nor, Hanapi Bin; Al-Mahmood, Abu Kholdun</p> <p>2012-01-01</p> <p>The comparative approach regarding the ethics of surrogacy from the Western secular and Islamic bioethical view reveals both commensurable and incommensurable relationship. Both are eager to achieve the welfare of the mother, child and society as a whole but the approaches are not always the same. Islamic bioethics is straightforward in prohibiting surrogacy by highlighting the lineage problem and also other social chaos and anarchy. Western secular bioethics is relative and mostly follows a utilitarian approach. PMID:23864994</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA456701','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA456701"><span>Time to Exorcise Another Ghost From the Vietnam War: Restructuring the In-Service Conscientious Objector Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-04-01</p> <p>rely on Lemon v . Kurtzman , 403 U.S. 602 (1971), in its analysis even though Lemon previously had been the most commonly applied analytical approach to...U.S. 203, (1963) (applying a secular purpose and principle effects test to measure neutrality); Lemon v . Kurtzman , 403 U.S. 602 (1971) (applying a...from Lemon along with measuring secular symbols as impacting determination of secular purpose and principle effect); Lee v . Weisman, 112 S. Ct. 2649</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2245575T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2245575T"><span>Secular resonances with massive asteroids and their impact on the dynamics of small bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsirvoulis, Georgios; Novaković, Bojan; Djošović, Valdimir</p> <p>2015-08-01</p> <p>The quest for understanding the dynamical structure of the main belt has been a long-lasting endeavor. From the discovery of the Kirkwood gaps and the Hirayama families, to the more recent advances in secular perturbation theory, the refinement of the proper elements and the discovery of the three-body mean-motion resonances, only to name a few, the progress has been immense. Dynamical models coupled with the outbursts in computational power and observations have greatly improved our knowledge of the dynamical evolution of the small bodies in the Solar System.While our set of tools for studying the dynamical porperties of the main belt is believed to be sufficiently complete, our assumptions on how to use them seem to have hindered this effort.The concensus has been that, judging by their mass, only the planets, especially the giant ones, can act as efficient perturbers of the orbits of asteroids. Thus a lot of studies have been made on the locations and effects of secular resonances with the giant planets in different parts of the main belt, explaining among other things the presence of gaps in the distribution of asteroids, strange shapes of some asteroid families and transport mechanisms of asteroids to the near-Earth region.Our work is motivated by the first discovery that a secular resonance with the most massive asteroid, Ceres, is the dominant dynamical mechanism responsible for the post-impact evolution of the Hoffmeister family members. Thus the concensus is wrong. Knowing now, that secular resonances with massive asteroids can be effective on asteroid dynamics, we set out to construct a dynamical map of these resonances across the main belt.Our study is focused on the linear and degree four non-linear secular resonances with the two most massive asteroids (1) Ceres and (4) Vesta. First we determine the locations of these secular resonances in the proper elements space, acquiring an understanding of the potentially affected regions, and then we perform numerical simulations to investigate the importance of each secular resonance on the dynamical evolution of asteroid orbits in the different parts of the main belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22666028-rotation-granulation-k2-giant-ser','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22666028-rotation-granulation-k2-giant-ser"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gray, David F., E-mail: dfgray@uwo.ca</p> <p></p> <p>The red giant α Ser was observed over 10 seasons, 2001–2010, at the Elginfield Observatory with the high-resolution coudé spectrograph. Season-mean radial velocities appear to show a small secular rise ∼11 ± 3 m s{sup 1} yr{sup 1}. The absolute spectroscopic radial velocity with convective blueshifts taken into account is 2730 m s{sup 1}. Ten line-depth ratios were investigated and show that the star's temperature is constant with any secular variation below 1.3 ± 1.0 K over the 11 years of observation. Fourier analysis of the line broadening yields v sin i = 2.0 ± 0.3 km s{sup 1} andmore » a radial-tangential macroturbulence dispersion ζ {sub RT} = 4.50 ± 0.10 km s{sup 1}. The third-granulation-signature plot shows that the granulation velocities of α Ser are only 0.55 ± 0.10 as large as the Sun's. The line bisector of Fe i λ 6253 has the usual “C” shape and when mapped onto the third-signature plot results in a flux deficit that is slightly broader than seen in other measured K giants. The deficit fractional area of 12.3 ± 1.5% suggests a temperature difference between granules and lanes of 105 K as seen averaged over the stellar disk.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168407','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168407"><span>A chemostratigraphic method to determine the end of impact-related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ormö, Jens; Hill, Andrew C.; Self-Trail, Jean M.</p> <p>2010-01-01</p> <p>To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact-related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine-target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact-related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine-target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009785','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009785"><span>The orbital record in stratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fischer, Alfred G.</p> <p>1992-01-01</p> <p>Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014204','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014204"><span>The geomagnetic jerk of 1969 and the DGRFs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thompson, D.; Cain, J.C.</p> <p>1987-01-01</p> <p>Cubic spline fits to the DGRF/IGRF series indicate agreement with other analyses showing the 1969-1970 magnetic jerk in the h ??12 and g ??02 secular change coefficients, and agreement that the h ??11 term showed no sharp change. The variation of the g ??01 term is out of phase with other analyses indicating a likely error in its representation in the 1965-1975 interval. We recommend that future derivations of the 'definitive' geomagnetic reference models take into consideration the times of impulses or jerks so as to not be bound to a standard 5 year interval, and otherwise to make more considered analyses before adopting sets of coefficients. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197166','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197166"><span>Book review: Geomagnetism of baked clays and recent sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mankinen, Edward A.</p> <p>1984-01-01</p> <p>This book is an outgrowth of the symposium entitled “Time Scales of Geomagnetic Secular Variations,” which was held at the 4th Assembly of the International Association of Geomagnetism and Aeronomy (Edinburgh, U.K., August 1981). The volume includes many of the papers presented, which described paleomagnetic results from both archeologic materials and Holocene geologic deposits, as well as contributions solicited from other researchers in the fields of archeomagnetism and paleomagnetism. In a remarkably short time after the conclusion of the symposium the editors were able to elicit, edit, and assemble a large body of material from 40 individuals into a thoughtful, wellorganized product.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860003386','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860003386"><span>Dynamics and structure of the Alpine Fold Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahle, H. G.</p> <p>1985-01-01</p> <p>The structure and present-day dynamics of the Alps interms of geodesy and gravimetry are discusssed. A strong correlation of precise leveling and isostatic gravity along the central Alpine chain, especially in Canton Graubunden, East Switzerland are shown. It is assumed that the uplift is partly controlled by isostatic rebound effects. Field observations indicate that these phenomena are still active in the Alps. The study of the uplift processes by applying a number of geodetic and gravimetric measuring techniques, such as the determination of nonperiodic secular variations of gravity, of the deflections of the vertical and tilt changes monitored by hydrostatic leveling is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19060188','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19060188"><span>Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F</p> <p>2008-12-09</p> <p>Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2614721','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2614721"><span>Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.</p> <p>2008-01-01</p> <p>Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.123...13N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.123...13N"><span>A southern Africa harmonic spline core field model derived from CHAMP satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nahayo, E.; Kotzé, P. B.; McCreadie, H.</p> <p>2015-02-01</p> <p>The monitoring of the Earth's magnetic field time variation requires a continuous recording of geomagnetic data with a good spatial coverage over the area of study. In southern Africa, ground recording stations are limited and the use of satellite data is needed for the studies where high spatial resolution data is required. We show the fast time variation of the geomagnetic field in the southern Africa region by deriving an harmonic spline model from CHAMP satellite measurements recorded between 2001 and 2010. The derived core field model, the Southern Africa Regional Model (SARM), is compared with the global model GRIMM-2 and the ground based data recorded at Hermanus magnetic observatory (HER) in South Africa and Tsumeb magnetic observatory (TSU) in Namibia where the focus is mainly on the long term variation of the geomagnetic field. The results of this study suggest that the regional model derived from the satellite data alone can be used to study the small scale features of the time variation of the geomagnetic field where ground data is not available. In addition, these results also support the earlier findings of the occurrence of a 2007 magnetic jerk and rapid secular variation fluctuations of 2003 and 2004 in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA459173','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA459173"><span>Iraq: Post-Saddam Governance and Security</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-11-07</p> <p>the Ottomans in World War I and took control of what is now Iraq in 1918 . Britain had tried to take Iraq from the Ottomans in Iraq earlier in World War... role in oil decisions. (A table on U.S. appropriations for the Iraqi opposition, including the INC, is an appendix).4 Another secular group, the Iraq...Sistani generally opposes a direct role for clerics in government, but he believes in clerical supervision of political leaders. He wants Iraq to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AAS...22132607S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AAS...22132607S"><span>Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.</p> <p>2013-01-01</p> <p>The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.466..276G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.466..276G"><span>Generalized Hill-stability criteria for hierarchical three-body systems at arbitrary inclinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grishin, Evgeni; Perets, Hagai B.; Zenati, Yossef; Michaely, Erez</p> <p>2017-04-01</p> <p>A fundamental aspect of the three-body problem is its stability. Most stability studies have focused on the co-planar three-body problem, deriving analytic criteria for the dynamical stability of such pro/retrograde systems. Numerical studies of inclined systems phenomenologically mapped their stability regions, but neither complement it by theoretical framework, nor provided satisfactory fit for their dependence on mutual inclinations. Here we present a novel approach to study the stability of hierarchical three-body systems at arbitrary inclinations, which accounts not only for the instantaneous stability of such systems, but also for the secular stability and evolution through Lidov-Kozai cycles and evection. We generalize the Hill-stability criteria to arbitrarily inclined triple systems, explain the existence of quasi-stable regimes and characterize the inclination dependence of their stability. We complement the analytic treatment with an extensive numerical study, to test our analytic results. We find excellent correspondence up to high inclinations (˜120°), beyond which the agreement is marginal. At such high inclinations, the stability radius is larger, the ratio between the outer and inner periods becomes comparable and our secular averaging approach is no longer strictly valid. We therefore combine our analytic results with polynomial fits to the numerical results to obtain a generalized stability formula for triple systems at arbitrary inclinations. Besides providing a generalized secular-based physical explanation for the stability of non-co-planar systems, our results have direct implications for any triple systems and, in particular, binary planets and moon/satellite systems; we briefly discuss the latter as a test case for our models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PEPI..229...98P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PEPI..229...98P"><span>Paleomagnetic secular variation study of Ar-Ar dated lavas flows from Tacambaro area (Central Mexico): Possible evidence of Intra-Jaramillo geomagnetic excursion in volcanic rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peña, Rafael Maciel; Goguitchaichvili, Avto; Guilbaud, Marie-Noëlle; Martínez, Vicente Carlos Ruiz; Rathert, Manuel Calvo; Siebe, Claus; Reyes, Bertha Aguilar; Morales, Juan</p> <p>2014-04-01</p> <p>More than 350 oriented paleomagnetic cores were obtained for rock-magnetic and paleomagnetic analysis from radiometrically dated (40Ar-39Ar) magmatic rocks occurring in the southern segment (Jorullo and Tacámbaro areas) of the Michoacán-Guanajuato Volcanic Field in the Trans-Mexican Volcanic Belt. Most of the lavas (37) stem from monogenetic volcanoes dated at less than 4 Ma. Two additional sites were sampled from the plutonic basement dated at 33-30 Ma. Primary remanences carried by low-Ti titanomagnetites allowed to determining 34 reliable site-mean directions of mostly normal (27) but also reversed (7) polarities. The mean directions of these two populations are antipodal, and suggest neither major vertical-axis rotations with respect to the North America craton nor tilting in the region for the last 4 Ma (rotation and flattening of the inclination parameters being less than -5.9 ± 3.8 and 0.1 ± 3.9, respectively). The corresponding paleomagnetic pole obtained for Pliocene-Pleistocene times is PLAT = 83.4°, PLON = 2.4° (N = 32, A95 = 2.7°). Virtual geomagnetic poles also contribute to the time averaged field global database and to the paleosecular variation (PSV) investigations at low latitudes from lavas for the last 5 Ma, showing a geomagnetic dispersion value that is in agreement with available PSV models. When comparing the magnetic polarities and corresponding radiometric ages of the studied sites with the Cenozoic geomagnetic polarity time scale (GPTS), a good correlation is observable. This finding underscores the suitability of data obtained on lavas in Central Mexico for contributing to the GPTS. Furthermore, the detection of short-lived geomagnetic features seems possible, since the possible evidence of Intra-Jaramillo geomagnetic excursion could be documented for the first time in these volcanic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMGP11A0737L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMGP11A0737L"><span>Paleomagnetic Study of Marine Sediment Core OR715-21 from Eastern Offshore of Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, T.; Wei, K.; Huh, C.</p> <p>2009-12-01</p> <p>This study presents paleomagnetic secular variation results of a marine sediment core, named as OR715-21, taken from eastern offshore of Taiwan (121.5°E, 22.7°N, water depth 760 m). The total recovered length is 1.87 meters. Sediments in the core mainly consist of gray clay and silt. Planktonic foraminiferal shells (>250 μm, >6 mg, Globigerinoides spp. and Orbulina universa) were picked from six levels of the core and subjected to AMS 14C dating for constructing the age model. The results indicated that this core could support the information for the last 7000 years. The averaged sedimentation rate is estimated to be of about 26.5 cm/kyr. Psuedo-single domain (PSD) magnetite is identified as the most important magnetic carrier. Alternating field (AF) demagnetization was applied to treat the u-channel samples of the core. The median destructive field of the samples distributed between 15~25 mT. The characteristic remanent magnetization could be resolved after 20 mT cleaning. The paleo-declinations of the samples varied about ±200 around their mean and their paleo-inclinations varied between 300 and 500 . The variation pattern of the paleo-declination is somehow similar to the pattern compiled by Hyoto et al. (1993) based on the lake and marine sediment records from Japan except the varied amplitude is less between 4000 and 5000 yrB.P. Using NRM/ARM after 20 mT cleaning to simulate the paleo-intensity secular variation, our record shows that an increased trend began from 6500 yrB.P. to 3000 yrB.P., but decreased after. Magnetic proxies of this core indicate that 4 stages of environmental changes has happened in the area studied: (1) high magnetite abundance with relative low oxidized magnetic mineral contents occurred during ~6900 to 6200 yrB.P.; (2) a relative low abundance of magnetite with relative high oxidized magnetic minerals during ~6200 to ~5400 yrB.P.; (3) an abnormal low HIRM with relative higher ARM/SIRM could be found during the time period of ~5400 to 4200 yrB.P. and (4) relative stable magnetic mineral assembly was found after ~4000 yrB.P. Such variation might be related to the path change of the Kuritio current in the surrounding area. Undoubted it needs to be further studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W5..185S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W5..185S"><span>Towards the Implementation of Semi-Dynamic Datum for Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shariff, N. S.; Gill, J.; Amin, Z. M.; Omar, K. M.</p> <p>2017-10-01</p> <p>A semi-dynamic datum provides positions with respect to time while taking into account the secular and non-secular deformations, making it the best approach to adapt with the dynamic processes of the earth. Malaysia, as yet, employs a static datum, i.e., GDM2000, at epoch 2000; though Malaysia has evidently been affected by seismic activity for the past decade. Therefore, this paper seeks to propose a design for implementing a semi-dynamic datum for Malaysia. Methodologically, GPS time series analyses are carried out to investigate the seismic activity of Malaysia, which essentially contributes to the proposed design of the semi-dynamic datum for Malaysia. The implications of implementing a semi-dynamic datum for Malaysia are discussed as well. The results indicate that Malaysia undergoes a complex deformation; whereby the earthquakes - primarily the 2004 Sumatra-Andaman, 2005 Nias and 2012 Northern Sumatra earthquakes - have affected the underlying secular velocities of Malaysia. Consequently, from this information, the proposed design, particularly the secular and non-secular deformation models, is described in detail. The proposed semi-dynamic datum comprises a transformation, temporal, and spatial module, and utilizes a bilinear interpolation method. Overall, this paper aims to contribute to the feasibility of a semi-dynamic datum approach for Malaysia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1257S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1257S"><span>Climatology of the Auroral Electrojets Derived From the Along-Track Gradient of Magnetic Field Intensity Measured by POGO, Magsat, CHAMP, and Swarm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, A. R. A.; Beggan, C. D.; Macmillan, S.; Whaler, K. A.</p> <p>2017-10-01</p> <p>The auroral electrojets (AEJs) are complex and dynamic horizontal ionospheric electric currents which form ovals around Earth's poles, being controlled by the morphology of the main magnetic field and the energy input from the solar wind interaction with the magnetosphere. The strength and location of the AEJ varies with solar wind conditions and the solar cycle but should also be controlled on decadal timescales by main field secular variation. To determine the AEJ climatology, we use data from four polar Low Earth Orbit magnetic satellite missions: POGO, Magsat, CHAMP, and Swarm. A simple estimation of the AEJ strength and latitude is made from each pass of the satellites, from peaks in the along-track gradient of the magnetic field intensity after subtracting a core and crustal magnetic field model. This measure of the AEJ activity is used to study the response in different sectors of magnetic local time (MLT) during different seasons and directions of the interplanetary magnetic field (IMF). We find a season-dependent hemispherical asymmetry in the AEJ response to IMF By, with a tendency toward stronger (weaker) AEJ currents in the north than the south during By>0 (By<0) around local winter. This effect disappears during local summer when we find a tendency toward stronger currents in the south than the north. The solar cycle modulation of the AEJ and the long-term shifting of its position and strength due to the core field variation are presented as challenges to internal field modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp...51W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp...51W"><span>Variations in droughts and wet spells and their influences in China: 1924-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Shuang; Yan, Xiaodong</p> <p>2018-02-01</p> <p>The Wetness Index was calculated using gridded monthly precipitation and potential evapotranspiration in China during 1924-2013. Variations of dry and wet periods in different areas and the impact of meteorological factors were analyzed. The results show the following: (1) Drought areas (W ≤ 0.5) and wet areas (W > 0.65) in China constituted 33-56% and 35-55%, respectively, of the total land area and there were no secular trends during 1924-2013. During this period, the areas of drought and wet were inversely proportional, but had different changes among seven regions. (2) Since 1954, the overall trend in China has changed from wet to dry. Drought areas increased significantly (p < 0.05) during 1954-1983. Drought areas increased (not significantly) during 1984-2013, but the rate of drought/wetness clearly decreased (tendency rates were between - 0.05 and 0.05/30 year, and accounted for 54.79% of China). (3) Dry/wet variation in North, Northeast, Central, and Southwest China played major roles. (4) Except in the North region, drought/wet conditions were affected by surface warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040034237','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040034237"><span>CHAMP Magnetic Anomalies of the Antarctic Crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo</p> <p>2003-01-01</p> <p>Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AnGeo..28..917N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AnGeo..28..917N"><span>Results of Russian geomagnetic observatories in the 19th century: magnetic activity, 1841-1862</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nevanlinna, H.; Häkkinen, L.</p> <p>2010-04-01</p> <p>Hourly (spot readings) magnetic data (H- and D-components) were digitized from Russian yearbook tables for the years 1850-1862 from four observatories. The pdf pictures for digitization were taken by a normal digital camera. The database obtained consists of about 900 000 single data points. The time series of hourly magnetic values reveal slow secular variations (declination only) as well as transient and regular geomagnetic variations of external origin. The quality and homogeneity of the data is satisfactory. Daily Ak-indices were calculated using the index algorithm that has been earlier applied to 19th century data from Helsinki (Finland) as well as modern magnetic observatory recordings. The activity index series derived from the Russian data is consistent with earlier activity index series for 1850-1862. The digitized index data series derived in this study was extended back to 1841 by including magnetic C9 activity index data available from a Russian observatory (St. Petersburg). Magnetic data rescued here is well suitable for various reconstructions for studies of the long-term variation of the space weather in the 19th century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17754379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17754379"><span>Sandstone: secular trends in lithology in southwestern montana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McLane, M</p> <p>1972-11-03</p> <p>Long-term secular trends in the composition and texture of sandstones in southwestern Montana reflect changing provenance and depositional environment, which in turn reflect changing tectonic patterns in the Cordilleran mobile belt just to the west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12296213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12296213"><span>Gender identity, nationalism, and social action among Jewish and Arab women in Israel: redefining the social order?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moore, D</p> <p>2000-01-01</p> <p>In the study this article explores, the meaning of gender identity for religious and secular Jewish and Arab women in Israeli society is examined. The study focuses on how Israeli women, rank gender identity, relative to other identities like being Jewish/Arab, being Israeli/Palestinian, religious or secular, of a certain ethnic group, and political identity. It examines the characteristics of gender identity and the attitudes that are associated with it. The analysis shows that the hierarchies of identities are different for religious and secular Jewish and Arab women, and that this is related to having different sociopolitical attitudes (e.g., Women's social and political involvement, social obedience, social influence). Thus, the hierarchy of identities and the sociopolitical attitudes of religious women indicate a more consensual acceptance of the social order than the hierarchy of identities and the sociopolitical attitudes of secular women, especially among Arab women.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148569','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148569"><span>Episodic Holocene eruption of the Salton Buttes rhyolites, California, from paleomagnetic, U-Th, and Ar/Ar dating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wright, Heather M.; Vazquez, Jorge A.; Champion, Duane E.; Calvert, Andrew T.; Mangan, Margaret T.; Stelten, Mark E.; Cooper, Kari M.; Herzig, Charles; Schriener Jr., Alexander</p> <p>2015-01-01</p> <p>In the Salton Trough, CA, five rhyolite domes form the Salton Buttes: Mullet Island, Obsidian Butte, Rock Hill, North and South Red Hill, from oldest to youngest. Results presented here include 40Ar/39Ar anorthoclase ages, 238U-230Th zircon crystallization ages, and comparison of remanent paleomagnetic directions with the secular variation curve, which indicate that all domes are Holocene. 238U-230Th zircon crystallization ages are more precise than but within uncertainty of 40Ar/39Ar anorthoclase ages, suggesting that zircon crystallization proceeded until shortly before eruption in all cases except one. Remanent paleomagnetic directions require three eruption periods: (1) Mullet Island, (2) Obsidian Butte, and (3) Rock Hill, North Red Hill, and South Red Hill. Borehole cuttings logs document up to two shallow tephra layers. North and South Red Hills likely erupted within 100 years of each other, with a combined 238U-230Th zircon isochron age of: 2.83 ± 0.60 ka (2 sigma); paleomagnetic evidence suggests this age predates eruption by hundreds of years (1800 cal BP). Rock Hill erupted closely in time to these eruptions. The Obsidian Butte 238U-230Th isochron age (2.86 ± 0.96 ka) is nearly identical to the combined Red Hill age, but its Virtual Geomagnetic Pole position suggests a slightly older age. The age of aphyric Mullet Island dome is the least well constrained: zircon crystals are resorbed and the paleomagnetic direction is most distinct; possible Mullet Island ages include ca. 2300, 5900, 6900, and 7700 cal BP. Our results constrain the duration of Salton Buttes volcanism to between ca. 5900 and 500 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGeod..90..263G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGeod..90..263G"><span>Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gómez, D. D.; Piñón, D. A.; Smalley, R.; Bevis, M.; Cimbaro, S. R.; Lenzano, L. E.; Barón, J.</p> <p>2016-03-01</p> <p>The 2010, (Mw 8.8) Maule, Chile, earthquake produced large co-seismic displacements and non-secular, post-seismic deformation, within latitudes 28°S-40°S extending from the Pacific to the Atlantic oceans. Although these effects are easily resolvable by fitting geodetic extended trajectory models (ETM) to continuous GPS (CGPS) time series, the co- and post-seismic deformation cannot be determined at locations without CGPS (e.g., on passive geodetic benchmarks). To estimate the trajectories of passive geodetic benchmarks, we used CGPS time series to fit an ETM that includes the secular South American plate motion and plate boundary deformation, the co-seismic discontinuity, and the non-secular, logarithmic post-seismic transient produced by the earthquake in the Posiciones Geodésicas Argentinas 2007 (POSGAR07) reference frame (RF). We then used least squares collocation (LSC) to model both the background secular inter-seismic and the non-secular post-seismic components of the ETM at the locations without CGPS. We tested the LSC modeled trajectories using campaign and CGPS data that was not used to generate the model and found standard deviations (95 % confidence level) for position estimates for the north and east components of 3.8 and 5.5 mm, respectively, indicating that the model predicts the post-seismic deformation field very well. Finally, we added the co-seismic displacement field, estimated using an elastic finite element model. The final, trajectory model allows accessing the POSGAR07 RF using post-Maule earthquake coordinates within 5 cm for ˜ 91 % of the passive test benchmarks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29072304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29072304"><span>Secular trends are associated with the demographic and epidemiologic transitions in an indigenous community in Oaxaca, Southern Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malina, Robert M; Little, Bertis B; Peña Reyes, Maria Eugenia</p> <p>2018-01-01</p> <p>To test the hypothesis that secular changes in body size and age at menarche are related to the demographic and epidemiologic transitions in an indigenous community in Oaxaca, southern Mexico. Data were derived from surveys of a Zapotec-speaking community conducted between 1968 and 2000. Segmented linear regressions of height, weight, BMI and recalled age at menarche on year of birth in cohorts of adults born before and after the demographic transition were used to evaluate secular changes. Corresponding comparisons of body size (MANCOVA controlling for age) and age at menarche (status quo, probit analysis) were done for samples of children and adolescents born before and after the epidemiological transition. Height and weight increased in adults born after the demographic transition (mid-1950s), and especially in children and adolescents born after the epidemiological transition (mid-1980s). Age at menarche also decreased significantly in women born after the demographic transition, but at a more rapid estimated rate in adolescents born after the epidemiological transition. Secular gains in body weight were proportional to those for height among children and adolescents, but adults, males more so than females, gained proportionally more weight. The secular trend in height in adults of both sexes was associated with the decade of the demographic transition in the mid-1950s. Significant secular gains in size attained and age at menarche occurred in children and youth born after the epidemiologic transition which likely reflected improved health and nutritional conditions since the mid-1980s. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......147A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......147A"><span>Rotational Dynamics of Inactive Satellites as a Result of the YORP Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albuja, Antonella A.</p> <p></p> <p>Observations of inactive satellites in Earth orbit show that these objects are generally rotating, some with very fast rotation rates. In addition, observations indicate that the rotation rate at which defunct satellites spin tends to evolve over time. However, the cause for this behavior is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which results in a torque that is created from reflected thermal energy and sunlight from the surface of an asteroid. This thesis explores the effect of YORP on defunct satellites in Earth orbit and offers this as a potential cause for the observed rotation states of inactive satellites. In this work, several different satellite models are developed to represent inactive satellites in Geostationary Earth Orbit (GEO). The evolution of the spin rate and obliquity for each satellite is then explored using Euler's equations of motion as well as spin and year averaged dynamics. This results in the dynamics being analyzed to understand the secular changes that occur, as well as the variations that result from short period terms over the course of a year. Some of the model satellites have asymmetric geometries, leading to the classical YORP effect as originally formulated for asteroids. One model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. Because the YORP effect is directly dependent on geometric, optical and thermal properties of the satellite, varying these parameters can lead to different long-term rotational behavior. A sensitivity study is done by varying these parameters and analyzing its effect on the long-term dynamics of a satellite. Additionally, available observation data of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite shows that the two are of the same order of magnitude, demonstrating that YORP could be a cause for the observed behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21996029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21996029"><span>Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, A L; Lundbye-Christensen, S; Dethlefsen, C</p> <p>2011-12-01</p> <p>Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates. Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13]. Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model. This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=united+AND+states+AND+censorship&pg=4&id=EJ392855','ERIC'); return false;" href="https://eric.ed.gov/?q=united+AND+states+AND+censorship&pg=4&id=EJ392855"><span>Curriculum Resources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Thompson, Norma H.</p> <p>1988-01-01</p> <p>Discusses an article which presents a concise discussion of secular humanism. Reviews additional materials on censorship from the perspective of the new religious right, the fundamentalists, and public policy and the law. The sources provide background to enhance teaching about secular humanism and textbook censorship. (SLM)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750011026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750011026"><span>Formulas for precession. [motion of mean equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kinoshita, H.</p> <p>1975-01-01</p> <p>Literal expressions for the precessional motion of the mean equator referred to an arbitrary epoch are constructed. Their numerical representations, based on numerical values recommended at the working meeting of the International Astronomical Union Commission held in Washington in September 1974, are obtained. In constructing the equations of motion, the second-order secular perturbation and the secular perturbation due to the long-periodic terms in the motions of the moon and the sun are taken into account. These perturbations contribute more to the motion of the mean equator than does the term due to the secular perturbation of the orbital eccentricity of the sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25926094','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25926094"><span>SECULAR GROWTH AND MATURATION CHANGES IN HUNGARY IN RELATION TO SOCIOECONOMIC AND DEMOGRAPHIC CHANGES.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bodzsar, Eva B; Zsakai, Annamaria; Mascie-Taylor, Nicholas</p> <p>2016-03-01</p> <p>This paper analyses the secular changes in the body development patterns of Hungarian children between the 1910s and the beginning of the 2000s in relation to socioeconomic and demographic changes in the country. Individual growth data of children were available from two national growth studies (1983-86, 2003-06), while sample-size weighted means of children's body dimensions were collected through regional studies between the 1920s and 1970s. Gross domestic product, Gini index, life expectancy at birth and under-5 mortality rate were used to assess the changes in economic status, income inequalities of the society and the population's general health status, respectively. Secular changes in food consumption habits were also examined. The positive Hungarian secular changes in socioeconomic status were associated with a continuous increase in children's body dimensions. The negative socioeconomic changes reflected only in wartime and post-war periods of children's growth, and the considerable socioeconomic changes at the beginning of the 1990s did not appear to influence the positive trend in children's growth. The positive secular trend in stature and body mass did not level off at the beginning of the 2000s: the socioeconomic conditions that support optimal growth and maturation could improve in Hungary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23750941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23750941"><span>Secular and religious: the intrinsic doubleness of analytical psychology and the hegemony of naturalism in the social sciences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Main, Roderick</p> <p>2013-06-01</p> <p>In recent years a number of prominent social theorists, including Jürgen Habermas and Charles Taylor, have voiced concern about the hegemony of naturalistic, secular assumptions in the social sciences, and in their different ways have sought to address this by establishing greater parity between secular and religious perspectives. This paper suggests that C.G. Jung's analytical psychology, which hitherto has been largely ignored by social theory, may have something to contribute on this issue as it can be understood coherently both empirically, without reference to transcendent reality, and metaphysically, with reference to transcendent reality. It is argued that, despite his denials of any metaphysical intent, Jung does in fact engage in metaphysics and that together the empirical and metaphysical vectors of his thought result in a rich and distinctive double perspective. This dual secular and religious perspective can be seen as part of Jung's own critique of the hegemony of naturalism and secularism, which for Jung has profound social as well as clinical relevance. The concern and approach that Habermas and Taylor share with Jung on this issue may provide some grounds for increased dialogue between analytical psychology and the social sciences. © 2013, The Society of Analytical Psychology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21250435-comment-can-infrared-gravitons-screen-lambda','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21250435-comment-can-infrared-gravitons-screen-lambda"><span>Comment on 'Can infrared gravitons screen {lambda}?'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsamis, N. C.; Woodard, R. P.; Department of Physics, University of Florida, Gainesville, Florida 32611</p> <p>2008-07-15</p> <p>We reply to the recent criticism by Garriga and Tanaka of our proposal that quantum gravitational loop corrections may lead to a secular screening of the effective cosmological constant. Their argument rests upon a renormalization scheme in which the composite operator (R{radical}(-g)-4{lambda}{radical}(-g)){sub ren} is defined to be the trace of the renormalized field equations. Although this is a peculiar prescription, we show that it does not preclude secular screening. Moreover, we show that a constant Ricci scalar does not even classically imply a constant expansion rate. Other important points are: (1) the quantity R{sub ren} of Garriga and Tanaka ismore » neither a properly defined composite operator, nor is it constant; (2) gauge dependence does not render a Green's function devoid of physical content; (3) scalar models on a nondynamical de Sitter background (for which there is no gauge issue) can induce arbitrarily large secular contributions to the stress tensor; (4) the same secular corrections appear in observable quantities in quantum gravity; and (5) the prospects seem good for deriving a simple stochastic formulation of quantum gravity in which the leading secular effects can be summed and for which the expectation values of even complicated, gauge invariant operators can be computed at leading order.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.G33C..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.G33C..02B"><span>Regional Sea Level Variation: California Coastal Subsidence (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blewitt, G.; Hammond, W. C.; Nerem, R.</p> <p>2013-12-01</p> <p>Satellite altimetry over the last two decades has measured variations in geocentric sea level (GSL), relative to the Earth system center of mass, providing valuable data to test models of physical oceanography and the effects of global climate change. The societal impacts of sea level change however relate to variations in local sea level (LSL), relative to the land at the coast. Therefore, assessing the impacts of sea level change requires coastal measurements of vertical land motion (VLM). Indeed, ΔLSL = ΔGSL - ΔVLM, with subsidence mapping 1:1 into LSL. Measurements of secular coastal VLM also allow tide-gauge data to test models of GSL over the last century in some locations, which cannot be provided by satellite data. Here we use GPS geodetic data within 15 km of the US west coast to infer regional, secular VLM. A total of 89 GPS stations met the criteria that time series span >4.5 yr, and do not have obvious non-linear variation, as may be caused by local instability. VLM rates for the GPS stations are derived in the secular reference frame ITRF2008, which aligns with the Earth system center of mass to ×0.5 mm/yr. We find that regional VLM has different behavior north and south of the Mendocino Triple Junction (MTJ). The California coast has a coherent regional pattern of subsidence averaging 0.5 mm/yr, with an increasing trend to the north. This trend generally matches GIA model predictions. Around San Francisco Bay, the observed coastal subsidence of 1.0 mm/yr coherently decreases moving away from the Pacific Ocean to very small subsidence on the east shores of the bay. This gradient is likely caused by San Andreas-Hayward Fault tectonics, and possibly by differential surface loading across the bay and Sacramento-San Joachim River Delta. Thus in addition to the trend in subsidence from GIA going northward along the California coast, tectonics may also play a role where the plate boundary fault system approaches the coast. In contrast, we find that VLM of the coast north of the MTJ in Oregon and Washington has the opposite sign (uplift) and varies with distance between the coast and the trench, as may be expected from elastic strain accumulation at the locked subduction zone, coupled with a contrast in rheological structure affecting GIA. In terms of LSL and hence societal impact, our measured mean California subsidence of 0.5 mm/yr approximately cancels with GIA models of global GSL lowering at a similar rate. This GSL lowering is caused by the increasing volume of ocean basins as the mantle flows away from under the oceans in isostatic response to >100 m of sea level rise following Pleistocene deglaciation. So the net LSL in California caused by coastal VLM plus GSL lowering by GIA is ~0.5 mm/yr LSL rise to the north, and ~0.5 mm/yr lowering to the south. Since our VLM estimates do not account for large earthquakes, the trends in LSL over geological time could look quite different. Given that our GPS time series are selected from a globally consistent set from >11,000 stations, we note that similar studies could be applied using our dataset in a seamless way over coastlines across the globe, depending on available station coverage.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G41B..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G41B..02T"><span>The Status and Future Directions for the GRACE Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tapley, B. D.; Flechtner, F.; Watkins, M. M.; Bettadpur, S. V.</p> <p>2015-12-01</p> <p>The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for over 13 years. The mission objectives are to sense the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The major cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequences which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. In 2012, a complete reanalysis of the mission data, referred to as the RL05 data release, was initiated. The monthly solutions from this effort were released in mid-2013 with the mean fields following in 2014 and 2015. The mission is entering the final phases of operations. The current mission operations strategy emphasizes extending the mission lifetime to achieve mission overlap with the GRACE Follow On Mission. This presentation will review the mission status and the projections for mission lifetime, summarize plans for the RL 06 data re-analysis, describe the issues that influence the operations philosophy and discuss the impact the operations may have on the scientific data products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000APS..DFD.JF006P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000APS..DFD.JF006P"><span>Acoustics of swirling flow in a variable area pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peake, Nigel; Cooper, Alison</p> <p>2000-11-01</p> <p>We consider the propagation of small-amplitude waves through swirling steady flow conveyed by a circular pipe whose cross-sectional area varies slowly in the axial direction. The unsteady flow is decomposed into vortical and irrotational components, and the steady vorticity means that unlike in standard rapid distortion theory these components are coupled, as in recent work by Atassi, Tam and co-workers. The coupling leads to separate families of modes, driven by compressibility or by the swirl, which must be treated separately. We consider the practically important case in which the swirl Mach numbers are comparable to those of the steady axial flow. WKB analysis is applied using ɛ, the mean axial gradient of the cylinder walls, as the small parameter. At O(1) we determine local wave numbers according to the parallel-flow theory of Atassi, while at O(ɛ) a secularity condition yields the variaition of the modal amplitudes along the axis. We demonstrate that the presence of swirl can significantly reduce the amplitude of acoustic modes in the pipe. This is of practical significnance for the prediction of noise generation by turbomachinery, since rotating blade rows can produce significant mean swirl downstream. Similar analysis for a compressible swirling jet, in which the axial variation is provided by viscous effects, will also be described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26381603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26381603"><span>Secular trends in consultations for asthma in early childhood, the 16 administrative regions of Morocco, 2004-2012.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sadeq, Mina; Abouqal, Redouane; ElMarnissi, Abdelilah</p> <p>2015-09-17</p> <p>Little is known about asthma trend in Morocco, particularly in early childhood. Furthermore, when dealing with asthma related environmental risk factors in Morocco, decision-making focus is in one region R9, while 16 regions make up the country. This work aims at studying 9-year trends in consultations for asthma in under-5 children in the 16 individual regions with respect to area and age group. Direct method use, based on the only available national data from the open access files of the ministry of health, standardizing data for three age groups (0-11 ; 12-23 and 24-59 months). We compared age-adjusted rates, stratified by area (urban and rural areas) within each region (Wilcoxon's signed ranks test), and between all regions emphasizing on R9. Secular trends are examined (Kendall's rank correlation test). We also compared directly standardized rates as a rate ratio for two study populations (that of R9 and any region with highest rates). We finally compared rates by age group in selected regions. Secular increase in prevalence rates was shown in both urban and rural Morocco, particularly in urban areas of R10, R14, R16 and R5, and in rural areas of R14 and R16. In urban area of R10 (the highest age-adjusted prevalence rates area) the rates showed secular increase from 6.82 at 95 % CI = [6.44 to 7.19] per 1000 childhood population in 2004 to 20.91 at 95 % CI = [20.26 to 21.56] per 1000 childhood population in 2012 (P = 0.001). Rates were higher in urban than rural Morocco, particularly in R8, R9, R10, R14, R15 ; R6 was an exception. Rates in R10 were 1.63 higher than that in R9 in 2004 and rose to be 2.55 higher in 2012 ; rates in urban area of R14, about 3 times lower than that in R9 in 2004, increased to be similar in 2012. The highest-prevalence age group varied according to region and area. The regions that worth decision making attention are the urban areas of R10 (the highest prevalence rates Moroccan area, showing continuous increase), of R9, of R14 and the rural area of R6. The rates in the urban area of R9 (a current continuous decision making focus) remained high but stable within the study period and less important than those in R10. Environmental factors (biological particules, non-biological particules or gazes) are suspected.The potential unavailability of treatment at regular basis at the primary health care centers may reduce frequency of consultations for asthma in early childhood : outpatients may consult only if asthma causes problems in an attempt to get free medicines ; chances of outpatients' follow-up by the primary health care center's physicians are therefore reduced and optimal asthma control is not achieved. Social, health care policy and environmental factors, to which decision-making has to be responsive, are suspected to be affecting both frequency of and time secular trend in consultations for asthma in early childhood in Morocco.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PEPI..157....8V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PEPI..157....8V"><span>Results of geomagnetic observations in Central Africa by Portuguese explorers during 1877 1885</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaquero, José M.; Trigo, Ricardo M.</p> <p>2006-08-01</p> <p>In this short contribution, geomagnetic measurements in Central Africa made by Capelo and Ivens - two Portuguese explorers - during the years 1877 and 1885 are provided. We show the scarce number of geomagnetic observation in Africa compiled until now. These Portuguese explorers performed a considerable amount of measurements of geomagnetic declination (44 measurements), inclination (50) and horizontal component (50) of the geomagnetic field. We compared the results attained by these keen observers with those derived from the global geomagnetic model by Jackson et al. [Jackson, A., Jonkers, A.,Walker, M., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. 358, 957-990].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860029592&hterms=electromagnetism&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Delectromagnetism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860029592&hterms=electromagnetism&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Delectromagnetism"><span>On the coupling of fluid dynamics and electromagnetism at the top of the earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benton, E. R.</p> <p>1985-01-01</p> <p>A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010393"><span>Paleomagnetism of San Cristobal Island, Galapagos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cox, A.</p> <p>1971-01-01</p> <p>Isla San Cristobal, the most easterly of the Galapagos Islands, consists of two parts: a large volcano constitutes the southwest half of the island and an irregular apron of small cones and flows makes up the northeast half. As some of the younger flows on the flanks of the large volcano are reversely magnetized, the minimum age of the volcano is 0.7 my, which is the age of the Brunhes-Matuyama reversal boundary. The true age is probably several times greater. The cones and flows to the northeast are all normally magnetized. The between-site angular dispersion of virtual poles is 11.3?? - a value consistent with mathematical models for the latitude dependence of geomagnetic secular variation. ?? 1971.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3860Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3860Z"><span>On possible interconnections between Climate Change and Earth rotation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zotov, Leonid; Christian, Bizouard; Sidorenkov, Nikolay</p> <p></p> <p>The question of interconnections between rotation of the Earth and Climate Change raised more, then 30 years ago. In Lambeck’s, Sidorenkov’s and others books the correlation between the secular changes of temperature and rotation velocity of the Earth was found. Since Climate Change brings to the redistribution of water and ice mass, ocean currents and atmospheric circulation, it also influences the angular momentum and moment of inertia of the Earth system, what causes variations in its rotation. We present the results of analysis of global temperature, sea level, Chandler wobble, atmospheric winds, and length of day (LOD) changes with arguments testifying possible interrelations between these processes and their dependence on space factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880037998&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880037998&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeofisica"><span>Mantle rheology and satellite signatures from present-day glacial forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sabadini, Roberto; Yuen, David A.; Gasperini, Paolo</p> <p>1988-01-01</p> <p>Changes in the long-wavelength region of the earth's gravity field resulting from both present-day glacial discharges and the possible growth of the Antarctic ice sheet are considered. Significant differences in the responses between the Maxell and Burger body rheologies are found for time spans of less than 100 years. The quantitative model for predicting the secular variations of the gravitational potential, and means for incorporating glacial forcings, are described. Results are given for the excitation of the degree two harmonics. It is suggested that detailed satellite monitoring of present-day ice movements in conjunction with geodetic satellite missions may provide a reasonable alternative for the esimation of deep mantle viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800020265','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800020265"><span>Global tectonic studies: Hotspots and anomalous topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burke, K.; Kidd, W. S. F.; Delong, S.; Thiessen, R. L.; Carosella, R.; Mcgetchin, T. R.</p> <p>1979-01-01</p> <p>Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/535500-long-term-hydrographic-variability-near-bermuda-relation-surface-forcing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/535500-long-term-hydrographic-variability-near-bermuda-relation-surface-forcing"><span>Long term hydrographic variability near Bermuda and relation to surface forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Joyce, T.M.</p> <p>1997-11-01</p> <p>This paper provides an extremely brief description of long-term hydrographic observations at Bermuda. The time series of observations near the island goes back to 1922. A secular increase of temperature of approximately 0.5 C per century in the deep water pressure range has been observed; this depth layer is the only one observed at Bermuda to have such a long-term increase. Decadal time scale fluctuations have also been identified, and are correlated to decadal variations in the Labrador Sea. The recent period of decreasing temperature at Bermuda may be a reflection of the increased cooling in the Labrador Sea inmore » recent years. 2 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2251337N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2251337N"><span>Dynamical portrait of the Hoffmeister asteroid family</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novakovic, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knezevic, Zoran; Radovic, Viktor</p> <p>2015-08-01</p> <p>The (1726) Hoffmeister asteroid family is located in the middle of the Main Belt, between 2.75 and 2.82 AU. It draws our attention due to its unusual shape when projected to the semi-major axis vs. inclination plane. Actually, the distribution of family members as seen in this plane clearly suggests different dynamical evolution for the two parts of the family delimited in terms of semi-major axis.Therefore, we investigate here the dynamics of the family members aiming primarily to explain the observed unusual shape, but we also reconstruct the evolution of the whole family in time, and estimated its age.The Hoffmeister family is close to the fourth degree secular resonance z1=g-g6+s-s6, and in the neighborhood of the most massive asteroid (1) Ceres, each of these possibly being responsible for the strange shape of the family. To identify which ones, if any, among the different possible dynamical mechanisms are actually at work here, we performed a set of numerical integrations. We integrate the orbits of test particles over 300 Myr, as the age of the Hoffmeister family was previously roughly estimated to be 300 ± 200 Myr. Moreover, in order to identify and isolate the main perturber(s), we repeat four times the integrations using each time a different dynamical model, taking or not into account the Yarkovsky effect and dwarf planet Ceres as a perturbing body.Our results reveal the significant role of a so far overlooked dynamical aspect, namely a secular resonance between the dwarf planet Ceres and other asteroids. In particular, we show that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663568-binary-black-hole-mergers-from-field-triples-properties-rates-impact-stellar-evolution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663568-binary-black-hole-mergers-from-field-triples-properties-rates-impact-stellar-evolution"><span>Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.</p> <p></p> <p>We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triplesmore » with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4741706V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4741706V"><span>Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa L.</p> <p>2015-11-01</p> <p>Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog, and assuming a Gausian distribution for the eigenmode amplitudes and a uniform distribution for the eigenmode phases, I have predicted what range of precession rates the planets may have. Generally, planets that have more than one eigenmode significantly contribute to their eccentricity ('groupies') can have a wide range of possible precession rates, while planets that are 'loners' have a narrow range of possible precession rates. One might have assumed that in any given system, the planets with shorter periods would have faster precession rates. However, I show that in systems where the planets suffer strong secular interactions this is not necessarily the case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.G13B0944C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.G13B0944C"><span>Precise Gravity Measurements for Lunar Laser Ranging at Apache Point Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crossley, D. J.; Murphy, T.; Boy, J.; De Linage, C.; Wheeler, R. D.; Krauterbluth, K.</p> <p>2012-12-01</p> <p>Lunar Laser Ranging (LLR) at Apache Point Observatory began in 2006 under the APOLLO project using a 3.5 m telescope on a 2780 m summit in New Mexico. Recent improvements in the technical operations are producing uncertainties at the few-mm level in the 1.5 x 10^13 cm separation of the solar orbits of the Earth and Moon. This level of sensitivity permits a number of important aspects of gravitational theory to be tested. Among these is the Equivalence Principle that determines the universality of free fall, tests of the time variation of the Gravitational Constant G, deviations from the inverse square law, and preferred frame effects. In 2009 APOLLO installed a superconducting gravimeter (SG) on the concrete pier under the main telescope to further constrain the deformation of the site as part of an initiative to improve all aspects of the modeling process. We have analyzed more than 3 years of high quality SG data that provides unmatched accuracy in determining the local tidal gravimetric factors for the solid Earth and ocean tide loading. With on-site gravity we have direct measurements of signals such as polar motion, and can compute global atmospheric and hydrological loading for the site using GLDAS and local hydrology models that are compared with the SG observations. We also compare the SG residuals with satellite estimates of seasonal ground gravity variations from the GRACE mission. Apache Point is visited regularly by a team from the National Geospatial-Intelligence Agency to provide absolute gravity values for the calibration of the SG and to determine secular gravity changes. Nearby GPS location P027 provides continuous position information from the Plate Boundary Observatory of Earthscope that is used to correlate gravity/height variations at the site. Unusual aspects of the data processing include corrections for the telescope azimuth that appear as small offsets at the 1 μGal level and can be removed by correlating the azimuth data with the SG residuals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22181512','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22181512"><span>Variational data assimilation for the initial-value dynamo problem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Kuan; Jackson, Andrew; Livermore, Philip W</p> <p>2011-11-01</p> <p>The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.189..761F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.189..761F"><span>Core surface magnetic field evolution 2000-2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.</p> <p>2012-05-01</p> <p>We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AAS...21923909P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AAS...21923909P"><span>Measurement of Flux Density of Cas A at Low Frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patil, Ajinkya; Fisher, R.</p> <p>2012-01-01</p> <p>Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Ap%26SS.361..184L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Ap%26SS.361..184L"><span>LUT observations of the mass-transferring binary AI Dra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping</p> <p>2016-06-01</p> <p>Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G41B0363M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G41B0363M"><span>On the Cause of Geodetic Satellite Accelerations and Other Correlated Unmodeled Phenomena</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, A. F.</p> <p>2005-12-01</p> <p>An oversight in the development of the Einstein field equations requires a well-defined amendment to general relativity that very slightly modifies the weak-field Schwarzschild geometry yielding unambiguous new predictions of gravitational relativistic phenomena. The secular accelerations of LAGEOS, Etalon and other geodetic satellites are definitively explained as a previously unmodeled relativistic effect of the gravitational field. Observed dynamic variations may be correlated to the complex dynamic relationship between the satellite angular momentum vector and the solar gravitational gradient associated with the orbital motion of the Earth and the natural precession of the satellite orbit. The Pioneer Anomaly, semidiurnal saw-toothed pseudo-range residuals of GPS satellites, peculiar results of radio occultation experiments, secular accelerations of Solar System moons, the conspicuous excess redshift of white dwarf stars and other documented empirical observations are all correlated to the same newly modeled subtle relativistic energy effect. Modern challenges in the determination and maintenance of an accurate and reliable terrestrial reference frame, difficulties with global time synchronization at nanosecond resolution and the purported existence of unlikely excessive undulations of the Geoid relative to the Ellipsoid are all related to this previously unknown phenomenon inherent to the gravitational field. Doppler satellite measurements made by the TRANSIT system (the precursor to GPS) were significantly affected; WGS 84 coordinates and other geodetic data now assumed to be correct to high accuracy require correction based on the new theoretical developments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033881&hterms=Principles+evolution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPrinciples%2Bevolution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033881&hterms=Principles+evolution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPrinciples%2Bevolution"><span>Equilibrium, stability, and orbital evolution of close binary systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.</p> <p>1994-01-01</p> <p>We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=aesthetic+AND+experience+AND+social&pg=6&id=EJ1027776','ERIC'); return false;" href="https://eric.ed.gov/?q=aesthetic+AND+experience+AND+social&pg=6&id=EJ1027776"><span>Religion, Education and the Post-Secular Child</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Davis, Robert A.</p> <p>2014-01-01</p> <p>This essay endeavours to reframe current discussion of the relationship of religion to education by highlighting an often seriously neglected element of contemporary educational thought: the changing, post-secular understanding of childhood in the globalised age. Drawing upon recent ethnographies of childhood, and an older anthropological…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24518817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24518817"><span>Secular trends on traditional ecological knowledge: An analysis of different domains of knowledge among Tsimane' men.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reyes-García, Victoria; Luz, Ana C; Gueze, Maximilien; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan</p> <p>2013-10-01</p> <p>Empirical research provides contradictory evidence of the loss of traditional ecological knowledge across societies. Researchers have argued that culture, methodological differences, and site-specific conditions are responsible for such contradictory evidences. We advance and test a third explanation: the adaptive nature of traditional ecological knowledge systems. Specifically, we test whether different domains of traditional ecological knowledge experience different secular changes and analyze trends in the context of other changes in livelihoods. We use data collected among 651 Tsimane' men (Bolivian Amazon). Our findings indicate that different domains of knowledge follow different secular trends. Among the domains of knowledge analyzed, medicinal and wild edible knowledge appear as the most vulnerable; canoe building and firewood knowledge seem to remain constant across generations; whereas house building knowledge seems to experience a slight secular increase. Our analysis reflects on the adaptive nature of traditional ecological knowledge, highlighting how changes in this knowledge system respond to the particular needs of a society in a given point of time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020003350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020003350"><span>Response to Comment on "Does the Earth Have an Adaptive Infrared Iris?"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Thomas L.; Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.</p> <p>2001-01-01</p> <p>In his comment on Lindzen et al., Harrison found that the amount of high-level clouds, A, and the sea-surface temperature beneath clouds, T, averaged over a large oceanic domain in the western Pacific have secular linear trends of opposite signs over a period of 20 months. He found that when the linear trends are subtracted from the data, the correlation between the residual A and T is much reduced. His estimates of the confidence levels for the correlation indicate, moreover, that this correlation is not statistically significant. The domain-averaged A and, to a lesser degree, T, have distinct intra-seasonal and seasonal variations. These variations are influenced by the large-scale wind and temperature distributions and by the seasonal variation of insolation. To separate the local effect from the effect of slowly changing large-scale conditions, rather than subtracting 20-month linear trends from the series, which has the potential to spuriously extrapolate intra-seasonal and seasonal variations to even longer time scales, we subtracted 30-day running means of A and T from each time series; in effect, the data were high-pass filtered. The number of points (days), N, is reduced by this process from the original value of 510 to 480.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060050130','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060050130"><span>Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2006-01-01</p> <p>The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP23A0895P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP23A0895P"><span>Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Y.; Zhu, R.</p> <p>2017-12-01</p> <p>The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in strong solar irradiation, which is harmful to many organisms. Together, newly accumulated lines of evidence strongly indicate that the geomagnetic field and its variations have important impacts on life and its evolution. In this paper we will provide an overview of recent observations, progresses and perspectives in this subject.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26930040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26930040"><span>Gods, Germs, and Petri Dishes: Toward a Nonsecular Medical Anthropology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roberts, Elizabeth F S</p> <p>2016-01-01</p> <p>This commentary calls on medical anthropology to become programmatically non-secular. Despite recent anthropological critiques of secularity, within and outside of anthropology, most contemporary medical anthropologists continue to leave deities and religiosity out of their examinations of healing practices, especially in their accounts of biomedicine. Through a critical, relational constructionist lens, which traces how all entities are both constructed and real, a non-secular medical anthropology would insist that when deities are part of medical practice, they are integral to analysis. Importantly then, within the symmetrical nature of this same constructionist lens, biomedical entities like germs and petri dishes need to be accounted for just as much as deities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009997"><span>Asteroid proper elements and secular resonances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knezevic, Zoran; Milani, Andrea</p> <p>1992-01-01</p> <p>In a series of papers (e.g., Knezevic, 1991; Milani and Knezevic, 1990; 1991) we reported on the progress we were making in computing asteroid proper elements, both as regards their accuracy and long-term stability. Additionally, we reported on the efficiency and 'intelligence' of our software. At the same time, we studied the associated problems of resonance effects, and we introduced the new class of 'nonlinear' secular resonances; we determined the locations of these secular resonances in proper-element phase space and analyzed their impact on the asteroid family classification. Here we would like to summarize the current status of our work and possible further developments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3178341','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3178341"><span>Conflicts between conservative Christian institutions and secular groups in sub-Saharan Africa: Ideological discourses on sexualities, reproduction, and HIV/AIDS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mantell, Joanne E.; Correale, Jacqueline; Adams-Skinner, Jessica; Stein, Zena A.</p> <p>2011-01-01</p> <p>Religious and secular institutions advocate strategies that represent all points on the continuum to reduce the spread of HIV/AIDS. Drawing on an extensive literature review of studies conducted in sub-Saharan Africa, we focus on those secular institutions that support all effective methods of reducing HIV/AIDS transmission and those conservative religious institutions that support a limited set of prevention methods. We conclude by identifying topics for dialogue between these viewpoints that should facilitate cooperation by expanding the generally acceptable HIV/AIDS prevention methods, and especially the use of condoms. PMID:21834733</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Egan&pg=4&id=EJ489124','ERIC'); return false;" href="https://eric.ed.gov/?q=Egan&pg=4&id=EJ489124"><span>Self-Transcendence: Integrating Ends and Means in Value Counseling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Conn, Walter E.</p> <p>1994-01-01</p> <p>Compares pastoral and secular counseling, suggesting that pastoral counseling is distinctively specified by limit experiences. Relates Lonergan's view of self-transcendence to Egan's three-stage model and various approaches summarized by Corey. Concludes that, although distinctive in some ways, pastoral counseling and secular counseling are…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=qualitative+AND+research+AND+trustworthiness+AND+credibility&id=EJ989137','ERIC'); return false;" href="https://eric.ed.gov/?q=qualitative+AND+research+AND+trustworthiness+AND+credibility&id=EJ989137"><span>Experiences of Christian Clients in Secular Psychotherapy: A Mixed-Methods Investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cragun, Carrie L.; Friedlander, Myrna L.</p> <p>2012-01-01</p> <p>Eleven Christian former clients were sampled to uncover factors contributing to positive versus negative experiences in secular psychotherapy. The qualitative results indicated that although many participants felt hesitant to discuss their faith due to uncertainty about their therapists' reactions, positive experiences were reportedly facilitated…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religion&id=EJ1170345','ERIC'); return false;" href="https://eric.ed.gov/?q=religion&id=EJ1170345"><span>#Digitalfaith: Using Social Media for Professional Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Manson, Sable A.; Cordovés, Janett I.</p> <p>2018-01-01</p> <p>There is a need to identify and create spaces for professionals in higher education to engage religion, secularism, and spirituality in meaningful ways. #DigitalFaith resources are the digital platforms and communities supporting religious, secular, and spiritual development, and they offer potential avenues for professional development. This…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=family+AND+beliefs&pg=3&id=EJ901373','ERIC'); return false;" href="https://eric.ed.gov/?q=family+AND+beliefs&pg=3&id=EJ901373"><span>Supporting Muslim Students in Secular Public Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schlein, Candace; Chan, Elaine</p> <p>2010-01-01</p> <p>This article discusses the findings of a study examining the challenges and opportunities of supporting Muslim students in secular public schools. Education is explored as a multifaceted interplay between home and family life, community resources, school programs and policies, and classroom lessons to investigate the curricular experiences of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Religious+AND+sacred&pg=4&id=EJ877007','ERIC'); return false;" href="https://eric.ed.gov/?q=Religious+AND+sacred&pg=4&id=EJ877007"><span>Calling in Work: Secular or Sacred?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Steger, Michael F.; Pickering, N. K.; Shin, J. Y.; Dik, B. J.</p> <p>2010-01-01</p> <p>Recent scholarship indicates that people who view their work as a calling are more satisfied with their work and their lives. Historically, calling has been regarded as a religious experience, although modern researchers frequently have adopted a more expansive and secular conceptualization of calling, emphasizing meaning and personal fulfillment…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980222262','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980222262"><span>Space Environment Effects: Low-Altitude Trapped Radiation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huston, S. L.; Pfitzer, K. A.</p> <p>1998-01-01</p> <p>Accurate models of the Earth's trapped energetic proton environment are required for both piloted and robotic space missions. For piloted missions, the concern is mainly total dose to the astronauts, particularly in long-duration missions and during extravehicular activity (EVA). As astronomical and remote-sensing detectors become more sensitive, the proton flux can induce unwanted backgrounds in these instruments. Due to this unwanted background, the following description details the development of a new model for the low-trapped proton environment. The model is based on nearly 20 years of data from the TIRO/NOAA weather satellites. The model, which has been designated NOAAPRO (for NOAA protons), predicts the integral omnidirectional proton flux in three energy ranges: >16, >36, and >80 MeV. It contains a true solar cycle variation and accounts for the secular variation in the Earth's magnetic field. It also extends to lower values of the magnetic L parameter than does AP8. Thus, the model addresses the major shortcomings of AP8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39..418D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39..418D"><span>A reconstruction of solar irradiance using a flux transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie</p> <p>2012-07-01</p> <p>Solar irradiance is one of the important drivers of the Earth's global climate, but it has only been measured for the past 33 years. Its reconstructions are therefore crucial to study longer term variations relevant to climate timescales. Most successful in reproducing the measured irradiance variations have being the models that are based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field. Our SATIRE-S model is one of these, which uses solar full-disc magnetograms as an input, and these are available for less than four decades. To reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. The concept of overlapping ephemeral region cycles is used to describe the secular change in the irradiance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18272268','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18272268"><span>Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna</p> <p>2008-10-01</p> <p>Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760024037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760024037"><span>A mechanism for inducing climatic variations through ozone destruction: Screening of galactic cosmic rays by solar and terrestrial magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chamberlain, J. W.</p> <p>1976-01-01</p> <p>A perturbation analysis, allowing for temperature and opacity feedbacks, is developed to calculate depletions in the O3 abundance and reductions of stratospheric solar heating that result from increases in NOx concentration. A pair of perturbation coefficients give the reduction in O3 and temperature through the stratosphere for a specified NOx increase. This type of analysis illustrates the tendency for various levels to self-heal when a perturbation occurs. Physical arguments indicate that the expected sign of the climatic effect is correct, with colder surface temperatures produced by reduced magnetic shielding. In addition, four qualitative reasons are suggested for thinking that significant ozone reductions by cosmic ray influxes will lead to an increased terrestrial albedo from stratospheric condensation. In this view, long-term (approximately 10,000 years) climatic changes have resulted from secular geomagnetic variations while shorter (approximately 100 years) excursions are related to changes in solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.542..468M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.542..468M"><span>Theory of chaotic orbital variations confirmed by Cretaceous geological evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.</p> <p>2017-02-01</p> <p>Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28230127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28230127"><span>Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Chao; Meyers, Stephen R; Sageman, Bradley B</p> <p>2017-02-22</p> <p>Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11859683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11859683"><span>Body image and eating behaviors in Orthodox and Secular Jewish women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gluck, Marci E; Geliebter, Allan</p> <p>2002-01-01</p> <p>To explore the impact of religion on the development of disturbances in body image and eating behaviors. 78 Orthodox Jewish women were compared with 48 secular Jewish women. Participants completed the Body Shape Questionnaire (BSQ), the Eating Disorder Examination-Questionnaire Version (EDE-Q), and the Figure Rating Scale (FRS). Despite a similar body mass index of 22.2 +/- 2.8 SDs, the secular women scored significantly higher on the BSQ (P = .005) and the EDE-Q (P = .004) than the Orthodox women. The secular women also had greater eating disorder symptomatology: more laxative use (P = .02) and a trend toward more vomiting (P = .06) and diuretic use (P = .06), although not more binge eating. They were twice as likely to have a fear of becoming fat (P = .05) and were four times as likely to be influenced by their shape and weight (P = .001). Also, despite increased media exposure, the secular group chose an ideal body size on the FRS similar to that of the Orthodox group, suggesting that their greater body dissatisfaction on the BSQ was related, instead, to greater cultural pressure for thinness (P = .007) and more shame about appearance (P = .04). Our findings show that membership in a strict, insulated religious group such as Orthodox Judaism may protect women, to some extent, from developing body dissatisfaction and eating pathology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AJ....155..143C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AJ....155..143C"><span>The Mid-plane of the Main Asteroid Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cambioni, Saverio; Malhotra, Renu</p> <p>2018-03-01</p> <p>We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids and find that it has inclination \\bar{I}=0\\buildrel{\\circ}\\over{.} 93+/- 0\\buildrel{\\circ}\\over{.} 04 and longitude of ascending node \\bar{{{Ω }}}=87\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 6 (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system’s invariable plane as well as Jupiter’s orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semimajor axis and time (on secular timescales) and is defined by the forced solution of secular perturbation theory; the ν 16 nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids’ mid-plane in finer semimajor axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within the 3σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼2 au.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP41C1131F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP41C1131F"><span>Avoiding the Pitfalls of Anisotropy in Paleomagnetic Correlation of Snake River Plain Ignimbrites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finn, D. R.; Coe, R. S.; Kelly, H.; Murphy, J.; Reichow, M. K.; Knott, T.; Branney, M.</p> <p>2013-12-01</p> <p>Migration of the Yellowstone hotspot center tracks northeast along the central Snake River Plain (cSRP), leaving a succession of calderas, bimodal rhyolitic and basaltic volcanism, and crustal deformation. Large-scale explosive volcanism common to this province between 12.5-8 Ma is characterized by unusually high-temperature, intensely welded, rheomorphic rhyolitic ignimbrites, typical of what is now known as ';Snake River (SR)-type volcanism'. Individual eruption volumes likely exceed 450 km3 but are poorly known due to the difficulty of correlating units between widely spaced (50-200 km) exposures along the north and south of the plain. Radiometric dating does not have the resolution to identify the eruptive units. Our goal is to use a combination of paleomagnetic, petrographic, chemical and field characterization to establish robust correlations and better constrain eruption volumes and frequencies. Paleomagnetic correlation using the stable remanence, which is the focus of this presentation, has the advantage of very high temporal resolution of the order of centuries. This is due to the geologically rapid rate of geomagnetic secular variation and high accuracy to which extrusive rocks may record the instantaneous direction of the magnetic field. We have collected more than 1200 paleomagnetic samples from over 90 sites to help build a regional stratigraphy between the dozens of known ignimbrite units in the cSRP. During this process, however, we have found that the use of paleomagnetism is complicated by the large variation in the paleomagnetic direction that sometimes exists both within and between sub-lithologies of the same flow. Individual SR-type ignimbrite cooling-units have an upper and lower glassy margin (vitrophyre) enclosing a lithoidal (microcrystalline) zone. These vitrophyre lithologies often have a shallow paleomagnetic direction compared to the lithoidal lithologies. Here we present preliminary results from a detailed paleomagnetic and rock magnetic study of one cooling unit and its thermal contact zone to better understand the source of discrepant directions. We found a relationship between anisotropy of thermal remanent magnetization (ATRM), coercivity, natural remanent magnetization intensity, and deflection of remanence direction. A strong lineation in the ATRM anisotropy suggests contemporaneous rheomorphic shear strain of the welding fabric during early stages of emplacement plays a key role in generating magnetic anisotropy. The low anisotropy of the lithoidal zone and its correlation with the magnetic direction of the underlying baked soil implies that crystallization somehow helps anneal this anisotropy prior to cooling below the unblocking temperature of the constituent magnetic minerals. We hypothesize that the glassy margins retain an anisotropic fabric related to emplacement which affects their ability to accurately record the magnetic field during cooling. The anisotropic fabric in the lithoidal zone is overprinted by continued grain growth and/or alteration and, therefore, more accurately records the paleomagnetic field direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...610A..86S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...610A..86S"><span>Investigating light curve modulation via kernel smoothing. I. Application to 53 fundamental mode and first-overtone Cepheids in the LMC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Süveges, Maria; Anderson, Richard I.</p> <p>2018-03-01</p> <p>Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.186..492L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.186..492L"><span>Earth's dynamo limit of predictability controlled by magnetic dissipation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lhuillier, Florian; Aubert, Julien; Hulot, Gauthier</p> <p>2011-08-01</p> <p>To constrain the forecast horizon of geomagnetic data assimilation, it is of interest to quantify the range of predictability of the geodynamo. Following earlier work in the field of dynamic meteorology, we investigate the sensitivity of numerical dynamos to various perturbations applied to the magnetic, velocity and temperature fields. These perturbations result in some errors, which affect all fields in the same relative way, and grow at the same exponential rate λ=τ-1e, independent of the type and the amplitude of perturbation. Errors produced by the limited resolution of numerical dynamos are also shown to produce a similar amplification, with the same exponential rate. Exploring various possible scaling laws, we demonstrate that the growth rate is mainly proportional to an advection timescale. To better understand the mechanism responsible for the error amplification, we next compare these growth rates with two other dynamo outputs which display a similar dependence on advection: the inverse τ-1SV of the secular-variation timescale, characterizing the secular variation of the observable field produced by these dynamos; and the inverse (τmagdiss)-1 of the magnetic dissipation time, characterizing the rate at which magnetic energy is produced to compensate for Ohmic dissipation in these dynamos. The possible role of viscous dissipation is also discussed via the inverse (τkindiss)-1 of the analogous viscous dissipation time, characterizing the rate at which kinetic energy is produced to compensate for viscous dissipation. We conclude that τe tends to equate τmagdiss for dynamos operating in a turbulent regime with low enough Ekman number, and such that τmagdiss < τkindiss. As these conditions are met in the Earth's outer core, we suggest that τe is controlled by magnetic dissipation, leading to a value τe=τmagdiss≈ 30 yr. We finally discuss the consequences of our results for the practical limit of predictability of the geodynamo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028183','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028183"><span>Geochemistry of speleothem records from southern Illinois: Development of (234U)/(238U) as a proxy for paleoprecipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhou, Juanzuo; Lundstrom, C.C.; Fouke, B.; Panno, S.; Hackley, K.; Curry, B.</p> <p>2005-01-01</p> <p>Natural waters universally show fractionation of uranium series (U-series) parent-daughter pairs, with the disequilibrium between 234U and 238U (234U)/(238U) commonly used as a tracer of groundwater flow. Because speleothems provide a temporal record of geochemical variations in groundwater precipitating calcite, (234U)/(238U) variations in speleothems provide a unique method of investigating water-rock interaction processes over millennium time scales. We present high precision Thermal Ionization Mass Spectrometric (TIMS) U-series analyses of speleothems and drip waters from Fogelpole Cave in southern Illinois. Data from all speleothems from the cave show an inverse correlation between (234U)/(238U) and U concentration, following the pattern observed in groundwaters globally. Within a 65-cm-long stalagmite, concordant 234U-238 U-230Th and 235U-231Pa ages for 5 samples indicate accurate chronology from 78.5 ka to 30 ka. Notably, (234U)/(238U)o which differs from most speleothems by having (234U)/(238U)o <1, positively correlates with speleothem growth rate. We generalize this to the observation that speleothems globally show (234U)/ (238U)o deviating farther from secular equilibrium at lower growth rates and approaching secular equilibrium at higher grow rates. Based on the Fogelpole observations, we suggest that groundwater (234U)/(238U) is controlled by the U oxidation state, the U concentration of the water and the fluid velocity. A transport model whereby U-series nuclides react and exchange with mineral surfaces can reproduce the observed trend between growth rate and (234U)/(238U)o. Based on this result, we suggest that (234U)/(238U)o in speleothems may record changes in hydrologic flux with time and thus could provide a useful proxy for long term records of paleoprecipitation. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoJI.141..485R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoJI.141..485R"><span>Core flow inversion tested with numerical dynamo models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes</p> <p>2000-05-01</p> <p>We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l <= 14, that is, to the resolution of core-field models. In some of the latter inversions prominent zonal currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Clustering&pg=6&id=EJ1145563','ERIC'); return false;" href="https://eric.ed.gov/?q=Clustering&pg=6&id=EJ1145563"><span>Geographical Distribution of Principals in Israeli Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lebental, Dana M.</p> <p>2015-01-01</p> <p>This quantitative investigation focuses on women high school principals at Jewish secular schools throughout Israel. Despite challenges, Israeli women have succeeded in obtaining over half of the principal positions at Jewish secular high schools, but the degree to which there is equal gender access to leadership roles in the school system remains…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=life+AND+Norway&pg=7&id=EJ245139','ERIC'); return false;" href="https://eric.ed.gov/?q=life+AND+Norway&pg=7&id=EJ245139"><span>Secular Life Philosophy as a Subject in Schools in Norway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Horn, Kristian</p> <p>1981-01-01</p> <p>In Norway changes in legislation in recent years have loosened the firm hold of Christian philosophy in the schools and given room for alternative secular philosophy. This article presents background information and an outline of the basic plan for life philosophy as a school subject. (Author/SJL)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840011975','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840011975"><span>The elements of the Earth's magnetism and their secular changes between 1550 and 1915</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritsche, H.</p> <p>1983-01-01</p> <p>The results of an investigation about the magnetic agents outside the Earth's surface as well as the Earth's magnetic elements for the epochs 1550, 1900, 1915 are presented. The secular changes of the Earth's magnetic elements during the time interval 1550 - 1900 are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Human+AND+empathy&id=EJ1132596','ERIC'); return false;" href="https://eric.ed.gov/?q=Human+AND+empathy&id=EJ1132596"><span>Religious Literacies in a Secular Literacy Classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Skerrett, Allison</p> <p>2014-01-01</p> <p>This article examines how a literacy teacher and her students engaged students' Christian religious literacies in a secular classroom and the outcomes of those transactions. Case study methods; scholarship offering historical, cultural, and social perspectives on Christian religious literacies; and the New London Group's theory of a pedagogy of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Intelligent+AND+Design&pg=7&id=EJ1064605','ERIC'); return false;" href="https://eric.ed.gov/?q=Intelligent+AND+Design&pg=7&id=EJ1064605"><span>The Emergence of Three Distinct Worldviews among American College Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Keysar, Ariela</p> <p>2013-01-01</p> <p>American college students' worldviews affect what they value, the way they behave and potentially how they learn. The study described in this article finds that today's students are divided not dichotomously, between religious and secular, but rather among three distinct worldviews: religious, secular, and spiritual. The author asserts that…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=structuralism&pg=4&id=EJ979087','ERIC'); return false;" href="https://eric.ed.gov/?q=structuralism&pg=4&id=EJ979087"><span>Post-Secularism, Religious Knowledge and Religious Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carr, David</p> <p>2012-01-01</p> <p>Post-secularism seems to follow in the wake of other (what are here called) "postal" perspectives--post-structuralism, postmodernism, post-empiricism, post-positivism, post-analytical philosophy, post-foundationalism and so on--in questioning or repudiating what it takes to be the epistemic assumptions of "modernism." To be sure, post-secularism…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=homogenization&pg=3&id=EJ880216','ERIC'); return false;" href="https://eric.ed.gov/?q=homogenization&pg=3&id=EJ880216"><span>New Opportunities and Old Challenges: Romanian Denominational Higher Education in the Bologna Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Szolar, Eva</p> <p>2010-01-01</p> <p>The Europeanization process has created new opportunities for Romanian Christian higher education institutions, but these are coupled with new waves of secularization. The secularization and the transformation of institutional identity are the result of inner institutional decisions only apparently, since these decisions were undertaken in order…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=declining+AND+society&pg=2&id=EJ854814','ERIC'); return false;" href="https://eric.ed.gov/?q=declining+AND+society&pg=2&id=EJ854814"><span>Sociology Dismissing Religion? The Presentation of Religious Change in Introductory Sociology Textbooks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Featherstone, Richard; Sorrell, Katie L.</p> <p>2007-01-01</p> <p>This paper explores whether the field of sociology harbors a dismissive attitude towards religion. Specifically it examines whether introductory sociology textbooks present the classic secularization theory over the more recent religious economies explanation of religious change. The classical secularization thesis suggests that religion is…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=modern+AND+education+AND+traditional+AND+education&pg=2&id=EJ1175402','ERIC'); return false;" href="https://eric.ed.gov/?q=modern+AND+education+AND+traditional+AND+education&pg=2&id=EJ1175402"><span>A Multi-Disciplinary Inquiry of Secular and Christian Approaches to Sex Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yu, Chong Ho; Lee, Hyun Seo</p> <p>2018-01-01</p> <p>Secular scholars have criticized Christian education and counseling on sex as restrictive, ineffective, and outdated. The authors of the current study explored both common non-Christian and Christian approaches to human sexuality with reference to overarching domains of religion, philosophy, psychology, sociology, and anthropology. Secular…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=jerusalem&pg=6&id=EJ673600','ERIC'); return false;" href="https://eric.ed.gov/?q=jerusalem&pg=6&id=EJ673600"><span>The Unique and the Unifying: Children's Narratives of Cultural Differences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Roer-Strier, Dorit; Weil, Shalva; Adan, Hila</p> <p>2003-01-01</p> <p>Examined effects of planned encounters between religious and secular Jewish children and parents at a school in Jerusalem, Israel, on perceptions of religiosity and secularism. Results suggest that each group was aware of its affiliation, could discern similarities and differences, and did not have stereotyped perceptions. Social encounters…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=single+AND+sex+AND+schools+AND+learning&pg=4&id=EJ1130539','ERIC'); return false;" href="https://eric.ed.gov/?q=single+AND+sex+AND+schools+AND+learning&pg=4&id=EJ1130539"><span>Adolescents' Goal Orientations for Science in Single-Gender Israeli Religious Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fortus, David; Daphna, Limor</p> <p>2017-01-01</p> <p>Israeli students and their families can choose between state-funded secular, religious, orthodox, and other alternative schools (e.g., Waldorf, Montessori, democratic). Earlier studies showed that the motivation to engage with science differs greatly between Israeli students in secular schools and democratic schools, with these differences being…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religion+AND+education&pg=2&id=EJ926525','ERIC'); return false;" href="https://eric.ed.gov/?q=religion+AND+education&pg=2&id=EJ926525"><span>Religion, Education, and Secularism in International Agencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Stambach, Amy; Marshall, Katherine; Nelson, Matthew J.; Andreescu, Liviu; Kwayu, Aikande C.; Wexler, Philip; Hotam, Yotam; Fischer, Shlomo; El Bilawi, Hassan</p> <p>2011-01-01</p> <p>During the interwar years of the early twentieth century, and through at least the 1980s, education was seen by scholars, state leaders, and international agency representatives alike as a way to modernize and secularize underdeveloped communities. Arguments about the modernizing power of education did not erase or discount the presence of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=religiousness&pg=6&id=EJ816667','ERIC'); return false;" href="https://eric.ed.gov/?q=religiousness&pg=6&id=EJ816667"><span>Students' Attitudes toward Religion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lebedev, S. D.</p> <p>2008-01-01</p> <p>The problem of the study of religion in the system of secular education hinges on the "reproduction of religiousness" in the secular school and, more broadly, in Russian society space, via the process of mass education. It is the prospect of expanded reproduction of religious consciousness, of religious psychology and practices as a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31E..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31E..06C"><span>Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.</p> <p>2017-12-01</p> <p>Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>